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Bare Coulomb field: Explicit solution
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The differential equation determining threh-shell one-electron density of a bare Coulomb problem is
solved explicitly.[S1050-2947@7)07108-4

PACS numbd(s): 12.20.Ds, 31.15.Ew, 03.65w

It has been quite recently that Coopét rederived Blind- X,(1)=Cnre”@M"M(1—n,2,2(Z/n)r)

er's[2] (see alsd3]) expression for the one-electron density .

pn, of the nth closed shell for a bare Coulomb problem, via =Cne” @ML(D (2Zr/n), (4)

applying the supersymmetriSUSY) method, and obtained

the following nonlinear differential equation: where Eq.(13.6.9 of Ref.[8] was applied to obtain the last

moo " , 5 4 " equation, and whereg“) is the generalized Laguerre poly-
rpn (1) = (r12)[pa(r) pp(r)1%pn(r)+2pp(r) nomial andC,, the normalization constant. Further, one di-
+[4Z- 2721 In%]p! (1) =0. ) rectly finds thenth-shell density,

The prime indicates the first derivative with respect tGhe
integer n=1 is the principal quantum number. He also
showed thafp,(r) fully determines the kinetic-energy den-

r
pn(r)=C3 f dy e ?»LiY, (2Zyin)]?

sity t,(r)=(1/4m)[Z/r — Z?/2n?]p,(r) and the bound-state _ncﬁ nlo(—1ymtl n n
Slater sum S(r,B)=(L4m) = pn(r)exp(~fey), Where T 2Zho mil \n-m-1)\n-1-1
B=(kgT) ! and e,= —Z%/2n? are the eigenenergy of the
nth shell electron in th&Z-electron atom. As emphasized in P
Refs.[4,5], it makes sense to deal solely wigh, without f da e g™
routing to a wave function, if, of course E¢l) would be %
soluble. As derived by Marcf], p,, obeys the spatial gen- 5 n-1 -
eralization of Kato’s theorerfs] and besides, Eq1) and its _ nC;, (1) n n
analogs are of particular interest in the density-functional 2Z 2o mi! in—-m—-1/\n—-1-1
theory[4,7]. That is why it merits to solve this equation in
analytical form. male1
Present work reports the explicit solution of Ed). Un- X m+1+ 1(22r/n)
der substitutiorp,(r)=x(r), it becomes simplified5],
2 X e 2Z"MM (1, m+1+2,2Zr/n)— (m+1)!
rx"”+2x"+ 22—;r>x=0, 2 . - - ]

— ne72Zr/n z (_1)m+l+1< )
that is, the square root of the first derivative of tith-shell 2z m,1=0 m Jin-m—-1
density obeys exactly the same differential equation that of n
the correspond!ngf—statezradlal wave functioiRy(r) [5]. x| )emH(ZZr/n), (5)
The related ratigp, (r)/R;o(r)=—2Z (see[1], Eq. (4.9). n—1-1

Suggesting a solution of Eq2) as x(r)=exp(—ar)a(r),

with a=Z/n, one converts this equation into a correspond-where Egs.(22.3.9, (6.5.3, and (6.5.12 of Ref. [8] were
ing one for the unknown(r), used successivelye, is defined in[8] by Eq. (6.5.13. It
follows from Eq.(5) thatp,(r) falls to O asr goes to infin-
ity. Normalizing p,(r) to unity, one easily obtain€,, and
thus, the final expression for thgh-shell one-electron den-
sity takes the form

rg"+2 ¢’ +27

1) 3
1-—|¢=0. 3)

Z
1——r
n

In the new variableR=2(Z/n)r, Eq. (3) is simply trans-

formed into the known equation for Kummer's function 3 27\3 n—1 m-+1
O(R)=¢(r) ([8], Eq(13.1.2), with a=1—-n and b=2. pn(r):_(_) g=2zrin Y (_1)m+l( )
Therefore, the regular solution of E€®) is 4 NV\ N mI=0 m
o ez
X Zr/n),
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where 3/\/(3”2p
2(n—1) <rp>n:]\m, DBO (7)
n_ afy (1) 2 3 P
NP=l 2 X TP (6)
k=0 X x=0

In particular, ifn=1, py(r) is merely the ground-state hy- Summarizing, we have found the explicit solution of the

drogenic density, 2% w)exp(2Zr). Using Eq.(6), one then differential equa_tion forp,(r) in terms.of geqeralized La-
readily obtains the Kinetic-energy density(r) and the 9uérre polynomials that now makes it possible to apply a
bound-state Slater su(r,). Another quantity that might Pareé Coulomb model to a variety of many-body problems
be of interest is the radial expectation value and density-functional theory, in particular, without routing
<rP>,=[dr rPp,(r),p=—2. With the help of Eq(6) and 0 wave functions. This solution provides, in a straightfor-

Eq. (14) on p. 59 of Ref[9], one gets ward manner, the analytical expressions for the kinetic-
energy density, bound-state Slater sum, and radial expecta-
3V - 3N tion value.
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