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Polarization switching in an anisotropic cavity coherently pumpedJ=1—J'=0 laser
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We show that, in an optically pumped resondntl— J’ =0 laser, a gain anisotropy is induced by a linearly
polarized coherent pump beam that can be balanced or countereq lopvity-loss anisotropies, leading to
switching between the andy linearly polarized states of the generated laser field as the laser intensity is
increased. This switching is not brought about by selection of the mode with the maximum emission intensity.
A domain of bistability between the two linearly polarized states is found, whose width depends on the value
of the decay rate of the two photon coherence induced among the sublevels df théevel manifold.
Differently from the incoherently pumped=1—J'=0 laser, the decay rate for the magnetic dipole in that
manifold has no influence on the polarization of the emisdi8050-294{®7)06309-9

PACS numbe(s): 42.65.Pc, 42.65.Sf, 42.60.Mi, 42.55.Lt

[. INTRODUCTION and takes into account the relaxation processes affecting
separately the three rotation-invariant tensorial quantities de-
In the field of laser dynamics, there is presently a greascribing the atomic state in th&=1 sublevel manifold. It
deal of interest in studying the dynamics of thectorfield,  has been shown if6,7] that quantitative differences between
i.e., in considering variations not only in the power and spathe decay rates associated with these tensorial quantities can
tial pattern and frequency of the laser emission, but also istrongly influence the polarization state of the laser light.
the polarization state of the electric field. Besides their fun- By contrast, in the case of an optically pumped
damental interest, polarization phenomena such as switching=1—,J’ =0 laser, it has been shown &3] that a linearly
between orthogonally polarized states, bistability, periodigyolarized pump fieldacting on an adjacent’=0—J=1
evolution, etc., could have applications in different fields be+ransition induces a strong gain anisotropy that favors gen-
cause of the small energy variations their control may regration of laser light with linear polarization parallel to that
quire. o , _ of the pump field. This fact makes the appearance of polar-
Laser polarization dynamics can be observed only in Sysg 4o effects more difficult. That study, however, did not

ems i small gain and caviy amsouopes or insysemytiC IECE S UL, T S S I
P P P 9 sociated to the tensorial quantities of tde=1 manifold,

emission state of the laser system. So far, polarization dy- ich means that the analvsis was not general enouah. On
namics has been observed or predicted in several classes P y 9 gn.

laser systems: incoherently pumped gas lasers with differerit'® .other han_d, Itis nqt k”OW.” whether other factors, n
J—J’ atomic transitiong1—8,10,11, coherently(optically) particular cavity-loss anisotropies, could counterbalance in

pumpedJ=1—J'=0 gas laser§12,13, fiber lasers[14— some way the pump-induced ga?n gnisotropy, thus making
16], and VCSEL[17-20 and edge-emitting21] semicon- p055|blt_a the appea_rance_of polanzatl(_)n effects. o
ductor lasers, among others. Recently, the interplay between !N this work we investigate theoretically the possibilities
the polarization state and spatial dependence of the laser fieRf Polarization effects in a resonadt=1—J'=0 laser, op-
has also been investigate®2,23. The origin of the tically pumped by means of a linearly polarized pump field,
anisotropies leading to polarization dynamics as well as th#®y considering the influence of two facto$} the three re-
observed behaviors in these systems can be very differetaxation ratesy, y,;, and y. corresponding to the total
from each other. population, magnetic dipole, and “electric quadrupol@n-

In the case ofl=1—J'=0 gas lasers, focusing for sim- sorial quantities of thel=1 level manifold, respectively,
plicity on the case of exact cavity resonance, there is a cleaand (ii) the presence of cavity-loss anisotropies for the lin-
difference between incoherently pumped and coherentlgarly polarized components of the laser fiélehich can be
pumped laser systems. In the first case the gain is in principleasily implemented by introducing appropriate elements
nearly isotropic, so that, if the cavity is also isotropic, smallwithin the laser cavity, also known as %-y anisotropy.”
details of the field-matter interaction process will be able toOur analysis shows that it is the second factor that turns out
influence and even determine the polarization state of th&o play the most important role in determining the polariza-
laser light. This has been shown[i#,7], where in order to be tion in a laser coherently pumped by means of a linearly
able to explain some experimentally observed feat(pesf-  polarized field. The first factor has a much smaller influence
erence for linear or circular polarization, polarization switch-in this case than for the incoherently pumped laser. Other
ing between different polarization states rigorous model complementary factors that might generate polarization dy-
has been used that goes beyond the third-order Lamb theonamics, such as external modulation of laser paramg2dis
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polarization selective external reflectd0], or application
of a magnetic field13], will not be considered in this work.
Il. LASER MODEL

