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Coherent time evolution on a grid of Landau-Zener anticrossings

David A. Harmin
Max-Planck-Institut fu¨r Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany

and Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055
~Received 8 August 1996!

A model of the time evolution of two interacting Rydberg manifolds of energy levels subject to a linearly
ramped electric field is solved exactly in the Landau-Zener~LZ! approximation. Each manifold’s levels are
treated as linear in time, parallel, equally spaced, and infinite in number. Their pairwise interactions produce a
regular two-dimensional grid of isolated anticrossings. The time development of an initially populated state is
then governed by two-level LZ transitions at avoided crossings and adiabatic evolution between them, param-
etrized by the LZ transition probabilityD and a dynamical phase unitw. The resulting probability distributions
of levels are given analytically in the form of recursion relations, generating functions, integral representations
involving D andw, and in certain limits by Bessel or Whittaker functions. Level populations are mapped out
versus location on the grid for a range of cases. Interference effects lead to two principal types of probability
distributions: a braiding adiabatic pattern with revivals for smallD and a diabatic pattern forD→1 in which
only certain levels parallel to the initial one are appreciably populated. The sensitivity of the coherent evolution
to w is discussed, along with the relation of this model to others and to selective-field ionization.
@S1050-2947~97!06206-9#

PACS number~s!: 31.15.2p, 31.70.Hq, 32.60.1i
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I. INTRODUCTION

A common problem in atomic physics is the time evo
tion of a system with many potential-energy curves that cr
one another. The dynamics depends on how strongly
states are coupled, the rate at which the curve-crossing
gion is traversed, the level spacings, and perhaps quite
sitively on coherence effects among the evolving states
the spectra of Rydberg atoms,n manifolds interact and cros
in just this way under the application of increasing dc el
tric fields. As a case study in the coherent time evolution
interacting sets of states, Rydberg atoms offer several ad
tages@1,2#. Experimentally, their levels are easy to exci
while external fields can be tuned to control level splittin
arbitrarily. On the theoretical side, Rydberg spectra h
been widely studied and are often amenable to both sim
models and accurate calculations.

Several models@3–7# of interacting manifolds exhibit two
generic classes of time evolution patterns, which may
designated roughly as ‘‘adiabatic’’ and ‘‘diabatic’’~i.e.,
nonadiabatic!. Different cases can be understood as mu
level or multiple-crossing elaborations on the basic Land
Zener model@3# of two coupled levels forming an avoide
crossing as a function of time. For example, within a sin
n-manifold of Rydberg-Stark states, the levels fan out nea
linearly from a ~near! degeneracy at zero electric field;
nonhydrogenic atoms all levels of the manifold are coup
by the atomic core to form a multilevel anticrossing. Wh
driven by a linearly ramped electric field, there is a stro
propensity for an initially populated state to undergo eithe
purely adiabatic or diabatic transition@4#. In the Demkov-
Osherov model@5#, on the other hand, an ‘‘interloper’’ leve
varies linearly in time while coupled pairwise to each me
ber of a group of parallel levels. The interloper traverses
group with a survival probability that stems, in effect, from
sequence of nonadiabatic transitions through the group
561050-2947/97/56~1!/232~20!/$10.00
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general, the diabatic pattern of the various models is do
nated by a single nonadiabatic evolutionary path, even w
the level in question is itself a member of a second group
levels crossing the first. This situation is significant only f
the most rapid traversals and only if all anticrossing gaps
relatively narrow.

The more common, adiabatic pattern appears as an ov
diffusion of population among levels that avoid crossing o
another. It might include enhancement of particular stat
amplitudes owing to interference. The slower the traver
rate or the larger the anticrossing gaps, the narrower wil
the spread of significantly populated levels about the sin
path that would be found in the adiabatic limit. Such diff
sive adiabatic broadening is the principal feature of the ti
evolution of two groups of interacting levels when coheren
effects are ignored@6#. In the present article we investigat
the role of coherence in the time evolution of two interacti
manifolds of parallel levels, specifically as it affects the ad
batic and diabatic types of evolution.

The aforementioned patterns have been realized exp
mentally in the many applications of selective-field ioniz
tion ~SFI! of Rydberg atoms@8#. SFI is used principally to
infer Rydberg state populations from ionization signals ba
on some fairly simple rules@8~a!# for predicting the pathway
an initial state will most likely take through the thicket o
Rydberg-Stark levels. The identification of general patte
of evolution in such an evolving many-level system, inclu
ing the degree of diffusion of a state among its neighbors
the appearance of unexpected resonances, is an impo
step in the reliable interpretation of SFI signals.

In a previous article@6#, a model for two interacting mani
folds of Rydberg levels was treated in the Landau-Ze
~LZ! approximation@3#. Each manifold consists of an infinit
set of parallel, equally spaced levels that vary linearly w
time t through some controllable parameter, e.g., an exte
electric field. The manifolds cross and the two sets of sta
232 © 1997 The American Physical Society
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56 233COHERENT TIME EVOLUTION ON A GRID OF . . .
interact as a function oft. It is further assumed that the
coupling is appreciable only in a small neighborhood of ea
two-level crossing@9# and that this coupling is the same fo
all pairs of states. The resulting spectrum is a network or g
of pointlike avoided crossings of two bands of linear ene
levels. Interference among the states was ignored in orde
model the average, gross structure of the probability dis
butions as a function of time, the field’s ramp rateḞ
5dF/dt, and the coupling strengthv. We will refer to Ref.
@6# as the PWeb model because only probabilities~not am-
plitudes! were mixed.

In the present article we keep the LZ approximation b
restore interference effects to describe coherent time ev
tion on the grid; this model is called the AWeb since w
properly add state amplitudes. A variation on the AWeb h
been investigated by Demkov and co-workers@7#, without
the assumption of pointlike interactions between pairs of l
els. Although Ref.@7# provides the exact energy spectrum
the system and reduces the time-dependent problem to
of coupled, two-level kicked rotors, the full range of featur
of the time evolution of two coupled manifolds has not y
been investigated.

To define the AWeb model more explicitly, consider tw
infinite sets of equally spaced energy levels that vary linea
with time t according to

Em~ t !5pt2m«, Em8~ t !5p8t1m8«8. ~1!

This level map is shown in Fig. 1~a! for the general case o
unequal spacings and slope magnitudes; Fig. 1~b! shows the
case where the level spacings are the same for both m
folds «85«, while their slopesp5dE/dt are equal and op
positep852p,0. Employing the same notation as in Re
@6#, the upward-going levelsEm are numberedm50,1,2,...
from the top down, while the downward-going onesEm8 are
labeledm8508,18,28,... from the bottom up.~The indices
m andm8 should not be confused with the magnetic qua
tum numberml .!

