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Ground state of positronium hydride
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The ground bound state in the positronium hydride mole¢idRs is determined from extensive variational
four-body calculations with the James-Coolidge four-body variational expansion in the relative coordinates
l12,713,7 23,714, 24, @Ndrg,. For the positronium hydride with the infinitely heavy nucled$iPs) the total
energy foundE=—0.789 136 9 a.u., is one of the lowest variational values published to date. A number of
bound-state properties have been calculated also, includingHimection expectation values, two-body cusps,
and the two-photon annihilation rafes1050-294{®7)00708-7

PACS numbss): 36.10.Dr

In the present study we consider the bound-state spectrum Nevertheless, as it follows from the results[@f, the KT
in the positronium hydridéHPS. The four-body HPs sys- expansion produces variational results for the HPs hydride
tems consist of two electrores, one positrore™, and one  Which are energetically bett¢and even significantly better
positive heavy particlg™ (the proton for shojt Actually,  than the values found earlier by other meth¢@s4]. This
the bound-state spectrum of HPs contains only one boun@as completely unexpected, since the methods usgz-]
state. The boundness of this state is well known from théiave a partially correct asymptotic behavior, i.e., the appro-
paper by Ord1]. Later, the ground state in the HPs hydride priate wave functions have the correct asymptotics in some
was studied very intensively in a number of theoreticaldecay channels. Presently, we consider the variational ansatz
works[2—4]. The structure of bound-state spectra in the HPJor the four-body wave function due originally to James and
hydride and all references before 1981 can be four8Jint ~ Coolidge(JC) [10]. As it is applied to”HPs the expansion
was shown in that work that positronium hydride and a fewtakes the forn{below we shall call this the JC expansion, for
related systems may play a remarkable role in some astrghort[11,12)
physical theories. Recently, bound positronium hydride has N
been created and observed in the laboraltétyOur previous \P=A{ ( E Cipi(rlz,rlg,rzg,r14,r24,r34))
work [7] contains the most extensive variational results for =1
some properties of such hydridésith the different proton

massejs - . Xexp(—ar 4= Bra—yrss)|, ()
In this paper we report variational resulgsnergies and
some other properti¢gor the ground bound state of the HPs |, o re Pi(F12,F 13T 23,7 14.F 24:F 30)
| ) 1 1 3 1

hydride. In order to determine the energy of this state we use_ _ny; Naip iy Mjp Majp Maj

L . . . . = , and alln.; and m;; are non-
variational expansions in the four-body relative coordinates 23 131214 24 "34 ki i
- o negative integer numbers. TheB, andy are the only three
12,113,123, 14,1 24, and 34, where I’,J:|I’|—I’]| Our

nonlinear parameters. They do not depend on the number of

present goal was to obtain a better or comparable value fqfaqis functions used, and in our present calculations with the
the ground-state energy in the HPs hydride than the resuli~ expansion the values=0.658=1.00, andy=0.59 have

found in [7]. In [7] we used the variational ansatz peen chosen for these parameters. The functions
[Kolesnikov-Taraso(KT) expansiof from [8], Di(F12,F 13T 23, T 14,F 24:Tas) are homogeneous polynomial
N functions of all relative coordinates:;,,r13,r23,r 14,1 24,
i .2 i .2 i .2 i .2 ; : :
‘If=AZ Ci expl— aqof 10— aqaf 13— Aodl 53— @14l 1 andrg,. All other notation is exactly the same as in 13|
=1 [9]. Note that in contrast with all previous studiggith the
(1) JC ansatg there is no assumption that some of the
[Nyj,Ny;,Ng;,Myj, My, mg;] equal zergor each other, ett.
where thea}, are the nonlinear parameters, t8g are the & Priori. Likewise, our goal is to use all possible complete
linear (or variationa) parameters, and! is the appropriate families of basis functions. Such a family of basis functions
symmetrizer(or antisymmetrizex i.e., a projection operator IS represented by the single non-negative integer nuraber
which produces the final wave function with the correct per-®g(i) = Ni ™ N2 T Ngj+ My +My;+ Mg, where
mutation symmetry. In the HPs system there are two identii=1,2, - . . N andwg; is a non-negative integer and equals
cal particles(electrony. They are designated as particles 10: 1, 2, 3, 4, 5, 6 in this study. The physical meaningogf
and 2, while 3 stands for the positron and 4 means the protol§ Obvious: it is the total power of the homogeneous polyno-
[9]. Therefore A takes a very simple formA=1+P;, mial functionpi(r12,713.1 23,7 147 247 34), I-€.,  Can be de-
~ . ' termined as an eigenvalue for the following operator:
where Py, is the permutation operator. Note that the KT
expansion has an incorrect asymptotic behavior in each of
the decay channels for an arbitrary Coulomb four-body sys- 2
tem, and therefore it cannot be regarded as an accurate varia-
tional expansion for such systems. = wPi(r12,r13:723:7 14, 24,7 34)- ©)]

