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Transverse patterns in a laser with an injected signal

Stefano Longhi*
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 3 February 1997; revised manuscript received 27 May 1997!

Pattern formation near threshold in large-aspect-ratio, single-longitudinal-mode, two-level lasers with plane
mirrors under the action of a weak injected plane-wave field resonant with the atomic transition frequency and
tilted with respect to the laser cavity axis is analytically investigated in terms of the amplitude equations for the
system. It is shown that, when the laser emission occurs off-axis, the appearance of resonances among the
injected signal field and the unstable emerging tilted waves drastically changes the pattern selection properties
of the free-running laser. As a result new transverse patterns, which include singly and doubly periodic stripes
and undulating hexagons, may be stabilized by the injected signal. These patterns arise from the superposition
of the forced mode with either one, two, or three traveling waves on the critical circle of the free-running laser.
This is a distinctive feature from similar structures more commonly found in passive optical systems, where
complex patterns always arise as a superposition of standing waves. The stability properties of the various
patterns and their selection rules are analytically investigated within the amplitude equations.
@S1050-2947~97!11009-5#
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I. INTRODUCTION

Spontaneous pattern formation in nonlinear optics
been the subject of extensive investigations in recent y
@1#. Coupling of diffraction with an optical nonlinearity in
two transverse spatial dimensions has revealed the app
ance of transverse patterns both in passive@2–5# and active
@6–14# optical systems, including Kerr-like systems wi
two-dimensional feedback@2–5#, lasers@6–9#, photorefrac-
tive oscillators@10,11#, optical parametric oscillators@12–
14#, and others~a more complete list of references can
found in the editorial introduction of Ref.@1#!. The kinds of
patterns that can emerge in an optical system depends
cially on theaspect ratioof the system@11#. In a cavitylike
configuration~as in lasers!, the aspect ratio is typically de
termined by the Fresnel number of the optical cavity@11#. In
small-aspect-ratio systems, pattern formation is controlled
the geometrical boundaries~e.g., spherical mirrors of the
cavity! and the spatiotemporal dynamics typically involv
few cavity modes@6#. Conversely, in large-aspect-ratio sy
tems, usually obtained by considering plane mirrors and u
form pumping, pattern formation is independent of the tra
verse boundaries and is thus likely to be the result
nonlinear bulk effects. There are essentially two approac
to studying pattern formation in large-aspect-ratio syste
that complement each other@15#. The first one is based o
the derivation oforder-parameter equations~like the com-
plex Ginzburg-Landau and the Swift-Hohenberg equatio!
capable of capturing the nonlinear dynamics of the sys
under suitable limits@15#. As these equations have a unive
sal form ~i.e., independent of the original equations spec
for the particular physical problem!, they provide a connec
tion between pattern formation in nonlinear optics and
other physical fields. The second method is based on
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derivation of theamplitude equationsfor the system near the
instability point. These equations are able to predict the
istence of certain patterns which reflect the symmetry of
bulk parameters. A common situation is that where the ro
tional symmetry in the transverse plane introduces a cont
ous degeneracy of critical modes, so that only the modu
~but not the direction! of their wave vectors is fixed by the
system parameters. In this case the critical modes lie on a
of circles ~called critical circles! in the wave-vector space
whose number corresponds to that of the unstable band
the linearized problem. Although, at linear instability, a
these modes may grow, due to their competition only a f
of them typically survive and saturate, leading to the form
tion of regular spatial structures. The most common patte
which are observed when competition of critical modes
restricted to a single unstable band are tilted~or traveling!
waves, stripes, squares, triangles, and hexagons@2–4,7,9,16#.
The nature of the selected patterns depends crucially on
nonlinear terms in the amplitude equations and thus on
intrinsic symmetry of the problem@15#. As a general rule, it
turns out that stripes and hexagons are likely whene
second-order nonlinear terms arise in the amplitude eq
tions ~as, for example, in optical bistability@4,17,18# and in
Kerr-like systems with a single-feedback mirror@2,3#!,
whereas tilted waves and square~or rhombic! vortex lattices
are commonplace when only third-order nonlinear terms
present in the amplitude equations~as, for example, in laser
@7,9# and nondegenerate optical parametric oscillators@13#!.
Furthermore, it turns out that passive optical systems usu
give rise to a richer variety of patterns and bifurcations th
active systems. In this regard, many recent works have
vealed both experimentally and theoretically that, besi
rolls, triangles, and hexagons@3,4#, passive Kerr-like optical
systems with two-dimensional feedback are capable of g
erating a wide variety of other regular patterns which we
known in hydrodynamics@19–21#, such as quasipattern
with N-fold orientational order @5,22–24#, multiconical
emission @23–26#, coexistence of patterns with differen
,
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2398 56STEFANO LONGHI
symmetry@27#, and mixed Hopf-Turing structures@28#. In
particular, quasipatterns arising from the interaction
modes belonging to the same unstable band have been
perimentally observed in a liquid-crystal light valve syste
with field rotation @22#, and theoretically predicted in
single-feedback mirror device with rubidium atoms@5#. The
pattern scenario is further enriched when modes belongin
different unstable bands become simultaneously crit
~multiconical emission!. In this case the cooperative mod
dynamics among modes belonging to different bands m
lead to stable quasipatterns@19,23,25,26#. However, in gen-
eral it turns out that such an intermode coupling can oc
only for very particular parameter values@19,23#, and it re-
quires mutual phase locking of all modes@26#; otherwise
multiconical emission in the near field manifests itself a
tiling consisting of domains with different spatial periodici
@27#. The single-feedback mirror system with a thin tw
level medium@28# also represents an example in nonline
optics of pattern-forming system capable of support
mixed Turing-Hopf patterns. In that case the patterns or
nate from a triadic resonance among Hopf and Turing mo
that become simultaneously critical@28#; as an Hopf insta-
bility is involved, these patterns drift. When considering a
tive optical systems, such as lasers@7–9# and other systems
where gain is not provided by population inversion~such as
optical parametric oscillators@12,13# and photorefractive os
cillators @10,11#!, their pattern scenario seems much simp
than that discussed above, at least close to threshold
whenever boundary effects are negligible. In particular, it
been shown that these systems may generate similar pat
@10,13# which involve modes belonging to only one critic
circle, the absence of higher unstable bands being a co
quence of the uniform-field model which is usually valid f
those systems. An important and distinctive feature of las
~and of the other active systems quoted above! from all the
passive optical systems previously discussed is that the
ementary critical mode, which is the basic pattern neede
build more complex patterns, is a single traveling~or tilted!
wave ~TW! on the critical circle@7#. Conversely, in passive
systems it turns out that the elementary pattern is nev
single TW, but a roll pattern obtained as a superposition
two counterpropagating TW’s having the same intens
~see, for instance, Ref.@16#!. Therefore, in lasers one woul
expecta priori the possibility of generating patterns that d
not have analogous in passive systems~for instance, patterns
formed by the superposition of an odd number of TW’s,
of oppositely oriented TW’s with different amplitudes!. Nev-
ertheless it is well known that for the single-longitudina
mode, free-running laser with a longitudinal cavity fr
quency smaller than the atomic resonance one, a single t
wave is a global attractor of the laser equations and it is a
to dominate and to suppress all others; in particular, two
three tilted waves may not be simultaneously excited du
the absence of second-order nonlinear terms in the ampli
equations@7,8#. At most two couples of oppositely oriente
out-of-phase TW’s~alternating rolls! may be stabilized by
the nonlinearity, which gives rise to rhombic patterns@9#. It
is clear that pattern selection properties of the free-runn
laser could drastically change if the inversion symmetry
the amplitude equations~which is intrinsic of the laser equa
tions! is somehow broken. This may be achieved by inject
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of a signal field into the laser cavity. Lasers with an inject
signal are quite popular systems in laser physics, and t
display a rich variety of nonlinear phenomena@29#; the study
of transverse effects in these systems has been consid
recently@30,31#, but they did not attract as much attention
other systems, mainly because signal injection did not se
to enrich the pattern formation properties of the free-runn
laser. In Ref.@30# the derivation of an order-parameter equ
tion for the laser field near threshold in the presence o
weak injected plane-wave signal was presented in vari
limiting cases. That analysis was mainly restricted to
case where the excited longitudinal cavity frequency is lar
than the atomic resonance frequency, which prevents off-
emission for the laser radiation. In that case a comp
Ginzburg-Landau equation for the order parameter was
rived by the use of a multiple scale perturbation approa
The opposite case was not so extensively studied, and a
analysis was given in Ref.@31#, where it was shown for the
one-dimensional case that the excitation of a single til
wave for the laser equations is also likely when a weak s
nal is injected into the laser cavity. From the viewpoint
pattern formation, signal injection does not seem therefor
enrich substantially the free-running laser dynamics. T
analysis, however, assumes implicitly that the frequency
the injected signal is different from the atomic resonan
frequency, which is exactly the frequency of the emerg
tilted wave.

