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Generation and properties of collective atomic Schro¨dinger-cat states
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We propose a method for generating collective atomic Schro¨dinger-cat states formed as superpositions of the
Bloch ~or atomic coherent! states in the context of cavity QED. We then study the properties of these states and
show the effects of the superpositions on spontaneous and stimulated emission, the atomic dipole moment, spin
squeezing, and coherence.@S1050-2947~97!07410-6#
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I. INTRODUCTION

In recent years there has been much interest in the
eration and properties of superpositions of macroscopic
distinguishable quantum states usually called Schro¨dinger-
cat states@1#. Most of the theoretical and experimental acti
ity has been associated with bosonic systems such as
quantized electromagnetic field@2# and with the quantized
vibrational motion of the center of mass of a trapped ion@3#.
In these cases, the cat states consist of superposition
phase-shifted coherent states such asua& andu2a& @2# or of
ua exp(if/2)& and ua exp(2if/2)& @3#.

In this paper, we study another kind of cat state, this ti
associated with the Dicke model@4# of the collective behav-
ior of a large number of ‘‘two-level’’ atoms confined to
volume V!l3, wherel is the wavelength associated wi
the atomic transition. It is well known that for this system
the so-called Bloch states, also known as atomic cohe
states or SU~2! coherent states@5,6#, can possess a number
properties describing the collective behavior of the ato
@6#. Of particular interest are the properties of collecti
spontaneous emission~superradiance! and the existence of a
macroscopic dipole moment that is able to radiate classica
These Bloch states can be generated by a classical fiel
teracting withN atoms that are initially all in their ground
states. We denote them here asuz,J&, where z
5tan(q/2)exp(if/2) as explained below, and the cooperati
numberJ5N/2. Our collective atomic cat states then w
consist of superpositions of the statesuz,J& and u2z,J&,
which are phase shifted byp in the phase space given by th
complex z plane. Previously, we have discuss
Schrödinger-cat states associated with SU~2! @and with
SU~1,1!# coherent states for a two-mode quantized elec
magnetic field@7# making essential use of the Schwinger@8#
realization of the angular momentum algebra in terms of t
sets of boson operators. Such states have many nonclas
properties and we expect that striking nonclassical prope
should appear for the atomic cat states as well.

This paper is organized as follows: In Sec. II, after brie
reviewing the Bloch states and their properties, we propo
method by which superpositions ofuz,J& andu2z,J& can be
generated in the context of cavity QED. In Sec. III we e
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amine their properties. The paper closes in Sec. IV with
brief summary and some remarks.

II. GENERATION OF COLLECTIVE ATOMIC CAT
STATES

We considerN two-level atoms in a cavity, of volume
V!l3, wherel is the wavelength corresponding to the tra
sition energy between the two levels. Under this condit
we can introduce the three collective operators

J6[(
i 51

N

s6
~ i ! , J3[

1

2 (
i 51

N

s3
~ i ! , ~2.1!

where thes6
( i ) ,s3

( i ) are the usual Pauli operators for a sing
atom. The above operators close on the su~2! or angular mo-
mentum algebra

@J1 ,J2#52J3 , @J3 ,J6#56J6 . ~2.2!

We denote the ‘‘angular momentum’’ states asuJ,M &, which
in the present case are just the well-known Dicke states@4#
and J5N/2 is the cooperation number.uJ,2J& indicates a
state for which all atoms are in the ground state while
uJ,J& all atoms are in the excited state.

The SU~2! coherent states, or Bloch states, are defined

uz,J&[exp~zJ12z* J2!uJ,2J&

5~11uzu2!2J (
M52J

J S 2J
J1M D 1/2

zJ1MuJ,M &, ~2.3!

where z5q/2 exp(if/2), 0<q<p, 0<f<2p, and z
5tan(q/2)exp(if). Properties of the states have been d
cussed elsewhere@5,6,9# and we shall not review them a
length here. However, we shall note that the states ar
general nonorthogonal:

^z8,Juz,J&5F ~11z8* z!2

~11uz8u2!~11uzu2!G
J

. ~2.4!

The probability distribution of the atoms in terms of th
Dicke statesPM

(J) is binomial:
2390 © 1997 The American Physical Society
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56 2391GENERATION AND PROPERTIES OF COLLECTIVE . . .
PM
~J![u^J,M uz,J&u25~11uzu2!22JS 2J

J1M D uzu2~M1J!.

