PHYSICAL REVIEW A VOLUME 56, NUMBER 3 SEPTEMBER 1997
Transverse patterns in a laser with an injected signal
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Pattern formation near threshold in large-aspect-ratio, single-longitudinal-mode, two-level lasers with plane
mirrors under the action of a weak injected plane-wave field resonant with the atomic transition frequency and
tilted with respect to the laser cavity axis is analytically investigated in terms of the amplitude equations for the
system. It is shown that, when the laser emission occurs off-axis, the appearance of resonances among the
injected signal field and the unstable emerging tilted waves drastically changes the pattern selection properties
of the free-running laser. As a result new transverse patterns, which include singly and doubly periodic stripes
and undulating hexagons, may be stabilized by the injected signal. These patterns arise from the superposition
of the forced mode with either one, two, or three traveling waves on the critical circle of the free-running laser.
This is a distinctive feature from similar structures more commonly found in passive optical systems, where
complex patterns always arise as a superposition of standing waves. The stability properties of the various
patterns and their selection rules are analytically investigated within the amplitude equations.
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PACS numbe(s): 42.65.Sf, 42.60.Mi

[. INTRODUCTION derivation of theamplitude equation®or the system near the
instability point. These equations are able to predict the ex-
Spontaneous pattern formation in nonlinear optics hasstence of certain patterns which reflect the symmetry of the
been the subject of extensive investigations in recent yeafsulk parameters. A common situation is that where the rota-
[1]. Coupling of diffraction with an optical nonlinearity in tional symmetry in the transverse plane introduces a continu-
two transverse spatial dimensions has revealed the appeads degeneracy of critical modes, so that only the modulus
ance of transverse patterns both in pas$B«e5] and active  (but not the directionof their wave vectors is fixed by the
[6—14] optical systems, including Kerr-like systems with system parameters. In this case the critical modes lie on a set
two-dimensional feedbacl2—-5], lasers[6—9], photorefrac- of circles (called critical circles) in the wave-vector space
tive oscillators[10,11], optical parametric oscillatorgl2—  whose number corresponds to that of the unstable bands in
14], and otherga more complete list of references can bethe linearized problem. Although, at linear instability, all
found in the editorial introduction of Ref1]). The kinds of these modes may grow, due to their competition only a few
patterns that can emerge in an optical system depends crof them typically survive and saturate, leading to the forma-
cially on theaspect ratioof the systenf11]. In a cavitylike tion of regular spatial structures. The most common patterns
configuration(as in laserg the aspect ratio is typically de- which are observed when competition of critical modes is
termined by the Fresnel number of the optical caj/ity]. In restricted to a single unstable band are tilted traveling
small-aspect-ratio systems, pattern formation is controlled byvaves, stripes, squares, triangles, and hexagb#4,7,9,16.
the geometrical boundarie®.g., spherical mirrors of the The nature of the selected patterns depends crucially on the
cavity) and the spatiotemporal dynamics typically involvesnonlinear terms in the amplitude equations and thus on the
few cavity modeg6]. Conversely, in large-aspect-ratio sys- intrinsic symmetry of the problefil5]. As a general rule, it
tems, usually obtained by considering plane mirrors and uniturns out that stripes and hexagons are likely whenever
form pumping, pattern formation is independent of the transsecond-order nonlinear terms arise in the amplitude equa-
verse boundaries and is thus likely to be the result otions (as, for example, in optical bistabilify,17,1§ and in
nonlinear bulk effects. There are essentially two approachelkerr-like systems with a single-feedback mirr$2,3]),
to studying pattern formation in large-aspect-ratio systemsvhereas tilted waves and squdce rhombig vortex lattices
that complement each othgt5]. The first one is based on are commonplace when only third-order nonlinear terms are
the derivation oforder-parameter equationdike the com-  present in the amplitude equatiofss, for example, in lasers
plex Ginzburg-Landau and the Swift-Hohenberg equajions[7,9] and nondegenerate optical parametric oscillafd8).
capable of capturing the nonlinear dynamics of the systenfrurthermore, it turns out that passive optical systems usually
under suitable limit$15]. As these equations have a univer- give rise to a richer variety of patterns and bifurcations than
sal form (i.e., independent of the original equations specificactive systems. In this regard, many recent works have re-
for the particular physical problemthey provide a connec- vealed both experimentally and theoretically that, besides
tion between pattern formation in nonlinear optics and inrolls, triangles, and hexagof3,4], passive Kerr-like optical
other physical fields. The second method is based on thgystems with two-dimensional feedback are capable of gen-
erating a wide variety of other regular patterns which were
known in hydrodynamicg19-21], such as quasipatterns
*Present address: Dipartimento di Fisica, Politecnico di Milano,with N-fold orientational order[5,22—24, multiconical
Piazza L. da Vinci 32, 20133 Milano, Italy. emission [23-26, coexistence of patterns with different

