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Noise at the turn-on of a clas$B laser
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We show through numerical simulations that different kinds of noise have different signatures in the statis-
tical distribution of the intensity peak height as a function of delay time in the turn-on of Bldasers.
Simulations are carried out specifically for a £f@aser and are compared to the experimental results of H.
Grassiet al. [Phys. Rev. A50, 805(1994]. Full qualitative agreement is found with the experiment. These
results confirm that noise on the control parameter has a larger influence on the laser behavior than the intrinsic
fluctuations. A physical interpretation of the role that the different physical noise sources play in the system is
offered.[S1050-294{@7)08009-9

PACS numbgs): 42.55—f, 42.60.Gd, 42.60.Mi

[. INTRODUCTION measured with respect to the switch of the control parameter.
In the two cases described above, increasing spiral ampli-
The response to additive noise in a dynamical systentudes with increasing transit times are represented by
governed by two variables that have quite different dynamiimaxima that align with a positive slope as a function of
cal time scales has been analyzed in its general forf]in  transit time(pump switch, while in the opposite cas@oss
The authors have considered the transition of such a dynamswitch) the maxima align with a negative slope.
cal system away from an unstable fixed point towards a In addition to confirming the predictions ¢1], the ex-
stable one and have investigated the influence that noise hasriment[2] showed that a more complex behavior in the
on the system'’s trajectory in phase space. Two differensensitivity of the turn-on to noise exists: in the case of loss
ways of crossing the instability threshold have been examswitching, the spiral amplitude is always smaller for increas-
ined: a sudden lowering of the relaxation constant for thdng transit times, whereas in the case of pump switching, the
faster of the two variables or the sudden increment of aramplitude could either increase or decrease for increasing
external “incoherent” forcing. transit times, depending on the relative amplitude of the
It is a common occurrence in these dynamical systemsoise sources. In the absence of a theoretical support for the
that the representative point in phase space follows a traje@bservations, a heuristic interpretation for this occurrence
tory that does not evolve directly from the unstable towardsvas proposed?2].
the stable fixed point, but rather spirals in towards the latter. In this paper, with the help of the numerical integration of
The presence of noise affects the duration of the transition as well-accepted model for a G@aser[3], we investigate the
well as the amplitude of the spiral itself. It was fourid that  effects of different noise sources on a laser subject to the two
if the transition is caused by a reduction of the relaxationdifferent kinds of turn-on. We show that one can obtain nu-
constant for the faster variable, then the amplitude of themerically the same kind of behavior observed in the experi-
spiral decreases whenever the transition time increases. @nent[2]. The advantage, offered by the numerical integra-
the contrary, when the transition is caused by an increase ition, of accessing both physical variablgpopulation
the incoherent forcing, the amplitude of the spiraling motioninversion and field intensijyand changing the strengths of
increases for longer transition times. the different noise sources allows us to give a clear interpre-
The generic situation described by the model in Refis  tation of the role played by each noise source for each of the
a good qualitative picture of the physics of crossing the lastwo turn-on mechanisms and to confirm the validity of the
ing threshold in a clasB-laser(e.g., solid state, semiconduc- heuristic interpretation offered if2].
tor, and CQ). Here the abrupt reduction of the relaxation = Throughout most of this paper we concentrate on the dis-
constant of the fast variable corresponds to the reduction afussion of the pump-switched laser, which presents experi-
the cavity lossedalso called the “loss switch” or Q mentally the more puzzling behavior since the maxima of the
switch” of the lase), while the increase in the incoherent peak intensity may line up, as a function of time delay, along
forcing corresponds to increased pump stren@thump  a positive or a negative slope. Results obtained for(sima-
switch”). Some measurements performed on lasers were prgler) loss-switched laser will be discussed only at the end of
sented in the same wofk], but a more complete experimen- the paper for comparison and completeness. In Sec. Il we
tal account appeared [2], where a comparison between the briefly recall the features of the model employed. In Sec. llI
two kinds of laser turn-on was performed on a C@ser. we discuss the details of the numerical realization of param-
Experimentally, the sensitivity of the system to noise trans-eter switching and the application of the various kinds of
lates into a dependence of the maximum of the field intensityioise, as well as the tests we performed on their reliability.
overshoot on the delay time with which the laser turns onSection IV is devoted to the discussion of the results ob-
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M2 zP treatment is justified by the fact that the rotational sublevels
P v / that are not coupled directly to the e.m. field interact very
\ N2 ‘R/ rapidly with the lasing sublevel that belongs to the same
Y vibrational state and exchange population with it at a very
v —_\E high rate (much higher than the interband relaxation yate
2/ > E— [9]. At the same time, in a first approximation, they are in-
Y|=t distinguishable in their interaction with the lasing level and
M therefore can be considered as a whole. Hence these levels
v 1 can act as a reservoir of population for the upper lasing level
N1 R and as a sink that depletes more rapidly the excess popula-
~~ tion of the lower level. In addition, in the CQaser, the
Y1 ~ \\ﬁ electrical discharge and the quasiresonant transition with the
/ ZYR — N, metastable stat9,10] do not pump selectively only the