~2.5!

Arrechi et al. @6# have shown that these atomic cohere
states contract to the usual harmonic oscillator states in
limit that N→`. The above states can be generated by
application of a resonant classical driving field of a const
amplitude« where the interaction Hamiltonian in the rotatin
frame and with the rotating-wave approximation is@10#

HI5~ ik«/2!~J12J2!, ~2.6!

wherek is the dipole moment coupling constant of the ato
to the driving field. The SU~2! coherent state of Eq.~2.3!
will be generated assuming all atoms are initially in th
ground states.

In order to generate the desired superpositions ofuz,J&
andu2z,J& we consider a cavity supporting a single mode
frequencyvc and containingN two-level atoms with a tran-
sition frequencyva as pictured in Fig. 1. We further assum
that vc andva are sufficiently different such that the cavi
field and the atoms do not interact. We require another s
cies of atoms whose statesue& and ug& are resonant with the
cavity field. These atoms, after being properly prepared,
to be sent through the cavity, then after emerging are to
manipulated by a classical resonant field and then selecti
ionized to generate the required states as explained in
following.

We start by assuming the cavity has been loaded with
N atoms, which are in the collective ground stateuJ,2J&.
An atom of the other type~we call it atom 1! resonant with
the cavity field is prepared, by classical microwave fields
the superposition (ue1&1ug1&)/& and the cavity field is as
sumed to be initially in the vacuum stateu0&. Thus our initial
state for the combined system is

1

&
~ ue1&1ug1&)u0&uJ,2J&, ~2.7!

which upon passage of the single atom through the ca
becomes

FIG. 1. Schematic of the experimental setup to generate
collective atomic Schro¨dinger-cat statesuC6& @Eq. ~2.18!#. The
classical external field is resonant with theN two-level atoms and
generates the Bloch stateuz,J&.
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&
@cos~Vt !ue1&u0&2 i sin~Vt !ug1&u1&1ug1&u0&] uJ,2J&,

~2.8!

where the standard Jaynes-Cummings interaction has
used and whereV is the vacuum Rabi frequency. We ne
assume that atom 1 is velocity selected such thatVt5p/2,
which results in

uc~ t5p/2!&5
1

&
ug1&@2 i u1&1u0&] uJ,2J&. ~2.9!

Then the detection~measurement! of the atom 1 projects the
system into the state

1

&
@2 i u1&1u0&] uJ,2J&. ~2.10!

Now simultaneously with the above procedure, or shor
after, an external classical field such as a laser, resonant
the frequencyva of the N atoms, by the interaction Hamil
tonian of Eq. ~2.6! drives the collective ground stat
uJ,2J& into the atomic coherent stateuz,J& so that the sys-
tem state is now

1

&
@2 i u1&1u0&] uz,J&. ~2.11!

At this point a small electric field is applied inside the cav
to Stark shift the atomic levels of theN atoms to a transition
frequency detuned enough from that of the cavity yielding
dispersive interaction described by the Hamiltonian@11#

HI5\xa1aJ3 , ~2.12!

wherex depends on the square of the dipole moment and
inverse of the detuning. Through this interaction, the state
Eq. ~2.11! evolves as

exp~2 iH I t/\!
1

&
@2 i u1&1u0&] uz,J&

5
1

&
@2 i u1&exp~2 ixtJ!uz exp~ ixt !,J&1u0&uz,J&].

~2.13!

We assume that the electric field is turned off at the ti
whenxt5p such that our state is then

1

&
@2 i u1&exp~2 ipJ!u2z,J&1u0&uz,J&]. ~2.14!

Now, a second resonant atom, in the ground stateug2&, is
sent through the cavity resulting in

1

&
$2 i @cos~Vt !u1&ug2&2 i sin~Vt !u0&ue2&]

3exp~2 ipJ!u2z,J&1ug2&u0&uz,J&%. ~2.15!

We again assume thatVt5p/2 so that we have

e
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TABLE I. Sequence of interactions to generate the collective atomic Schro¨dinger-cat statesuC6&.