1050-2947/97/56)/239711)/$10.00 56 2397 © 1997 The American Physical Society



2398 STEFANO LONGHI 56

symmetry[27], and mixed Hopf-Turing structurgd®8]. In  of a signal field into the laser cavity. Lasers with an injected
particular, quasipatterns arising from the interaction ofsignal are quite popular systems in laser physics, and they
modes belonging to the same unstable band have been edisplay a rich variety of nonlinear phenomdi28]; the study
perimentally observed in a liquid-crystal light valve systemof transverse effects in these systems has been considered
with field rotation [22], and theoretically predicted in a recently[30,31], but they did not attract as much attention as
single-feedback mirror device with rubidium atofitd. The  other systems, mainly because signal injection did not seem
pattern scenario is further enriched when modes belonging tm enrich the pattern formation properties of the free-running
different unstable bands become simultaneously criticalaser. In Ref[30] the derivation of an order-parameter equa-
(multiconical emissioh In this case the cooperative mode tion for the laser field near threshold in the presence of a
dynamics among modes belonging to different bands mayeak injected plane-wave signal was presented in various
lead to stable quasipatterfs9,23,25,26 However, in gen- limiting cases. That analysis was mainly restricted to the
eral it turns out that such an intermode coupling can occucase where the excited longitudinal cavity frequency is larger
only for very particular parameter valugg9,23, and it re- than the atomic resonance frequency, which prevents off-axis
guires mutual phase locking of all modg26]; otherwise emission for the laser radiation. In that case a complex
multiconical emission in the near field manifests itself as aGinzburg-Landau equation for the order parameter was de-
tiling consisting of domains with different spatial periodicity rived by the use of a multiple scale perturbation approach.
[27]. The single-feedback mirror system with a thin two- The opposite case was not so extensively studied, and a brief
level medium[28] also represents an example in nonlinearanalysis was given in Ref31], where it was shown for the
optics of pattern-forming system capable of supportingone-dimensional case that the excitation of a single tilted
mixed Turing-Hopf patterns. In that case the patterns origiwave for the laser equations is also likely when a weak sig-
nate from a triadic resonance among Hopf and Turing modesal is injected into the laser cavity. From the viewpoint of
that become simultaneously critice28]; as an Hopf insta- pattern formation, signal injection does not seem therefore to
bility is involved, these patterns drift. When considering ac-enrich substantially the free-running laser dynamics. That
tive optical systems, such as lasgrs-9] and other systems analysis, however, assumes implicitly that the frequency of
where gain is not provided by population inversi@uch as the injected signal is different from the atomic resonance
optical parametric oscillatofd 2,13 and photorefractive os- frequency, which is exactly the frequency of the emerging
cillators[10,11)), their pattern scenario seems much simplertilted wave.

than that discussed above, at least close to threshold and In this paper we investigate the problem of pattern forma-
whenever boundary effects are negligible. In particular, it hagion and selection near threshold in a laser with a weak in-
been shown that these systems may generate similar patterjested signal, by use of the amplitude equations approach in
[10,13 which involve modes belonging to only one critical the case where the laser emission occurs off-axis and the
circle, the absence of higher unstable bands being a constrequency of the injected signal is exactly tuned to the fre-
guence of the uniform-field model which is usually valid for quency of the atomic transition. Furthermore, we consider a
those systems. An important and distinctive feature of laserplane-wave injected field tilted with respect to the axis of the
(and of the other active systems quoted abdwem all the laser cavity, and discuss how the pattern formation properties
passive optical systems previously discussed is that the ethange as the tilting angle is varied and the pumping param-
ementary critical mode, which is the basic pattern needed teter of the laser is increased. As the injected signal is weak,
build more complex patterns, is a single traveliog tilted) ~ the linear instability of the laser equations is ruled as for the
wave (TW) on the critical circlg[7]. Conversely, in passive free-running case, and the critical modes are TW’s on the
systems it turns out that the elementary pattern is never earitical circle. Nevertheless, it is shown that the existence of
single TW, but a roll pattern obtained as a superposition ofhe injected signal with the same frequency as that of the
two counterpropagating TW’s having the same intensityemerging tilted waves drastically changes the free-running
(see, for instance, Reff16]). Therefore, in lasers one would laser dynamics with the appearance of new kind of patterns
expecta priori the possibility of generating patterns that do and a rich bifurcation scenario even near threshold, where
not have analogous in passive systéfos instance, patterns the validity of the amplitude equations is restricted. This oc-
formed by the superposition of an odd number of TW's, orcurs as the injected signal introduces in the amplitude equa-
of oppositely oriented TW’s with different amplitude®Nev-  tions for the neutral modes new interactions ruled by precise
ertheless it is well known that for the single-longitudinal- resonance conditions involving four-wave vectors that are
mode, free-running laser with a longitudinal cavity fre- responsible for the emergence of transverse patterns. In par-
guency smaller than the atomic resonance one, a single tilteittular, stable patterns involving simultaneous excitation of
wave is a global attractor of the laser equations and it is ablene, two, or three tilted waves may appear. This is a distinc-
to dominate and to suppress all others; in particular, two otive feature with respect to the optical bistability model,
three tilted waves may not be simultaneously excited due twhere pattern formation always involves the simultaneous
the absence of second-order nonlinear terms in the amplitudemission of two oppositely oriented traveling waveslls)
equationg7,8]. At most two couples of oppositely oriented, [4]. It turns out that a key parameter which governs the pat-
out-of-phase TW's(alternating rolls may be stabilized by tern forming properties is the ratio between the wave number
the nonlinearity, which gives rise to rhombic pattef@% It k¢ of the neutral modes and th&g of the injected field,

is clear that pattern selection properties of the free-runningvhich depends upon the tilting angle. The other important
laser could drastically change if the inversion symmetry ofparameters controlling the patterns are the pump parameter
the amplitude equation@vhich is intrinsic of the laser equa- for the atoms and the amplitude of the injected signal, which
tions) is somehow broken. This may be achieved by injectionmay lead to further bifurcations. In particular, it turns out
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that at high values of the pump parameter the stable pattervge want to study the influence of the injected signal field on
involve only one tilted wave, thus recovering the limit of a the nonlinear selection mechanism of the neutral modes, we
laser without injected signal, whereas for high values of theconsider a pump parameterclose to its threshold value by
injected field the laser emission occurs on the forced modeassumingr =1+ 2. Such a dependence ofon & will be-