In this paper we investigate the problem of pattern form
tion and selection near threshold in a laser with a weak
jected signal, by use of the amplitude equations approac
the case where the laser emission occurs off-axis and
frequency of the injected signal is exactly tuned to the f
quency of the atomic transition. Furthermore, we conside
plane-wave injected field tilted with respect to the axis of t
laser cavity, and discuss how the pattern formation proper
change as the tilting angle is varied and the pumping par
eter of the laser is increased. As the injected signal is we
the linear instability of the laser equations is ruled as for
free-running case, and the critical modes are TW’s on
critical circle. Nevertheless, it is shown that the existence
the injected signal with the same frequency as that of
emerging tilted waves drastically changes the free-runn
laser dynamics with the appearance of new kind of patte
and a rich bifurcation scenario even near threshold, wh
the validity of the amplitude equations is restricted. This o
curs as the injected signal introduces in the amplitude eq
tions for the neutral modes new interactions ruled by prec
resonance conditions involving four-wave vectors that
responsible for the emergence of transverse patterns. In
ticular, stable patterns involving simultaneous excitation
one, two, or three tilted waves may appear. This is a disti
tive feature with respect to the optical bistability mode
where pattern formation always involves the simultaneo
emission of two oppositely oriented traveling waves~rolls!
@4#. It turns out that a key parameter which governs the p
tern forming properties is the ratio between the wave num
kC of the neutral modes and thatk0 of the injected field,
which depends upon the tilting angle. The other import
parameters controlling the patterns are the pump param
for the atoms and the amplitude of the injected signal, wh
may lead to further bifurcations. In particular, it turns o
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that at high values of the pump parameter the stable patt
involve only one tilted wave, thus recovering the limit of
laser without injected signal, whereas for high values of
injected field the laser emission occurs on the forced mo

The paper is organized as follow. In Sec. II we descr
the laser model with a weak injected signal, and derive
amplitude equations for the neutral modes which desc
the laser dynamics close to threshold. In Sec. III we pres
a set of solutions of the amplitude equations involvingN
51, 2, or 3 modes, and investigate their stability propert
In Sec. IV a summary of the pattern formation and select
rules is presented, and, finally, in Sec. V the main conc
sions are outlined.

