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Ground state of positronium hydride

Alexei M. Frolov and Vedene H. Smith, Jr.
Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6

~Received 3 March 1997!

The ground bound state in the positronium hydride molecule~HPs! is determined from extensive variational
four-body calculations with the James-Coolidge four-body variational expansion in the relative coordinates
r 12,r 13,r 23,r 14,r 24, and r 34. For the positronium hydride with the infinitely heavy nucleus (`HPs) the total
energy found,E520.789 136 9 a.u., is one of the lowest variational values published to date. A number of
bound-state properties have been calculated also, including thed-function expectation values, two-body cusps,
and the two-photon annihilation rate.@S1050-2947~97!00708-7#
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In the present study we consider the bound-state spec
in the positronium hydride~HPs!. The four-body HPs sys
tems consist of two electronse2, one positrone1, and one
positive heavy particlep1 ~the proton for short!. Actually,
the bound-state spectrum of HPs contains only one bo
state. The boundness of this state is well known from
paper by Ore@1#. Later, the ground state in the HPs hydri
was studied very intensively in a number of theoreti
works @2–4#. The structure of bound-state spectra in the H
hydride and all references before 1981 can be found in@5#. It
was shown in that work that positronium hydride and a f
related systems may play a remarkable role in some as
physical theories. Recently, bound positronium hydride
been created and observed in the laboratory@6#. Our previous
work @7# contains the most extensive variational results
some properties of such hydrides~with the different proton
masses!.

In this paper we report variational results~energies and
some other properties! for the ground bound state of the HP
hydride. In order to determine the energy of this state we
variational expansions in the four-body relative coordina
r 12,r 13,r 23,r 14,r 24, and r 34, where r i j 5urW i2rW j u. Our
present goal was to obtain a better or comparable value
the ground-state energy in the HPs hydride than the re
found in @7#. In @7# we used the variational ansa
@Kolesnikov-Tarasov~KT! expansion# from @8#,
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where theakl
i are the nonlinear parameters, theCi are the

linear ~or variational! parameters, andA is the appropriate
symmetrizer~or antisymmetrizer!, i.e., a projection operato
which produces the final wave function with the correct p
mutation symmetry. In the HPs system there are two ide
cal particles~electrons!. They are designated as particles
and 2, while 3 stands for the positron and 4 means the pro
@9#. ThereforeA takes a very simple form:A511 P̂12,
where P̂12 is the permutation operator. Note that the K
expansion has an incorrect asymptotic behavior in each
the decay channels for an arbitrary Coulomb four-body s
tem, and therefore it cannot be regarded as an accurate v
tional expansion for such systems.
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Nevertheless, as it follows from the results of@7#, the KT
expansion produces variational results for the HPs hyd
which are energetically better~and even significantly better!
than the values found earlier by other methods@2–4#. This
was completely unexpected, since the methods used in@2–4#
have a partially correct asymptotic behavior, i.e., the app
priate wave functions have the correct asymptotics in so
decay channels. Presently, we consider the variational an
for the four-body wave function due originally to James a
Coolidge~JC! @10#. As it is applied to`HPs the expansion
takes the form~below we shall call this the JC expansion, f
short @11,12#!
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Cipi~r 12,r 13,r 23,r 14,r 24,r 34!D
3exp~2ar 142br 242gr 34!G , ~2!

where pi(r 12,r 13,r 23,r 14,r 24,r 34)
5r 23

n1,i r 13
n2,i r 12

n3,i r 14
m1,i r 24

m2,i r 34
m3,i , and all nk,i and ml ,i are non-

negative integer numbers. Thea,b, andg are the only three
nonlinear parameters. They do not depend on the numbe
basis functions used, and in our present calculations with
JC expansion the valuesa50.65,b51.00, andg50.59 have
been chosen for these parameters. The functi
pi(r 12,r 13,r 23,r 14,r 24,r 34) are homogeneous polynomia
functions of all relative coordinates:r 12,r 13,r 23,r 14,r 24,
and r 34. All other notation is exactly the same as in Eq.~1!
@9#. Note that in contrast with all previous studies~with the
JC ansatz! there is no assumption that some of t
@n1,i ,n2,i ,n3,i ,m1,i ,m2,i ,m3,i # equal zero~or each other, etc.!
a priori. Likewise, our goal is to use all possible comple
families of basis functions. Such a family of basis functio
is represented by the single non-negative integer numbev:
vg( i )5n1,i1n2,i1n3,i1m1,i1m2,i1m3,i , where
i 51,2, . . . ,N andvg( i ) is a non-negative integer and equa
0, 1, 2, 3, 4, 5, 6 in this study. The physical meaning ofvg( i )
is obvious: it is the total power of the homogeneous polyn
mial functionpi(r 12,r 13,r 23,r 14,r 24,r 34), i.e., v can be de-
termined as an eigenvalue for the following operator:

S (
kl

r kl

]

]r kl
D pi~r 12,r 13,r 23,r 14,r 24,r 34!

