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Generation and properties of collective atomic Schrdinger-cat states

Christopher C. Gerry
Department of Applied Mathematics and Physics, Polytechnic University, Six Metrotech Center, Brooklyn, New York 11201

Rainer Grobe
Intense Laser Physics Theory Unit, Department of Physics, lllinois State University, Normal, lllinois 61790-4560
(Received 17 October 1996

We propose a method for generating collective atomic Stihger-cat states formed as superpositions of the
Bloch (or atomic coherenistates in the context of cavity QED. We then study the properties of these states and
show the effects of the superpositions on spontaneous and stimulated emission, the atomic dipole moment, spin
squeezing, and coheren¢&1050-294@7)07410-9

PACS numbd(ps): 42.50.Fx, 32.80-t

[. INTRODUCTION amine their properties. The paper closes in Sec. IV with a
brief summary and some remarks.
In recent years there has been much interest in the gen-

eration and properties of superpositions of macroscopically II. GENERATION OF COLLECTIVE ATOMIC CAT
distinguishable quantum states usually called Sdimger- STATES
cat state$1]. Most of the theoretical and experimental activ-
ity has been associated with bosonic systems such as t
guantized electromagnetic fie[@] and with the quantized
vibrational motion of the center of mass of a trapped[i®h
In these cases, the cat states consist of superpositions Wf

he We considerN two-level atoms in a cavity, of volume
V<3, where\ is the wavelength corresponding to the tran-
sition energy between the two levels. Under this condition
can introduce the three collective operators

phase-shifted coherent states suchagsand|— «) [2] or of N 1 N
| exp(4/2)) and|a exp(-i/2)) [3]. o 1.=3 0, 3=53 oY), 2.1)
In this paper, we study another kind of cat state, this time i=1 i=1

associated with the Dicke modgl] of the collective behav- M 0 ) )
ior of a large number of “two-level” atoms confined to a Where theo’ 03" are the usual Pauli operators for a single

volume V<3, whereX is the wavelength associated with atom. The above operators close on th&sor angular mo-
the atomic transition. It is well known that for this system, mentum algebra
the so-called Bloch states, also known as atomic coherent
! = =+
states or S(2) coherent statd®,6], can possess a number of [J:.d-1=2J5, [Jgde]=FJ.. (2.2)

properties describing the collective behavior of the atomsye genote the “angular momentum” states|asvl ), which

[6]. Of particular interest are the properties_ of collectivej, the present case are just the well-known Dicke stpdgs
spontaneous emissideuperradiangeand the existence of a andJ=N/2 is the cooperation numbeld, —J) indicates a

macroscopic dipole moment that is able to radiate _class_icallystate for which all atoms are in the ground state while for

TheseT Bloqh states can be gengrgted by a clas§|cal field "PJ:J> all atoms are in the excited state.

teracting withN atoms that are initially all in their ground The SU2) coherent states, or Bloch states, are defined as

states. We denote them here 4d¢,J), where ¢

=tan(¥/2)exp{4/2) as explained below, and the cooperation|{,J)=exp(zJ, —z*J_)|J,—J)

numberJ=N/2. Our collective atomic cat states then will ;

consist of superpositions of the statgsJ) and |—¢,J), —(1+)g) S ( 2J

which are phase shifted by in the phase space given by the N 4 M=";\J+M

complex ¢ plane. Previously, we have discussed

Schralinger-cat states associated with (@J[and with  where z=3/2 exp{¢/2), 0<O<m, 0<¢p<2m, and ¢

SU(1,1)] coherent states for a two-mode quantized electro=tan(®¥/2)exp{¢). Properties of the states have been dis-

magnetic field 7] making essential use of the Schwin8f  cussed elsewhergs,6,9 and we shall not review them at

realization of the angular momentum algebra in terms of twdength here. However, we shall note that the states are in

sets of boson operators. Such states have many nonclassiganeral nonorthogonal:

properties and we expect that striking nonclassical properties

should appear for the atomic cat states as well. , B (1+'*0)?
This paper is organized as follows: In Sec. Il, after briefly (¢918.9)= (A+['1DA+P]

reviewing the Bloch states and their properties, we propose a

method by which superpositions [af,J) and|—¢,J) can be  The probability distribution of the atoms in terms of the

generated in the context of cavity QED. In Sec. Il we ex-Dicke statesP(,\,J,) is binomial:

112
) MM, 2.3

J

(2.9
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classical external cavity 1 o
radgeeion — [cogQt)[e)[0) =i sin(Qt)|g1)[1) +]91)[0)] |3, = J),
\ N nonresonant ‘/2
atoms (28)
oven . ® / where the standard Jaynes-Cummings interaction has been
§ o ® : § used and wheré€) is the vacuum Rabi frequency. We next
§ § assume that atom 1 is velocity selected such fhat 7/2,
§ ..° . § which results in
A
x-pulse =®-pulse 1 )
z 2 |'p(t:77/2)>:E|gl>[_||1>+|0>]|J:_J>' (2.9

regsonant atom
Then the detectiomeasuremeiif the atom 1 projects the
FIG. 1. Schematic of the experimental setup to generate th%ystem into the state

collective atomic Schiinger-cat states¥.) [Eq. (2.18]. The

classical external field is resonant with tNetwo-level atoms and 1
generates the Bloch staltg,J). v [—i|1)+]0)]1],—J). (2.10
2] i i
P(M])E|<J,M|§,J>|2=(1+|§|2)_2J< )|§|2(M+J)_ Now simultaneously Wlth t_he above procedure, or shortly
J+M after, an external classical field such as a laser, resonant with

(2.5  the frequencyw, of the N atoms, by the interaction Hamil-
tonian of Eg. (2.6) drives the collective ground state

Arrechi et al. [6] have shown that these atomic coherent|J,_J> into the atomic coherent staté,J) so that the sys-
states contract to the usual harmonic oscillator states in them state is now

limit that N—. The above states can be generated by the
application of a resonant classical driving field of a constant 1 )
amplitudee where the interaction Hamiltonian in the rotating 5 [=i]1)+[0)]]£.3). (211
frame and with the rotating-wave approximatiorn 1€)]
At this point a small electric field is applied inside the cavity
Hi=(ixel2)(3,—=J), (2.6)  to Stark shift the atomic levels of tHé atoms to a transition
frequency detuned enough from that of the cavity yielding a
wherek is the dipole moment coupling constant of the atomsdispersive interaction described by the Hamiltonji&mh]
to the driving field. The S(2) coherent state of Eq2.3) N
will be generated assuming all atoms are initially in their Hi=fxa"al;, (212

ground states. wherey depends on the square of the dipole moment and the

In order to generate the desired superposition${af)  jyyerse of the detuning. Through this interaction, the state of
and|— ¢,J) we consider a cavity supporting a single mode oqu_ (2.11) evolves as

frequencyw. and containing\ two-level atoms with a tran-

sition frequencyw, as pictured in Fig. 1. We further assume 1
that w. and w, are sufficiently different such that the cavity exp(—iHt/4) —
field and the atoms do not interact. We require another spe- V2
cies of atoms whose states) and|g) are resonant with the 1
cavity field. These atoms, after being properly prepared, are = — [—i|1)exp(—ixtJ)|Z exp(ixt),J)+0)]£,9)].
to be sent through the cavity, then after emerging are to be V2

[=il1)+[0)]¢.3)

manipulated by a classical resonant field and then selectively (2.13
ionized to generate the required states as explained in the '
following. We assume that the electric field is turned off at the time

We start by assuming the cavity has been loaded with thevhen yt= 7 such that our state is then
N atoms, which are in the collective ground stale—J).
An atom of the other typéwe call it atom 1} resonant with 1 . . _
the cavity field is prepared, by classical microwave fields, in E[ i[Lyexp(—i7d)|—¢,9)+[0)[,9)]. (2.19
the superposition|€;)+]g;))/v2 and the cavity field is as-
sumed to be initially in the vacuum std@. Thus our initial  Now, a second resonant atom, in the ground stgs@, is

state for the combined system is sent through the cavity resulting in
1 o
%(|el>+|91>)|0>|3,—3>, 2.7 E{_|[0039t)|1>|92>_' sin(Q1)[0)ez)]
xexp(—im)|=¢,3)+(92)[0)[£,I)}. (2.19

which upon passage of the single atom through the cavity
becomes We again assume th&tt=7/2 so that we have
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TABLE I. Sequence of interactions to generate the collective atomic 8irtyer-cat statepV .. ).