II. DESCRIPTION OF THE MODEL AND DERIVATION
OF THE AMPLITUDE EQUATIONS

We consider a single-longitudinal-mode, homogeneou
broadened two-level laser with plane mirrors of infin
transverse extension and uniform pumping, with an injec
plane-wave signal field resonant with the atomic transit
frequency. In general we will assume that the injected fiel
tilted with respect to the laser cavity axis. The starting po
of the analysis is provided by the usual Maxwell-Bloch las
equations which, in the paraxial and mean-field approxim
tions, may be written in the following dimensionless for
@8,30#:

] te2 ia¹2e2 iVe52se1sp1E exp~ ik0•x! ~1a!

] tp1p5~r 2n!e, ~1b!

] tn1bn5 1
2 ~e* p1p* e!, ~1c!

wheree and p are the scaled envelopes of the electric a
polarization fields referenced to the atomic resonance
quency; n is proportional to the difference between th
atomic inversion and the initial inversion;a is the diffraction
parameter;r is the pump parameter;s and b, respectively,
are the decay rates of the electric field and of the popula
inversion, both scaled to the decay rate of the polarizat
¹25]x

21]y
2 is the transverse Laplacian;t is the time variable

scaled to the decay time of the polarization; the detun
parameterV is the difference between the atomic and t
longitudinal cavity frequencies, divided by the polarizati
decay rate;E is proportional to the amplitude of the injecte
plane-wave field;k0 is the wave-vector component of th
injected field transverse to the cavity axis; andx5(x,y).
Here we consider the case of a weak injected field by ass
ing in Eq.~1a! thatE5E0«, « being a small parameter. As
consequence, at leading order in« the dynamics described b
Eqs.~1! exactly coincide with that previously studied in Re
@7# for a two-level laser model in absence of the inject
signal. In particular, it is known that for a positive detunin
parameter the laser threshold is reached atr 51 and the neu-
tral modes at threshold are tilted waves with transverse w
vector k such thatuku5kC[(V/a)1/2 ~Turing instability!,
whereas for a negative detuning parameter the thresho
reached atr 5(11V2)1/2 and the bifurcating mode is osci
latory in time but homogeneous in space@7#. As we are
interested on the formation of certain patterns, we will lim
our analysis to the positive detuning case. Furthermore
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we want to study the influence of the injected signal field
the nonlinear selection mechanism of the neutral modes,
consider a pump parameterr close to its threshold value b
assumingr 511«2. Such a dependence ofr on « will be-
come clearer later, and it essentially ensures that the am
tudes of the bifurcating modes and of the injected field in
cavity be of the same order of magnitude@30#. This scaling
fails in the singular limitk05kC , which is not, however, of
particular interest from the point of view of transverse p
terns and therefore will be not considered here@32#. The
derivation of the amplitude equations is based on a stand
weakly nonlinear analysis of Eqs.~1! similar to that devel-
oped in Ref.@30#, and consists of looking for a solution o
the equations as a power expansion in«,

v5«v~1!1«2v~2!1«3v~3!1••• , ~2!

wherev5(e,p,n)T contains the field matter variables. Th
introduction of slow space and time variables follows from
straightforward analysis of the linear problem, which is d
cussed in Ref.@7#. As we are mainly interested in the exis
tence of certain patterns arising from the interaction o
finite number of critical modes, we will neglect finite ban
width effects, so that no slow spatial variables are int
duced. In this case, only one slow time variable, given
T5«2t, is needed to capture the slow time evolution of t
mode amplitudes@7#. In order to proceed into the perturba
tion expansion, the order of magnitude of the decay rateb
ands of the population inversion and electric field scaled
the polarization decay rate should be stated. Here we giv
explicit derivation of the amplitude equations in the case
class-C lasers, where all damping rates are comparabl
magnitude@8#, so that we may assume in the perturbati
expansionb5O(1), s5O(1); a similar analysis, however
could be done for class-A lasers, where both material po
ization dephasing and population decay rates are much la
than the cavity field damping rate@8#. By substituting expan-
sion ~2! into Eqs.~1!, using the derivative rule] t5«2]T and
settingr 511«2, andE5E0«, a hierarchy of equations fo
successive corrections tov is obtained. The solution at lead
ing, O(«), is v(1)5(e(1),e(1),0)T, wheree(1) is given by an
arbitrary linear combination of neutral modes at thresh
plus a forced mode arising from the injected signal, name

e~1!5A0exp~ ik0•x!1(
l 51

N

Alexp~ ik l•x!, ~3!

with uk l u5kC . In Eq. ~3!, Al ( l 51,2,3, . . . ,N) are arbitrary
complex functions of the slow time scaleT, whereasA0 is
the amplitude of the forced mode, which is given by

A05
iE0

V2ak0
2 . ~4!

Because of the rotational symmetry in the transve
plane, the choice of the linear combination of neutral mod
has been left arbitrary at this stage. The solution atO(«2)
may be chosen asv(2)5„0,0,(1/b)ue(1)u2…T, whereas at
O(«3) solvability conditions determine the slow time evol
tion of the amplitudesAl , which explicitly read
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~11s!]TAl5sAl2
s

b (
m,r ,s50

N

AmArAs* dkm1kr2ks2kl

~5!

( l 51,2,3 . . . ,N). Introducing the new variable
t5t(11s)21s and Bl5«b21/2Al , and observing tha
]t5s21(11s)«2]T , «25r 21, we finally obtain theampli-
tude equations

]tBl5~r 21!Bl2 (
m,r ,s50

N

BmBrBs* dkm1ks2ks2kl
,

~ l 51,2,3, . . . ,N!, ~6!

where

B05
iE

Ab~V2ak0
2!