In Sec. II we use the two-level LZ result to obtain amp
tudes for the up- and down-going levels of the AWeb in t
form of recursion relations, generating functions, and in
gral representations. We present results for a specific cas
constructive interference in Sec. III. We discuss the adiab
and diabatic limits in detail in Secs. IV and V and giv
analytical results for the up-going amplitudes. Conclusio
in Sec. VI touch upon the relation of the AWeb to oth
models of the time evolution of interacting manifolds and
experiments using selective-field ionization. A simplifie
derivation of PWeb probabilities is included in the Appe
dix.

II. AMPLITUDES

To derive an analytical expression for the coherent-s
amplitudes, we recast the time evolution on the LZ grid a
two-level problem driven by a generating function. Follow
ing the approach of Ref.@6#, we label the intersection o
levels Em(t) and Em8(t) as @m,m8#. This corresponds to
time and energy
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tmm85
m«1m8«8

p2p8
——→

«85«
p852p

«

2p
~m1m8!, ~2a!

Emm85
pm8«81p8m«

p2p8
——→

«85«
p852p

1

2
«~m82m!, ~2b!

where the final expressions apply to a symmetric grid.
though neither slope need be negative, we will refer to
states with levels~1! as ‘‘up-going’’ and ‘‘down-going’’
states, respectively. We assume here that only them50
level is populated just prior to the intersections att50.
Given this initial condition, what are the subsequent st
populations as a function of time? Specifically, we will d

FIG. 1. Generic maps of the energy levels~1! for the AWeb
model vs time: ~a! skewed map with unequal spacing and asy
metric slopes and~b! symmetric map with equal spacing («85«)
and opposite slopes (p852p). Shaded areas shows a unit of actio
w @Eq. ~8!#; see Ref.@12#.
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234 56DAVID A. HARMIN
rive the amplitudesAmm8
(↑) (d,w) andAmm8

(↓) (d,w) for arriving
at intersection@m,m8# on the up- and down-going level
Em(t) andEm8(t), respectively. These will be built up from
~i! the nonadiabatic evolution through each avoided cross
and ~ii ! the adiabatic evolution between avoided crossing

A. Transitions, dynamical phases, and paths

The basic two-state LZ problem@3# involves two inter-
secting energy levelsm andm8 that vary linearly in time,
with slopesp and p8. At time t thesediabatic states have
amplitudesCm(↑)(t) andCm8

(↓)(t) that are coupled by an inter

action vmm85^muĤum8& only at the point of their degen
eracy (tmm8 ,Emm8). The probability of beginning in eithe
state um& or um8& at t!tmm8 and making a diabatic~i.e.,
nondadiabatic! transition to the same state att@tmm8 is

D[d25expS 22p
uvmm8u

2

up2p8u D , 0<d<1. ~3!

The probability of making an adiabatic transition, i.e
switching between up- and down-going levels, is justA
[a2512D (0<a<1). The amplitudes become mixed b
the interaction according to@3#

S Cm~↑ !~1`!

Cm8
~↓ !

~1`! D 5S 2d
ae2 iFS

aeiFS

d D S Cm~↑ !~2`!

Cm8
~↓ !

~2`! D , ~4!

where the Stokes phaseFS is a measure of relative phas
accumulation induced by the coupling. In our uniform n
work of such anticrossings, we assume that every two-s
interaction is described by the same values of the parame
d andFS and that the interactions are sufficiently localiz
in time for the asymptotic mixing~4! to obtain. The phase
FS can then be absorbed into all the amplitudesCm8

(↓)(t) and
hence ceases to be relevant here@10#.

Between these 232 interactions the states are assumed
evolve adiabatically. The levelsm andm8, between their
intersection at@m,m8# and their arrival at intersection
@m,m811# and @m11,m8#, respectively, acquire the usu
dynamical phase factors@11#

S Cm~↑ !~ tm,m811
2

!

Cm8
~↓ !

~ tm11,m8
2

! D 5S exp@2 iSm,m811
~↑ !

#

0

0

exp@2 iSm11,m8
~↓ !

# D
3S Cm~↑ !~ tm,m8

1
!

Cm8
~↓ !

~ tm,m8
1

!D , ~5!

where the actions are

Sm,m811
~↑ !

5E
tmm8

tm,m811
dt Em~ t !, ~6a!

Sm11,m8
~↓ !

5E
tmm8

tm11,m8
dt Em8~ t ! ~6b!

and t7[ lime→01(t7e) indicates the time just before or a
ter t. Thepath from any intersection@m1 ,m18# at timet1 to a
later one,@m2 ,m28# at t2.t1 , is characterized by a sequen
of alternating two-state mixings~4! and adiabatic evolution
g

-
te
ers

o

~5! in the space of all statesum& and um8&. The topology of
the network guarantees that only paths for whichm2>m1

andm28>m18 have nonzero amplitudes.
During an intervalt1<t<t2 , any two distinct paths be

tween @m1 ,m18# and @m2 ,m28# will accumulate dynamical
phases that interfere as gauged by the phase difference

DF5E
t1

t2
dt DE~ t ! ~7!

for the two paths, as illustrated in Fig. 2. Since Eq.~7! equals
the area between the two paths,DF for the grid of levels~1!
is always an integral multiple of the unit of action

w5
««8

up2p8u
——→

«85«
p852p

«2

2upu
, ~8!

which is the area of one parallelogram@12# between pairs of
adjacent up- and down-going levels~see Fig. 1!. The two
parametersD ~or d! and w, representing state-mixing an
interference effects, completely characterize the pres
model, when supplemented by the boundary condition

A008
~↑ !

~d,w!5C0~↑ !~ t008
2

!51, A008
~↓ !

~d,w!5C08
~↓ !

~ t008
2

!50
~9!

at t50. All other states have zero amplitude att50 owing to
normalization. Althoughd andw are regarded here as inde

FIG. 2. Two interfering paths from the initial levelm50 at
intersection @0,0# to up-going levelm54 at intersection@4,68#
~marked by3!. Energy levels~1! are labeled bym andm8. A
typical path j ~one of 126 possible paths for these end points! is
shown by the heavy solid curve; it has area 17w ~shaded! as defined
by the action integral in Eq.~11!, while its amplitude is
2d4a6ei17w. Another pathj 8 is shown by the heavy dashed curv
it has area 12w ~shaded! and amplitude2d8a2ei12w. The difference
of their actions*dt@Wj 8(t)2Wj (t)#55w is the net area enclose
by the loop formed by pathsj and j 8, as shown, and enters into th
interference term between the two paths in Eq.~12!. When either
path j or j 8 continues on to intersection@4,78# its action increases
by mw54w @Eq. ~20!#, as shown by light shading.
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56 235COHERENT TIME EVOLUTION ON A GRID OF . . .
pendent parameters, in defining a model of two interact
Rydberg manifoldsn and n8 they are related through th
field ramp rateḞ in up2p8u; 3

2 Ḟ(n
21n82). The level spac-

ings atF.1/3n5 are typically«;n24 and«8;n824, while
the core-induced couplings can be expressed asuvmm8u

2

5m̃ 2««8, wherem̃ is an average low-l quantum defect. For
a given atomic parameterm̃, Eqs. ~3! and ~8! imply that d
andw are related by

d5exp~2pm̃2w!, w;~3Ḟn10!21. ~10!