We assume a three-leval-atomic medium in which a
pump field acts resonantly onJd=0 — J=1 transition and

b11: ~—Y|P11— fay(px1—p1x) —i ay(Pyl_Ply)-
p2o= YI(1=p22) =i Bx(px2—P2x) =1 By(py2—p2y),

Prx=— (L[ pxu 27c+ ¥ — (Ye— ¥ (Poot pyy)]
+i a’x(le_ Plx) + in(sz_ sz),

a laser field propagating in the same direction is generated on

the adjacent transitiod=1 — J'=0. The optical cavity of
the laser system is on resonance with thel — J'=0
transition.

poo=— (L[ pod 2vc+ ) — (Ye— 7)) (PxxT Pyy) 1,

The three-dimensional state space associated with the Pyy=~(13)[pyy(2yct v = (¥e= 7P (Pxxt Poo)]

J=1 level is defined by the basis of ‘“circular’ states
|J,=+1)=[+), [J,=—1)=|-), and |J,=0)=|0), or,
equivalently, by the basis of “linear” statez), |y), and|z),
defined as

Xy=(|1)+|—1))/\2,
ly)y=—i(|1)—|-1))/2, 1)
|z)=10).

If the quantization axis is chosen in the direction of propa-  P21= — Y1 P21 i axpax—i Bxpxa+i(aypay— Bypy1)€'?,
gation of the optical fields, only the two-dimensional sub-

space defined by the circular staté$ and|— 1) or, equiva-
lently, by the linear statejx) and|y), can be coupled with

the J’=0 or J' =0 states through the interaction with the

optical fields. In previous analys¢$2,13, the basis of cir-

+iay(py1—p1y) TiBy(py2—pay),
P1x=~ YP1x— i ax(pxx— P1) T i Bypro—iaypy,e 'Y,
p1y=— Y. p1y—iay(pyy—p11) —i(axpxy— Byp12€'?,
Pox=— Y1Pax— 1 B pxx— P22) — 1 Bypyxtiaypar,  (2)
Pay=—ViPay—iBy(Pyy— P22 — i Bxpry+icypre '?,

¢

bxy: —(12[ 'YC(pxy+ Pyx) + '}’J(ny_ pyx)] - iIBXPZy

+i (aypxl_ CYxply)eiid)'i_ iBprZ’

cular states was adopted and, correspondingly, the optical ay=— kyax—gIm(piy),
fields were also expressed on a basis of right-handed and .
left-handed circularly polarized components. In our analysis, ay=—kyay,—glm(py),

however, we are interested in the most common case of lin-

early polarized fields and linear cavity loss anisotropfas-
tor (ii) abovd, so that the basis of statps), |y) will be more

d1x=9gRep1y)/ ay,

appropriate and the optical fields will also be expressed on a ¢1y:9RdP1y)/ay,

basis of linearly polarized components in the@ndy direc-
tions. In this form, the interactions|J”=0)—|x),
|[J"=0)—]y),|x)—|J"=0), and |y)—|J'=0) can be de-
scribed through Rabi frequenciegg, 28, , 2ay, and 2y,
respectivelywhereg stands for the pump field andfor the
laser field. The cavity anisotropy will be introduced by de-
fining different cavity-loss rates, and , for each compo-
nenta, anda,, respectively, of the laser field.