upper lasing level, but the whole vibrational band, therefore
creating the reservoir of population inversion mentioned
FIG. 1. Level diagram and definitions of variables and param-gphgye.
eters used in the model. Nonlasing rotational sublevels are grouped \yjith reference to Fig. 1, the laser mod@&] can be writ-
in “collective levels” M, and M, belonging to different vibra-  tan in the following form, wheré is the field intensitym,
tional levels. The rotational sublevdl, andN,, upper and lower andm, are the normalized populations of the nonlasing col-

lasing sublevels, respectively, couple to their rotational bands. Rq'ective sublevels, and, andn, are the normalized popula-
laxation from the band to each level occurs at the sate whereby tions of the two I:asinglsublevzeIS'

the relaxation away from the lasing level is multiplied by the num-
ber of levelsz present in the band, towards which the intraband
relaxation may occur. Pumping is assumed to be equal for all —=—k[1—(n,—ny)]i, (1a
sublevels of the upper band and therefore tazhignes higher for dr

the groupedM, levels; relaxation away from the band, including

the lasing sublevels, is assumed to take place at sgtesid y, for ﬁ: —(zZl g+ T )N, + a(n,—ny)i+T'gm (1b)
the upper and lower bands, respectively. dr RT /T edllz— T R

tained from the numerical integration and Sec. V to their %
dr

interpretation. A brief discussion, in Sec. VI, on the quanti- =~ (@l F )Nz —a(nz=ny)i+ I'gmy+15P7,

tative comparison between numerical simulations and ex- (10
perimental results precedes the conclusions in Sec. VII.
Some details about the form of the equations used in the dmy
integration as well as the values used for the constants for ar =~ " TrtT)my+zlgny, (1d)
pump and loss switching are given in Appendixes A and B,
respectively. dm, ,

ar —(IFr+T5)my+zI'gn,+2IN,P’ . (1e

Il. MODEL

The variables that we employ here are a normalized version
We choose a model that describes the evolution of thef those of Ref[6], where

laser with the help of rate equations. This choice does not

affect the validity of the predictions since we want to inter- i=Gl, (23

pret the experimental data obtained on resonance. However,

there are several rate equation models available that describe G M 2

the dynamics of a laseid—6]. While capturing the basic M=y M (2b)

physics of clas® lasers, these lower-dimensional models

are not very well suited to describe the transient behavior G

and therefore we choose a model that fully includes in its mZZRMZ’ (20

description the particular characteristics of the,d&3er: the

presence of the rotational manifolds coupled to the two las- G

ing sublevelq3]. In fact, this latter model, which is an im- Ny=1 N, (2d)

proved version of older ond9,8], has been shown to pro-

vide a good description of the transient behavior of the G

CGO, laser[3]. n2=RN2, (29
Its main features may be summarized as follows. Since

laser action can take place only between two rotational sub- G

levels of the vibrational manifoldg9], this model reduces P'=—P, (2f)

the complex level structure to four effective levélsg. 1): K

two directly participating in the lasing actiofN, and N;) q

and two taking the place of all the remaining rotational sub-

levels in each vibrational manifoldM, and M;). Such a the overdot denotesci_, 29
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and stant(10~?° in normalized variabl@sto allow the trajectory
to grow away from the unstable fixed point. We have also
7= yrKt, (39 checked that the numerical value that we chose for this con-
stant did not affect the results of the integration to any sig-
YR nificant extent. When noise was added to the laser intensity,
Ig= N (3b)  to simulate fluctuations in the spontaneous emission, we

were always careful to choose noise levels much larger than
this additive constan{at least four orders of magnitude
largenp.

The stochastic equations are integrated with a fourth-
order Runge-Kutta method. To optimize for speed, the rou-
tine is streamlined and no error checking or automatic divi-
.= V2 3d) sion of the integration step is included. Rather, we integrated

2 repeatedly for the same parameters, reducing the time step
for each run until the trajectory was clearly reproduéed

K plying that sufficient resolution was achieyed@he time step

Kk=\/— (399  used in the rest of the investigation was reduced from this
TR value by another order of magnitude to ensure continued
§§curacy for all parameters. Noise has been introducetl as
S . . rrelated with high-quality random number generators hav-
all o(1) .SL.jCh that the .numerlcall integration techniques ma ng ;f\a;leer;I good flgt fﬂeﬁjgc;‘ s(:)%ctrquln. k')I'?/vogdifferent kinds
.be as eff|g|ent and rapid as possmle. The pump pararReter of noise have been used in our investigations: white noise,
IS norm,allzed _to threshold, €., the Ia_lser CrOSSes threSh()Igbtained from a very long period random number generator
whenP’=1. z is the number of interacting rotational modes. 12], or Gaussian noiseL3]. No difference in the slopes of

.Th? Isteaddy states fgr the flvg vafrlabrI]es,. which We US€ 8,6 distribution of points have been found to result from the
initial conditions (to be perturbedfor the integration, are use of either kind of noise.