The paper is organized as follow. In Sec. Il we describecome clearer later, and it essentially ensures that the ampli-
the laser model with a weak injected signal, and derive theudes of the bifurcating modes and of the injected field in the
amplitude equations for the neutral modes which describeavity be of the same order of magnituB9]. This scaling
the laser dynamics close to threshold. In Sec. Il we preserthils in the singular limitko=kc, which is not, however, of
a set of solutions of the amplitude equations involvidg particular interest from the point of view of transverse pat-
=1, 2, or 3 modes, and investigate their stability propertiesterns and therefore will be not considered hgsg]. The
In Sec. IV a summary of the pattern formation and selectiorderivation of the amplitude equations is based on a standard
rules is presented, and, finally, in Sec. V the main concluweakly nonlinear analysis of Eqgl) similar to that devel-
sions are outlined. oped in Ref[30], and consists of looking for a solution of

the equations as a power expansiorejn
Il. DESCRIPTION OF THE MODEL AND DERIVATION
OF THE AMPLITUDE EQUATIONS v=evD 4+ 2@ g3 4 @)

We consider a single-longitudinal-mode, homogeneously,pare = (e,p,n)T contains the field matter variables. The
broadened two-level laser with plane mirrors of infinite j6qyction of slow space and time variables follows from a
transverse extension and uniform pumping, with an injectedy ightforward analysis of the linear problem, which is dis-
plane-wave signal field resonant with the atomic transition. ,csaqd in Ref[7]. As we are mainly interested in the exis-
frequency. In general we will assume that the injected field i%ence of certain patterns arising from the interaction of a
tilted with respect to the laser cavity axis. The starting point it number of critical modes. we will neglect finite band-
of the analysis is provided by the usual Maxwell-Bloch laser,, 4 effects, so that no slovx,/ spatial variables are intro-
equations which, in the paraxial and mean-field approximagy,ced. In this case, only one slow time variable, given by
tions, may be written in the following dimensionless form T=s2t, is needed to capture the slow time evolution of the

8,30k mode amplitude§7]. In order to proceed into the perturba-
(1a) tion expansion, the order of magnitude of the decay rates

de—iaVZe—iQe=—oce+op+E expiky-Xx
! oerap Aiko-x) and o of the population inversion and electric field scaled to

ap+p=(r—ne, (1b)  the polarization decay rate should be stated. Here we give an
explicit derivation of the amplitude equations in the case of
an+bn=1(e*p+p*e), (1  class-C lasers, where all damping rates are comparable in

magnitude[8], so that we may assume in the perturbation
wheree and p are the scaled envelopes of the electric andexpansiorb=0(1), o=0(1); asimilar analysis, however,
polarization fields referenced to the atomic resonance frecould be done for class-A lasers, where both material polar-
guency; n is proportional to the difference between the ization dephasing and population decay rates are much larger
atomic inversion and the initial inversioa;is the diffraction  than the cavity field damping raf&]. By substituting expan-
parametery is the pump parametet; and b, respectively, sion(2) into Egs.(1), using the derivative rule,= 23 and
are the decay rates of the electric field and of the populatiosettingr =1+ 2, andE=E,e, a hierarchy of equations for
inversion, both scaled to the decay rate of the polarizationsuccessive corrections tois obtained. The solution at lead-
V2= g%+ d; is the transverse Laplacianis the time variable  ing, O(z), is viV=(e,e(V,0)", wheree™ is given by an
scaled to the decay time of the polarization; the detuningarbitrary linear combination of neutral modes at threshold
parameter() is the difference between the atomic and theplus a forced mode arising from the injected signal, namely,
longitudinal cavity frequencies, divided by the polarization
decay rateE is proportional to the amplitude of the injected . .
plane-wave fieldk, is the wave-vector component of the e(1)=A0exp(|k0-x)+|Zl Ajexplik;-x), 3
injected field transverse to the cavity axis; axd (X,y). N
g in Eq. (13 that .~ Exp, » being a smal parameter. as a Wi 61 =K. 11 Eq.(3. Ay (1=123 .. N) are arbitary
consequénce, at Ieadincg); (;rderaime dynamics describéd by Cr? mplexl_fugctlofn shoffthe ZIOW gme shc_a'rll'e_ wh_ereaEAo 1S
Egs.(1) exactly coincide with that previously studied in Ref. the amplitude of the forced mode, which Is given by
[7] for a two-level laser model in absence of the injected

N

signal. In particular, it is known that for a positive detuning 0= 'Eo 5. (4)
parameter the laser threshold is reached=at and the neu- 0 —aky

tral modes at threshold are tilted waves with transverse wave

vector k such that|k|=kc=(Q/a)¥? (Turing instability), Because of the rotational symmetry in the transverse

whereas for a negative detuning parameter the threshold @ane, the choice of the linear combination of neutral modes
reached at = (1+Q?)2 and the bifurcating mode is oscil- has been left arbitrary at this stage. The solutiorDét?)
latory in time but homogeneous in spaf#. As we are may be chosen as(®=(0,0,(1b)|e®|?)T, whereas at
interested on the formation of certain patterns, we will limit O(¢®) solvability conditions determine the slow time evolu-
our analysis to the positive detuning case. Furthermore, ason of the amplitudes\;, which explicitly read
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o N the output[7], or four modes composed by two couples of
(1+0)dtAl=cA— — Z AnAAL Sk 1k —k—k rolls (two traveling waves with opposite wave vecfovgth
mr,s=0 mor e phase alternatiorfalternating rolls, or alternating standing
(5 waves, which correspond to a squater rhombig vortex
(1=123...N). Introducing the new variables Iat'tice in the transvgrse laser irlltensﬁg]. In'particular, So-
7=t(1+0) o and Bj=eb 2A,, and observing that Igtlons of the amplitude equations involving two or three
0,=0 Y1+ a)e2dr, e2=r—1, we finally obtain thampli- tited waves are always_unstable_ in the laser case. The_se
tude equations features are not substantially modified when a weak signal is
injected into the laser cavity, provided that it is detuned in