Note, however, that our fundamental assumption of isola
anticrossings requires thatuvmm8u!«,«8 or um̃u!1; thus val-
ues in the range 0<w&O(1) are necessarily tied to the d
abatic limit d→1. On the other hand, the amplitudes w
depend not onw but only onw(mod2p), so the full range of
interference effects can be expected for roughly any valu
d.

We introduce here a convenient bookkeeping method
accounting for the phases~7!. ConsiderAmm8

(↑) (d,w), the total
amplitude for all paths from@0,08# that arrive at@m,m8# in
the up-going stateum&. Each path, numberedj or j 8, traces
out a sequence of diabatic level segments@6#, and this se-
quence defines a continuous energy functionWj (t) describ-
ing the path. IfCj (t) is the amplitude for each path as fun
tion of time, then to within an overall phase factor the n
amplitude is

Amm8
~↑ !

~d,w!5 (
pathsj

uCj~ tmm8
2

!u~21!uj

3expS i E
t008

tmm8
dt@W0~ t !2Wj~ t !# D ~11!

and the total probability is

Pmm8
~↑ !

~d,w!5(
j

(
j 8

uCj~ tmm8
2

!Cj 8~ tmm8
2

!u~21!uj1uj 8

3expS i E
t008

tmm8
dt@Wj 8~ t !2Wj~ t !# D , ~12!

whereW0(t) is a reference function defined below. In Eq
~11! and ~12!, the sums range over the possible paths@6#

j , j 851•••( m
m1m821); uCj (tmm8

2 )u is a product ofm1m8 fac-
tors ofd’s anda’s; anduj is the number of up-to-up travers
als of avoided crossings along pathj @from the amplitudes
2d in Eq. ~4!#. The action integrals~6! depend on the arbi
trary zero of the energy scale to which the levelsEm(t),
Em8(t), andWj (t) are referred. Here all energies are referr
to an arbitrary functionW0(t), which preserves allrelative
phasesin Eq. ~11! and hence allphase differencesin Eq.
~12!. We define the action integrals in Eq.~11! to be the
difference betweenWj (t) and the reference path

W0~ t !5 HE0~ t !,
Em8~ t !,

t008<t<t0m8
t0m8<t<tmm8 .

~13!

In a skewed coordinate system with abscissam and ordinate
m8, the integral for pathj simply equals the area betwee
g

d

of

r

t

.

d

that path and them8 axis; see Fig. 2. This area is an integr
multiple nj of the action unitw @Eq. ~8!# with nj>0:

E
t008

tmm8
dt@W0~ t !2Wj~ t !#5njw; ~14!

therefore, the difference integrals in Eq.~12! are also integral
multiples (nj2nj 8)w, as required. Obviously, the same co
cepts invoked for the up-going amplitudes in Eqs.~11! and
~12! also apply to down-going amplitudesAmm8

(↓) (d,w).

B. Generating functions

Given the constraint~9!, successive applications of Eq
~4! and ~5! lead to all state populations att>0, which we
label by the next intersection@m,m8# as in Eq.~12!:

Pmm8
~↑ !

~d,w!5uAmm8
~↑ !

~d,w!u25uCm~↑ !~ tmm8
2

!u2, ~15a!

Pmm8
~↓ !

~d,w!5uAmm8
~↓ !

~d,w!u25uCm8
~↓ !

~ tmm8
2

!u2. ~15b!

Following Ref.@6#, we define the ‘‘generation’’ number

N5m1m8>0, ~16!

which marks the number of avoided crossings that have b
encountered between the initial timet008

2 , and the approach
to @m,m8# at time tmm8

2 . For fixedN we then define the
polynomials

AN
~↑ !~d,w;j,h![ (

m50

N

Amm8
~↑ !

~d,w!jmhm8dm8,N2m ,

~17a!

AN
~↓ !~d,w;j,h![ (

m850

N

Amm8
~↓ !

~d,w!jmhm8dm,N2m8 ,

~17b!

wherej andh are expansion parameters@13# whose powers
allow us to keep track of the various statesum& and um8& at
fixed N. With each successive generation, asN→N11, a
pair of states is first mixed at each@m,N2m# according to
Eq. ~4! and then each level acquires another dynamical ph
factor according to Eq.~5!. In the process, up-going level
wind up approaching@m,N112m# with m8 increased by 1,
while down-going levels arrive at@m11,N2m# with m in-
creased by 1. This can be summarized by combining
series~17a! and~17b! for N>0 into a two-component vecto

SAN11
~↑ ! ~d,w;j,h!

AN11
~↓ ! ~d,w;j,h! D 5S h

0
0
j D S 2d

a
a
dD SAN

~↑ !~d,w;j,h!

AN
~↓ !~d,w;j,h! D .

~18!

The phase information~5! will be incorporated intoh and
j. SupposeN avoided crossings have been traversed a
consider the possible fates of pathj after negotiating the nex
avoided crossing. If this path emerges on the down-go
level, the next intersection it approaches is still marked
the same value ofm8 but by the next highestm; one more
factor of j is acquired in the second line of Eq.~18!. The
dynamical phase as defined in Eqs.~13! and ~14! does not
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236 56DAVID A. HARMIN
change. If, on the other hand, the path emerges on the
going level, the relevant value ofm does not change
whereasm8 increases by unity andthe path’s dynamical
phase increases by mw in the exponent in Eq.~11!; this is
illustrated in Fig. 2. Thus the phase associated with each
passing through@m,m8# acquires no extra phase upon
advance to@m11,m8#, but does pick up a phase facto
eimw if it advances to@m,m811#. The amplitudes for suc
cessive generations then satisfy the recursion relations

Amm8
~↑ !

~d,w!5@2dAm,m821
~↑ !

~d,w!1aAm,m821
~↓ !

~d,w!#eimw,
~19a!

Amm8
~↓ !

~d,w!5aAm21,m8
~↑ !

~d,w!1dAm21,m8
~↓ !