given in Appendix A. The details of the normalizations used In order to check the stability of the algorithm in response

for loss switching are given in Appendix B. to the abrupt variation of the control parameter, we tried
three different shapes for the control parameter commuta-
l1l. NUMERICAL TECHNIQUES tion: a step, a linear ramp, and a hyperbolic tangent, the latter
two being fast with respect to the system’s time constants,
We make the well-justified assumpti¢fl] that the in-  but containing many integration steps. In the first case, there
stantaneous noise amplitude just before the rapid commutés a large discontinuity in the control parameter over which
tion of the control parameter takes place has the most influthe code has to integrate. For the linear ramp, the variation of
ence on the subsequent evolution of the trajectory in phaseéme control parameter is continuous and is done with small
space from the unstabléaser below thresho)do the stable enough steps so as not to perturb the numerical algorithm too
(laser above thresholdixed point. Hence all the statistics much, but the derivatives are discontinuous at the two times
are computed with no noise along the trajectory and are rewhen the ramp connects to the constant parts. The hyperbolic
duced to the ensemble of deterministic evolutions startingangent time dependence of the control parameter offers the
from random sets of initial conditions. This allows us to advantage of bypassiiglmost entirely both difficulties: the
simplify considerably the calculations. At the same time, wevariation of the control parameter can be made to be very
seea posteriorithat even in this approximatiofnoiseonly ~ small and smooth over the switch and its time derivative is
on the initial condition a small amount of noise is sufficient also nearly continuous everywhetexcept for a small re-
to produce a sizable spread in the distribution of the pealsidual discontinuity coming from the fact that we do not
amplitudes, thus highlighting the physical response of théntegrate from—c to +co, but this discontinuity can also be
system to the perturbation. made to be very smallThe advantage of the first method is
Operationally, the steady-state values for all variables arés intrinsic speed, due to much simpler programing, while
calculated as a function of the given input values for thethe last is the safest, but slowest.
parameters. Since we have adopted a stepwise commutation The trajectories that we have obtained in the three cases
of the control parametefpump or cavity lossgsfrom its  are exactly superposable. Looking at the values of the
initial to its final value, we adopt the steady-state values asnaxima obtained in the three cases, one could see that they
initial conditions and start the integration of the equationsdiffered slightly only in the fourth digit past the decimal,
with the control parameter at a value corresponding to thehus showing that the integration algorithm is robust with
laser above threshold. Noise is added to the varigble respect to the sudden parameter switch. For this reason, all
and/or parametés) chosen and in the amount decided by thethe integrations are done using tf@mplen step commuta-
operator. For example, noise in the initial value of the popu-ion.
lation is added directly to the steady state in the desired The statistics are calculated always on small datd266
amount, while noise in the pump parameter is added to itpointg. This choice is dictated by the desire to compare the
value above threshold. Since the steady-state value for theumerical results to the experimental measurements of Ref.
macroscopic laser intensity is zero below threshold, and thg2], where large datasets could not be obtained due to laser
computer could not obtain a growing intensity starting fromstability constraints. However, we have checked that the
this value, we have always set it equal to a very small conslopes do not change by mixing the results of severalto

F 1 = f (30)
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FIG. 2. Integration of the equations of the model for 200 initial conditions and noise on only one variable or parameter &tartaise:
on the population inversiofl0~° in normalized units (b) noise on the cavity lossg40™° in normalized unity (c) noise on the pump
parametef10~° in normalized units and(d) noise on the field intensit{10~° in normalized units The spacing between the points(),
and partially also ir(b) and(d), is due to a resolution limitation in the time output. Other integration parameters are defined, for this and the
following figures, in Appendix A.

ten) different runs, as was also the case in the experiment, The amount of noise introduced on the field intensity vari-
obtained from different seeds for the random number generable is always much larger than the constant added to pre-
tor (the seeds are also randomly chosen vent the code from remaining on the zero intensity solution
The noise values are determined by the random numbegabout 10 2 of the steady-state field intensity above thresh-
generator. For those runs where we have used the generaigiti). However, the applied noise is also rather small com-
described in Refl12], which is normalized to 1, the output pared to the final steady-state value: about®010 ! of
of the noise generator was multiplied by a noise amplitudehe macroscopic steady state. Experimentally, this number is
coefficient to fix the absolute noise amplitude applled |n-a|so quite small Compared to typica| noise values for EECO
stead, when we used a random number generator with Gauggser. Nonetheless, the results that we obtain are still mean-
ian amplitude distributiorj13], the noise amplitude coeffi- ingful for the following two reasons. First we are interested
cient multiplied the characteristic amplitude width of the jn verifying the predictions of Ref.1], where the linear ap-
distribution. In both cases the noise amplitude has to be chqyroximation is taken, and therefore we are compelled to
sen to be sufficiently small if we want to obtain a linear choose particularly small values of noise. Second, all models
distribution of pointg14]. for CO, lasers, including the better ongs. Ref.[3]), are not
capable of providing quantitatively correct predictions of the
intensity of a realistic laser. Therefore, the results that we
obtain can only be interpreted in relative terms and we can
The numerical simulations confirm the interpretation ofonly look for the reproduction of the main physical features
the different slopes observed in the experimgZit Noise  from the model. The actual values of the slopes or of the
“internal” to the system(e.g., acting on the population in- time intervals over which the points are spread cannot be
version, the cavity losses, or the electric field intensity considered to be correct in absolute teffiigy. 2(d)]. Simi-
causes a distribution of points along a line with positivelarly, we have chosen the loss noise to be a small fraction of
slope[Figs. 4a), 2(b), and Zd)] [15]. On the contrary, noise the cavity losses because of the very good mechanical and
on the control parametéthe pump gives a statistical distri- thermal stabilization in the experimefdf. Ref. [2]).
bution with a clear negative slop€&ig. 2(c)]. We have imposed in Figs(@ and 2c) the same amount