. ~7!

Equations~6! represent the starting point of our analysis
pattern formation in a laser with injected signal. It should
noted that the amplitude of the forced mode,B0 , is fixed by
the external injected signal according to Eq.~7!; nevertheless
it enters into the nonlinear dynamics of the amplitudes of
other modes, and may introduce new resonances, as we
discuss in Sec. III. Furthermore, the phase ofB0 does not
play an important role in the pattern formation process, a
with a suitable redefinition of the phase of the injected sig
amplitudeE we may assumeB0 to be a real and positive
number.

III. TRANSVERSE PATTERNS AND THEIR STABILITY

The amplitude equations~6! may have, in general, differ
ent families of solutions involving a different numberN of
modes, which correspond to different patterns in the tra
verse plane of the cavity axis. In particular, the observable
major interest in an experiment is the laser output inten
profile, which turns out to be proportional to the time ave
age of the square of the electric field. From Eq.~3!, the
near-field intensity at leading order is given by

I 5Ua exp~ ik0•x!1(
l 51

N

Blexp~ ik l•x!U2

, ~8!

where for clarity here and in the following we will denote b
a the amplitude~real and positive! of the forced mode, given
by Eq.~7!. The resultant pattern will therefore depend on t
interference among the forced mode solution and the ti
waves which are neutral at threshold. Although in princip
at the linear instability many modes can be excited, owing
their nonlinear interactions only few of them survive leadi
to a stable pattern@15#. Furthermore, the wave vectors of th
surviving modes do not have an arbitrary geometry, but
typically arranged in such a way as to satisfy simple al
braic conditions, which depend upon the nature of the n
linearities in the amplitude equations and reflect the intrin
symmetry of the system. In the case where no signal is
jected into the cavity, i.e., fora50, it is known that the
amplitude equations~6! may support only one mode~tilted
or traveling wave!, which gives a uniform intensity profile a
f
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e
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l
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e
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the output@7#, or four modes composed by two couples
rolls ~two traveling waves with opposite wave vectors! with
phase alternation~alternating rolls, or alternating standin
waves!, which correspond to a square~or rhombic! vortex
lattice in the transverse laser intensity@9#. In particular, so-
lutions of the amplitude equations involving two or thre
tilted waves are always unstable in the laser case. Th
features are not substantially modified when a weak signa
injected into the laser cavity, provided that it is detuned
frequency from the emerging modes. In this case the la
emission occurs on a single tilted wave which is super
posed on the forced mode; this gives rise to traveling ro
@21#. When the injected signal is resonant in frequency w
the tilted waves, which is our case, new resonances appe
the amplitude equations which drastically change the mo
mode interaction among TW’s on the critical circle. In th
section we consider solutions of the amplitude equations~6!
involving N50, 1, 2, or 3 modes, and study their stabilit
The N50 solution corresponds trivially to the forced sta
~homogeneous intensity in the transverse plane!, and its in-
stability gives rise to formation of patterns. TheN51 state,
where only one tilted wave is excited, gives rise to a str
pattern whose orientation and spatial periodicity depends
the angle betweenk0 and the wave vector of the excite
mode, which may be arbitrary. For brevity we will call th
stateS1 . TheN52 state gives rise to stripe patterns too, b
in this case the orientation of the stripes is parallel tok0 , and
a single or double spatial periodicity of the stripes may o
cur. We will call this stateS2 . Finally, theN53 state, which
involves three tilted waves, gives rise to undulating hexa
nal patterns. It should be noted that the limiting case, wh
the injected signal is orthogonal to the plane cavity mirro
introduces a rotational symmetry of the problem in the tra
verse plane which, on the contrary, is broken when the
jected signal is tilted with respect to the cavity axis. Su
symmetry is responsible for the appearance of special tria
resonances in the amplitude equations, and this case n
therefore a separate analysis that will be given elsewher

A. Forced „homogeneous… solution „N50…

The amplitude equations~6! admit the trivial zero solution
Bl50 (l 51,2, . . . ,N), which corresponds to the laser emi
sion in the forced mode. To study the stability of this so
tion, we linearize Eqs.~6! around the zero solution, and w
look for an exponential growth of the perturbations. For
genericmodek the evolution equation of its perturbationdB
is given by]tdB5mdB, wherem5r 2122a2, and hence
this mode becomes linearly unstable atr 5112a2. How-
ever, if there exist two modes with wave vectorskI andkII
satisfying thephase-matching~or resonance! condition

kI1kII52k0 , ~9!

the linearized equations for their perturbationsdBI ,dBII are
coupled, and are given by

]tdBI5mdBI2a2dBII* , ~10a!

]tdBII5mdBII2a2dBI* . ~10b!
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56 2401TRANSVERSE PATTERNS IN A LASER WITH AN . . .
The eigenvalues associated with Eqs.~10! arel65m6a2;
hence these modes become linearly unstable atr 511a2.
The phase-matching condition~9!, which is responsible for a
threshold lowering for pattern formation, is shown in Fig.
It is clear that it can be satisfied only ifk0,kC , and that if
this is the case the wave vectorskI and kII are uniquely
determined. In conclusion, the forced solution becomes
early unstable atr 511a2 if k0,kC , and atr 5112a2 in
the opposite case. These are the threshold values for the
mation of patterns.