5vpi~r 12,r 13,r 23,r 14,r 24,r 34!. ~3!
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TABLE I. The expectation values in atomic units (me51,\51,e51) of some properties for the ground boundS state (L50) of the
positronium hydride`HPs as a function of the total number of basis functionsN. a

N5462 N5588 N5589 N5783 N5924 KT @15#

^r 12& 3.551109 3.550723 3.551163 3.555187 3.554741 3.573452

^r 13& 3.469798 3.469411 3.469624 3.471350 3.471097 3.479507

^r 14& 2.298693 2.298455 2.298681 2.300959 2.300684 2.310887

^r 34& 3.638839 3.638248 3.638657 3.642593 3.642103 3.660417

^r 12
2 & 15.56987 15.56819 15.57341 15.61738 15.61330 15.85396

^r 13
2 & 15.44102 15.43839 15.44111 15.46176 15.45925 15.57139

^r 14
2 & 7.658638 7.657744 7.660105 7.682908 7.680700 7.802988

^r 34
2 & 15.96190 15.95924 15.96389 16.00648 16.00208 16.23445

p12 0.484445 0.484722 0.484696 0.485402 0.485389 0.491471

p13 0.531536 0.531330 0.531660 0.532076 0.532056 0.534931

p14 0.670376 0.670250 0.670595 0.671667 0.671614 0.679102

p34 0.453295 0.453728 0.453594 0.454261 0.454254 0.460052

^r 12
3 & 81.0942 81.1006 81.1545 81.5679 81.5341 84.2409

^r 13
3 & 82.7032 82.6934 82.7228 82.9268 82.9053 84.1828

^r 14
3 & 33.5537 33.5577 33.5796 33.7794 33.7629 35.0711

^r 34
3 & 81.8475 81.8559 81.9007 82.2974 82.2609 84.8012

^r 12
4 & 488.597 488.880 489.436 493.288 492.984 523.417

^r 13
4 & 513.720 513.755 514.068 516.037 515.842 530.169

^r 14
4 & 180.767 180.909 181.117 182.864 182.726 196.829

^r 34
4 & 480.078 480.428 480.853 484.548 484.210 511.689

^r 12
21& 0.3717022 0.3717575 0.3717336 0.3714797 0.3715203 0.3705098

^r 13
21& 0.4187259 0.4188448 0.4183785 0.4188055 0.4188283 0.4185147

^r 14
21& 0.7305630 0.7306299 0.7306103 0.7304066 0.7304515 0.7297236

^r 34
21& 0.3485038 0.3485687 0.3485463 0.3483100 0.3483512 0.3475001

^2
1
2¹1

2& 0.3262654 0.3263277 0.3263251 0.3263045 0.3263244 0.3261727

^2
1
2¹3

2& 0.1367618 0.1368619 0.1368590 0.1368908 0.1369023 0.1368539

^d12& 0.44937931022 0.44540331022 0.44537531022 0.44840531022 0.44266331022 0.44955031022

^d13& 0.24108631021 0.24318831021 0.24322931021 0.24354431021 0.24415831021 0.24151931021

^d14& 0.177488 0.177495 0.177493 0.177439 0.177484 0.174616

^d34& 0.16076631022 0.16192031022 0.16200031022 0.16173131022 0.16216531022 0.16887431022

n12
b 0.4587343 0.4715450 0.4713573 0.4708562 0.4793652 0.0

n13 20.4804015 20.4902103 20.4904605 20.4907653 20.4945145 0.0

n14 21.0009363 21.0002769 21.0003399 20.9996877 21.0004014 0.0

n34 1.0353583 1.0239807 1.0209628 1.0241008 1.0196266 0.0

^d123& 0.3763131023 0.3805931023 0.3802731023 0.3741331023 0.3794131023 0.3751531023

^d134& 0.8609031023 0.8674631023 0.8676831023 0.8568931023 0.8581531023 0.9068531023

^d124& 0.7758731022 0.7722431022 0.7721931022 0.7726131022 0.7689231022 0.7151231022

^d1234& 0.1982731023 0.2026931023 0.2027331023 0.1966831023 0.2016331023 0.1733231023

^T& 0.7892925 0.7895173 0.7895092 0.7894997 0.7895511 0.7891964

^ 1
2V& 20.7891859 20.7893116 20.7893085 20.7893172 20.7893440 20.7891891

E 20.7890730 20.7891060 20.7891077 20.7891348 20.7891369 20.7891818

x 0.135031023 0.260531023 0.254331023 0.231131023 0.262331023 0.923531025

aThe particles 1 and 2 designate the electrons, 3 stands for the positron, and 4 means the infinitely heavy proton`H1. Such notation differs
from our previous choice used in@7# ~for more details see@9#!.
bThe ‘‘exact’’ cusp values aren1250.5,n13520.5,n14521.0, andn3451.0, respectively.