N frequency from the emerging modes. In this case the laser
9,Bj=(r—1)B— > ByBB} Ok +ko—ke—kp» emission occurs on a single tilted wave which is superim-
m,r,s=

posed on the forced mode; this gives rise to traveling rolls
[21]. When the injected signal is resonant in frequency with
the tilted waves, which is our case, new resonances appear in
the amplitude equations which drastically change the mode-
mode interaction among TW'’s on the critical circle. In this
iE section we consider solutions of the amplitude equat{éhs

0T T - (7)  involving N=0, 1, 2, or 3 modes, and study their stability.
\/B(Q_ako) The N=0 solution corresponds trivially to the forced state

. . . .. (homogeneous intensity in the transverse plaaad its in-
Equations(6) represent the starting point of our analysis of stability gives rise to formation of patterns. The=1 state,

pattern formation in a laser with injected signal. It should be

. - where only one tilted wave is excited, gives rise to a stripe
noted that th_e_amplltu_de of the for_ced mo&g,, Is fixed by pattern whose orientation and spatial periodicity depends on
the external injected signal according to Ef); nevertheless

it enters into the nonlinear dynamics of the amplitudes of thé[he angle betweek, and the wave vector of the excited

: rpode, which may be arbitrary. For brevity we will call this
other modes, and may introduce new resonances, as we W'slatesl TheN=2 state gives rise to stripe patterns too, but
discuss in Sec. lll. Furthermore, the phaseBgfdoes not § 9 be P '

play an important role in the pattern formation process, and” this case the orientation of the stripes is paralidigpand

. . L - ; single or double spatial periodicity of the stripes may oc-
with asunable redefinition of the phase of the |nJected's'|gnagur' We will call this stateS, . Finally, theN=3 state, which
amplitudeE we may assumd@, to be a real and positive

number involves three tilted waves, gives rise to ynq_ulating hexago-
' nal patterns. It should be noted that the limiting case, where
the injected signal is orthogonal to the plane cavity mirrors,
introduces a rotational symmetry of the problem in the trans-
The amplitude equatiori$) may have, in general, differ- Verse plane which, on the contrary, is broken when the in-
ent families of solutions involving a different numbiirof ~ jected signal is tilted with respect to the cavity axis. Such
modes, which correspond to different patterns in the transSymmetry is responsible for the appearance of special triadic
verse plane of the cavity axis. In particular, the observable ofésonances in the amplitude equations, and this case needs
major interest in an experiment is the laser output intensityherefore a separate analysis that will be given elsewhere.
profile, which turns out to be proportional to the time aver-

age of the square of the electric field. From E®), the A. Forced (homogeneous solution (N =0)
near-field intensity at leading order is given by

(1=1,23...,N), (6

where

Ill. TRANSVERSE PATTERNS AND THEIR STABILITY

The amplitude equatior(§) admit the trivial zero solution
N 2 B,=0 (I=1,2,... N), which corresponds to the laser emis-
|=|a exp(ikq-X) + E Biexp(ik;-x)| , (8) sion in the forced mode. To study the stability of this solu-
=1 tion, we linearize Eqs(6) around the zero solution, and we

where for clarity here and in the following we will denote by look ff’r an exponential growth Of. the perturbatlons:. For a
« the amplitudgreal and positiveof the forced mode, given _gen_erlcmodek the evolution equation of its pzerturbatloﬁB
by Eq.(7). The resultant pattern will therefore depend on thelS 9iven byd,6B=46B, whereu=r—1-2a% agd hence
interference among the forced mode solution and the tiltediS mode becomes linearly unstablerat1+2a°. How-
waves which are neutral at threshold. Although in principle€Ver, If there exist two modes with wave vectégsandk,
at the linear instability many modes can be excited, owing tc>2lisfying thephase-matchingor resonancecondition

their nonlinear interactions only few of them survive leading Ko+ ko = 2k 9)
to a stable patterfiL5]. Furthermore, the wave vectors of the R enos

surviving modes do not have an arbitrary geometry, but are ) ) ) )

typically arranged in such a way as to satisfy simple a|gelhe linearized equations for their perturbatio¥®, , 5B, are
braic conditions, which depend upon the nature of the noncoupled, and are given by

linearities in the amplitude equations and reflect the intrinsic

symmetry of the system. In the case where no signal is in- a753|=ﬂ55|_a253|ﬁ , (103
jected into the cavity, i.e., for=0, it is known that the

amplitude equation§6) may support only one modgilted

or traveling wavg which gives a uniform intensity profile at 3,68y =poB,— a? 5By . (10b)
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FIG. 1. The phase-matching conditi¢®). FIG. 2. The phase-matching conditioisl).
The eigenvalues associated with EGR)) are\ . = u* a?; 3,0By=—udéB,—2a \/;583, (129
hence these modes become linearly unstable=at + o
The phase-matching conditi@®), which is responsible for a 9.0B3=— woBs— 2a\/udB,. (12b)

threshold lowering for pattern formation, is shown in Fig. 1.
It is clear that it can be satisfied onlykf,<k., and that if ~ The eigenvalues of the linearized Eq42) are \.=—pu
this is the case the wave vectoks and k, are uniquely = 2a+/u; hence the stability of th&; solution in this case
determined. In conclusion, the forced solution becomes linfequiresr>1+6a?. As the phase-matching conditiofisl)
early unstable at=1+ a? if ko<kc, and atr=1+2a2 in play an important role in destabilizing ti8 patterns, it is of
the opposite case. These are the threshold values for the fdpterest to study under which conditions they can be satis-
mation of patterns. fied. The phase matching conditiofisl) are sketched in Fig.
2; with the notations shown in the figure, it is straightforward
B. Stripe S, pattern (N=1) to show tha_lt the wave vectoks andksy sgtisfying Eq.(11a