~1! uc~t50!&5
1

&
~ue1&1ug1&)u0&uJ,2J&

↓ After passing atom 1 through cavity
in time Vt5p/2 and detection ofug1&

~2!
1

&
@2iu1&1u0&]uJ,2J&

↓ external driving field creates a
Bloch state

~3!
1

&
@2iu1&1u0&]uz,J&

↓ Stark shift for theN atoms so that
the interaction Hamiltonian is
HI5\xa1aJ3 up to the timext5p

~4!
1

&
@2iu1&exp~2ipJ!u2z,J&1u0&uz,J&]

↓ send in a second atom in state
ug2& for time Vt5p/2

~5!
1

&
@2ue2&exp~2ipJ!u2z,J&1ug2&uz,J&]u0&

↓ p/2 pulse on the atom

~6!
1

2
@ug2&$uz,J&2exp~2ipJ!u2z,J&%2ue2&$uz,J&

1exp~2ipJ!u2z,J&%]
↓ detection ofue2& yields

(7) uC1&[N1@ uz,J&1exp(2ipJ)u2z,J&]
or of ug2& yields

uC2&[N2@ uz,J&2exp(2ipJ)u2z,J&]
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&
@2ue2&exp~2 ipJ!u2z,J&1ug2&uz,J&] u0&,

~2.16!

where the cavity field is again in the vacuum. Finally, as t
second atom emerges from the cavity it is subjected top/2
pulse by a resonant classical field producing the transfor
tions ue2&→(ue2&1ug2&)/& and ug2&→(ug2&2ue2&)/&.
This results in

1
2 @ ug2&$uz,J&2exp~2 ipJ!u2z,J&%2ue2&

3$uz,J&1exp~2 ipJ!u2z,J&%] u0&. ~2.17!

Detection of the atom in stateue2& projects theN atoms into
the collective atomic cat state

uC1&[N1@ uz,J&1exp~2 ipJ!u2z,J&] ~2.18a!

and detection in stateug2& produces the atomic state

uC2&[N2@ uz,J&2exp~2 ipJ!u2z,J&]. ~2.18b!

The real normalization factors are given as

N6[
1

&
F11cos~d62pJ!S 12uzu2

11uzu2D 2JG21/2

, ~2.19!
s

a-

and whered1[0 andd2[p. In the case where the coop
eration numberJ is an even integer the statesuC6& are the
analog of the even and odd coherent states, respectivel
the field @12#. This is also true in the case whenJ is an odd
integer except thatuC6& are odd and even, respectively. O
the other hand, ifJ is half odd integer the states are ana
gous to the Yurke-Stoler states of the field@13# and the quan-
tum distribution of the Dicke states remains the same as
the atomic coherent state. The sequence for generating t
states is summarized in Table I.

The manner in which the superposition states above
formed has some similarity to the method for forming ev
and odd field coherent states in the context of cavity Q
@14#. As in that case, we must be concerned about the
evant decay and decoherence of the cavity field and
atomic states. The cavity lifetimeTcav5Q/vc is of the order
of 1022 sec for a cavity withQ factor 108 and of frequency
vc/2p;50 GHz for Rydberg atoms of high angular mome
tum quantum number with principal quantum numbern
>50, the radiative life timesTrad are typically also on the
order of 1022 sec. For a collection ofN atoms their energy
would be radiatively damped in a timeTrad/N, thus limiting
the number of atoms that could sustain an atomic cohe
state during the manipulations required from the superp
tions although the lack of resonant cavity mode into which
decay could possibly increase the lifetime of the states. In
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56 2393GENERATION AND PROPERTIES OF COLLECTIVE . . .
balance of this paper we shall ignore the issue of decay
decoherence of our states but rather we shall study som
their properties.

III. PROPERTIES OF THE ATOMIC CAT STATES

We have already mentioned that forJ an even or odd
integer, the states of Eq.~2.18! are analogous to the even an
odd coherent field state. The latter states are characterize
oscillations in the photon number distributions that can
explained as resulting from interference in phase space.
the atomic cat states, a similar interpretation can be given
the oscillations in the atomic population, but the phase sp
is in this case that of the Bloch sphere. For example, in
caseJ is an even integer, the distribution over the Dic
states foruC1& is given as

PM
~J![u^J,M uC1&u2

5uN1u2~11uzu2!22JS 2J
J1M D uzu2~M1J!@11~21!M#2,

~3.1!

which vanishes forM odd. Thus the Dicke states forM odd
are removed from the superposition. This is like a binom
distribution but every other term is missing. Forz51, PM

(J) is
centered aroundM50 and this center shifts towardsM5J
with increasingz and towardsM52J for decreasingz. In
Fig. 2 we plotPM

(J) for the case withN520,J510 where we
note the oscillations in the distribution. Similar oscillatin
distributions are also known to occur for the atomic squee
states@15# and this has recently been interpreted in terms
interfering ‘‘pathways’’ @16#.