1
D [Ut=0))= E (le))+lg)|0)}3,—J)

! After passing atom 1 through cavity
in time Qt=#/2 and detection ofg,)

@ %[—i|1>+|o>1|a,—a>

1 external driving field creates a
Bloch state

1
(©) E[—l|1>+|0>]|§,3>

| Stark shift for theN atoms so that
the interaction Hamiltonian is
H,=#%ya"aJl; up to the timeyt=

(4) %[*i|1>e><|0(*i773)|*§,J>+|0>|§,J)]

1 send in a second atom in state
|g,) for time Qt=x/2

1
(5) E [_ |e2>exq_ [ 77‘])| - {:J>+ |92>|§v‘]>] |O>

l 7/2 pulse on the atom
1
(6) E[‘92>{|§1‘]>_exq_l77‘])|_g1‘]>}_|e2>{|{!‘]>

+exp(—imd)|— )]
1 detection of|e,) yields
(7) [P )=N|E,9) +expimd)|— )]
or of |g,) yields
|¥_)=N_[]{,3)—expimd)|-{I)]

and whered, =0 and§_=. In the case where the coop-
£,3)1/0), eration numbed is an even integer the statp® . ) are the
analog of the even and odd coherent states, respectively, of
(2.16 the field[12]. This is also true in the case whdris an odd

where the cavity field is again in the vacuum. Finally, as thisinteger except that¥".. ) are odd and even, respectively. On
second atom emerges from the cavity it is subjected/®» the other hand, il is half odd integer the states are analo-

pulse by a resonant classical field producing the transformagous to the Yurke-Stoler states of the figld] and the quan-
tions |e,)—(|ex)+19,))/v2 and |g,)—(|g2)—|ex))/ V2. tum distribution of the Dicke states remains the same as for

1
- [—lexyexp(—imd)|—¢,I)+]9,)

This results in the atomic coherent state. The sequence for generating these
states is summarized in Table I.
s[1g){12,3) —exp( —imd)|—¢,I)} —|ey) The manner in which the superposition states above are

. formed has some similarity to the method for forming even
X{1¢,9) +exp(—imI)[—¢,9)}1]0). (2.17 and odd field coherent states in the context of cavity QED
[14]. As in that case, we must be concerned about the rel-
evant decay and decoherence of the cavity field and the
atomic states. The cavity lifetimB.,,= Q/ w. is of the order
W V=N.[|Z,d)+exp —imd)|—¢,d)] (2.189  of 102 sec for a cavity withQ factor 1¢ and of frequency
w/27~50 GHz for Rydberg atoms of high angular momen-
and detection in statly,) produces the atomic state tum quantum number with principal quantum numbrer
) =50, the radiative life timed 4 are typically also on the
|V _)=N_[[,9)—exp(—imd)[=¢,I)]. (218D  order of 102 sec. For a collection ol atoms their energy
would be radiatively damped in a tinTg,4/N, thus limiting
the number of atoms that could sustain an atomic coherent
ZJ}UZ state during the manipulations required from the superposi-

Detection of the atom in state,) projects theN atoms into
the collective atomic cat state

The real normalization factors are given as

1-]¢?

e (2.19 tions although the lack of resonant cavity mode into which to
1+|¢ T

decay could possibly increase the lifetime of the states. In the

No=—

5 1+cogé6.—wJ)
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FIG. 2. The distribution of collective atomic cat stafek )
[Eq. (2.18] over the Dicke statefJ,M|¥,}|? for the case with
N=20 and{=1.5.

balance of this paper we shall ignore the issue of decay and
decoherence of our states but rather we shall study some of
their properties.