The factor(i) above will be introduced as 6] by defin-
ing relaxation rategy, y;, andy, for the following corre-
sponding physical quantities associated with dlkel level
manifold: (a) total population p,,+ poot+ pyy) =(pP+++ poo
+p__), wherep=(k|p|k), k=+,—, 0,%, y, andp rep-
resents the density matrix operataql)) magnetic dipole
—2Ilmpy,,=(p++—p--); (c) “electric quadrupole”
(PxxtPyy—2pod=(p+++p-_—2po) and intersublevel
coherence gyx— pyy—ipxy—ipy)/2=p, _, which are com-

wherep;;=(i|plj) (i, j=1,2,0,x,y, where 2 stands for the
ground state”=0 and 1 stands for the lower laser transition
level J'=0), ¢=(d1x— ¢1y) —(dax— ¢2y)! where ¢y;
(i=x,y) represents the phase of the complex laser field and
¢, represents the phase of the complex pump fig|dis the
transverse relaxation rat®r the induced atomic coherences
p1x andpyy), andg is the unsaturated gain parameter. The
reference frequency for the laser field has been taken to be
equal to the empty cavity resonance frequency.

For simplicity, and in order to obtain analytical solutions,
it has been assumed that the population decay rate for levels
2 and 1 is the same as for levé+1 (y)), the transverse
relaxation rate for coherences,, p,y, andp,, is the same
as for coherencep,, andpyy (y,), and the initial popula-
tion in the upper leveldd=1 andJ’=0 is negligible(i.e.,
Pxx= Pyy=Poo=pP11=0 andpy,=1 att=0). We will also

ponents of tensorial quantitites of order 0, 1, and 2, respe@ssume that in resonance Rg( and Rep,,) are null(i.e.,
tively, that remain invariant under rotations of the referencethat the frequency of the generated field coincides with that

frame or unitary basis transformatiof 25].

of the cavity and of thel=1 — J’'=0 transitior), a point

Solving the semiclassical Maxwell-Bloch equations in thethat has been checked numerically.
density-matrix formalism, assuming the usual slowly varying Equationg2) are different from the equations obtained in
envelope and rotating-wave approximations, and working if12] not only in the fact that a different basis of states has
the plane-wave and uniform-field limits, the following set of been used but also in the fact that fact@ysand (ii) above

equations is obtained:

were ignored there. In particular, with respect to fagtpin
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addition to relaxation rateg; andy, , only a relaxation rate
v, _ was considered ifil12] for the upper-level coherence
p+_, So thaty; as well as the populatiop,, were absent in +BRepay),
the laser equations. Note that here the upper-level coherence
is described by the density matrix element,, which is
related to the upper-level coherence in the basis of circular
statesp . -, by pyy=—i(p++—p-——ps-+p_4)/2.

Equations2) show a fundamental difference between the )
cases of the incoherently and coherently pumped IM(p2x) = =¥ IM(p2x) = B(pxx— P22) + axREp21),
J=1—J"=0 laser system: whereas in the first cf6e 9]
the phase difference;,— ¢, between the two orthogonal IM (pay) == ¥, IM(pay) — BRE pyy) + ayReE(psy),
components of the laser field does not appear in the laser
equations and thus there is a degeneracy of solutions with -
respect to the initial polarization state of the laser field, in the Re(p21) = = ¥, Re(p21) = BIM(p1x) — axiM(p2)
present case this phase difference appears thrgughthe —ayIm(pyy),
laser equation$§2) and thus the laser state is sensitive to the
initial polarization of the laser field. This is because the pres- .
ence of a pump field vector breaks the rotation invariance of ~ R&Pxy) =~ YcR&pxy) + ayIM(p1,) + am(pyy)
the laser medium and introduces a clear reference for the +BIM(pay)
relative phase between the two laser field components. o

Equations(2) also provide insight into the possible influ- .
ence of the relaxation ratg; on the behavior of the coher- ay= — kxax—gIM(p1y),
ently pumped laser. In the case of linear polarization of the
pump field in either thex or y direction (the case to be
considered in this wodk the parametey; disappears explic-

itly from Egs. (2). This can be easily understood in the basishere for definiteness it has been assumed that pumping is
of “circular” states |+) and |—): the linearly polarized linearly polarized in thex direction: 8=8,, B,=0. Note
pump field excites the atoms to a coherent staje which that now variablespy,, é1,, Re(om), Re(, ;’ IM(p,y),
according to Eq.(1) has exactly the same projection, in 5nq Im(p,,) are zero andyhave been elimi%ated from the

modulus, on the statds-) and|—). Thus, these two states |aser equations. Disappearance of the phase difference
| +) and| —) become equally populated, and this remains so,, 1, from the laser equations in this case does not in-

at any time because the relaxation mechanisms do not altgl,qce in practice any uncertainty in the laser polarization
this equality. As a consequence of this fact no magnetic digiate since, as will be shown below, in the operating condi-

pole is created and thus the relaxation rajedoes not play  {ions considered all the stable solutions found are linearly
any role. This relaxation rate would come into play only if polarized in directions or y.