~d,w!,
~19b!

which completely determine the system’s evolution.
To encode this information into Eq.~18!, we regardh as

an operatorĥ that measures the power ofj in each term of
the polynomialsAN

(↑)(d,w;j,h) andAN
(↓)(d,w;j,h) and ef-

fects the replacementj→eiwj. This behavior in turn pro-
duces

ĥjm→eimwjmĥ, ~20!

which results in the correct phase factors being appende
all paths. Both expansion parametersj andh in Eq. ~18! will
henceforth be treated as operators and expressed in term
noncommuting, positionlike and momentumlike operatorx̂
and p̂:

ĵ[eix̂, ĥ[eiw p̂, @ x̂,p̂#5 i . ~21!

For an arbitrary polynomial functionf ( x̂) the translation
property

e1 iw p̂ f ~ x̂!e2 iw p̂5 f ~ x̂1w! ~22!

implies

e1 iw p̂eix̂e2 iw p̂5eix̂eiw or ĥ ĵ5eiwĵĥ, ~23!

so the substitutions~21! indeed produce Eq.~20!.
Matters are greatly simplified if we now generalize t

procedure of Ref.@6# in order to treat all up-going ampli
tudesAmm8

(↑) (d,w) over the entire grid as a single entity an

likewise treat all down-going amplitudesAmm8
(↓) (d,w) as a

second distinct object. We therefore define generating fu
tions of the operatorsx̂ and p̂ that extend the sums in Eqs
~17a! and ~17b! to all valuesN>0, i.e., to allm>0 and
m8>0,

A~↑ !~d,w; x̂,p̂![ (
N50

`

AN
~↑ !~d,w; ĵ,ĥ !5 (

m50

`

(
m850

`

3Amm8
~↑ !

~d,w!eimx̂eim8w p̂, ~24a!

A~↓ !~d,w; x̂,p̂![ (
N50

`

AN
~↓ !~d,w; ĵ,ĥ !5 (

m50

`

(
m850

`

3Amm8
~↓ !

~d,w!eimx̂eim8w p̂. ~24b!
p-

th

to

of

c-

The initial condition is given in Eq.~9!. Now summing Eq.
~18! over N, the recursion relations~19! translate into a
propagation statement that applies to the whole map ye
condensed into the form of a two-state mixing problem

SA~↑ !~d,w; x̂,p̂!

A~↓ !~d,w; x̂,p̂! D5S 10D1S eiw p̂0 0

eix̂D S 2d
a

a
dD

3SA~↑ !~d,w; x̂,p̂!

A~↓ !~d,w; x̂,p̂! D , ~25!

with

d21a251, 0<d,a<1. ~26!

The inhomogeneous ‘‘seed’’ term form5m850 must ap-
pear here to make up for the absence ofN50 on the left-
hand side in Eq.~18!. Notice that the factors in Eqs.~24a!
and~24b! are ordered ‘‘normally,’’ so that all factors involv
ing the operatorp̂ lie to the right of those withx̂. This is
significant because the two coupled equations~25! cannot be
solved as a simple 232 eigenvalue problem: The operato
eiw p̂ appears to theleft of the amplitudes, which greatly com
plicates an analysis by diagonalization.

C. Series solutions and generating functions
for the amplitudes

The matrix containing the phase-generating factorseiw p̂

andeix̂ in Eq. ~25! increments the power of eitherĥ or ĵ in
the generating functions on the right-hand side by one. T
increasesN5m1m8 by one: Every state evolves throug
one more avoided crossing. Recursive substitution of
two-vector into itselfN times yields the evolution through
N generations explicitly. This produces, in effect, a Dys
series: The initialN50 term generates the amplitudes f
successiveN.0,

SAN
~↑ !~d,w; ĵ,ĥ !

AN
~↓ !~d,w; ĵ,ĥ !

D 5F S ĥ
0

0

ĵ D S 2d
a

a
dD GNS 10D . ~27!

This generating function is exact and, together with Eqs.~17!
and ~23!, provides the basis for a computational scheme
obtaining amplitudes and probabilities in this model. N
merical results are presented in Secs. III–V.

Equation~27! is similar in structure to the PWeb resul
Eq. ~39! of Ref. @6#, in which all interference effects ar
ignored@13#. The present result, however, is less amena
to a statistical analysis. To extract the paths’ relative dyna
cal phases, all products must be brought into the nor
ordering of Eqs.~24!. Owing to the difficulty of disentan-
gling the various factors ofeiw p̂ andeix̂ for all 2N paths, Eq.
~27! for arbitraryN cannot be analyzed in a straightforwa
way in all cases.

On the other hand, Eq.~25! is a simple pair of operato
equations that can be solved exactly. One has only to in
the matrix

Ĝ21[S 11dĥ

2aĵ

2aĥ

12dĵ D , ~28!
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taking into account the noncommutativity ofĥ and ĵ via
Eqs.~21! and ~23!, to find

SA~↑ !~d,w; ĵ,ĥ !

A~↓ !~d,w; ĵ,ĥ !
D 5ĜS 10D

5S @11d~ ĥ2 ĵeiw!2ĥ ĵ #21~12dĵeiw!

@11d~ ĥe2 iw2 ĵ !2 ĵ ĥ #21aĵ D .
(29)

The operator matrixĜ plays the role of a propagator. Th
generating functions~29! are also exact: When combine
with the definitions~24a! and~24b!, they yield all amplitudes
over the entire grid. The analog of this result for the PW
model, where noncommutativity ofĵ andĥ is not an issue, is
given in the Appendix.

A symmetry property of the down-going amplitudes
revealed by examining the kernel of their generator in E
~29!. After passing the factorĵ to the left of @ #21 in
A(↓)(d,w; ĵ,ĥ), one has

A~↓ !~d,w; ĵ,ĥ !5aĵg~d,w; ĵ,ĥ !

5 (
m50

`

(
m850

`

Amm8
~↓ !

~d,w!ĵmĥm8, ~30!

where

g~d,w; ĵ,ĥ !5@11d~ ĥ2 ĵ !2ĥ ĵ #21

5a21(
r50

`

(
s50

`

Ar11,s
~↓ ! ~d,w!ĵ r ĥs ~31!

and the indices have been renamedr5m21 and s5m8.
The kernel~31! appears to be symmetric under interchan
of ĵ and ĥ if d also flips sign. This turns out to be the ca
even thoughĥ ĵÞĵĥ. Interchangingĵ andĥ, and thenr and
s, in Eq. ~31! yields

g~d,w;ĥ,ĵ !5@12d~ ĥ2 ĵ !2 ĵ ĥ #21

5a21(
r50

`

(
s50

`

As11,r
~↓ ! ~d,w!ĥsĵ r . ~32!