[ll. PROPERTIES OF THE ATOMIC CAT STATES

We have already mentioned that fdran even or odd
integer, the states of E¢R.18) are analogous to the even and
odd coherent field state. The latter states are characterized by
oscillations in the photon number distributions that can be
explained as resulting from interference in phase space. For
the atomic cat states, a similar interpretation can be given for
the oscillations in the atomic population, but the phase space
is in this case that of the Bloch sphere. For example, in the 20 Fr e
caselJ is an even integer, the distribution over the Dicke 0 05 1 15 2 25 3133'5
states forl¥ ) is given as

FIG. 3. The intensity for spontaneous emiss{dnJ_) for the

P(,\j)z (MW )7 Bloch state${,J)(B) [Eq. (2.3)] and the collective atomic cat states
23 |P.) as a function of9. The parametet is chosen to be realg
:|N+|2(1+|§|2)23<J M)|§|2(M+J)[l+(_1)M]2 =0). (@) N=2 atoms.(b) N=10 atoms.(c) N=20 atoms.
_l’_ 1

(3.1 As a simple illustrative example, consider the case of
two atoms,N=2. The usual Dicke states in this case are

which vanishes foM odd. Thus the Dicke states ft odd (=1, M=1,0-1)

are removed from the superposition. This is like a binomial 11,2) = |ee,),

distribution but every other term is missing. Fo¢ 1, P(,\j) is

centered arount! =0 and this center shifts towardd =J 1

with increasing¢ and towardsM = —J for decreasing. In |1,00= — [|e109,) +|9:1€2)], (3.2
Fig. 2 we pIotP(,\j) for the case witiN=20,J=10 where we V2

note the oscillations in the distribution. Similar oscillating

distributions are also known to occur for the atomic squeezed 11,-1)=19192).

stateqd 15] and this has recently been interpreted in terms of .
interfz[ring; “pathways"[16] y P wheree; , (9, ;) denote the excitetround states of atoms

These oscillations are indicative of correlations betweer] and 2, respectlve_lgnot to be confusec_i with the atoms used
the atoms. The Dicke staté M) are highly “nonclassical” to form the states in Sec.)lIThe associated Bloch state has
in the same sense as for the number states of a quantizg&e form
field. In the latter case the expectation value of the electri _ -1 2
field vanishes whereas in the former, the expectation value (j%'b_ (1+121%) 7 19192) + {(le192) +9:1€2)) +¢ |ele(%>]3,)
the total dipole moment vanishes. This in turn is related to '
the correlations between the atoms. For the Dicke states thghich is factorizable into the form¥,)|¥,), where
atoms are highly correlated. In contrast, for the Bloch states,
the atoms are uncorrelat¢él] but it seems that for superpo- W)= (1+[Z%)"Y|g.) + {|e)],
sition states of the type in Eq2.18 with J an even or
odd integer, correlations between the atoms can exist. |W,)=(1+]Z|>) Y |g,) + |ex)],

(3.9
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and thus the atoms are uncorrelaféd]. Then, up to nor- We first consider spontaneous emission. The intensity of
malization factors, the superposition states are spontaneous emission for an arbitrddyatom statgW¥) is
(D edlgd Flee), @sa O
LD+ =41 ~10102) + {7[es€2), 3.5
ly=(W[3:3_|T)l,, (3.6
1, == ¢, ~[e192)+9:12). (3.5 wherel, is the intensity for one atom. For the Dicke state

|¥)=|J,M) the emission intensity i$p=(J+M)(I—M
+1)l, and, of course foM=0 one had p=J?l,, the well-
known Dicke superradiance. For a Bloch sthfgl) we ob-

tain [6]

The latter state is completely correlated for alvhile the
former is maximally correlatedor entangley for |¢|=1.
Both states are of the type that violate Bell's inequalities in
Bohm'’s version of the Einstein, Podolsky, and Rosen experi

ment [18]. Obviously, in the limits|{|—0 or |{]—o, the 4321712+ 23| ¢|*
state of Eq(3.58 becomes disentangled. lg= 1127 lo=[J%sir?9+2J sirf(9/2)]1,,