the pumping is linearly polarized in directions other thxaor
y (assuming, in generak,# «,) or is elliptically or circu-
larly polarized. Thus in our case of pump field linearly po- Iil. STEADY-STATE SOLUTIONS AND STABILITY
larized in thex or y direction, the parametey; can be made A. Zero-intensity solution

to disappear from Eq92), which, taking into account all
comments above, can be expressed in the simpler real form:;

IM(p1,) == ¥, IM(p 1) — ax(pax— p11) — Ay RE(pyy)

Im(bly) =7 Im(Ply) - ay(Pyy_ p11)— aqupxy)y

dy: — kyay—gIm(pyy),

Equation (3) yield a zero-intensity steady-state solution

given by
. P22= 1_6,327c/A-
p11= — ¥jp11— 2L aylm(pyy) + @yIm(pay) ],
Pxx= 2:82( Yet 2')’\\)/A,
p22=Y|(1=p22) —2BIM(p2y), pyy=poo=2B%ve— y)IA, (4)
- Im(p2x) =3Bycy) /A,
Pxx= (=3[ yc(2pyx— Pyy— Poo) T 7H(Pxx+Pyy+POO)] ) ¢l
+2[ ayIm(p1x) + BIM(p2y) ], P11~ P1x= P1y= IM(p2y) = RE(p21) = Re(pyy) = ax= @y =0,
where

.p00: (1/3)[7c(pxx+pyy+p00) - 7||(pxx+ pyyt Poo) 1, )
A=[4B°(2yc+y)+3vcy) 7]

- A linear stability analysis of this solution leads to linear-
=(—-1/3 — Pyxt 2pyy— + +pyyt . . . : . . . .
Pyy=! LY~ Proct 2Py~ Poo) + Y| (Pt Pyy+ Poo)] ized equations with a matri€, which admits an irreducible

+2ayIlm(pyy), representation in the form
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ﬁzﬁl{pZZ!PyerOO P IM(pay)} B. Steady-state solution
An exact analytical expression for the parallel and or-
© Lalpaa} @ L5{IM(p2y) Repyy)} thogonal steady-state solutions can be obtained fromBjps.
® L4{IM(p1y), RE(p21), ay} ® Ls{IM(p1y), ay}, (use of symbolic mathematics software is conveniefor

the sake of brevity we only give here the expression for the
laser field amplitudes, (parallel solution anda, (orthogo-

where the variables within curly brackets indicate the sub )
nal solution:

space in which each submatiix (i =1-5) is defined. Only
L, and L5 admit eigenvalues with positive real parts. Since a,={[(C?+D)¥2— C1/8ryy)(2yc+ ,y”)}llz, @)
the variablesa, and ay lie in different submatrices, it turns

out that the natural low-intensity solutions of the system will

_ 2 )
correspond to laser fields linearly polarized in theor y ay=(U2{Lyen{2A719(ve= %) =21y 7. (2ve F )]

directions. For submatriX, a real eigenvalue changes from -3 % Kyt Ky{ﬁz[%(57c+ 6y))+ 7’@

negative to positive when the pump amplitudereaches a 2

threshold valugBy,, given by + ¥y vyt v €)
where

Btzh<||>={(g— kY )[Byey 2y (2yc+y))]
— 2172 (2ye+ ) £ BYABi (27t ), (B)  C=wd4B v (Byet a4y = y(ve+ 2yD1+ vy vil 7(3ve

+4y,)+8y.y. 1}
where

D = 16yf kx(2yc+ yPIBHI3 vy + 271 (ve+ 2]
—4B%ky( 2yt ) — kYL [3Yey F Ay 2y + w1}
—3yW 7S K (10)

B=0%2ycy. +¥(4y, +3v) 12+ k57 [8vey. +v(4v.
=370 17— 29k ¥ {[4vevi + (471 +370)]