o-

ll

n
u

h
a

es

a
he
58
rs

th
as
c

u
s
s

om

ou

n
th
e
a
in
s

ec
ly

el

er
f
n
-

e-
en

-

n.
lso

ier
e

te

r-
h

be

er

e

the
e

es,

KT

the

in-
es
ion

ring

dy

56 2419BRIEF REPORTS
In other words,v is the so-called representation~or sub-
space! index in a more general infinite-dimensional polyn
mial space$Pi(r 12,r 13,r 23,r 14,r 24,r 34)%. The total number
of basis functionsN(Bv) in these subspaces or familiesBv

are, respectively, 1, 6, 21, 56, 126, 252, 462 forv 5 0, 1, 2,
3, 4, 5, 6, respectively. If it is mentioned below that a
basis functions from the families withv<V (V is the
so-called Pekeris number! are used in a calculation, the
this means that the total number of basis functions is eq
to N~V!5N~B0!1N~B1)1•••1N(BV). For the total
number of basis functions one easily findsN~V!5
1,7,28,84,210,462,924 forV50,1,2,3,4,5,6, respectively.

In our present calculations we usedN 5 462, 588, 589,
783, and 924 basis wave functions, respectively. T
first value corresponds to the basis set which includes
complete familiesBv with v<5. The basis set withN5588
basis functions contains all complete famili
with v<5 plus those from thev56 family for which
the inequality maxi(n1i ,n2i ,n3i ,m1i ,m2i ,m3i)>4 is obeyed.
This means that this basis set includes the (0,2,0,4,0,0) b
function, but not the (0,2,0,2,0,2) basis function. T
basis set with 589 basis functions consists of these
functions from the previous basis set plus the fi
(3,3,0,0,0,0) function from the subfamily withv56 for
which maxi(n1i ,n2i ,n3i ,m1i ,m2i ,m3i)53. As it follows from
Table I such an elementaryN→N11 increment may pro-
duce quite large changes in some properties, while the o
properties remain almost unchanged. Analogously, the b
set with theN5783 basis functions contains the basis fun
tions from complete families withv<5 plus those from the
v56 family, for which maxi(n1i ,n2i ,n3i ,m1i ,m2i ,m3i)>3.
Unfortunately, the set of all 924 basis functions withv<6 is
nearly linear dependent and could not be taken into acco
~see also below!. The basis set with 924 basis function
which we used in our present study includes the previous
with 783 basis functions plus all those basis functions fr
the family v57 for which maxi(n1i ,n2i ,n3i ,m1i ,m2i ,m3i)>4.
To compute the needed four-body integrals we applied
method developed in@13# ~see also the Appendix!.

The numerical results for some of the properties~i.e.,
expectation values! of the ground bound state in the`HPs
hydride are presented in Table I, where the converge
for each of the properties is shown as a function of
total number of basis functionsN. Since we use incomplet
families of basis functions, such a convergence m
have a quite nonsmooth form. For an arbitrary self-adjo
operatorX̂ its expectation value is determined as follow

^X&5^CuX̂uC&/^CuC&, where uC& is the respective wave
function. The physical meaning of almost all of these exp
tation values seems to be quite clear, and we make on
few remarks. In Table Î T& and ^V& are the expectation
values for the kinetic and potential energies, respectiv
The parameterE designates the total energy:E5^T&1^V&,
while the deviation of the so-called virial paramet
x5u11^V&/2^T&u from zero is an indicator of the quality o
the wave function used. Thep i j are the Pearson correlatio
coefficients,p i j 5A^r i j

2 &2^r i j &
2/^r i j &, that express the un

certainty in the expected value of the coordinater i j , i.e.,
^r i j &, or the length of the ‘‘bond’’ between particlesi and j .
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To compute the two-particled-function expectation val-

ues, we used the definitionX̂5d(rW i2rW j ), where i
Þ j 51,2,3,4. The three- and four-particled functions have
been determined in an analogous manner, i.e.,d i jk5

d(rW i2rW j )d(rW i2rWk) and d i jkl 5d(rW i2rW j )d(rW i2rWk)d(rW i2rW l),
where iÞ j 51,2,3,4. The two-body cusp values are d
termined in the traditional way, i.e., the cusp betwe
the particles i and j takes the form n i j 5