IV. NUMERICAL RESULTS
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of noise on population inversion and on the pump in order tc 10
take advantage of their common normalization. Because th (a) .
scale of the two are comparable, it is useful to apply similar )
amounts of noise to compare the dynamical effects of the 20 |-
two noise sources. Figuresa® and Zc) show that noise on
the population inversion and on the pump affect the systen
in opposite ways. Having used the same noise strength o
both sources allows us to make predictions about the relativ
sensitivity of the system to either one. For the example
shown in the figure, both values amount to about °10f
their steady-state values, but we have performed simulation /
with noise levels up to 10° and beyond, values that are -0 / | | |
more consistent with experimental ongd. Ref. [2]). The 9916 9918 902 9922 9924 99.26 9928 993
results in this latter case are qualitatively the same, but ar t (us)
not presented here because they deviate from the linear a|
proximation made in Ref1]. .l (b) . .
Figure 2 shows that “intrinsic” noise sources and ‘“‘con- . ° . . . e
trol parameter” noisdin the following referred to as “con-
trol” noise) act upon the system in different ways, giving
rise to distributions of points that align according to opposite
slopes. We will provide a physical interpretation of this fact
in Sec. V. Let us now see what happens if we mix different
kinds of sources, a condition that always occurs in the ex
periment. For the sake of clarity, we will limit ourselves to
mixing only two noise sources at a time to show how their e % w
simultaneous presence influences the statistical distribution: 44 | o o
We present in Fig. 3 the case where the two noise sogeces 99i14 99116 99i1a 95.2 99122 99124 99‘.26 99128 99;.3 99.32
mix of intrinsic and control noise, on population and pymp t (us)
have an opposite influence on the system, whereas in Fig.
we present the case where the two sour@esnix of two wre. ©
different sources of intrinsic noise, on population and cavity
losse$ have a similar influence on the system. . -
Figure 3 shows, as expected, that the sign of the slop£€ 2%°[ ~
characterizing the distribution of points is correlated to the 3 ~,
relative strength and therefore predominance of either intrin- 5
sic [Fig. 3@] or control[Fig. 3(c)] noise, with an interme- < OFf \
diate situation where neither dominates and no line can b'% ~.
defined[Fig. 3(b)]. We immediately remark that the relative o \\
amount of population to pump noise necessary to obtair -200 | ~,
slopes of either sign is quite different. While it is sufficient to ~
have an amount of pump noise ten times larger than th ! ! , ‘ ! ! .
population noise to obtain a clear negative slope, the popu 99 99.05 991 9915  99.2  99.25
lation noise must be four orders of magnitude larger than the t(us)
pump noise to make its characteristic slope predominate
[16]. This result confirms the experimental observatifis FI_G. 3. Integr_ation of the eqyati_ons fo_r two §imultaneous k?nds
that a very high degree of stabilization of the control param-f noise. The ratid,, of population inversion noise to pump noise
eter is necessary to observe the effects of intrinsic noise in i (@ Rep= 10, (b) Ryp=107, and(c) Ry,,=0.1. Notice that inlb)

CO, laser. Obviously, due to the large amount of spontane'® SIOP€ can be defined, while the slope(@ is about 10 times
ous emission noise. this would not be the case in semicor{grger than in(a), thereby showing the greater effectiveness of con-
' rol noise.

ductor lasers, where positive slopes in the distribution of the
peak amplitude as a function of delay time were readily obynormalized to threshold, the second because the effective
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served(cf. Refs.[17,18)). pump is defined as
Note that with pump noise in the numerical simulation,
we reproduce several sources of noise present in the experi- , P
ment. In addition to the “true” pump noise that comes from p= 1+ 52" (4)

the fluctuations in the laser excitation current, two further,

and related, experimental sources of noise are threshold fluerhere § is the detuning, in models that explicitly treat the
tuations, coming from gas mixture fluctuations, and detunindield variable. Because of the absence of any reference in
fluctuations(cf. Ref.[2]). Both of them contribute to pump phase, there is no need to take detuning explicitly into ac-
noise in the model, the first because the pump parameter &unt in this model.
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because it influences the dynamical evolution of the laser
from the below-threshold to the above-threshold state.

Noise sources that affect the laser response in the same
way change somewhat the value of the slopes without sub-
stantially affecting the shape of the distribution caused by a
given kind of noise. The results of Fig. 3 explain very well
those obtained from the experimeiof. Ref.[2]). There(cf.

Fig. 5, a change of slope was observed as a function of the
residual amount of noise in the control parameter. As in the
simulation, the transition from one situation to the other in-
volves an intermediate state with a “ball-shaped” distribu-
tion of points through which no straight line can be reason-
ably fitted [Fig. 5(b)]. One further result of the simulations
(not shown is that for mixtures of noise values closer to the
intermediate ball-shaped distribution, corresponding to situ-
ations where there is a non-negligible amount of noise of the
nonpredominant kind, the “thick” distributions seen in the
experiments are very well reproduced. While this effect
could be intuited from the experimental results, its true ori-
gin can now be identified.