P2 i 2
— Qo 54— @34 34),

J
N, | Pi(r12,713,7 23,7 14,7 24,1 30)
< &rk/) i 3:723 3
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TABLE |. The expectation values in atomic unitm{=1/=1,e=1) of some properties for the ground bouBdstate L =0) of the
positronium hydride“HPs as a function of the total number of basis functibng

N=462 N=588 N=589 N=783 N=924 KT [15]

(rip) 3.551109 3.550723 3.551163 3.555187 3.554741 3.573452
(ri 3.469798 3.469411 3.469624 3.471350 3.471097 3.479507
(r1a 2.298693 2.298455 2.298681 2.300959 2.300684 2.310887
(rsq 3.638839 3.638248 3.638657 3.642593 3.642103 3.660417
(r2) 15.56987 15.56819 15.57341 15.61738 15.61330 15.85396
(réy 15.44102 15.43839 15.44111 15.46176 15.45925 15.57139
(r3) 7.658638 7.657744 7.660105 7.682908 7.680700 7.802988
(r3y 15.96190 15.95924 15.96389 16.00648 16.00208 16.23445
Mo 0.484445 0.484722 0.484696 0.485402 0.485389 0.491471
T3 0.531536 0.531330 0.531660 0.532076 0.532056 0.534931
o 0.670376 0.670250 0.670595 0.671667 0.671614 0.679102
T3a 0.453295 0.453728 0.453594 0.454261 0.454254 0.460052
(r3,) 81.0942 81.1006 81.1545 81.5679 81.5341 84.2409
(riy) 82.7032 82.6934 82.7228 82.9268 82.9053 84.1828
(r3) 33.5537 33.5577 33.5796 33.7794 33.7629 35.0711
(r3y) 81.8475 81.8559 81.9007 82.2974 82.2609 84.8012
(riy 488.597 488.880 489.436 493.288 492.984 523.417
(ria 513.720 513.755 514.068 516.037 515.842 530.169
(rty 180.767 180.909 181.117 182.864 182.726 196.829
(r3a 480.078 480.428 480.853 484.548 484.210 511.689
(reh) 0.3717022 0.3717575 0.3717336 0.3714797 0.3715203 0.3705098
(rig 0.4187259 0.4188448 0.4183785 0.4188055 0.4188283 0.4185147
(rid 0.7305630 0.7306299 0.7306103 0.7304066 0.7304515 0.7297236
(ra 0.3485038 0.3485687 0.3485463 0.3483100 0.3483512 0.3475001
(—3V3) 0.3262654 0.3263277 0.3263251 0.3263045 0.3263244 0.3261727
(—3V3 0.1367618 0.1368619 0.1368590 0.1368908 0.1369023 0.1368539
(612 0.44937% 1072  0.44540% 1072  0.445375%10"2  0.448405 1072  0.44266% 1072  0.44955(< 102
(813 0.241086<10° !  0.24318% 10!  0.24322% 10!  0.243544 101  0.24415% 10!  0.24151% 101!
(614) 0.177488 0.177495 0.177493 0.177439 0.177484 0.174616
(834 0.160766<10°2  0.16192x10°2  0.162000<10"2  0.16173X10°2  0.16216%10°2  0.168874 10 2
v1,P 0.4587343 0.4715450 0.4713573 0.4708562 0.4793652 0.0

Vis —0.4804015 —0.4902103 —0.4904605 —0.4907653 —0.4945145 0.0

Via —1.0009363 —1.0002769 —1.0003399 —0.9996877 —1.0004014 0.0

Vaa 1.0353583 1.0239807 1.0209628 1.0241008 1.0196266 0.0
(8129 0.37631x 103 0.3805% 103 0.38027% 103 0.37413% 103 0.37941x 103 0.37515¢10 3
(8134 0.86090< 103 0.86746<10 3 0.86768<10 2 0.8568% 103 0.85815¢ 103 0.90685< 10 3
(8124 0.77587% 1072 0.77224x 1072 0.7721% 102 0.77261x 1072 0.76892 10 2 0.7151% 102
(81239 0.19827% 103 0.2026% 103 0.20273< 103 0.19668<10° 3 0.20163« 103 0.1733% 103

(T) 0.7892925 0.7895173 0.7895092 0.7894997 0.7895511 0.7891964
(3V) —0.7891859 —0.7893116 —0.7893085 —0.7893172 —0.7893440 —0.7891891