are determined by the angles and ¢ given by

Forr>1+2a? the amplitude equation®) admit a fam-

ily of solutions consisting of a single mode with wave vector, _ Y — COSpy 1+y°—2y cosp;
let us sayk,, having an arbitrary orientation and with am- %23~ arcta Sing; 4
plitude B;= /i, whereu=r—1—2a2. If there exist wave (13

vectorsk, andk;, satisfying the phase-matching condition .
(9), we requirek, %k, ,k, . In order to investigate the stabil- Wherée, is the angle between the wave vectaisandko,

ity of this solution, we linearize Eqg9) around the steady- @ndy=Ko/kc. For the phase-matching conditiéblb), Eq.
state solutiorB, =\, B,=Bs="---=0, and look for expo- _(13) is still valid provided that the substitutiop; — ¢+ 7 _
nential growth of the perturbations. It turns out that!S Made. In order that at least one of the two phase-matching
perturbations associated with modes withgenericwave ~ conditions(11) be satisfied foenyvalue of the angle,, the
vectork are damped out, whereas two kinds of instabilitiescondition ko<v3kc must be fulfilled. Whenk,>3kc the

may arise for perturbations corresponding to wave vector@hasé-matching conditions may never be satisfied, whereas
satisfying particular phase-matching conditions. The first®" V3Kc<ko<'3kc one of the two phase-matching condi-
source of instability is represented by the modes with wavdions (11) may be satisfied for thé, solutions, whose wave
vectorsk, and k, satisfying the phase-matching condition VEctorsk, fall inside the cone shown in Fig. 3. As shown in
(9), and it is easy to show that stability of ti& soluton  Fig- 4, the transverse intensity profile for t8g pattern cor-
against the growth of such modes requiresl+3a2. The responds to stripes whose orientation and spatial period de-
second source of instability, which is more restrictive, mayPend upon the angle, between the wave vectoks andko.

arise for perturbations associated with the pair of wave vecll conclu5|0112, we can say that a family 8f patterns exists
tors k, and ks satisfying one of the followingphase- forr>1+2a*, and their stability is governed by the follow-

1/2

+ arcsir{

matchingconditions: ing rules: (1) whenko<v3kc all the S, patterns are stable
for r>1+6a? and unstable otherwisg?2) when v3k¢

ki+k,—ksz=kq (119 <ky<3kc, stability of theS; patterns whose wave vectors
fall inside the cone shown in Fig. 3 is ruled as(i, the
or other patterns being always stable; é8pwhenky,> 3k the

S, patterns are always stable in their domain of existence.
k2+ k3_k1:k0. (11b)
C. Stripe S, patterns (N=2)
In this case, assuming for instance that Ed.a is satisfied, The amplitude equationg) have a family of solutions
the linearized equations for the perturbatiaof®, and 6B;  corresponding to the excitation of two tilted waves with
read wave vectork,; andk,. However, as in the laser case with-
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FIG. 5. Bifurcation diagram for th&, patterns. The symmetric
solution R;=R,) is stable for # «?<r<1+4a?, whereas the
asymmetric solutionR;#R,) is stable forr>1+4a?. The solid
(dashedl lines correspond to stablenstablé solutions.

where the last terms on the right-hand side in Efj4) arise

in consequence of the phase-matching condit®nin order

to investigate the bifurcation properties of these equations,
let us introduce the polar decompositi@®=R; exp(¢,),
B, =R,expli¢,) and the phase variablg= ¢+ ¢,, so that
Egs.(14) become

FIG. 3. The phase-matching conditiofEl) in the casev3k,
<kc<3ky may be satisfied only for the wave vectdrswhich fall

inside the shaded cone oriented aldng with aperture anglep 5 2
=arcco$(y?— 3)/2y). 9,R,= uRy— (R5+2R7)R,— a®Ricosp,  (15b)

9,R1=uR;— (R34 2R3)R, — a’R,cosp, (159

RZ+R3
RiR,

out injected signa[7], it turns out that such solutions are o
unstable for ayenericpair of wave vectors. When the signal Ip=a
is injected into the cavity, stable two-wave solutions may

nevertheless occur when the phase-matching condi@ipis = From Eq. (150 it follows that, apart from the trivial zero
satisfied. In this case the amplitude equations for the modesolution (corresponding to the forced-mode state previously

sing. (150

with wave vectork, andk, are given by investigategl the steady-state solutions are phase locked and
5 ) s correspond to sih=0, i.e., to¢p=m or to $=0. The latter
9.B/=puB,—(|B||*+2|By[*)B,—a’B}i, (143  solution is, however, always unstable to phase fluctuations,

5 5 - and therefore here we will consider only the cdse w. The
9,:By=uBy—(|By[*+2|B|9)By—a’Bf, (14D  equations for the real amplitudgBgs. (158 and(15b] then
have two kinds of solutions: the symmetric solutiGgs,

(@) (b) corresponding to
M+ a2 1/2
Ri=Ry=|—3 , (16)
and the asymmetric solutio®,, given by
= a2
Rip=|——>——| - (17