For the cases whed is a half-odd integer, the type of 3.7
interference discussed above does not occur and it appears, '
as we show below, that these states have properties almosthich is also superradiant fa¥= /2 (|¢{|=1). But for our
but not quite, identical to the Bloch states. cat stategW¥.) we have

IC:<\I}i|‘J+‘J*|\Pi>IO
=| N+ |3{[23%sirP 9+ 4 sir(9/2)]+ cog 8. — wI)[ — 2I%sir 9+ 4J sir?(9/2)]cos?’ 2§ cod(9/2)} 4. (3.9

For the case wheréd= /2 we again obtain a superradiant (J) as a function of9 for N=2, 10, and 20. We find that for
state owing to the fact that the statgsJ) and|—¢,J) are  N=2 and 10(J=1 and 5, respectivejythe stimulated emis-
nearly orthogonal. But for other values ¢fit is possible to  sion is lower than for the Bloch states fér< 7/2 but higher
have spontaneous emission intensities that are quite differefdr 9> /2 for the statdW ). But for |¥ , ) the opposite is
than those of the Bloch states as illustrated in Fig. 3, wherérue (for N=2, there is no stimulated emission in this case
we plot(J,J_) as a function ofd for variousN for both  ForN=20 (J=10), all of this is reversed with respect to the
Bloch and cat states. Fdra half-odd integer, the spontane- states|V..).

ous emission is the same as for Bloch stafeste that The total dipole moment of the collective atomic system
cos(@.—mJ)=0 for J half-odd intege}. Consider the case for is given by[6]

two atoms (N=2J=1). With é_=m, the emission is ) )

weaker than for the corresponding Bloch state. Boe0 D=p expliwt)J, +p*exp—iwt)J_.  (3.10
the emission is constant with. This has a simple explana- . . _

tion. As discussed previously, due to the interference, th or ;[]he I?ch:]e states or;]e 3_bta:(1$,M|D|J,l\_/l)—0 whereas
state| ¥ | ) contains only the Dicke staf&,0) and so V', ) is or the Bloch state46] the dipole moment is

independent ofy and this state is superradiant. For the case (£,3|D|£,3)=J sind(p expli wt+i )+ p*
with N=10 (J=5) we see that fof¥ ) the intensity is also
lower than the Bloch state but is higher fdr , ) except near Xexp —iot—ig)). (3.1)

d=/2. But for N=20 (J=10) we find the situation re- ] ) o
versed, that is, fof¥ _) the intensity is higher than for the The Bloch state is charac.terlzed by a macroscopic dipole
corresponding Bloch state and lower fa _). This is sim- moment that is able to radiate classically. However, for the
ply due to the change in the sign of the factor expgJ) in ~ lOMiC cat states we obtain

Egs.(2.18. It is of interest that the greatest rate of sponta- _ . _ 5 21-2)
neous emission occurs whet=1 where the statel,J) (V.|DI¥.)=43 sin(6. —mI) |V |sind cos o

and|—¢,J) are orthogonal. X (p expliwt+ig+iml2)
We next examine the stimulated emission rate, which is . ) o
proportional to the atomic inversion2;). For the Dicke +prexp —iwt—i¢—in/2)). (3.12

states the inversion is simplyM2 and for the Bloch states

—2J cosd [6]. But for the cat states we obtain Thus, for example, withs, =0 andJ an integer, the dipole

moment will vanish as a result of interference.
2(J3)=—4|N.|q cosd+cog 5. — 7wI)cos? D] Note that even though the dipole moment vanishes in this
(3.9  case, the state is still superradiant. One might be tempted to
imagine the situation as being one in which there is a super-
Thus, for example, with5, =0 andJ an integer, the stimu- position of two macroscopic dipole moments radiating out of
lated emission rate will be enhanced or diminished ils  phase by 180° and thus canceling each other’s field contrary
even or odd, respectively. If is half-odd integer, the rate to the predictions of Eq3.8). However, the superposition of
will be unaffected by the superposition. In Fig. 4 we plot Bloch states involves correlations of the atomic states and it
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FIG. 4. The intensity for stimulated emissiéds) for the Bloch FIG. 5. The normalized second-order correlation functf