B. Stripe S1 pattern „N51…

For r .112a2 the amplitude equations~6! admit a fam-
ily of solutions consisting of a single mode with wave vect
let us say,k1 , having an arbitrary orientation and with am
plitude B15Am, wherem5r 2122a2. If there exist wave
vectorskI and kII satisfying the phase-matching conditio
~9!, we requirek1ÞkI ,kII . In order to investigate the stabi
ity of this solution, we linearize Eqs.~9! around the steady
state solutionB15Am, B25B35•••50, and look for expo-
nential growth of the perturbations. It turns out th
perturbations associated with modes with ageneric wave
vectork are damped out, whereas two kinds of instabilit
may arise for perturbations corresponding to wave vec
satisfying particular phase-matching conditions. The fi
source of instability is represented by the modes with w
vectorskI and kII satisfying the phase-matching conditio
~9!, and it is easy to show that stability of theS1 solution
against the growth of such modes requiresr .113a2. The
second source of instability, which is more restrictive, m
arise for perturbations associated with the pair of wave v
tors k2 and k3 satisfying one of the followingphase-
matchingconditions:

k11k22k35k0 ~11a!

or

k21k32k15k0 . ~11b!

In this case, assuming for instance that Eq.~11a! is satisfied,
the linearized equations for the perturbationsdB2 and dB3
read

FIG. 1. The phase-matching condition~9!.
.
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or-

,

t
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]tdB252mdB222aAmdB3 , ~12a!

]tdB352mdB322aAmdB2 . ~12b!

The eigenvalues of the linearized Eqs.~12! are l652m
62aAm; hence the stability of theS1 solution in this case
requiresr .116a2. As the phase-matching conditions~11!
play an important role in destabilizing theS1 patterns, it is of
interest to study under which conditions they can be sa
fied. The phase matching conditions~11! are sketched in Fig.
2; with the notations shown in the figure, it is straightforwa
to show that the wave vectorsk2 andk3 satisfying Eq.~11a!
are determined by the anglesw2 andw3 given by

w2,35arctanFg2cosw1

sinw1
G6arcsinF11g222g cosw1

4 G1/2

,

~13!

wherew1 is the angle between the wave vectorsk1 andk0 ,
andg5k0 /kC . For the phase-matching condition~11b!, Eq.
~13! is still valid provided that the substitutionw1→w11p
is made. In order that at least one of the two phase-match
conditions~11! be satisfied foranyvalue of the anglew1 , the
condition k0,)kC must be fulfilled. Whenk0.3kC the
phase-matching conditions may never be satisfied, whe
for )kC,k0,3kC one of the two phase-matching cond
tions ~11! may be satisfied for theS1 solutions, whose wave
vectorsk1 fall inside the cone shown in Fig. 3. As shown
Fig. 4, the transverse intensity profile for theS1 pattern cor-
responds to stripes whose orientation and spatial period
pend upon the anglew1 between the wave vectorsk1 andk0 .
In conclusion, we can say that a family ofS1 patterns exists
for r .112a2, and their stability is governed by the follow
ing rules: ~1! when k0,)kC all the S1 patterns are stable
for r .116a2, and unstable otherwise;~2! when )kC
,k0,3kC , stability of theS1 patterns whose wave vector
fall inside the cone shown in Fig. 3 is ruled as in~1!, the
other patterns being always stable; and~3! whenk0.3kC the
S1 patterns are always stable in their domain of existenc

C. Stripe S2 patterns „N52…

The amplitude equations~6! have a family of solutions
corresponding to the excitation of two tilted waves wi
wave vectorsk1 andk2 . However, as in the laser case with

FIG. 2. The phase-matching conditions~11!.
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out injected signal@7#, it turns out that such solutions ar
unstable for agenericpair of wave vectors. When the sign
is injected into the cavity, stable two-wave solutions m
nevertheless occur when the phase-matching condition~9! is
satisfied. In this case the amplitude equations for the mo
with wave vectorskI andkII are given by

]tBI5mBI2~ uBIu212uBIIu2!BI2a2BII* , ~14a!

]tBII5mBII2~ uBIIu212uBIu2!BII2a2BI* , ~14b!

FIG. 3. The phase-matching conditions~11! in the case)k0

,kC,3k0 may be satisfied only for the wave vectorsk1 which fall
inside the shaded cone oriented alongk0 , with aperture anglew
5arccos„(g223)/2g….

FIG. 4. Snapshots of stableS1 stripe patterns corresponding t
four different values of the anglew1 : ~a! w150, ~b! w15p/3, ~c!
w152p/3, and~d! w15p. The values of the other parameters a
kC51, k050.7,a51, andr 513. Here and in the following figures
the wave vectork0 is oriented along the vertical direction.
y

es

where the last terms on the right-hand side in Eqs.~14! arise
in consequence of the phase-matching condition~9!. In order
to investigate the bifurcation properties of these equatio
let us introduce the polar decompositionBI5R1 exp(if1),
BII5R2exp(if2) and the phase variablef5f11f2 , so that
Eqs.~14! become

]tR15mR12~R1
212R2

2!R12a2R2cosf, ~15a!

]tR25mR22~R2
212R1

2!R22a2R1cosf, ~15b!

]tf5a2S R1
21R2

2

R1R2
D sinf. ~15c!

From Eq. ~15c! it follows that, apart from the trivial zero
solution ~corresponding to the forced-mode state previou
investigated!, the steady-state solutions are phase locked
correspond to sinf50, i.e., tof5p or to f50. The latter
solution is, however, always unstable to phase fluctuatio
and therefore here we will consider only the casef5p. The
equations for the real amplitudes@Eqs.~15a! and~15b!# then
have two kinds of solutions: the symmetric solutionS2S ,
corresponding to

R15R25S m1a2

3 D 1/2

, ~16!

and the asymmetric solutionS2A , given by

R1,25S m6Am224a4

2 D 1/2

. ~17!