These oscillations are indicative of correlations betwe
the atoms. The Dicke statesuJ,M & are highly ‘‘nonclassical’’
in the same sense as for the number states of a quan
field. In the latter case the expectation value of the elec
field vanishes whereas in the former, the expectation valu
the total dipole moment vanishes. This in turn is related
the correlations between the atoms. For the Dicke states
atoms are highly correlated. In contrast, for the Bloch sta
the atoms are uncorrelated@6# but it seems that for superpo
sition states of the type in Eq.~2.18! with J an even or
odd integer, correlations between the atoms can e

FIG. 2. The distribution of collective atomic cat statesuC1&
@Eq. ~2.18!# over the Dicke statesu^J,M uC1&u2 for the case with
N520 andz51.5.
nd
of

by
e
or
or
ce
e

l

d
f

n

ed
ic
of
o
he
s,

t.

As a simple illustrative example, consider the case
two atoms,N52. The usual Dicke states in this case a
~uJ51, M51,0,21&!

u1,1&5ue1e2&,

u1,0&5
1

&
@ ue1g2&1ug1e2&], ~3.2!

u1,21&5ug1g2&,

wheree1,2 (g1,2) denote the excited~ground! states of atoms
1 and 2, respectively~not to be confused with the atoms use
to form the states in Sec. II!. The associated Bloch state ha
the form

uz,1&5~11uzu2!21@ ug1g2&1z~ ue1g2&1ug1e2&)1z2ue1e2&],
~3.3!

which is factorizable into the formuC1&uC2&, where

uC1&5~11uzu2!21/2@ ug1&1zue1&],
~3.4!

uC2&5~11uzu2!21/2@ ug2&1zue2&],

FIG. 3. The intensity for spontaneous emission^J1J2& for the
Bloch statesuz,J&(B) @Eq. ~2.3!# and the collective atomic cat state
uC6& as a function ofq. The parameterz is chosen to be real (f
50). ~a! N52 atoms.~b! N510 atoms.~c! N520 atoms.
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and thus the atoms are uncorrelated@17#. Then, up to nor-
malization factors, the superposition states are

uz,1&1u2z,1&;ug1g2&1z2ue1e2&, ~3.5a!

uz,1&2u2z,1&;ue1g2&1ug1e2&. ~3.5b!

The latter state is completely correlated for allz while the
former is maximally correlated~or entangled! for uzu51.
Both states are of the type that violate Bell’s inequalities
Bohm’s version of the Einstein, Podolsky, and Rosen exp
ment @18#. Obviously, in the limitsuzu→0 or uzu→`, the
state of Eq.~3.5a! becomes disentangled.

For the cases whenJ is a half-odd integer, the type o
interference discussed above does not occur and it app
as we show below, that these states have properties alm
but not quite, identical to the Bloch states.
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We first consider spontaneous emission. The intensity
spontaneous emission for an arbitraryN-atom stateuC& is
given by @6#

I C5^CuJ1J2uC&I 0 , ~3.6!

where I 0 is the intensity for one atom. For the Dicke sta
uC&5uJ,M & the emission intensity isI D5(J1M )(J2M
11)I 0 and, of course forM>0 one hasI D>J2I 0 , the well-
known Dicke superradiance. For a Bloch stateuz,J& we ob-
tain @6#

I B5
4J2uzu212Juzu4

~11uzu2!2 I 05@J2sin2q12J sin2~q/2!#I 0 ,

~3.7!

which is also superradiant forq>p/2 (uzu>1). But for our
cat statesuC6& we have
I C5^C6uJ1J2uC6&I 0