On the other hand, the series expansion ofg(d,w; ĵ,ĥ) is
homogenous in powers of (ĥ2 ĵ) and (ĥ ĵ). Hence an ex-
change ofĥ andĵ anda sign change ofd should produce the
same joint weighting of powersĵ r ĥs as in Eq.~31!, if all
factors ĵ are instead moved to theright and all factors of
ĥ are moved to theleft:

g~2d,w;ĥ,ĵ !5@11d~ ĥ2 ĵ !2 ĵ ĥ #21

5a21(
r50

`

(
s50

`

Ar11,s
~↓ ! ~d,w!ĥsĵ r . ~33!

Comparing the amplitudes in Eqs.~32! and ~33! we obtain
the relation
b

.

e

Am811,m21
~↓ !

~d,w!5Am,m8
~↓ !

~2d,w!

5~21!m1m821Am,m8
~↓ !

~d,w!, ~34!

which holds independently ofd andw. The sign (21)N21

follows from the fact that a down-going level can only b
reached from the up-going initial state through an odd nu
ber of adiabatic transitions, so that the number of powers
d must be odd~even! if N5m1m8 is even~odd!. Equation
~34! expresses a symmetry~to within a phase! of the down-
going amplitudes about the origin of a grid shifted to inte
section@1,08#. Such a relation is identical to that found fo
down-going-level probabilities in the PWeb model@14#.

In a similar way, the upgoing amplitudes of Eq.~29! can
be rewritten as

A~↑ !~d,w; ĵ,ĥ !5ĥ@11d~ ĥ2 ĵ !2 ĵ ĥ #21~12dĵ !ĥ21

511ĥ@11d~ ĥ2 ĵ !2 ĵ ĥ #21~ ĵ2d!,

~35!

where this time a factor ofĥ has been swept to the left of th
entire expression. Although the coefficientsAmm8

(↑) (d,w) de-

pend on a kernel @11d(ĥ2 ĵ)2 ĵ ĥ #21 similar to
g(d,w; ĵ,ĥ), a simple symmetry like Eq.~34! is not forth-
coming owing to the factor (ĵ2d) in Eq. ~35!.

Specific cases and limits emerge directly from Eqs.~30!,
~31!, and~35!. At intersections with them50 level, the am-
plitudes are the coefficients ofĵ0 ~equivalently one can se
ĵ50!,

A~m50!
~↑ ! ~d,w; ĵ,ĥ !5@11dĥ#21 ⇒ A0m8

~↑ !
~d,w!5~2d!m8

~36a!

and

A~m50!
~↓ ! ~d,w; ĵ,ĥ !50 ⇒ A0m8

~↓ !
~d,w!50. ~36b!

The sequence of intersections@m50,m8>0# represents
successive diabatic transitions, defining a ‘‘purely diaba
path,’’ from which population leaks exponentially a
P0m8
(↑) (d,w)5Dm8, as in the PWeb@6# and Demkov-Osherov

@5# models. Since no levels are ever populated above
sequence on the grid, down-going levels have zero amplit
until they cross them50 level. Similarly, no up-going levels
are populated below their intersection withm850 exceptthe
initial m50 level itself. Them850 amplitudes are the co
efficients ofĥ0 ~or one can setĥ50!,

A
~m850!

~↑ !
~d,w; ĵ,ĥ !51 ⇒ Am0

~↑ !~d,w; ĵ,ĥ !5dm0
~37a!

and

A
~m850!

~↓ !
~d,w; ĵ,ĥ !5aĵ@12dĵ #21 ⇒ Am0

~↓ !~d,w; ĵ,ĥ !

5 H0, m50
adm21, m.0. ~37b!
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Other specific cases, for higher values ofm andm8, can be
obtained explicitly for intersections between these extrem
but their forms get progressively more complicated.

In the diabatic limitd→1 ~or a→0!, the generating func-
tions give

A~↑ !~d,w; ĵ,ĥ ! ——→
d→1

@11ĥ#21

⇒ Amm8
~↑ !

~1,w!5dm0~21!m8, ~38a!

A~↓ !~d,w; ĵ,ĥ ! ——→
d→1

0 ⇒ Amm8
~↓ !

~1,w!50, ~38b!

since the only path taken at very large ramp rates or for v
small coupling is the purely diabatic one, Eq.~36!. In the
opposite, adiabatic limitd→0 (a→1), one finds instead

A~↑ !~d,w; ĵ,ĥ ! ——→
d→0

@12ĥ ĵ #21

⇒ Amm8
~↑ !

~0,w!5dm,m8e
im8~m811!w/2,

~39a!

A~↓ !~d,w; ĵ,ĥ ! ——→
d→0

ĵ@12ĥ ĵ #21

⇒ Amm8
~↓ !

~0,w!5dm,m811e
im8~m811!w/2.

~39b!

Equations~39! single out the ‘‘purely adiabatic’’ path run
ning through the center of the grid; it alternates between
and down-going levels, which approach intersectio
@m,m# ~N even! and @m,m21# ~N odd!, respectively.

D. Integral representations of the amplitudes

In order to obtain the amplitudes in closed form, we so
the pair of equations~25! by matching like powersĥm8

5eim8w p̂. The coefficient of each power ofeim8w p̂ in the
generating functions~24! is itself a partial generating func
tion, a series in powers ofeix̂:

A~↑ !~d,w; x̂,p̂!5 (
m850

`

Fm8~d,w; x̂!eim8w p̂, ~40a!

A~↓ !~d,w; x̂,p̂!5 (
m850

`

Gm8~d,w; x̂!eim8w p̂, ~40b!

where

Fm8~d,w; x̂![ (
m50

`

Amm8
~↑ !

~d,w!eimx̂, ~41a!

Gm8~d,w; x̂![ (
m50

`

Amm8
~↓ !

~d,w!eimx̂. ~41b!
s,

ry

-
s

e

Each term on the right-hand side of the first line of Eq.~25!
acquires an additional power ofeiw p̂, whereas the secon
line does not. The terms on both sides of Eqs.~40a! and
~40b! are therefore related by

Fm811~d,w; x̂!ei ~m811!w p̂5eiw p̂@2dFm8~d,w; x̂!

1aGm8~d,w; x̂!#eim8w p̂,

~42a!

Gm8~d,w; x̂!eim8w p̂5eix̂@aFm8~d,w; x̂!

1dGm8~d,w; x̂!#eim8w p̂. ~42b!

The solution of these equations using Eq.~22! yields a re-
cursion relation among the up-going partial generating fu
tions:

Fm811~d,w; x̂!5S ei ~ x̂1w!2d

12dei ~ x̂1w!DFm8~d,w; x̂1w!,

~43a!

Gm8~d,w; x̂!5S a

e2 i x̂2dDFm8~d,w; x̂!. ~43b!