T2y y)(4yL 370} (6)
Figure 1 shows, in a particular case, the dependence of the
At B=Pu) the zero-intensity solution loses its stability emission intensityl (I =al+ ai) on the pump field ampli-
through a pitchfork bifurcationP By, which gives rise to a tude g, for the parallel and orthogonal solutions. In the do-
steady-state solution with linear polarization in thelirec- main of small8 here considered4<<y,) there is an ap-
tion. This solution will be denoted as a “parallel” solution, proximately linear dependence of the emission interisan
since its polarization is parallel to that of the pumping field.the pump power g2) for both the parallel and orthogonal
Similarly, the submatrixs yields a pitchfork bifurcation, solutions, which means that pump saturation effects are neg-
PB, , at a pump valuggy,y given by ligible.
Comparison of Eq.5) with (7) [or Eq. (8) with (9)]
shows that for cavity losses,~ «, the pump threshold for
@) the parallel solution is always much smaller than the thresh-
old for the orthogonal solutionBiy<pBn)- This is in
_ __agreement with what was found &3], in the sense that the
which leads to the appearance of a steady-state solution lifyser system, in the absence of cavity-loss anisotropy, has
early polarlzed in thg direction, to be denoted as “orthogo- preference for the parallel solutigthrough a pump-induced
nal” solution. The_smallest of these two pump thresholds,gain anisotropy. However, by increasing the ratie,/«, (or
Bin()) OF Bin(1) » defines the so-called “first laser thres;;pld.” by increasingy.) one can compensate for the gain anisotropy
Notice that forBy, two solutions are founfterm = BY2in  and obtain a lower threshold for the orthogonal solution, i.e.,
Eq. (5)]; h_ere we will onIy_ consider the sl/mallest of these tWOBth(J_)<ﬁth(H) . This is what occurs in the examples of Fig. 2.
solutions(i.e., the one with the term-B?). The other so- The border point between the two situations is when

lution (term +BY/?) corresponds to another pitchfork bifur- Biny=Brn())» Which according to Eqg5) and (7) requires
cation, which describes the disappearance of the parallel so-

lution at very large pumping as a result of the ac Stark shift
induced by the strong pump field on the upper-level manifold

,Btzhu): 3Y2 e yry 129(ve—v)) — 4Ky y, (2yc+ ¥1,

kil ky={[y(3yc+4y)+ 2y, vl 2k, (2yct+y)

[26] (more details to be given elsewhere; in this paper only —9(ve— Y By (ve— P[4xyy (2t )
the more accessible regime of small pump power will be
consideredl — 3Ky Y Ye—29(ve— 1} (11

For the sake of completeness, it must be pointed out that
in the case of the submatri%, one or two Hopf bifurcations For classC lasers such as, for instance, far infrared lasers
can also be found. These bifurcations are similar to the one&here y;/y, ~y/y, ~1 andg/y? ~10* [27], the critical
reported in[26], but in the case of our laser system theyvalue of the ratia,/«, becomes almost independentgf:
appear at very large pumping strengths and only for a limited
gomain of parameter values, so that they will be ignored  «,/xy=[y(3yc+4y ) +2y v )[2y (ve—y)], 12
ere.
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B FIG. 3. Curves in parameter space defining the points where the

pump thresholds for parallel and orthogonal solutions coincide.
From left to right, the curves correspond $9=0.28, 0.5, 0.7, and

FIG. 1. Laser emission intensity for the parallekl=a?) and 0.9, respectivelyother parameters as in Fig). 1

orthogonallL (I =a§) solutions, as a function of pump amplituge
PB, and PB denote the corresponding pitchfork bifurcatiors.  lation from the|x) state to thely) state. This is the reason

=k,=0.4, ,=0.28,y,=0.35, g=3650(decay rates and field am- why, according to E¢(7), Btzh(l)ﬁoo wheny, decreases to a
plitudes normalized toy,; g has been normali;ed tﬁf. Continu- critical vaIueFfC given by
ous (dashedl line denotes stabl@nstable solution.

wheneverk,/y, <1. Thus essentially the same result is ob- Ye=nL(g+2xyy ) (9—2xy7,)] (13
tained in cases of good or bad cavity conditions.