The symmetric solutiofil6) exists forr >1+ «? whereas the
asymmetric solutior{17) exists forr>1+4a?. Straightfor-
ward linearization of the dynamical equatio$5a and
(15b around these steady-state solutions indicates that the
symmetric solution is stable for<1+4a?. Atr=1+4a? a
bifurcation takes place, resulting in the stability of the asym-
metric solution. The bifurcation diagram for the two-wave
equations(14) is shown in Fig. 5. These stability criteria
consider only the nonlinear interaction between the mdgles
andk, ; however, it may be shown that they are still valid
FIG. 4. Snapshots of stab® stripe patterns corresponding to When considering the linear stability problem within the full
four different values of the angle;: (a) ¢;=0, (b) ¢,=7/3, (C) amplitude equati0n$6) [33] In particular, it turns out that
@1=27/3, and(d) ¢;=m. The values of the other parameters arethe S, patterns are always stable with respect to external
ke=1,ko=0.7,«=1, andr = 13. Here and in the following figures perturbations for which the phase-matching conditia)
the wave vectokg is oriented along the vertical direction. (with k;=k, ,k;;) is valid. TheS, patterns corresponding to

\ 1}
N\
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instance that the phase-matching conditipha is satisfied,
the amplitude equations for the three modes read explicitly

() (b)
' as[34]
: 9.B1=uB1—(|B1|*+2|By|*+2|B5|*)By—2aB3B;
(183
d,B2=uB,—(|Bo|*+2|By|*+2[B3|*)B,— 2aB3BY ,
(18b

9,B3=uB3—(|B3|>+2|By|?+2|B,|*) B3~ 2aB,B,.

(©) @ (189
4 8 These equations have a canonical form as they typically de-
35 6 scribe the roll-hexagon competition in systems with a
> 3 > second-order nonlinearitf15,35. In particular, they have
gz.s g 4 also become quite standard in the optical context to describe
€ € roll-hexagon transition in passive Kerr-like systefs-4].
2 5 Note, however, that in the present context they govern the
15 dynamics of three single TW'’s on the critical circle, and not
1 0 of six TW’s as in previous model2—4]. Nevertheless, as
-20 0 20 -20

20 the bifurcation properties of these equations are well known,
here we will report only the result of the analysis. Introduc-

FIG. 6. Snapshotia) and(b)] and corresponding intensity pro- ing the polar decompositioB,=R,exp(¢) (=1, 2, and 3

files[(c) and(d)] of the S, stripe patterns(@) and(c) correspond to  and the phase variablé= ¢+ ¢,— 3, it turns out that,

the symmetric solutionr(=4), whereagb) and(d) correspond to  within the dynamical model expressed by Eq§8), the

the asymmetric solutionr 6). The values of the other parameters phase-locked solution witgh= 7 is the only stable solution

arekc=1, kp=0.8, ande=1. with respect to phase fluctuations; the steady-state ampli-

tudes for the three waves is then composed by two branches,

the two-wave solution§16) and (17) are shown in Fig. 6. 9iven by

X O

X

The S,¢ solution corresponds to stripes parallel to the wave Y [
vector k, with a single spatial periodicity, whereas tBg, R;=R,=R;=R= atya+ou (19
solution gives rise to stripes parallel kg but with a double S

spatial periodicity(see Fig. &. It is remarkable the fact that, : S

although the final intensity pattern arises from the interfer-The lower branct{corresponding to the lower sign in Eg.
gf th diff (1 y pl' th ¢ (19)] is always unstable in its domain of existence, whereas

ence of three diterent traveling waves wave VECIOTS it turns out that the upper branch is stable fow?/5< u

ko, ki, andk,, ; see Eq.8)], it corresponds to stripes. This

. g <16a? [35]. The typical patterns arising from the interfer-
feature is a consequence of the phase-matching cond®@on o ce of these three waves with the forced mode are shown in

which physically is imposed by the conservation of the phO'Fig. 7 for a few values of the angle;, which is the free

ton momentum in the nonlinear interaction process of the}amily parameter. As it can be seen, these patterns corre-
three waves. Although the resonance conditi®hamong gn4nq 10 lattices of hexagons in the “inverted” configuration
the wave vectors of the different TW’s is fundamental '”analogous to those found in optical bistabil[ty7]. How-

determining the final pattern as in other optical systesnsh o\ o1 i our case these hexagons are distorted, and we will

as in the mqucomcaI emssmﬁﬁp,ZQ), Itis interesting 10~ ¢4 them undulating hexagons. As previously observed for
observe that in our case there is only partial phase Iockln%e S, patterns, the hexagonal nature of the patterns is
among t_hese_modes. In fact, in the stable steady-state patteéfbsely related t,o the phase matching conditidt), and the
what is fixed is only the sunp, + ¢, of the phases of modes ¢ iling requires only partial locking of phases of the

ki andk, (with respect to the reference phasekgfwhich  ,oqes The distorted shape of the hexagons, instead, is a
was assumed to be zgrdeaving undetermined eithef, or  onsequence of the fact that they arise as a superposition of
¢, In conclusion, thes, patterns exist wheo<kc, and  ayeling wavesvhose orientation in space is governed by
their existence and stability domains are summarized in tths.(ll), and not ofrolls as in the optical bistability. As a
bifurcation diagram shown in Fig. 5. final remark, it should be noted that a global stability analy-
sis of the hexagonal patterns must be done within the full
amplitude equation$6) as other modes not considered in
Egs.(18) may become unstab]83]. A linear stability analy-

The amplitude equation&) admit of a family of solu- sis of the hexagonal patterns with respect to external pertur-
tions corresponding to the excitation of three tilted waves. Irbations shows that a source of instability may arise when
general, it turns out that a steady-state solution of the amplieonsidering perturbations for the modgsandk,, satisfying
tude equationg6) involving three modek,, k,, andk; is  the phase-matching conditigf). In this case the linearized
unstable unless the phase-matching conditiddg [or  equations which describe the evolution of the perturbations
(11b)] for these modes is satisfied. In this case, assuming faread