Finally, we show the consequences of mixing noise
sources that affect the laser in a similar way. Figure 4 shows
the results of the numerical simulation in the presence of
noise added to the population and to the cavity losses. The
distribution of points always maintains the same sign of the
slope[Figs. 4a) and 4c)], but passes through a state where
its “linear” shape is strongly alterefFig. 4(b)]. This corre-
sponds to the situation where the two noise sources have
comparable “strength.” Since each of them has a positive
slope, but with different magnitude, in the random sequence
of pairs of noise coefficients for the same turn-on event,
either of the two sources may predominate over the other,
thus imposing its own characteristic slope. The global result
is a point distribution that does not have a typical linear
shape, but rather a more wedgelike distribution. On small
datasets, and in particular in an experiment, the difference
between this wedge-shaped form and the ball-shaped one
from the previous case is completely masked. Hence the ob-
servation of a ball-shaped distribution of points may be due
to either a mixture of noise sources with different effects on
the laser or a mixture of noise sources with similar effects.
The former situation can be unambiguously identified if, in
addition, the sign of the slope changes when the relative
strength of one of the noise sources is varied.

FIG. 4. Integration of the equations for two simultaneous kinds

of noise. The ratidR,,, of noise on the population inversion to noise
on the cavity losses is@ Rp=100, (b) Ry=1, and (¢
Rp=0.01. Again, in(b) no slope can be defined, but the signs of
the slopes i@ and(c) are the same. Notice that the slopgahis
two orders of magnitude larger than(ig); this difference in slope is
the origin of the wedge-shaped point distribution().

V. INTERPRETATION
A. Pump switching

The numerical investigation provides us now with a very
powerful tool to test the interpretation of the experimental
results proposed in Ref2]. Indeed, we can easily see why

Fluctuations in the initial values of the population inver- the two different kinds of noise should give rise to distribu-
sion are in our case indistinguishable from fluctuations intions with opposite slopes when the laser is turned on by
pumpbelow thresholdin fact, since the population inversion switching the pump parameter. We first simulate the effect of
is created by the pump, different initial values of pump givenoise on the population inversion between the two lasing
rise to different initial values of the population inversion. states fi,—n;) by starting two noise-free simulations of the
Thus, adding noise to the initial value of the pump does nomodel with two different initial conditiongFig. 6); the dif-
affect the dynamics of the transient, but only creates a different initial conditions are intended to reproduce the effect
ferent initial population inversion, the latter being in equilib- of a noise fluctuation. The full time trace for the two inten-
rium with the pump below threshold. On the other handsities is shown in Fig. ®). The corresponding trace for the
noise on the final value of the pump plays an important rolgpopulation inversion is shown in Fig(&#, where threshold is
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attain threshold and an exponential-like growth is visible even be-
42 b ! — ‘ - : yond threshold, with an asymptotic tendency towards the upper
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tus) value of the pump. The onset of the macroscopic field interibjty

accompanies the abrupt drop of the population inversion below
threshold, where it relaxes with underdamped oscillations. The
spike in the laser intensity is due to the excess population value at
the turn-on time.

FIG. 5. Experimental distribution of peak intensity versus delay
time from the experiment of Reff2]: (a) intrinsic noise is predomi-
nant;(b) intrinsic and “control” noise produce approximately equal
effects: no slope can be defined in the distribution of poifdk;

value of the pump, which it should reach asymptotically in
control noise is predominanta) and (c) are from Ref[2] (Figs. 4 pump ymp y

and 7, respective)y The longer delay times and lower peak ampli- time if_the laser intensity remains always zero. However,
tudes’of(c) compared ta(@) are due to the fact that the value of some_tlme after the popL_JIatlor! has r_eached threshold the sys-
. ) ) . tem bifurcates and the field’s intensity grows away from the
detuning, whose fluctuations are responsible for the control noise, IS, " .
far off line center for the measurement @j. The grouping of the SOIu“o.n below threSho.lﬁCf' Fig. G(b)J. . o
experimental points along horizontal lines is due to the limit in DL."'ng the grovvth time for.the field intensity, i.e., after
resolution of the transient digitizer used in the measurements. the tlm(_a at_Wh'Ch the populatlon has crossed threshold, the
population inversion continues to grow beyond the threshold
marked by a dash—double-dotted line and the final value olevel, since it is being “used up” to produce intensity at a
the pump parameter by a solid line. The pump step is appliedegligible rate. However, when the field intensity becomes
at time equal to zero and the initial conditions are chosen taufficiently large, a very strong spike takes place with a cor-
be very different for the purposes of illustration. responding sharp fall in the population inversion below
As we can see in the figure, the population inversion inthreshold. Since the lasing steady state corresponds to a
the two cases starts from macroscopically different levelsalue of the population inversion locked to threshold relax-
and grows in exponential-like form towards the upper finalation oscillations of the field intensity and of the population
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FIG. 7. Phase-space trajectories corresponding to the simula 55405 (b)
tions of Fig. 6. The dashed line corresponds to the situation where
the initial value of the population inversion is lowf. the dashed 2105 |-
line in Fig. 6 and clearly shows that higher values of excess popu- _ B
lation inversion and higher intensity peaks are attained. 2 i
S 1.5<10° - B
inversion(in phase oppositionensue. g
An important point to notice is that when the laser has £ 110° |
started from a value that is farther away from threshold
(dashed ling in the intervening time between the instant 5x10% |-
when the population inversion crosses the threshold and the
intensity grows to macroscopic levels, there is a larger accu- 0L; , ‘
mulation of excess population than for initial conditions 0 50 100
nearer the threshol¢solid ling). This point is better illus- t{us)