Condition(12) is represented in Fig. 3 on the plarg/ «,
versusy,, for several values of. Below a given one of (which becomesy,= y) for g=>xyy,) [28]. In its tumn, this

these curves i) < Bin(.). SO that the parallel solution is  explains the vertical asymptotic behavior of the curves in
generated at threshold, whereas above the curve the orthogery. 3 for decreasing. .

nal solution is generated at threshold. With increasing the "a |inear stability analysis of the parallel and orthogonal

upper-level coherence relaxation ragg the pump-induced  so|ytions (performed with symbolic mathematics softwpare

gain anisotropy is reduced and a loweg/«, ratio is re-  |eads to a linearized matrix which in the case of the orthogo-

quwe(_ll for generation pf the_orthogonal solut_lon._ _nal solution can be factorized in the form{py;,pz2,
T”hls pehawor admits a simple mterprej[atlon in the “lin- Prr Poos Pyy» IM(p2x)s IM(p1y), gt ® Li{RE(pyy) IM(p 1),

car ba_’sls of sta_1te19<_>,|0),|y>. Th_e pump field Imear!y po- Im(p,y),Re(p21),ay}. The final results of the analysis of

larized in thex direction only excites théx) substate in the "0 b S e followingt) When By < B (i.-€.,

J=1 upper-level manifold. Thus, in principle, the maximum below curve in Fig. Bonly the parallel solution is stable, for

ga(;n W”! corrgspoqdép a Ilaser field linearly pogarized in;heany value ofg (within the domain3<y, here considered
x direction, since it directly connects the) substate wit This is the case for the example of Fig. i) When

thg Iowgr-energw’:p state. Ga_in fqr the field linearly po- By < B (i-€., above curve in Fig.)ahe orthogonal so-
larized in they direction only exists in the measure that the lution is born stable but at a certain value of the pump-field

intemal rglaxatiqn mechanisms wi_thin We=1 upper-level amplitudeg it loses its stability through a subcritical pitch-
manifold, in particular they, relaxation rate, transfers popu- fork bifurcation[PB! point in Fig. 28] which affects the

submatrix £,. On the other hand, the parallel solution,

018 L (@ ,," (b) PP which is unstable near its threshogij,), becomes stable
i PB' 1 through another subcritical pitchfork bifurcation, followed in
012 inverse sensPB point in Fig. 2a)]. The PB bifurcation
I ] e occurs at a value g8 smaller than that corresponding to the
0.08 ¢ {06 PB! bifurcation.
| 0.4 Thus in casdii), by continuously increasing, the sys-
0.04 7 I _—,, tem “switches” atthe PB pointfrom parallel to orthogonal
iy B PBL PBH@’B'"/ ’ solution. As can be seen in Fig(a, there is hysteresis and
o L : e ———p a domain of bistability between the two solutions exists. This
0.010 0.014 0.018 0005 0015  0.025
B polarization switching phenomenon violates the so-called

“maximum emission principle”(an empirical rule that is
FIG. 2. The same as in Fig. 1, except for=4 and(a) y.=0.5,  often found in multimode laser physif29]) in the sense that
(b) y.=1. HB, denotes a Hopf bifurcation. for increasingB switching at PB occurs from one steady-
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to this, it is also observed that the two complex-conjugate

.08 AT 7 ! ; " X
0 i A eigenvalues with positive real part that arise at the, HB
0.07 il HB'// branch exist only in the domain in Fig. 4 delimited by the
{ — branches HB and PB ; above the PB branch, there is only
PB, PB, A ; . o :
0.06 172 / one(rea) eigenvalue with positive real pafthe one associ-
7 ated with the PB bifurcation.
0.05 - || BIISTABLE__
/ II-‘II [T N
p A% —
0.04 Hpp
B/ L+ IV. CONCLUSIONS
0031 AA] BB —JL— - . —
1o In conclusion, we have shown in this paper that the po-
0.02 oo larization behavior of a resonadt=1 — J’'=0 laser in the
. PB; ™~ PB; . . . . . .
— case of coherent pumping with a linearly polarized field is
001 At b1 1 L1 very different from that reported in the case of incoherent
0.3 0.7 1.1 1.5 1.9 pumping. The strong nonlinear gain anisotropy induced by
Ye the polarized pump field is influenced by the values of the