D. Undulating hexagons(N =3)
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(b)
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FIG. 7. Snapshots of stable undulating hexagons for four values D“_j %_
of the angleg,: (8 ¢1=0, (b) ¢1=7/3, (C) ¢;=27/3, and(d) g g | Homogeneous
¢,=m. The values of the other parameters kre=1, k;=0.4, « 5 Homogeneous cf 1
=1, andr=3.1. o >
A > 0 . 1 ‘ '2
9.6B,= (u—6R?) 6B, — a5B} | (208 Signal Intensity o? Signal Intensity «
9,06B,=(u—6R?) 6B, — a?5BF . (200 FIG. 8. Stability domains of the different patterns in thé? ()
_ _ plane for(a) 0<ko<kc, (b) ke<ko<v3kc, (c) V3kc<kKo<3k¢,
The eigenvalues of Eq$20) are\.=u—6R?*a?. Stabil-  and(d) ky>3kc. The forced(homogeneousmode is stable below

ity of the hexagonal lattice against the growth of t8g line 1, whereas the other patterns are linearly stable in infinitely
modes requires therefope— 6R?+ «?<0 which, using Eq. extended cones whose vertex@1). These cones are delimited on
(19), reads explicitly ag>1+2.02%% . . .a?. the left and on the right sides by the lines 1,2,3. for thedifferent
In conclusion, hexagonal patterns exist whiep<3k.  Patterns, as ruled in Table I. Overlapping regions of the cones in-
and they are stable for 12.029% ...a°<r<1+18q? if  dicate multistability.
ko<kc, and for 1+ 9a?/5<r <1+ 182 otherwise. The sta- _ _ _ ,
bility properties of the patterns at different tilting angles of varied. Typically in our physical system there are three con-
the injected signal are summarized in Table | and Fig. 8. (ol parameters that one can vary: the pumping paranmeter
the normalized amplitude of the injected signaj,and the
I\V. PATTERN SELECTION AND CONTROL tilting angle of the injected signal with respect to the cavity
axis, i.e.,kg. As a general rule, from Table | and Fig. 8 it
The various transverse patterns studied in Sec. Ill mayurns out that at high values of the pump parameter onky
appear in the laser emission when the control parameters atided waveis excited independently of the tilting angle of the

TABLE I. Summary of the stability domains of the various patterns for different values of the transverse
wave vectork, of the injected signal. The control parameteeB,,, given by Eq.(7), is proportional to the
amplitude of the injected signal.

0<ko<kc kc<ko<v3kc V3ke<ko<3kc ko> 3kc
Forced mode r<l+a? r<l+2a? r<l+2a? r<l+2a?
(N=0)
S, patterns r>1+6a? r>1+6a? r>1+6a? or r>1+2a?
(N=1) r>1+2a?
S,s patterns 1+ a?<r<i1+4a?
(N=2)
S, patterns r>1+4a?
(N=2)
Hexagonal 1+2.0294--a?<r 1+9a2%/5<r 1+9a%/5<r
patterns <1+18a2 <1+18a2 <1+18a2

(N=3)
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injected field, and the laser output intensity tends to be unieccur depends upon the tilted wave mode selected by the
form in space. We therefore recover a characteristic propertyoise at the bifurcation point. In particular, any tilted wave
of the laser emission without injected signal. Conversely, aivhose wave vector falls inside the cone shown in Fig. 3 will
high values of the injected signal the laser emission alwaygjive the bifurcation scenario described in case II.
occurs in the forced mode, and all the tilted waves are sup-
pressed as the gain saturation introduced by the force_d mode V. CONCLUSION AND DISCUSSION
does not allow these modes to reach threshold for oscillation.
For intermediate values of the control parameters the laser In this paper we have investigated theoretically the emer-
emission occurs in more complicated patterns, and a segence of transverse patterns in a large-aspect-ratio, single-
quence of bifurcations connecting the two limiting situationslongitudinal-mode laser in the positive detuning case under
takes place. Here we will consider a fixed amplitude of thethe action of a weak, plane-wave-injected signal tilted with
injected signal, and will study the bifurcation scenario whichrespect to the axis of the laser cavity. As the longitudinal
appears when the pump parameter is varied at different tiltcavity frequency is smaller than the atomic transition fre-
ing angles of the injected signal. A similar analysis could,quency, the laser emission spontaneously occurs off-axis.
however, be done by considering a fixed value of the pumprhe continuum of bifurcating modes are tilted waves whose
parameter, and assuming that the amplitude of the injecteflequency exactly coincides with the atomic transition fre-
signal is a _b|furcat|on parameter. According t(_) t_he a_nalys"ﬁuency and whose transverse wave vectors are fiied
developed in Sec. lll, four cases have to be distinguished. modulug by the detuning parameté7]. In the absence of
the injected signal, it is known that the laser dynamics typi-
A. Case I: ko<ke cally selects one tilted wave, which is able to suppress all
The laser emits in the forceghomogeneoysmode forr  others[7]. As shown in Ref[31], this scenario is, in general,
<1+ a2, and the threshold for pattern formation is reachedmaintained even when a signal field is injected into the laser
atr=1+ a2, where the symmetric stripe patte®g bifur- cavity, with the only difference that the selected tilted wave
cates supercritically from the homogeneous moder At is superimposed to the forced mode of the laser equations. In
+4a? a second bifurcation takes place with the appearancthis paper we have shown that, when the frequency of the
of the double-period stripe patte83, , which remains stable injected signal is exactly tuned to the atomic transition fre-
at h|gher values of the pump parame(]me F|g 5_ Sl Stripe qguency, new resonances appear in the amplitude equations,
patterns and hexagons may also be observeckderkc, which drastically change the pattern forming properties of
their domains of stability being>1+6a?2 for stripes and the free-running laser. This leads to the formation of new
142.02% .. .a%<r<1+18a2 for hexagons, respectively. Stable patterns. In particular, it has been shown that stable
Therefore bistability and even tristability of patterns mayPatterns arising from the superposition of the forced mode
exists in this case in some ranges of the pumping parametdfith one, two, or three tilted waves may occur, and that these
[see Fig. 8)]. It should be noted that, at high values of the Patterns may be conveniently selected by varying the pump-
pump parameter, the two stable stafgs andS,; correspond  ing parameter and the angle of the injected signal from the