^Cud(rW i2rW j )]/]r i j uC&/^Cud(rW i2rW j ) uC& where iÞj
51,2,3,4. In an arbitrary Coulomb system the exactn i j val-
ues equalqiqjmimj /(mi1mj ), where qi and qj are the
charges andmi and mj are the masses of particlesi and j ,
respectively@14#. Note also that with the KT-variational ex
pansion all appropriate cusp values equal zero identically@7#.
Obviously, this is not true for the exact wave functio
The results for the KT-variational expansion can a
be found in Table I~in the right-hand column! @9#. The non-
linear parameters (a i j ) in the present KT wave function
have been optimized a little bit better than in our earl
work @7#. Now, by applying the expectation value for th
electron-positrond function (̂ d13&5^d12&) from Table I
(N5924) we can compute the two-photon annihilation ra
for the `HPs hydride @4,7#: G2g52pa4ca0

21^d12&
'100.617 480 93109^d12&'2.45673109 sec21. The ap-
propriate many-photon annihilation ratesGng , wheren>3
as well asG1g and G0g can be computed by using the fo
mulas from @7#. Here, we do not wish to repeat all suc
calculations in detail.

In general, the agreement between our results from@7#
and those given in Table I for most of the properties can
recognized as very good~even for the many-particled func-
tions!. The variational energies in Table I are slightly high
than those obtained in the KT expansion@7,15#. Likewise,
the virial parametersx are comparable with the respectiv
values obtained in@7#. However, in comparison with the KT
expansion@7# the JC-variational expansion has at least
two following advantages:~1! it can be used to compute th
nontrivial two-body cusp valuesn i j for Coulomb systems,
and ~2! the expectation values for some of the properti
e.g., the outer moments^r i j

k &, wherek>2, are certainly more
accurate than the appropriate values determined from the
method. The inner moment^r i j

21& is slightly smaller for the
KT expansion than for the JC expansion. In contrast,
outer momentŝr i j

k &, wherek>1, are slightly larger for the
KT expansion than for the JC expansion. The deviation
creases withk. This means that the KT expansion describ
HPs as slightly more diffuse than does the JC expans
@16#.

We are grateful to the Natural Sciences and Enginee
Research Council of Canada for financial support.

APPENDIX

Let us discuss briefly~all details can be found in@13#! the
problem related with the calculations of the basic four-bo
integralI5I(K,L,M ,n1 ,n2 ,n3 ,a,b,g) @17#:
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I5E E E r 14
K12r 24

L12r 34
M12r 12

n3r 13
n2r 23

n1

3exp~2ar 142br 242gr 34!dr14dr24dr34, ~A1!

whereK,L,M ,n1 ,n2 ,n3 are integer numbers, whilea,b,g
are three real~positive! numbers. Actually, by applying the
well known, routine procedure~see, e.g.,@18,19#! this inte-
gral is expressed as a finite or, sometimes, an infinite sum
the auxiliary functions A1(k,a),A2(k,l ,a,b), and
A3(k,l ,m,a,b,c). Now, the central problem is to find ver
effective, fast, and numerically stable formulas in order
compute these auxiliary functions:

A1~k,a!5A~k,a!5E
0

1`

xk exp~2ax!dx5
k!

ak11 ,

A2~k,l ,a,b!5E
0

1`

xk exp~2ax!dxE
x

1`

yl exp~2by!dy,

A3~k,l ,m,a,b,c!5E
0

1`

xk exp~2ax!dxE
x

1`

yl

3exp~2by!dyE
y

1`

zm exp~2cz!dz,

where all valuesk,l ,m are integers (k is always non-
negative, whilel and m can be positive or negative! and
a,b,c are real positive numbers. The case when allk,l ,m
are positive is reduced to finite term expressions@13#, while
for the negative values of some of these parameters, p
us
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no
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ably, the best computational formula for theA2(k,l ,a,b)
~when l ,0) takes the form@13#

A2~k,l ,a,b!5
A~k1l 11,a1b!

k11

32F1S 1,k1l 12;k12;
a

a1bD ,

where 2F1(a,b;g;z) is the Gaussian hypergeometric fun
tion, i.e., 2F1(a,b;g;z)511(n51@(a)n(b)n /(g)nn! #zn,
and (a)051,(a)15a, . . . ,(a)n5a(a11)•••(a1n21)
5G(a1n)/G(a), whereG(x) is the usual gamma-function
(n is always a positive integer!. In terms of this notation
(1)n5n!. The presented formal series for2F1(a,b;g;z) is
absolutely convergent only foruzu,1. The analogous for-
mula for theA3 auxiliary function (m,0) is @13#

A3~k,l ,m,a,b,g!5A~k1l 1m12,a1b1g!

3 (
n50

~k1l 1m13!n

~k11!n11
S a

a1b1g D n

3Dk1l 1n13
m S a1b

a1b1g D , ~A2!

where all notations are the same as before and
coefficients DK

m(y)5 2F1(1,K1m;K;y)/(K21), where
K>2,K1m>0 and 0<y,1 always. Note that the last for
mula can be reduced to the form found in@19#.
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