relaxation rategy; and y., but it is not influenced at all by

FIG. 4. Phase space diagram in thg, (8) parameter plane the value ofy;. Thus, the sensitivity of polarization effects
(J=1 manifold coherence vs pump amplitdgdshowing the do- to this parameter found for an incoherently pumped laser
mains of stable parallg| (horizontal line arepand orthogonal.  [6,7] has no counterpart here. This sensitivity could only be
(vertical line arep emission. k,=14.25, «,=1.425, ¥/=0.28,  found, to some degree, in cases of pumping with fields in
g=3650. The smallest possible value fgy is y.= vy =0.28. other polarization states. Excluding external modulation of

laser parameters, the most efficient way to affect the polar-

state solution to another of much smaller intensity, Fi@.2 ization state of the laser field is by introducing large cavity-
The origin of this behavior is difficult to establish with pre- |oss anisotropies, which can compensate the strong gain for
cision, but in principle it is related with the fact that parallel the parallel solution making possible generation of the or-
emission involves pumping through two-photéRaman  thogonal solution. This, however, can only be achieved at
processes, which are absent in the case of orthogonal emismall pump-field amplitudes; with increasing pumping the
sion. system switches to the parallel solution, in spite of the fact

The orthogonal solution is also affected by a subcriticalthat this switching results in a strong decrease in the emis-
Hopf bifurcation associated with the matri,, but it only  sion intensity that violates the so-called maximum emission
exists for values ofy, above a certain thresholdii) With  principle. A domain of bistability between the parallel and
increasingy, (keepingx, and «, fixed), the position of the orthogonal solutions is found, whose width increases with
PB! point on the orthogonal polarization brandfig. 2(@)]  increasing the decay rate of the coherence induced by the
moves rapidly toward higher values of pumping strength  pump field in the upper level=1 manifold.
thus increasing the width of the bistability domain. For large  No other stable solutions, with polarization different from
enoughy,, the Hopf bifurcation appears at a pump threshold(linean parallel or orthogonal, have been found. The bifur-
smaller than that of PB, so that switching from the orthogo- cation points PB and P in Fig. 2@ are connected by an
nal solution to the parallel solution occurs now at this Hopfunstable branch of solutions with linear polarization at
bifurcation point[HB, point in Fig. 2b)] instead of at the angles different from 0 orr/2 with respect to thex axis.
PB| point. Differently from the case of the incoherently pumpésd 1

Figure 4 shows a complete phase diagram on the 3) —J’=0 laser[6,7], no stationary solution, neither stable or
plane, for a fixed value of the cavity loss ratie,/ k,= 10. unstable, with eIIi_ptici_ty different from zero exists.
All the features discussed in Figs. 1 and 2 also show up in All these polarization features appear at small values of
Fig. 4. For y,<0.38, the pump threshold for the parallel the pump strength, which are obviously the most easily
solution (PR line) is lower than for the orthogonal solution achievable and convenient operating conditions in practice.
(PB, line). The PB threshold tends to infinity whery, ~ Nevertheless, it would also be interesting to investigate the
decreases down to the critical valGg=1y, given by Eq. polarization dynamics at larger pump strengths, where time-
(13). For y.>0.38, the lowest pump threshold correspondsdeépendent solutions appear and preference for parallel polar-
to the orthogonal solution. The position of the PBPEﬂ , |zat|o.n might be less st(ong, or at non-null cavity detqnmgs.
and HB_points is also shown by the corresponding curves.POSS'bly complex polarization states could be found in both
A stable parallelorthogonal solution exists in the area lined ¢@S€S-
horizontally (vertically). Overlapping between these two ar-
eas defines the domain of bistability. In this domain pertur-
bations can make the system switch from one solution to the

other; the parallel solution is more robust against perturba- \We acknowledge with thanks Neal B. Abraham for his
tions than the orthogonal solution; the robustness of this lasuggestions and critical reading of the manuscript. C.S.
solution increases with increasing . gratefully acknowledges Josep L. Font for his assistance in

It is worth noting that the HB branch does not cross the computer matters. Financial support from the Spanish DGI-
PB] branch; with decreasingy., the HB_  branch ap- CYT under Contract No. PB95-0778-C02-01 is acknowl-
proaches tangentially the PBranch and dissapears. Relatededged.
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