both to the excitation obnetilted wave, and the transverse Cavity axis. Even close to threshold, where the amplitude
output intensity tends to be uniform in space. equations may correctly describe the laser dynamics, it has

been shown that a rich sequence of bifurcations takes place
connecting the two limiting dynamical regimes correspond-
ing to the free-running laser and to stable oscillation on the
In this case the stable laser oscillation is in the forcecforced mode. Similar patterns and bifurcations appear in the
state forr <1+2a?, and, atr=1+20?, a subcritical bifur-  study of passive optical systems, such as Kerr-like media
cation leading to the emergence of hexagonal patterns takegith two-dimensional feedback3], multiconical emission
place. The hexagonal lattice looses its stabilityratl  [23-26, and thin two-level media with delayed feedback
+18a?, where a second bifurcation and a transitionSio  [28], which we discussed in Sec. I. In particular, the occur-
stripe patterns appear. Bistability between the homogeneoygnce of resonance conditiofike those expressed by Egs.
mode and the hexagonal lattice, and between the hexagon@) and(11)] among different critical modes are common in
lattice and theS; patterns, exist for + 9°/5<r<1+2e®  the study of quasipatterfd9] and of multiconical emission

B. Case II: ke<ko<v3ke

and 1+ 6a?<r<1+18a?, respectively. [23,25,26. Our analysis hence extends to an active optical
system some pattern features which were considered to be
C. Case llI: kg>3k¢ peculiar to passive systems. Nevertheless, in our context

othere are some distinctive and new aspects that should be
mode forr <120, AL =120 a supercrica biurca. Poried O A dscussed i Sec | the slementay patens
tion leading to the emergence of a stripe patBroccurs, in the first class of systems, standing wavedlls) in the

which remains stable at higher values of the pump param- . .
eter. This bifurcation scenario is analogous to that of a Iase?econd ong16]. This fact has important consequences on

: g : S pattern formation in the two types of systems, which become
with a detuned injected signal studied in Re1]. evident in the analysis of the far-field patterns. To better

understand this point, let us observe, for example, that undu-

lating hexagonal patterns like those shown in Fig. 7 are very
In this case either one of the two bifurcation scenariossimilar to other hexagonal patterns observed in passive sys-

discussed in cases Il or lll may occur, and which one willtems(see, for instance, Fig. 5 of ReR28]). Although they

As in case ll, the laser emission occurs on the force

D. Case IV: vV3ke<ko<3ke
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arise in both cases in consequence of resonance conditionsthe critical circle as two opposite traveling waves are always
four-wave interaction ruled by Egg¢ll) in our system, a linearly coupled. Nevertheless, these coupled TW’'s may
triadic Turing-Hopf interaction in the model of RegR28]],  have different amplitudes. Another point that has to be dis-
the far-field patterns are different in the two cases. In thecussed for its relevance from an experimental viewpoint is
model of Ref.[28] the far-field pattern is composed of six how the pattern formation rules here investigated change
spots with the symmetrik— —k, which is imposed by the when the injected signal is detuned from the atomic transi-
conservation of the transverse photon momentum in the elon frequency by an amount, let us séylt is clear that if
ementary process of pattern formation; conversely, this symis of orderO(1), theresonant terms in the amplitude equa-
metry is broken in the laser case, where the far-field pattertions responsible for the emergence of the new patterns dis-
is composed only of four spotsee Fig. 2 Furthermore, as appear and the scenario described in R&f] is recovered.
discussed in Sec. lll, phase locking among the excited TW’©n the contrary, wher is small, i.e., for a slight detuning,
is only partial in our model, whereas it seems to be fundathe problem is nontrivial, and inclusion of finite bandwidth
mental in other passive systefi#6]. Another interesting and effects in the perturbation analysis developed in Sec. Il be-
distinctive feature is the bifurcation betwe&s and S,,  comes of fundamental importance. When including in the
patterns studied in Sec. lll, where TW’s with different inten- amplitude equations finite bandwidth effects, an annulus of
sities may be excited. This bifurcation is analogous to thatmodes of width ofO(e) aroundks=+/a in the k space
studied in hydrodynamics in oscillatory convecti@®], and  enter into the dynamical equatiofig], where the smallness
corresponds, using hydrodynamic terminology, to a transiparameters defines the order of magnitude of the forced
tion from standing to mixed traveling wavgs6,37. mode in the cavitysee Sec. )l As a result of the dispersion

A singular configuration, which has not been studied hererelation for the traveling waves, the frequency of these
is that of normal incidence of the injected signal. In thismodes covers an interval around the atomic transition fre-
geometry the rotational symmetry of the laser equations imuency whose width is 00(e) [7]. Hence if & is of the
the transverse plane is restored, and this introduces in threame order as, resonances in the amplitude equations may
amplitude equations special resonances that are absent in tsgll occur and the pattern formation properties here investi-
tilted case. In particular, the effect of these resonances is tgated should be still valid. A detailed analysis of the detuned
prevent the existence of solutions for the amplitude equaease, including the derivation of order parameter equations,
tions (6) composed of an odd number of traveling waves onwill be given in a separate wor37].
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