trated in the phase spac_e diagréfig. 7), Where one clearly FIG. 8. lllustration of the effects of control noise on pump
sees that the outer trajectory, corresponding to the larger . ~ - L Co
eak amplitude in the intensitv. is the one for which lar erswnchlng. The initial value of the population inversion is the same
P I fpth lati Y. ! . ttained 9€Tin both runs, while the effect of noise on the final pump value is
va “‘?S 0 id € e]z(cess popu ﬂ Ionhl.nvef:csmn. are g ame,b' d simulated by choosing two different values for the pump above
Itis evident rom_Flg. 6t a_tt IS € ,GCt '_S to (_3 attribute threshold. In(a) these two values are indicated as follows:=1.1
to the fact that the time at which the field intensity grows to(dashed horizontal lineand P’ = 1.15 (solid horizontal ling. The

macroscopic levels corresponds to higher values of the popysh—double-dotted line marks the laser thresholdb)ithe longer
lation inversion above the threshold valddashed ling  gelay time between the turn-on and the peak is due to the smaller
Hence, to longer delay times correspond higher levels Ofinal pump value. The smaller peak in the field intensity is due to a
population inversion excesglue to noise fluctuations that |ower value of the excess population inversion attained during the
lower the initial conditions of the population inversjoand  delay after crossing threshold.
therefore larger peak intensities. A distribution of points
aligned with a positive slope in a graph of peak intensityand detuning fluctuations can be directly connected to
versus delay time is therefore to be expected. A similar conehanges in the final pump. The two couples of time traces of
clusion would be reached by repeating the same line of rea=ig. 8 show two different situations starting from the same
soning with noise on the intensity variable orfsimulating initial condition. For higher values of the final punggolid
spontaneous emissiprin this case, to lower values of the horizontal ling, the population inversion grows faster,
initial intensity correspond longer buildup times for the pulsereaches the threshold sooner, and crosses it with a local slope
and hence larger values of excess population inversiorthat is higher(solid time tracg attaining in the end a larger
which give again larger pulses in correspondence to longevalue of excess population. Just after the population crosses
delay times. threshold, the intensity begins to grow, but at first its value
There is a very similar effect for loss noise. If the lossesdepends mostly on its initial valughich is the same in both
are instantaneously increased due to a noise fluctuation, themase$ and it is not large enough to affect the population
the field intensity amplitude grows at a slower rgis evi-  growth in a macroscopic way. Since the growth rate of the
dent from Eq.(1a)]. Due to the slower growth of the inten- intensity depends on the instantaneous value of the popula-
sity, the delay time is longer and the excess of populatioriion inversion, for higher values of the final purfgolid line
inversion that results is higher, thereby producing larger inand corresponding solid time trgceat will reach macro-
tensity peaks for longer delay times. Hence the points aligrscopic levels sooner. Thus a larger excess population will
again along a positive slope. correspond to a shorter delay time, as well as larger peak
The effect of pump noise is shown in Fig. 8 by changingintensity values, as seen in the figure. The slope that we then
the final level of the pump macroscopically for the purposesxpect in the distribution of peak heights as a function of
of illustration. This example is sufficient to illustrate all delay time is negative. This explains the behavior observed
cases we want to consider since, as already stated, threshafdthe experiment and heuristically interpreted #j.
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FIG. 9. Statistical distribution of intensity peaks as a function of
delay time obtained from the integration of the model for loss 102 | ®)
switching with noise (10%) on the control parameter.
The numerical simulations that we have shown also illus- . 810"
trate one further point: the presence of a large deterministic’g .
delay time on which the stochastic component is superposed g &1°
This point was remarked upon in the experimental measure- g "
ments (cf. Ref. [2] and Fig. 5 and is also visible in the = #1°
simulations(Figs. 2—4. The deterministic component of the o
delay time comes from the slow buildup time of the popula- g
tion inversion, clearly shown in Figs. 6 and 8, while the | | \/ "~
superimposed stochastic spread comes from the spread of tr 20 50 50

delay times induced by noigésimulated” through different
initial conditions in Figs. 3 and)4

FIG. 10. Simulation of the effects of control noise on loss
switching obtained by a deterministic integration of the model for

h ical simulati f th [ all | two different final loss values. Notice that the population inversion
The numerical simulation of the model allows us also tO(a) remains constant at its normalized initial value until the laser

elucidate a few points concerning loss switching. The equagensity (b) turns on. To a smaller final value of the lossisger

tions used in these simulations are given and discussed Wctuation corresponds a larger slope of the intensity and hence

Appendix B o o also of the drop in population inversion as well as a larger excess of
The main feature of this kind of switching is the appear-population inversion with respect to its final value.