Finally, the amplitudes of up-going levels crossing them8
50 level are known@from, e.g., the coefficient ofĥ0 in Eq.
~35!# to be nonzero only form50, soF08(d,w; x̂)51. Then
iterating Eq.~43a! yields

Fm8~d,w; x̂!5)
k51

m8 eikweix̂2d

12deikweix̂
~44a!

and

Gm8~d,w; x̂!5
aeix̂

12deix̂ )
k51

m8 eikweix̂2d

12deikweix̂
~44b!

for all m8>0, if we adopt the convention that the null-rang
productP1

0 equals unity.
From the definitions~41!, the amplitudesAmm8

(↑) (d,w) and

Amm8
(↓) (d,w) now follow from extracting the various integra

powers ofeix̂ from Fm8(d,w; x̂) andGm8(d,w; x̂). For this
purpose it suffices to treatx̂ as just a variableu and to Fou-
rier analyze Eq.~44a!:

Amm8
~↑ !

~d,w!5
1

2p E
0

2p

du e2 imu)
k51

m8 eikweiu2d

12deikweiu
.

~45!

Note that this and all subsequent representations are in
ant underu→u12p. This integral will first be evaluated
explicitly by analyzing its poles, then approximated as
integral representation of well-known functions. Once t
up-going amplitudesAmm8

(↑) (d,w) are known, the down-going
ones follow from, e.g.,

Amm8
~↓ !

~d,w!5a21@Am,m811
~↑ !

~d,w!e2 imw1dAmm8
~↑ !

~d,w!#
~46!
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or equivalent recursion relations obtained from Eqs.~19a!
and ~19b!.

The substitutionz[eiu converts Eq.~45! to an integral
over a counterclockwise contour of unit modulus in t
complex-z plane:

Amm8
~↑ !

~d,w!5
1

2p i R
uzu51

dz
1

zm11 )
k51

m8 eikwz2d

12deikwz
.

~47!

The simple poles atz5e2 ikw/d haveuzu.1 whend,1, so
only the pole of orderm11 atz50 contributes to Eq.~47!:

Amm8
~↑ !

~d,w!5
1

m!

dm

dzm F )
k51

m8 eikwz2d

12deikwzGU
z50

. ~48!

This result also follows by simple inspection of Eqs.~44a!
and ~41a!. Alternatively, usingz[e2 iu leads to

Amm8
~↑ !

~d,w!5
1

2p i R
uzu51

dz zm21)
k51

m8 eikw2dz

z2deikw ,

~49!

which now has no pole atz50 ~if m.0! and whose simple
poles atz5deikw lie within uzu,1 ~if d,1!. If m850, Eq.
~49! reduces todm0 , as in Eq.~37a!; otherwise

Amm8
~↑ !

~d,w!5a2dm2m8(
k̃51

m8

eim k̃w)
k51

m8

d/k k̃
12dei ~ k̃2k!w

ei ~ k̃2k!w21
,

~50!

where d/k k̃ is the complementary Kronecker delta~it van-
ishes only ifk5 k̃; otherwise it equals unity!.

Though exact, the general equations~48! and ~50! are
inconvenient for purposes of analysis. But note that e
factor in the product in Eq.~45! has unit modulus and a
argument of the form 2Q(d;q)1q, where

Q~d;q!5tan21S sin q

cosq2dD2q, ~51!

with q5u1kw. The entire integrand is therefore asingle
phase factor with a sum ofu-dependent phases. Withu8
[u1w, the amplitudes~45! become

Amm8
~↑ !

~d,w!5F1

1

2p E
0

2p

du8 expF i H 2 (
k50

m821

Q~d;u81kw!

1~m82m!u8J G , ~52!

where the phase prefactor is

F15ei @m1m8~m821!/2#w. ~53!

Figure 3 shows the phase functionQ(d;q) over the whole
range ofd: It has a single oscillation with extremal value
6@ 1

2p2cos21(d)] at q56cos21(d), but becomes more
nearly triangular in the diabatic limit. Its limiting forms ar
h

Q~d;q! ——→
d→0

d sin q1O~d2! ~54!

and

Q~d;q! ——→
d→1

1
2p2 1

2q2d cot~ 1
2q!1O~d2!,

d[
12d

11d
, ~55!

where Eq. ~55! is an asymptotic expansion good fo
sin2(12q)@

1
2d. More generally, Eq.~51! can be expanded as

convergent Taylor series ind:

Q~d;q!5 (
n51

`
1

n
dn sin~nq!. ~56!

Then the coefficients ofdn in the integrand’s exponent com
prise a sum ofm8 shifted phases,

(
k50

m821

sin~nu81knw!5cn~m8,w!sin~nu9!, ~57!

where

cn~m8,w!5
sin~ 1

2m8nw!

sin~ 1
2nw!

~58!

and u9[u81 1
2(m821)w. Insertion of Eqs.~56!–~58! into

the amplitudes~52! yields

Amm8
~↑ !

~d,w!5F2

1

2p E
0

2p

du9

3expF i H (
n51

`
2

n
dncn~m8,w!sin~nu9!

1~m82m!u9J G , ~59!

FIG. 3. A log-log plot of the phase functionU(d;u) @Eq. ~51!#
vs u(mod2p) for d50, 0.2, 0.4, 0.6, 0.8, and 0.99.U(d;u)
changes from a sinusoidal form atd'0 to a sawtooth asd→1.



o
a-

ce

or

on
e

s

in

a

s

r
h
ne

re
r-

to
ns

by

of
s
by

ter-

-

-

-

-

ots

s,

240 56DAVID A. HARMIN
with

F25F1e
i @~m2m8!~m821!/2#w5ei @m~m811!/2#w, ~60!

which is still an exact result. Note that whend50, Eq. ~60!
reproduces the correct phase for the limit~39a!. Equation
~59!, which suggests an integral representation of a kind
‘‘hyper-Bessel’’ function, simplifies to known represent
tions in the limits~54! and ~55!.

III. CONSTRUCTIVE INTERFERENCE

In the particular case of totally constructive interferen
in the sense thatw→0(mod2p), Eq. ~49! can be evaluated
directly for any value ofd. For m.0 the integral has one
pole of orderm8 at z5d, which yields

Amm8
~↑ !

~d,0!5 (
k51

m Sm21
k21 D Sm8

k D ~21!m82ka2kdm1m822k.

~61a!

This is precisely the form that one would obtain f
Pmm8
(↑) (d,0) by following the derivation in Ref.@6#, if one

were to replace the sum of different paths’ probabilities c
sidered there with a sum over the path amplitudes of S
II A here @15,16#. Similar reasoning then leads to

Amm8
~↓ !

~d,0!5 (
k51

m Sm21
k21 D S m8

k21D
3~21!m82k21a2k21dm1m822k11. ~61b!

The probabilities forw50 andm.0 are now expressible a
hypergeometric functions@15#

Pmm8
~↑ !