E —0.7890730 —0.7891060 —0.7891077 —0.7891348 —0.7891369 —0.7891818

X 0.1350x 1073 0.2605< 103 0.2543x 1073 0.2311x10°3 0.2623x 1073 0.9235<10°°

&The particles 1 and 2 designate the electrons, 3 stands for the positron, and 4 means the infinitely hea?yproBarch notation differs
from our previous choice used [] (for more details sef9]).
®The “exact” cusp values are;,=0.5,v;5= — 0.5,v;,= — 1.0, andws,= 1.0, respectively.
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In other words,w is the so-called representatidor sub- To compute the two-particlé-function expectation val-
spacg index in a more general infinite-dimensional polyno- yes, we used the definitionX= 5(Fi_Fj), where i
mial space{P;(r12,r 13, 23,714,/ 24,/ 34)}. The total number =:j—12 3 4. The three- and four-particfunctions have
of basis fungnonsN(Bw) in these subspaces or familiBs,  peen determined in an analogous manner, &=
are, respectively, 1, 6, 21, 56, 126, 252, 462dor 0, 1, 2, S(Fi—1)8(Fi—1y) and &= (r,—r}) 8(F;—r) 8(r; =),

3’ 4 5f 6, 'resp?ctlvelyg Iff't '7, menpclgﬁilbe(l;)vy thﬁt Al \yhere i#j=1,2,3,4. The two-body cusp values are de-
a3|s” udnC;'OES. rom the fami |e?j W't - | (I 1S tﬁ termined in the traditional way, i.e., the cusp between
so-called Pekeris numbeare used in a calculation, then tPe particles i and | takes the form ;=

this means that the total number of basis functions is equ? S - oo
_ W|S(ri—ry)alar; | WY(W|S(ri—r)|¥)  where i#j

to N(Q)=N(Bg)+N(B;)+---+N(Bg). For the total b 0= bl

number of basis functions one easily finds(Q)= =1,2,3,4. In an arbitrary Coulomb system the exggtval-

1,7,28,84,210,462,924 fd2=0,1,2,3,4,5,6, respectively. 1S equalgiqmm;/(m;+my), where g; and q; are the
In our present calculations we usdd= 462, 588, 589, charges andn; and m; are the masses of particlesand j,

783, and 924 basis wave functions, respectively Théespectively{14]. Note also that with the KT-variational ex-
first,value corresponds to the basis sét which includes aﬁ)ansion all appropriate cusp values equal zero identi€a]ly

complete familie8,, with w<5. The basis set withl=588 _CI_)P?VIOUSWl,t th'fs |sthnoth_z_ue f_ort_ thel exact wave functloln.
basis functions contains all complete families € results for the -variational -€xpansion can aiso

with <5 plus those from thew=6 family for which l:_)e found in Table [in th_e right-hand column9]. The non-
the inequality mMaxny Ny Ny My .My, Mg)=4 is obeyed. linear parametc_ers_a(ij) in _the p_resent KT wave functloq
This means that this basis set includes the (0,2,0,4,0,0) baéi'@ve been optimized a _I|ttle bit better than in our earlier
function, but not the (0,2,0,2,0,2) basis function. TheWork [7]. Now, by applying the expectation value for the

basis set with 589 basis functions consists of these 58§Iectron-posnron5 function ((8,9=(4.-)) from_ 'I_'aple I
functions from the previous basis set plus the first N=924) we can com'pute the two-photon jmnlhlllatlon rate
(3,3,0,0,0,0) function from the subfamily witb=6 for [°f the “HPs ggdf'de [47: T 27;92”“}3130 (8+-)
which max(ny; ,ny ,Ng ,y; .My ,Mg)=3. As it follows from %100_'617 480 %1 <5+*>%_2_'45_67X1 sec . The ap-
Table | such an elementalyj—N+1 increment may pro- propriate many-photon annihilation ratés,,, whgren>3
duce quite large changes in some properties, while the oth&@S Well asl', andI'o, can be computed by using the for-
properties remain almost unchanged. Analogously, the basf@ulas from[7]. Here, we do not wish to repeat all such
set with theN =783 basis functions contains the basis func-c@lculations in detail.

tions from complete families witw<5 plus those from the in genera_ll, th_e agreement between our result_s ff@in
w=6 family, for which maxny Ny Ny My My ;M) =3 and those given in Table | for most of the properties can be
] i i i1 i | i) = -