5uN6u2$@2J2sin2q14J sin2~q/2!#1cos~d62pJ!@22J2sin2q14J sin2~q/2!#cos~2J22!q cos4~q/2!%I 0 . ~3.8!
r
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For the case whereq>p/2 we again obtain a superradia
state owing to the fact that the statesuz,J& and u2z,J& are
nearly orthogonal. But for other values ofq it is possible to
have spontaneous emission intensities that are quite diffe
than those of the Bloch states as illustrated in Fig. 3, wh
we plot ^J1J2& as a function ofq for variousN for both
Bloch and cat states. ForJ a half-odd integer, the spontane
ous emission is the same as for Bloch states@note that
cos(d62pJ)50 for J half-odd integer#. Consider the case fo
two atoms ~N52,J51!. With d2[p, the emission is
weaker than for the corresponding Bloch state. Ford1[0
the emission is constant withq. This has a simple explana
tion. As discussed previously, due to the interference,
stateuC1& contains only the Dicke stateu1,0& and souC1& is
independent ofq and this state is superradiant. For the ca
with N510 (J55) we see that foruC2& the intensity is also
lower than the Bloch state but is higher foruC1& except near
q>p/2. But for N520 (J510) we find the situation re
versed, that is, foruC2& the intensity is higher than for th
corresponding Bloch state and lower foruC2&. This is sim-
ply due to the change in the sign of the factor exp(2ipJ) in
Eqs. ~2.18!. It is of interest that the greatest rate of spon
neous emission occurs whenuzu51 where the statesuz,J&
and u2z,J& are orthogonal.

We next examine the stimulated emission rate, which
proportional to the atomic inversion: 2^J3&. For the Dicke
states the inversion is simply 2M and for the Bloch states
22J cosq @6#. But for the cat states we obtain

2^J3&524uN6u2@cosq1cos~d62pJ!cos~2J21!q#.
~3.9!

Thus, for example, withd1[0 andJ an integer, the stimu-
lated emission rate will be enhanced or diminished ifJ is
even or odd, respectively. IfJ is half-odd integer, the rate
will be unaffected by the superposition. In Fig. 4 we p
nt
re

e

e

-

is

^J3& as a function ofq for N52, 10, and 20. We find that fo
N52 and 10~J51 and 5, respectively! the stimulated emis-
sion is lower than for the Bloch states forq,p/2 but higher
for q.p/2 for the stateuC2&. But for uC1& the opposite is
true ~for N52, there is no stimulated emission in this cas!.
For N520 (J510), all of this is reversed with respect to th
statesuC6&.

The total dipole moment of the collective atomic syste
is given by@6#

D5p exp~ ivt !J11p* exp~2 ivt !J2 . ~3.10!

For the Dicke states one obtains^J,M uDuJ,M &50 whereas
for the Bloch states@6# the dipole moment is

^z,JuDuz,J&5J sinq„p exp~ ivt1 if!1p*

3exp~2 ivt2 if!…. ~3.11!

The Bloch state is characterized by a macroscopic dip
moment that is able to radiate classically. However, for
atomic cat states we obtain

^C6uDuC6&54J sin~d62pJ!uN6u2sinq cos~2J22!q

3„p exp~ ivt1 if1 ip/2!

1p* exp~2 ivt2 if2 ip/2!…. ~3.12!

Thus, for example, withd1[0 andJ an integer, the dipole
moment will vanish as a result of interference.

Note that even though the dipole moment vanishes in
case, the state is still superradiant. One might be tempte
imagine the situation as being one in which there is a sup
position of two macroscopic dipole moments radiating out
phase by 180° and thus canceling each other’s field cont
to the predictions of Eq.~3.8!. However, the superposition o
Bloch states involves correlations of the atomic states an
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is this that is responsible for the vanishing of the dipo
Recall that the Dicke states are also correlated atomic s
for which the dipole moment vanishes but they are still
perradiant. However, the emitted radiation is incoherent@19#
whereas the superradiant Bloch states emit coherent ra
tion. In the present case, because of the vanishing of
dipole moment we expect the emitted radiation to again
incoherent. ForJ a half-odd integer, the dipole moment wi
not generally vanish but does oscillate 90° out of phase w
that of the Bloch state. This seems to be the only effect
the superpositions with an odd number of atoms that dif
entiates them from the Bloch states.

The coherence properties of the statesuC6& can be char-
acterized by the normalized second-order correlation fu
tion

g~2![
^J1J1J2J2&

^J1J2&2 . ~3.13!