~d,0!5Dm1m8u2F1~2m,2m8;1;2A/D !

22F1~12m,2m8;1;2A/D !u2, ~62a!

Pmm8
~↓ !

~d,0!5ADm1m821u2F1~12m,2m8;1;2A/D !u2,
~62b!

with D5d2 and A512d2. For m50, Eqs.~48! and ~46!
give A0m8

(↑) (d,w)5(2d)m8 and A0m8
(↓) (d,w)50, as in Eqs.

~36a! and ~36b!.
In Fig. 4 we present contour plots ofPmm8

(↑) (d,0) and

Pmm8
(↓) (d,0) covering most of the range of values ofd. The

adiabatic (d50) limit has the single path approximated
Fig. 4~a!, where d50.05; the diabatic limit~d51, not
shown! would have only the path followingm50. For inter-
mediate values ofd, interference of many paths is such th
non-negligible values ofPmm8

(↑) (d,0) are confined mainly to a
narrow band in the (m,m8) plane, along which it decrease
as;1/AN. In the adiabatic limit@e.g., Figs. 4~b! and 4~c!#
this band is mirrored by a weaker one, producing a nea
symmetric pattern about the purely adiabatic path. T
Pmm8
(↓) (d,0) plots, which are always symmetric about the li

m2m851, have two weaker bands in all cases.
f

,

-
c.

t

ly
e

For eachd, the band within which up-going states a
most likely found is well approximated by the locus of inte
sections@m,m8# for which

m8

m
5
11d

12d
. ~63!

On a map of energy vs time, this slope is simplydE/dt
5pd @for a symmetric grid, Eqs.~2!#. As d increases the
band ‘‘angle,’’ of which Eq. ~63! is the tangent, rotates
smoothly towards the purely diabatic path, fromdE/dt50 in
the adiabatic limit todE/dt5p in the diabatic limit. Such a
rotation from adiabatic- to diabatic-path directions proves
be a general feature of the AWeb probability distributio
even forwÞ0(mod2p).

IV. ADIABATIC EVOLUTION

Adiabatic passage through the grid is characterized
small D5d2. To lowest order ind, Eq. ~54! or the n51
term of Eq.~59! gives

Amm8
~↑ !

~d,w!5F2

1

2p E
0

2p

du9

3expF i H 2dS sin~ 1
2m8w!

sin~ 1
2w!

D sin u9

1•••1~m82m!u9J G , ~64!

the ellipsis indicating terms;O(d2). Equation~64! is just
the integral representation of the regular Bessel function
integral orderm2m8. Therefore, when adiabatic transition
dominate, evolution through the grid can be approximated
the probabilities

Pmm8
~↑ !

~d,w!5UJnS 2d sin~ 1
2m8w!

sin~ 1
2w!

D U2, n5m2m8.

~65!

The Bessel-function behavior applies to sequences of in
sections of constantm2m8, i.e., to loci parallel to the time
axis ~for a symmetric grid! and straddling the purely adia
batic path. However, because the grid is bounded bym50
andm850, the argument ofJn representing the grid bound
ary form8.m is 2dc1(unu;w) ~atm50!, while for m8,m
and the sameunu it is zero~atm850!. Therefore, these prob
ability distributions are not quite symmetric aboutm85m
even thoughuJn(x)u5uJ2n(x)u; asd increases the distribu
tions appear more ‘‘sheared’’~in a counterclockwise sense!
aboutm85m.

In Fig. 5 we present three-dimensional and contour pl
of Pmm8

(↑) (d,w) andPmm8
(↓) (d,w) for various small values of

d and a fixed valuew5 1
4p, while in Fig. 6 we plot just

Pmm8
(↑) (d,w) for various w(mod2p) and fixed

D50.25. @Here and in all subsequent plots ofPmm8
(↑) , and

Pmm8
(↓) we display numerical results only, not approximation

using recursion relations obtained from Eqs.~19! or, equiva-
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FIG. 4. Contour plots of probabilitiesPmm8
(↑) (d,0) ~left! andPmm8

(↓) (d,0) ~right! for totally constructive interferencew50(mod2p) and
various values of the diabatic transition probabilityD5d2 @Eqs.~3! and ~10!#: ~a! d50.05, ~b! 0.20, ~c! 0.35, ~d! 0.50, ~e! 0.70, and~f!
0.90. Each case is plotted as probability vs (m,m8) on a symmetric, discrete grid of intersections@m,m8#, up toN5m1m8580. Contours
are interpolated in steps of 0.05. The initial up-going state,m50 at the intersection withm850, has the maximum value of unity. Th
horizontal axis is proportional to time, the vertical axis to energy@Eqs.~2!#.
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FIG. 4. ~Continued!.
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FIG. 5. Three-dimensional and contour plots of probabilitiesPmm8
(↑) (d,w) ~left! and Pmm8

(↓) (d,w) ~right! vs (m,m8) in the adiabatic
approximation@cf. Eq. ~65!#, for fixedw5

1
4p (m58) and various values ofD5d2, 1

2: ~a! d50.15, ~b! 0.40, and~c! 0.65. Contours are as
in Fig. 4.
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FIG. 6. Three-dimensional and contour plots of probabilitiesPmm8
(↑) (d,w) vs (m,m8) in the adiabatic approximation@cf. Eq.~65!# for fixed

D50.25 and variousw(mod2p): ~a! w50 (m→`), ~b! w50.20p (m510), ~c! w50.40p (m55), ~d! w50.60p (m5
10
3 ), ~e! w

50.80p (m5
5
2), and~f! w5p (m52). Contours are as in Fig. 4.
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56 245COHERENT TIME EVOLUTION ON A GRID OF . . .
lently, Eqs.~24!–~27!.# Note that the evolution typically fol-
lows a braiding pattern about the center of the grid, unl
w→0(mod2p) as in Fig. 4.

Figures 5 and 6 illustrate that in the adiabatic limit there
a nearly perfectrecurrence of the entire distributionwith
integral periodDm8. From Eq.~65!, the condition for such a
revival is Dm8w50(mod2p) if we note Jn(2x)5
(21)nJn(x). This period should equal the number of acti
units it takes to complete one phase cycle,

m[
2p

uw~mod2p!u
>2, 2p,w~mod2p!,p, ~66!

if m is precisely an integer. ~This m is not related to the
quantum defectsm l .! Since the period~66! applies for any
ordern, we haveDm5m as well, so

Pm1m,m81m
~↑ !

~d,w!5Pmm8
~↑ !

~d,w! as d→0. ~67!