The symmetric solution~16! exists forr .11a2 whereas the
asymmetric solution~17! exists forr .114a2. Straightfor-
ward linearization of the dynamical equations~15a! and
~15b! around these steady-state solutions indicates that
symmetric solution is stable forr ,114a2. At r 5114a2 a
bifurcation takes place, resulting in the stability of the asy
metric solution. The bifurcation diagram for the two-wav
equations~14! is shown in Fig. 5. These stability criteri
consider only the nonlinear interaction between the modekI
and kII ; however, it may be shown that they are still val
when considering the linear stability problem within the fu
amplitude equations~6! @33#. In particular, it turns out that
the S2 patterns are always stable with respect to exter
perturbations for which the phase-matching condition~11!
~with k15kI ,kII! is valid. TheS2 patterns corresponding t

FIG. 5. Bifurcation diagram for theS2 patterns. The symmetric
solution (R15R2) is stable for 11a2,r ,114a2, whereas the
asymmetric solution (R1ÞR2) is stable forr .114a2. The solid
~dashed! lines correspond to stable~unstable! solutions.
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the two-wave solutions~16! and ~17! are shown in Fig. 6.
The S2S solution corresponds to stripes parallel to the wa
vector k0 with a single spatial periodicity, whereas theS2A

solution gives rise to stripes parallel tok0 but with a double
spatial periodicity~see Fig. 6!. It is remarkable the fact that
although the final intensity pattern arises from the interf
ence of three different traveling waves@with wave vectors
k0 , kI , andkII ; see Eq.~8!#, it corresponds to stripes. Thi
feature is a consequence of the phase-matching condition~9!,
which physically is imposed by the conservation of the ph
ton momentum in the nonlinear interaction process of
three waves. Although the resonance condition~9! among
the wave vectors of the different TW’s is fundamental
determining the final pattern as in other optical systems~such
as in the multiconical emission@20,25#!, it is interesting to
observe that in our case there is only partial phase lock
among these modes. In fact, in the stable steady-state pa
what is fixed is only the sumf11f2 of the phases of mode
kI and kII ~with respect to the reference phase ofk0 which
was assumed to be zero!, leaving undetermined eitherf1 or
f2 . In conclusion, theS2 patterns exist whenk0,kC , and
their existence and stability domains are summarized in
bifurcation diagram shown in Fig. 5.

D. Undulating hexagons„N53…

The amplitude equations~6! admit of a family of solu-
tions corresponding to the excitation of three tilted waves
general, it turns out that a steady-state solution of the am
tude equations~6! involving three modesk1 , k2 , andk3 is
unstable unless the phase-matching condition~11a! @or
~11b!# for these modes is satisfied. In this case, assuming

FIG. 6. Snapshots@~a! and~b!# and corresponding intensity pro
files @~c! and~d!# of theS2 stripe patterns.~a! and~c! correspond to
the symmetric solution (r 54), whereas~b! and ~d! correspond to
the asymmetric solution (r 56). The values of the other paramete
arekC51, k050.8, anda51.
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instance that the phase-matching condition~11a! is satisfied,
the amplitude equations for the three modes read explic
as @34#

]tB15mB12~ uB1u212uB2u212uB3u2!B122aB3B2* ,
~18a!

]tB25mB22~ uB2u212uB1u212uB3u2!B222aB3B1* ,
~18b!

]tB35mB32~ uB3u212uB1u212uB2u2!B322aB1B2 .
~18c!

These equations have a canonical form as they typically
scribe the roll-hexagon competition in systems with
second-order nonlinearity@15,35#. In particular, they have
also become quite standard in the optical context to desc
roll-hexagon transition in passive Kerr-like systems@2–4#.
Note, however, that in the present context they govern
dynamics of three single TW’s on the critical circle, and n
of six TW’s as in previous models@2–4#. Nevertheless, as
the bifurcation properties of these equations are well kno
here we will report only the result of the analysis. Introdu
ing the polar decompositionBl5Rlexp(ifl) ~l 51, 2, and 3!
and the phase variablef5f11f22f3 , it turns out that,
within the dynamical model expressed by Eqs.~18!, the
phase-locked solution withf5p is the only stable solution
with respect to phase fluctuations; the steady-state am
tudes for the three waves is then composed by two branc
given by

R15R25R3[R5
a6Aa215m

5
. ~19!

The lower branch@corresponding to the lower sign in Eq
~19!# is always unstable in its domain of existence, where
it turns out that the upper branch is stable for2a2/5,m
,16a2 @35#. The typical patterns arising from the interfe
ence of these three waves with the forced mode are show
Fig. 7 for a few values of the anglew1 , which is the free
family parameter. As it can be seen, these patterns co
spond to lattices of hexagons in the ‘‘inverted’’ configuratio
analogous to those found in optical bistability@17#. How-
ever, in our case these hexagons are distorted, and we
call them undulating hexagons. As previously observed
the S2 patterns, the hexagonal nature of the patterns
closely related to the phase matching condition~11!, and the
final tiling requires only partial locking of phases of th
modes. The distorted shape of the hexagons, instead,
consequence of the fact that they arise as a superpositio
traveling waveswhose orientation in space is governed
Eqs.~11!, and not ofrolls as in the optical bistability. As a
final remark, it should be noted that a global stability ana
sis of the hexagonal patterns must be done within the
amplitude equations~6! as other modes not considered
Eqs.~18! may become unstable@33#. A linear stability analy-
sis of the hexagonal patterns with respect to external per
bations shows that a source of instability may arise wh
considering perturbations for the modeskI andkII satisfying
the phase-matching condition~9!. In this case the linearized
equations which describe the evolution of the perturbati
read
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]tdBI5~m26R2!dBI2a2dBII* , ~20a!