ance of point distributions for the intensity peaks as a func-
tion of the delay time aligned along straight lines with nega-value and there is an anticipation of the turn-on compared to
tive sloped 1,2]. Figure 9 shows such a point distribution in the case with slightly higher lossédashed line; the size of
the presence of noise on the cavity losses. The physical orthe loss fluctuations has been exaggerated for illustration
gin of the negative slope is the initial condition of the popu-purposes Thus, to shorter time delaygue to a more effi-
lation inversion at turn-on. At the moment the losses arecient feedback correspond higher values of the intensity
lowered, the population inversion isnmediately above peak|cf. Fig. 1ab)] and therefore the points distribute along
threshold. This impliesi) the immediate ability of the sys- a line with negative slope.
tem to convert spontaneous emission into stimulated emis- It is worth remarking that in pump switching, the excess
sion and(ii) a crucial sensitivity to the amount of feedback population inversion available to the field intensity is only
(i.e., the cavity lossgs the amount built up during the delay time when intensity is
In contrast to the case of pump switching, the populatiorstill negligible. How much excess population accumulates
inversion remains in equilibrium with the pump at a constantdepends on the growth rate of the population inversion,
value (cf. Fig. 10 for as long as the field intensity remains which is slow compared to that of the intensity. In the loss-
negligible. Since the laser finds itself suddenly in the in-switch case, on the other hand, the population inversion is
verted state, the factor controlling the statistical distributionalready in saturation and the maximum possible amount of
of the peak amplitudes as a function of delay time is theexcess is ready for the switch to occur. Thus there is a much
growth rate of the intensity. A fluctuatiaisuperposed on the larger sensitivity to small fluctuations in the control param-
loss switch that further lowers the cavity losses implies a eter and a tendency towards larger peaks in the intensity.
larger amount of excess population inversion available to th&his explains why the slope of the line along which the
field intensity. The intensity in this case grows fagt@nce points align is particularly largéin absolute valuefor loss
its derivative is proportional to the population exgeaad  switching.
also reaches a higher peak value. Hence we see in Hig. 10  Due to the fact that the initial condition of the population
that in the solid tracéwhich corresponds to a lower value of inversion, in loss switching, is above threshold and is held
the losseg the population drops sooner to its final, lower constant by the pump until the field intensity becomes “mac-

B. Loss switching
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roscopic,” the other noise sources we investigated do not
have a sizable effect on the slope. Noise added on the inten- Pump-switching | Loss-swiiching
sity can reduce the delay timéhe intensity grows to mac- (n_-n_)(0)|below threshold | above threshold
roscopic values sooner if it starts from an initially higher -
valug and noise on the pump may vary somewhat the am- (n, -, )(®)
plitude of the peak, but their effects are rather small. This,
together with the extreme sensitivity of the system to noise
on its control parameter, explains why the distribution of
intensity peaks always has a negative slope.

Incidentally, this result also shows why the delay times in
the loss-switching case are much shorter and no determinis-
tic component can be observéd. Ref.[2]). As shown in
Fig. 10, the population inversion is above threshold immedi-
ately after the switch and therefore the deterministic delay
due to the(slow) growth of the population up to the thresh-
old value is absent. Thus the delay comes exclusively from
the stochastic growth of the field intensity out of noise. In
our numerical simulation, Fig. 9, the initial condition for the
field intensity is small compared to the amount of noise ap-
plied to the losses and therefore a ‘“deterministic” noise
component seems to still be present.

growing constant

“Intrinsic”
noise

“Control”
noise

C. Summary FIG. 11. Summary of the features of the distribution of the laser

We can summarize the results of this section as followsintensity peaks for the two different kinds of noise and types of
The application of intrinsic noise causes a point distributiont”m"l)“: The line (‘2._21)5,0) represents the initial value of the
in the intensity peaks that highlights the dynamical behavioP@Pulation inversion; the lineng—ny)(t) represents its time evo-
of the population inversion after turn-on, whereas the contro ution while the laser’s field intensity is negligibly small. The top

noise instead magnifies the intrinsic feature of the clkss- Wo flgures fllustrate the behavior of thg pOpU.”at'.O” inversitup
system lines in each rectangleand of the laser intensity in response to a

S . . . . simulated intrinsic noise for the two different kinds of switch{om
In the case of intrinsic noise, the population inversion

. ; . the case of loss switching we have chosen different initial condi-
starts below threshold and grows during the time delay in th‘f'ions for the field intensity The curves in the bottom boxes illus-

case of pump switchingcf. Fig. 11, top leff, with peaks yate the response of the laser to control noise.
placed along a line with a positive slope. In the case of loss

switching, (cf. Fig. 11, top right, with noise on the initial
field intensity valug the population inversion is constant
and the peak intensity distribution is flat.