states£,J)(B) [Eq. (2.3)] and the collective atomic cat stafes.)  [Ed. (3.14] for the Bloch state${,J)(B) [Eq. (2.3] and the col-

as a function of9. The parametet is chosen to be real=0). (a)  lective atomic cat statgdl'.) as a function ofd. The parametef

N=2 atoms.(b) N=10 atoms(c) N=20 atoms. is chosen to be reakf=0). (a) N=2 atoms.(b) N=10 atomsc)
N=20 atoms.

is this that is responsible for the vanishing of the dipole.

Recall that the Dicke states are also correlated atomic stateghich has the limitsg®=0 for one atom §=1/2) and

for which the dipole moment vanishes but they are still sug‘?=1 for many atoms >1). In the former case we see

perradiant. However, the emitted radiation is incohef&ft  the dipole operators exhibit the antibunching properties of

whereas the superradiant Bloch states emit coherent radighe fluorescent light while in the latter the dipole operators

tion. In the present case, because of the vanishing of thare coherent. The results for the cat states are displayed in

dipole moment we expect the emitted radiation to again bé&ig. 5. We find forN=2 and 10 thag‘®, for 9 away from

incoherent. Fod a half-odd integer, the dipole moment will #/2, is lower than for the Bloch states for the stajtds, )

not generally vanish but does oscillate 90° out of phase withthus exhibiting the antibunching effect fob<#/2. For

that of the Bloch state. This seems to be the only effect fof _) we generally obtairg‘®>0, which is the bunching

the superpositions with an odd number of atoms that differeffect. Again forN= 20, these properties are reversed for the

entiates them from the Bloch states. |W.) states.

The coherence properties of the stdt#s.) can be char- Finally we examine the possibility that the atomic
acterized by the normalized second-order correlation funcSchralinger-cat states exhibit squeezed fluctuations. One
tion way to define squeezing for the atomic system is in terms of

angular momentum uncertainty relations;AJ,={(J3)|/2
2 (J+9:+3-3) (313 where J;=(J,.+J_)/2 and J,=(J,.—J_)/2i. Squeezing
9= (3,3_)? ' then exists whenevexJ;<|(J;)/2|*?fori=1 or 2[10]. The

Bloch states possess squeezing of this gt#i. Elsewhere
For the Bloch states one hg20] [7], we have shown that such squeezing can also be present
for the two-mode S(2) cat states and is thus present in the
2J-1 tarf(9/2) + (23— L)tarf(9/2) + J(2]— 1) atomic cat states as well, at least for the cases where
J [tarf(9/2)+2J3]° ' integer. However, it has been pointed out by Kitagawa and
(3.149 Ueda[15] that the above definition of squeezing does not

g(2)
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identify a standard quantum limit to be overcome and, fur- 1.2 e e e
thermore, the Bloch states may be squeezed simply as a re- £l 3 ]
sult of being placed in a particular coordinate system. It has 20 g v ]
been shown by Winelanet al. [15] that the parameter 0'6 3 N
£=(2)YHAT)(3)?, (3.19 04F N=20
02F 3
where J is a spin component perpendicular dp, has a 0 : 5+
minimum value of 1 for all Bloch states. A squeezed spin ; E
state is then defined as a state for whighil for some 0200'5i1'552'53"35
component of the spin. This definition of squeezing is very 9

useful in the context of Ramsey spectroscdf$]. In our
case, we have found squeezing in the “2” direction; that iS, FIG. 6. The degree of squeezirgin the “2” direction [Eq.
if (3.16)] for the collective atomic cat staté¥.) as a function of

£=(22)Y4AJ,)%1(33)?, (3.16 HN=20].