]tdBII5~m26R2!dBII2a2dBI* . ~20b!

The eigenvalues of Eqs.~20! arel65m26R26a2. Stabil-
ity of the hexagonal lattice against the growth of theS2
modes requires thereforem26R21a2,0 which, using Eq.
~19!, reads explicitly asr .112.0294 . . .a2.

In conclusion, hexagonal patterns exist whenk0,3kC
and they are stable for 112.0294 . . .a2,r ,1118a2 if
k0,kC , and for 119a2/5,r ,1118a2 otherwise. The sta-
bility properties of the patterns at different tilting angles
the injected signal are summarized in Table I and Fig. 8

IV. PATTERN SELECTION AND CONTROL

The various transverse patterns studied in Sec. III m
appear in the laser emission when the control parameter

FIG. 7. Snapshots of stable undulating hexagons for four va
of the anglew1 : ~a! w150, ~b! w15p/3, ~c! w152p/3, and ~d!
w15p. The values of the other parameters arekC51, k050.4, a
51, andr 53.1.
y
re

varied. Typically in our physical system there are three c
trol parameters that one can vary: the pumping parameter ;
the normalized amplitude of the injected signal,a; and the
tilting angle of the injected signal with respect to the cav
axis, i.e.,k0 . As a general rule, from Table I and Fig. 8
turns out that at high values of the pump parameter onlyone
tilted waveis excited independently of the tilting angle of th

s

FIG. 8. Stability domains of the different patterns in the (a2,r )
plane for~a! 0,k0,kC , ~b! kC,k0,)kC , ~c! )kC,k0,3kC ,
and~d! k0.3kC . The forced~homogeneous! mode is stable below
line 1, whereas the other patterns are linearly stable in infinit
extended cones whose vertex is~0,1!. These cones are delimited o
the left and on the right sides by the lines 1,2,3, . . . for thedifferent
patterns, as ruled in Table I. Overlapping regions of the cones
dicate multistability.
verse
TABLE I. Summary of the stability domains of the various patterns for different values of the trans
wave vectork0 of the injected signal. The control parametera[B0 , given by Eq.~7!, is proportional to the
amplitude of the injected signal.

0,k0,kC kC,k0,)kC )kC,k0,3kC k0.3kC

Forced mode
(N50)

r ,11a2 r ,112a2 r ,112a2 r ,112a2

S1 patterns
(N51)

r .116a2 r .116a2 r .116a2 or
r .112a2

r .112a2

S2S patterns
(N52)

11a2,r ,114a2

S2A patterns
(N52)

r .114a2

Hexagonal
patterns
(N53)

112.0294•••a2,r
,1118a2

119a2/5,r
,1118a2

119a2/5,r
,1118a2
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injected field, and the laser output intensity tends to be u
form in space. We therefore recover a characteristic prop
of the laser emission without injected signal. Conversely
high values of the injected signal the laser emission alw
occurs in the forced mode, and all the tilted waves are s
pressed as the gain saturation introduced by the forced m
does not allow these modes to reach threshold for oscillat
For intermediate values of the control parameters the la
emission occurs in more complicated patterns, and a
quence of bifurcations connecting the two limiting situatio
takes place. Here we will consider a fixed amplitude of
injected signal, and will study the bifurcation scenario whi
appears when the pump parameter is varied at different
ing angles of the injected signal. A similar analysis cou
however, be done by considering a fixed value of the pu
parameter, and assuming that the amplitude of the inje
signal is a bifurcation parameter. According to the analy
developed in Sec. III, four cases have to be distinguishe

A. Case I: k0<kC

The laser emits in the forced~homogeneous! mode forr
,11a2, and the threshold for pattern formation is reach
at r 511a2, where the symmetric stripe patternS2S bifur-
cates supercritically from the homogeneous mode. Atr 51
14a2 a second bifurcation takes place with the appeara
of the double-period stripe patternS2A , which remains stable
at higher values of the pump parameter~see Fig. 5!. S1 stripe
patterns and hexagons may also be observed fork0,kC ,
their domains of stability beingr .116a2 for stripes and
112.0294 . . .a2,r ,1118a2 for hexagons, respectively
Therefore bistability and even tristability of patterns m
exists in this case in some ranges of the pumping param
@see Fig. 8~a!#. It should be noted that, at high values of t
pump parameter, the two stable statesS2A andS1 correspond
both to the excitation ofone tilted wave, and the transvers
output intensity tends to be uniform in space.

B. Case II: kC<k0<)kC

In this case the stable laser oscillation is in the forc
state forr ,112a2, and, atr 5112a2, a subcritical bifur-
cation leading to the emergence of hexagonal patterns t
place. The hexagonal lattice looses its stability atr 51
118a2, where a second bifurcation and a transition toS1
stripe patterns appear. Bistability between the homogene
mode and the hexagonal lattice, and between the hexag
lattice and theS1 patterns, exist for 119a2/5,r ,112a2

and 116a2,r ,1118a2, respectively.

C. Case III: k0>3kC

As in case II, the laser emission occurs on the forc
mode forr ,112a2. At r 5112a2 a supercritical bifurca-
tion leading to the emergence of a stripe patternS1 occurs,
which remains stable at higher values of the pump par
eter. This bifurcation scenario is analogous to that of a la
with a detuned injected signal studied in Ref.@31#.