Unfortunately, the set of all 924 basis functions witke6 is ~ '©c0gnized as very godeven for the many-particlé func-

nearly linear dependent and could not be taken into accourlilLonS)' The variat.ionallenergies in TabIe_I are slightly.higher
(see also beloy The basis set with 924 basis functions than those obtained in the KT expansibhl15. Likewise,

which we used in our present study includes the previous séf€ Virial parametersy are comparable with the respective

with 783 basis functions plus all those basis functions from’alues obtained ifi7]. However, in comparison with the KT

the family w=7 for which max(ny Ny ,Ng My ,My; M) =4 expansion[?] the JC—variatio_naI expansion has at least the
To compute the needed four-body integrals we applied oufwo following advantages(l) it can be used to compute the
method developed ifiL3] (see also the Appendix nontrivial two-body cusp values;; for Coulomb systems,

The numerical results for some of the propertige., and (2) the expectation values for some of the properties,
expectation valugsof the ground bound state in théHPs  e.g., the outer momentsf;), wherek=2, are certainly more
hydride are presented in Table |, where the convergencaccurate than the appropriate values determined from the KT
for each of the properties is shown as a function of themethod. The inner momemtijl) is slightly smaller for the
total number of basis functiors. Since we use incomplete KT expansion than for the JC expansion. In contrast, the
families of basis functions, such a convergence mayyyter moment$rikj), wherek=1, are slightly larger for the
have a quite nonsmooth form. For an arbitrary self-adjoinfT expansion than for the JC expansion. The deviation in-
operatorX its expectation value is determined as follows: creases withk. This means that the KT expansion describes
<X>:<\P|5(|1P>/<\II|\II>' where |¥) is the respective wave HPs as slightly more diffuse than does the JC expansion
function. The physical meaning of almost all of these expect16].

tation values seems to be quite clear, and we make only & \ye are grateful to the Natural Sciences and Engineering
few remarks. In Table KT) and (V) are the expectation gasearch Council of Canada for financial support.
values for the kinetic and potential energies, respectively.

The parameteE designates the total energy=(T)+(V),
while the deviation of the so-called virial parameter
x=|1+(V)/2(T)| from zero is an indicator of the quality of
the wave function used. The;; are the Pearson correlation
coefficients, mj; = \/(rzij)—<rij>2/<rij), that express the un- Let us discuss brieflyall details can be found if.3]) the
certainty in the expected value of the coordinafe, i.e.,  problem related with the calculations of the basic four-body
(rij), or the length of the “bond” between particlésand]. integral Z=7Z(K,L,M,n{,n,,n3,,8,v) [17]:

APPENDIX
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ably, the best computational formula for tihe(k,/,a,b)
I= J f J Mg 2r5q 21y 2riariaros (when/<0) takes the forni13]
Ak+/7+1a+b
X eXP(— arl 14— B 24— Yr34)dr1drodra,,  (AL) A(k,/,a,b)= ( 1 )
whereK,L,M,n4,n,,n; are integer numbers, while, 3,y a
are three realpositive numbers. Actually, by applying the XoF | 1k+/+2;k+2; ——

well known, routine procedurésee, e.g9.[18,19) this inte- a+b

gral is expressed as a finite or, sometimes, an infinite sum aofhere ,F,(«,B;v;z) is the Gaussian hypergeometric func-

the auxiliary functions A;(k,a),A;(k,/,a,b), and tion, i.e., ;Fi(a,B;7;2)=1+2,-1[(a)n(B)n/(y)an']Z",

As(k,7/,m,a,b,c). Now, the central problem is to find very and (a)g=1,(a)1=«, ...,(@)y=a(a+1)---(a+n—1)

effective, fast, and numerically stable formulas in order to=I"(a+n)/I'(«), whereI'(x) is the usual gamma-function

compute these auxiliary functions: (n is always a positive integerin terms of this notation

e k! (1),=n!. The presented formal series foF («,B;v;2) is
Al(k,a):A(k,a):jo X" expl—ax)dx=—pr1, absolutely convergent only fdz|<1. The analogous for-
mula for theA; auxiliary function (n<0) is[13]

+ o0 +
_ k _ / _
Aalki/,a,b) fo X" ext ax)dxfx YOeRmbYIAY, e By = Akt M 2, B+ )
+ o0 + o
A3(k,/',m,a,b,c)=f0 xkexp(—ax)dxf y’ ©S (k+/+m+3)n/ a n
o (Kt1l)per \a+Bty

+ o
xexq—by)dyj Z" exp(—c2z)dz, a+p
y

where all valuesk,/,m are integers K is always non- atpBty
negative, while” and m can be positive or negativeand  where all notations are the same as before and the
a,b,c are real positive numbers. The case whenkatf,m  coefficients DR(y)=,F1(1K+m;K;y)/(K—1), where

are positive is reduced to finite term expressifit3], while ~ K=2K+m=0 and 0<sy<1 always. Note that the last for-
for the negative values of some of these parameters, prolmula can be reduced to the form found[&®].
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