antibunching as well as bunching. Finally, we showed that,
in some cases, it is possible to obtain “spin” squeezing for
the superposition states. In this paper we have ignored dissi-
pative effects assuming that the time required for their for-
mation is short compared to the relevant decay times. After
being formed, the states would rapidly decohere, a process
In this paper we have proposed a cavity QED basedlescribed by a master equation involving the angular mo-
method of generating collective atomic Sctlirmger-cat Mentum operators in much the same way that decoherence is
states consisting of superpositions of Bloch states. We havrought about for the usual cat state of a single mode field.
then examined a number of their properties and have show#e plan to discuss this decoherence elsewhere.
that they may exhibit enhanced or reduced rates of sponta-
neous and stimulated emission rates and a vanishing dipole
moment resulting from the interference of the two Bloch
state components. We examined the coherence properties of R.G. acknowledges the support of the NSF under Grant
the states and found that they can display the properties dio. PHY-9631245.

thené<1 for some values of}, as indicated in Fig. 6 for the
case withN=20. Only for §=0 do we obtain spin squeezing
according to this definition.

IV. CONCLUSION

ACKNOWLEDGMENT

[1] E. Schrainger, Naturwissenschaft&28, 807 (1935. and G. Gou, Phys. Lett. A33 281(1989; C. C. Gerry, J.
[2] For a recent review with many references, see V. Buzek and P.  Mod. Opt.46, 1053(1993.
L. Knight, in Progress in Optics XXXIVedited by E. Wolf  [13] B. Yurke and S. Stoler, Phys. Rev. LefZ, 13 (1986.

(Elsevier, Amsterdam, 1995 [14] See for example, S. Haroche, M. Brune, J. M. Raymond, and
[3] C. Monroe, D. M. Meckhof, B. E. King, and D. J. Wineland, L. Davidovich, inFundamentals of Quantum Optics, ldited
Science272, 1131(1996. by F. Ehlotzky(Springer, Berlin, 1998 p. 223, and references
[4] R. H. Dicke, Phys. ReVO3, 99 (1954). therein.
[5] J. M. Radcliffe, J. Phys. A, 313(1971. [15] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and

[6] F. T. Arrechi, E. Courtens, R. Gilmore, and H. Thomas, Phys. D. J. Heinzen, Phys. Rev. A6, R6797(1992; M. Kitagawa
- ge‘é ’g ‘erzyzir(uljg;z'erobe 5. Mod. O, 41(1997 and M. Uedajbid. 47, 5138(1993; G. S. Agarwal and R. R.
o . N P ) ’ ) Puri, ibid. 49, 4968(1994; D. J. Wineland, J. J. Bollinger, W.

[8] J. V. Schwinger, irQuantum Theory of Angular Momentum . L.
edited by L. C. Biedenharn and H. Van Ddcademic, New M. Itano, and D. J. Heinzenbid. 50, 67 (1994
York, 1965 [16] G. S. Agarwal, J. Mod. Op#3, 223(1996.

[9] A. PerelomovGeneralized Coherent States and their Applica- [17] For a mea.sure of the degree of correlations, see R. Grobe, K.
tions (Springer, Berlin, 1986 Rzazewski, and J. H. Eberly, J. Phys2B L503 (1994).

[10] K. Wodkiewicz and J. H. Eberly, J. Opt. Soc. Am.B 458 [18] D. Bohm, Quantum TheoryPrentice-Hall, Englewood Cliffs,

(1985. NJ, 1953, p. 611.
[11] M. J. Holland, D. F. Walls, and P. Zoller, Phys. Rev. Lég, ~ [19] |. R. Senitzky, Phys. Rewl11, 3 (1958; see also H. M. Nus-
1716(1997). senzveig, Introduction to Quantum Optics(Gordon and
[12] V. V. Dodonov, I. A. Malkin, and V. I. Manko, Physica2, Breach, London, 1933 p. 209.

597(1974; M. Hillery, Phys. Rev. A36, 3796(1987; Y. Xia  [20] K. Wodkiewicz, Opt. Commun51, 198 (1984).