D. Case IV:)kC<k0<3kC

In this case either one of the two bifurcation scenar
discussed in cases II or III may occur, and which one w
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occur depends upon the tilted wave mode selected by
noise at the bifurcation point. In particular, any tilted wa
whose wave vector falls inside the cone shown in Fig. 3 w
give the bifurcation scenario described in case II.

V. CONCLUSION AND DISCUSSION

In this paper we have investigated theoretically the em
gence of transverse patterns in a large-aspect-ratio, sin
longitudinal-mode laser in the positive detuning case un
the action of a weak, plane-wave-injected signal tilted w
respect to the axis of the laser cavity. As the longitudin
cavity frequency is smaller than the atomic transition f
quency, the laser emission spontaneously occurs off-a
The continuum of bifurcating modes are tilted waves who
frequency exactly coincides with the atomic transition fr
quency and whose transverse wave vectors are fixed~in
modulus! by the detuning parameter@7#. In the absence of
the injected signal, it is known that the laser dynamics ty
cally selects one tilted wave, which is able to suppress
others@7#. As shown in Ref.@31#, this scenario is, in genera
maintained even when a signal field is injected into the la
cavity, with the only difference that the selected tilted wa
is superimposed to the forced mode of the laser equation
this paper we have shown that, when the frequency of
injected signal is exactly tuned to the atomic transition f
quency, new resonances appear in the amplitude equat
which drastically change the pattern forming properties
the free-running laser. This leads to the formation of n
stable patterns. In particular, it has been shown that st
patterns arising from the superposition of the forced mo
with one, two, or three tilted waves may occur, and that th
patterns may be conveniently selected by varying the pu
ing parameter and the angle of the injected signal from
cavity axis. Even close to threshold, where the amplitu
equations may correctly describe the laser dynamics, it
been shown that a rich sequence of bifurcations takes p
connecting the two limiting dynamical regimes correspon
ing to the free-running laser and to stable oscillation on
forced mode. Similar patterns and bifurcations appear in
study of passive optical systems, such as Kerr-like me
with two-dimensional feedback@3#, multiconical emission
@23–26#, and thin two-level media with delayed feedba
@28#, which we discussed in Sec. I. In particular, the occ
rence of resonance conditions@like those expressed by Eqs
~9! and ~11!# among different critical modes are common
the study of quasipatterns@19# and of multiconical emission
@23,25,26#. Our analysis hence extends to an active opti
system some pattern features which were considered to
peculiar to passive systems. Nevertheless, in our con
there are some distinctive and new aspects that should
pointed out. As discussed in Sec. I, the elementary patte
are different in active and passive systems: traveling wa
in the first class of systems, standing waves~rolls! in the
second one@16#. This fact has important consequences
pattern formation in the two types of systems, which beco
evident in the analysis of the far-field patterns. To bet
understand this point, let us observe, for example, that un
lating hexagonal patterns like those shown in Fig. 7 are v
similar to other hexagonal patterns observed in passive
tems ~see, for instance, Fig. 5 of Ref.@28#!. Although they
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2406 56STEFANO LONGHI
arise in both cases in consequence of resonance conditio@a
four-wave interaction ruled by Eqs.~11! in our system, a
triadic Turing-Hopf interaction in the model of Ref.@28##,
the far-field patterns are different in the two cases. In
model of Ref.@28# the far-field pattern is composed of s
spots with the symmetryk→2k, which is imposed by the
conservation of the transverse photon momentum in the
ementary process of pattern formation; conversely, this s
metry is broken in the laser case, where the far-field pat
is composed only of four spots~see Fig. 2!. Furthermore, as
discussed in Sec. III, phase locking among the excited TW
is only partial in our model, whereas it seems to be fun
mental in other passive systems@26#. Another interesting and
distinctive feature is the bifurcation betweenS2S and S2A
patterns studied in Sec. III, where TW’s with different inte
sities may be excited. This bifurcation is analogous to t
studied in hydrodynamics in oscillatory convection@36#, and
corresponds, using hydrodynamic terminology, to a tran
tion from standing to mixed traveling waves@36,37#.

A singular configuration, which has not been studied he
is that of normal incidence of the injected signal. In th
geometry the rotational symmetry of the laser equations
the transverse plane is restored, and this introduces in
amplitude equations special resonances that are absent
tilted case. In particular, the effect of these resonances
prevent the existence of solutions for the amplitude eq
tions ~6! composed of an odd number of traveling waves
,
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the critical circle as two opposite traveling waves are alwa
linearly coupled. Nevertheless, these coupled TW’s m
have different amplitudes. Another point that has to be d
cussed for its relevance from an experimental viewpoin
how the pattern formation rules here investigated cha
when the injected signal is detuned from the atomic tran
tion frequency by an amount, let us sayq. It is clear that ifq
is of orderO(1), theresonant terms in the amplitude equ
tions responsible for the emergence of the new patterns
appear and the scenario described in Ref.@31# is recovered.
On the contrary, whenq is small, i.e., for a slight detuning
the problem is nontrivial, and inclusion of finite bandwid
effects in the perturbation analysis developed in Sec. II
comes of fundamental importance. When including in t
amplitude equations finite bandwidth effects, an annulus
modes of width ofO(«) aroundkC5AV/a in the k space
enter into the dynamical equations@7#, where the smallness
parameter« defines the order of magnitude of the force
mode in the cavity~see Sec. II!. As a result of the dispersion
relation for the traveling waves, the frequency of the
modes covers an interval around the atomic transition
quency whose width is ofO(«) @7#. Hence if q is of the
same order as«, resonances in the amplitude equations m
still occur and the pattern formation properties here inve
gated should be still valid. A detailed analysis of the detun
case, including the derivation of order parameter equatio
will be given in a separate work@37#.
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