For the Bloch states one has@20#

g~2!5
2J21

J

tan4~q/2!1~2J21!tan2~q/2!1J~2J21!

@ tan2~q/2!12J#2 ,

~3.14!

FIG. 4. The intensity for stimulated emission^J3& for the Bloch
statesuz,J&(B) @Eq. ~2.3!# and the collective atomic cat statesuC6&
as a function ofq. The parameterz is chosen to be real (f50). ~a!
N52 atoms.~b! N510 atoms.~c! N520 atoms.
.
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which has the limitsg(2)50 for one atom (J51/2) and
g(2)>1 for many atoms (J@1). In the former case we se
the dipole operators exhibit the antibunching properties
the fluorescent light while in the latter the dipole operato
are coherent. The results for the cat states are displaye
Fig. 5. We find forN52 and 10 thatg(2), for q away from
p/2, is lower than for the Bloch states for the statesuC1&
thus exhibiting the antibunching effect forq,p/2. For
uC2& we generally obtaing(2).0, which is the bunching
effect. Again forN520, these properties are reversed for t
uC6& states.

Finally we examine the possibility that the atom
Schrödinger-cat states exhibit squeezed fluctuations. O
way to define squeezing for the atomic system is in terms
angular momentum uncertainty relationsDJ1DJ2>u^J3&u/2
where J15(J11J2)/2 and J25(J12J2)/2i . Squeezing
then exists wheneverDJi<u^J3&/2u1/2 for i 51 or 2 @10#. The
Bloch states possess squeezing of this sort@19#. Elsewhere
@7#, we have shown that such squeezing can also be pre
for the two-mode SU~2! cat states and is thus present in t
atomic cat states as well, at least for the cases whereJ is
integer. However, it has been pointed out by Kitagawa a
Ueda @15# that the above definition of squeezing does n

FIG. 5. The normalized second-order correlation functiong(2)

@Eq. ~3.14!# for the Bloch statesuz,J&(B) @Eq. ~2.3!# and the col-
lective atomic cat statesuC6& as a function ofq. The parameterz
is chosen to be real (f50). ~a! N52 atoms.~b! N510 atoms.~c!
N520 atoms.
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2396 56CHRISTOPHER C. GERRY AND RAINER GROBE
identify a standard quantum limit to be overcome and, f
thermore, the Bloch states may be squeezed simply as
sult of being placed in a particular coordinate system. It
been shown by Winelandet al. @15# that the parameter

j5~2J!1/2~DJi
'!2/^Ji&

2, ~3.15!

where Ji
' is a spin component perpendicular toJi , has a

minimum value of 1 for all Bloch states. A squeezed sp
state is then defined as a state for whichj,1 for some
component of the spin. This definition of squeezing is ve
useful in the context of Ramsey spectroscopy@15#. In our
case, we have found squeezing in the ‘‘2’’ direction; that
if

j5~2J!1/2~DJ2!2/^J3&
2, ~3.16!

thenj,1 for some values ofq, as indicated in Fig. 6 for the
case withN520. Only ford50 do we obtain spin squeezin
according to this definition.

IV. CONCLUSION

In this paper we have proposed a cavity QED ba
method of generating collective atomic Schro¨dinger-cat
states consisting of superpositions of Bloch states. We h
then examined a number of their properties and have sh
that they may exhibit enhanced or reduced rates of spo
neous and stimulated emission rates and a vanishing di
moment resulting from the interference of the two Blo
state components. We examined the coherence properti
the states and found that they can display the propertie
d

,

ys

a-
-
re-
s

y

,

d

ve
n

a-
le

of
of

antibunching as well as bunching. Finally, we showed th
in some cases, it is possible to obtain ‘‘spin’’ squeezing
the superposition states. In this paper we have ignored d
pative effects assuming that the time required for their f
mation is short compared to the relevant decay times. A
being formed, the states would rapidly decohere, a proc
described by a master equation involving the angular m
mentum operators in much the same way that decoheren
brought about for the usual cat state of a single mode fi
We plan to discuss this decoherence elsewhere.
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FIG. 6. The degree of squeezingj in the ‘‘2’’ direction @Eq.
~3.16!# for the collective atomic cat statesuC6& as a function of
q@N520#.
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