In the case of control noise, since cldsasers are char-

ones(cf. Fig. 5 [19]. The small time spreads that we observe
in the distribution of points obtained numerically have to be
attributed to the small amount of noise that we use for the

. : . : simulations(a point already discussgdnd to the fact that in
acterized by an overshoot of the intensity at turn¢omle- s(@ p y pd

dent of th rol t d for th tati the numerical simulation we add noise only to the initial
pendent of the control parameter used for the CommUialion ., yitinn and not to the whole trajectory. Hence we can

! Lonsider the reproduction of the temporal behavior of the

enhances the peak. When the laser is driven harder it turns 9Mser obtained from this modéB,6] quite satisfactory. On

faster_ and the inten_sity peaks are placed along a line Wittfhe other hand, such agreement cannot be found for the peak
negative slope(cf. Fig. 11, bottom In the case of pump amplitudes if we compare the results of our simulations

Suicing,Seperdng on e rlaue amountof e er Figs . . and 1010 he experimental measuremens
’ P Pe. ef.[2]). This is a well-known weakness of Gaser mod-

i\év:(:)‘(mg(’:taafrrfgg[ea'?e(sj'l?gﬂggeosf Phoet %%pilailtrutc?ee(;((ﬁt ag?l On&s, but does not reflect negatively on the qualitative descrip-
P 9 fieg tion of the phenomena in which we are interested. However,

tive) slope. o ; :
. . . . no quantitative conclusions can evidently be drawn from the
Although these illustrations are obtained starting from a q y

- X comparison between experiment and simulations.
model specific to C@lasers, the basic features of these pro- P P
cesses can be extended to all clBsksers. In fact, on the

basis of the general treatment on which slope predictions VII. CONCLUSION
were basedcf. Ref. [1]), one could also claim that with i ) , )
appropriate modifications, bifurcatiorier phase transitions With the help of the numerical integration of a well-

in other physical systems described by two variables witficcepted model that describes the behavior of a Iager in

clearly separate time constants should show similar charadh® presence of different kinds of noise, we have confirmed
teristics. the heuristic intepretation of the transient statistics for pump

and loss switching proposed in R¢2]. The predominance

of intrinsic over control noise highlights the dynamical be-

havior of the population inversion and the role of its initial
Inspection of Figs. 2—4 shows that the average delagondition in pump switching.

times match reasonably well the experimentally observed We have further identified the role that each of the differ-

VI. FURTHER COMMENTS
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ent noise sources plays in the turn-on of a cladsser and

determined the effect of the superposition of different noise
sourceg(in different strengths A graphical representation of
the details of the dynamical evolution of the laser’s variables
has allowed us to illustrate clearly the physical processe
behind the various slopes in the statistical distribution of

NOISE AT THE TURN-ON OF A CLASSB LASER

APPENDIX B

2371

For the integration of the model in the case of loss switch-
ing we use the equations in a slightly different form, which
ives direct access to the control parameter. Equatitns

ake the forms

peak amplitudes versus delay times for both pump and loss ds
switching. d—Tthh[(nz—nl)—k], (Bla
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m
The expressions for the steady stafieslicated with the 7
overbaj that were used as initial conditiofimdependent of dm
the normalization of time and of the relaxation ratase d—:z —(Tr+Ty)my+zlgN,+ I, (Ble
P Z'}/R
N,=1|zyp+vyi——— |+ vy 1+ P’ where
2 [ R YRT 71) & YRT V2 ]
VR a= (V7)™ (522
X{2Zyr+ y1+ v2—2 + ,
[ L B ] s=Ini, (B2b)
(Ala)
Kin=aKy, (B20)
n=n,—1, (Alb)
K(t)=Kyk(t). (B2d)
2
-_:(27R+ y1— ZYR Ny, (Alc) K(t) represents the time-dependent losses and all the other
YRT 71 constantd’; are normalized as in Eq$3), but with respect
to the threshold losseK;,. The choice of the variabls
= ZYR — (Ald) logarithm of the intensity is made to facilitate the numerical
Y ygty, v integration of these equations, which are somewhat harder to
handle than those for pump switching. Notice that the pump
. IVrR — Iy, value does not explicitly enter into the equations any longer
v n Yot 75 P’ (Ale)  since the lasing threshold is now determined by the loss level

and the pump intervenes only in determining the amount of

The program calculates the initial values on the basis of th¥¥nsaturated population inversiotbelow thresholgl The

control parameter, then adds a very smi@(10 2] con-
stant to the intensity (to allow the code to move away from

steady states for the variables, above threshold, are

the unstable fixed poiftand integrates the equations with N =nz—k, (B33
the control parameter already above threshold. Noise is _
added to the desired varialler parameterafter calculation m;= R ny, (B3b)
of the steady state. The values of the model parameters, kept Fr+Ty
constant throughout all simulatiofanless otherwise speci- _
f|ed) are P ZFRI’]2+ ZFZ
’ my= ’ (Bsc)
Ig+T,
K=2x10" s} (A2a)
zZI'r 'y
,yR:7><105 S*l, (A2b) o Fl l+—FR+Fl k+F2 1+—FR+F2
ny= T T , (B3d)
=8x10' s, A2c 2R _ZRrR
Y1 (A2c) r1(1+ FR+F1)+F2 1+ FaT,
=1x10* s}, A2d SR —
’)’2 ( ) —_ _(ZFR+F2)n2+FRm2+F2
i = — (B3¢
z=16. (A2¢) a(n;—ny)
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Because of the normalization chosen here, the steady statssength fixes only the unsaturated level of population inver-
above threshold depend on the amount of losses and in Figion, pump or population noise now play the same role and

10 the trajectories converge to different levels. Furthermorein the text have been collected into one noise so(popu-
given the fact that, in this form of the model, the pump lation noise.
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