The pattern recurs after everyDN52m generations of anti-
crossings have been traversed.@The repetition occursin time
with Dt5m(«1«8)/(p2p8), from Eq. ~2a!.# In particular,

PMm,Mm
~↑ ! ~d,w!5P008

~↑ !
~d,w!51, M50,1,2,..., as d→0;

~68!

the initial population interferes totally constructively at th
‘‘knots’’ of the braid. At the same pointsPmm8(d,w) van-
ishes. This is evident in all cases shown in Figs. 5 and 6~b!–
6~e!. Revivals in the short-time propagator of a simil
model were noted in Ref.@7#.

However, them andm8 period is not necessarily integra
e.g., in Figs. 6~d! and 6~e! it equalsDm5Dm8510 and 5,
respectively, althoughm5 10

3 and
5
2. If m[n/ j is rational

~with n and j relatively prime!, the recurrence condition im
pliesDm5Dm85n. There is therefore generally more tha
one type of pattern with the same period, such asn510 in
Figs. 6~b! and 6~d! ~j51 and 3! andn55 in Figs. 6~c! and
6~e! ~j51 and 2!. Even though slight variations in the valu
of m include an excursion through irrational numbers, the
may nevertheless be considered approximately rational
well-defined sense~see Sec. V!. Even the rational valuesm
510

3 in Fig. 6~d! andm55
2 in Fig. 6~e! exhibit subdominant

peaks atDm'm'3 andDm'm'2–3, respectively. How-
ever, this exposes a difficulty with applying this model d
rectly to ramped fields in Rydberg atoms. In a linearly driv
system the phase parameter varies with ramp rate aw
;1/Ḟ @Eq. ~10!#, leading to the qualitative dependence ofm
on Ḟ shown in Fig. 7. Variations inm are therefore especiall
sensitive toḞ at slower ramps.

From Eq. ~65! we also see that the repeated pattern
probabilities dilates and includes more oscillations either
d grows or asuw(mod2p)u decreases~i.e., asm increases!;
see Figs. 5 and 6. This happens because the Bessel fun
makes excursions betweenJn(0) andJn(xmax) with a maxi-
mum argumentxmax562d/sin(p/m). Furthermore, the small
x behavior ofJn(x) @17# guarantees that appreciable popu
tion will be found only for intersections with

um2m8u&2d/sin~p/m!. ~69!
s

s

e
a

f
s

ion

-

This spread remains constrained even asm andm8 increase,
which should be contrasted with the undifferentiated hu
of the PWeb model, whose width increases as;dAm1m8
~i.e., like a random walk! @18#.

A degenerate case arises whenw→0(mod2p), shown in
Figs. 4 and 6~a!. Thenc1(m8,w)→m8 and Eq.~65! assumes
the noncyclic form

Pmm8
~↑ !

~d,w! ——→
m→`

uJum82mu~2dm8!u2 ~70!

as long asm8!m. This result serves as a small-d approxi-
mation to the series form~61a! in Sec. III. Appreciable popu-
lation can now be expected to be found@18# when
um2m8u&2dm8 or

1

112d
&
m8

m
&

1

122d
. ~71!

Both these bands were already seen in Figs. 4~b! and 4~c!
and the upper one accords with Eq.~63! for smalld.

In the opposite extreme of maximally destructive interfe
ence, whenw(mod2p)→6p andm→2, Eq.~69! implies a
very narrow adiabatic band of surviving population. Th
case is plotted in Fig. 6~f!. The sharp patterns seen in Fig
6~a!–6~e! break up here, although there is a residue o
recurrence along a weaker band withDm52. Resonances

among the phases(k50
m821Q(d;u81kw) in Eq. ~52! quickly

destabilize the amplitude in this case, as soon asn.1 terms
in Eq. ~59! get magnified. In fact, the adiabatic pattern f
anym ultimately becomes unstable. Ifn is the smallest inte-
ger for which n/m is approximately integral@i.e., nw
'0(mod2p), n>2#, the term that is ;O(dn) has
cn(m8,w)'m8 and is thus not bounded. The approximati
~64! is then good only as long as at least this term can
ignored compared to then51 term, implying

FIG. 7. A log-log plot of the level periodm @Eq. ~66!# vs res-
caled ramp rateḞ/Ḟ0 . Based on the dependencew;1/Ḟ, this func-
tion is m51/u(Ḟ0 /Ḟ)(mod 1)u, where the modulus is taken be
tween2

1
2and1

1
2. A typical scale, from Eq.~10!, is provided by

Ḟ0;1/6pn10 a.u.5(40.3/n)10 kV/cmms21.
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m8&
n

dn21 sinS p

m D ~72!

in general andm8&2/d for m52. Equation~72! serves to
delimit the stability of the adiabatic result~65! since this
m8, representing duration, is always larger than the distri
tion width ~69!.

V. DIABATIC EVOLUTION

When the two-level transitions tend towards diabatic
(D.A), terms of all ordersdn become significant in the
expansion~56! of Q(d;q). It is then appropriate to use in
stead of the phases~51! an expansion in powers of 12d.
Noting that the factors of Eq.~45! have the functional form
eib with b5p22 tan21@d cot(12q)] and q5u81(k11)w,
the diabatic analog of Eq.~59! is

Amm8
~↑ !

~d,w!5~21!m8eimw
1

2p E
0

2p

du8

3expF2 i H (
n51

`
2

n
dnbn~m8,w;u8!1mu8J G ,

~73!

with d defined in Eq.~55!. Here the sum runs over oddn
only, while the sum over shifted phases gives

bn~m8,w;u8!5~21!~n21!/2 (
k50

m821

cotn~ 1
2u81 1

2kw!,

~74!

in contrast to the closed form of Eq.~57! with its diffraction-
like coefficientcn(m8,w). In the diabatic limit (d→1), Eq.
~55!, we keep just then51 term of Eq.~73!:

Amm8
~↑ !

~d,w!5~21!m8eimw
1

2p E
0

2p

du8

3expF2 i H 2d (
k50

m821

cot~ 1
2u81 1

2kw!

1•••1mu8J G . ~75!

For the perfectly diabatic case (d50), this reduces to Eq
~38a!. Otherwise, Eq.~75! cannot be handled straightfo
wardly on account of the uneven distribution of poles in t
sum of cotangents.

Figure 8 shows the exact up- and down-going probab
ties forw5 1

4p and for three values ofd approaching unity.
The populationsPmm8

(↑) (d,w) become markedly asymmetric
peaking preferentially along loci of levels nearly parallel
one another and to the originalm50 level, thereby forming
‘‘resonance lanes’’ on the grid. These diabatic results are
be contrasted with the more adiabatic cases shown in Fig
and 6, where high probability is associated with proximity
the purely adiabatic path (m8'm). This new diabatic type
-

e

i-

to
. 5

of time-evolution pattern in fact arises as a modified form
the adiabatic braids seen in Fig. 5: one of the arms t
passes through each recurrence peak~68! can be described a
undergoing a rotation on the grid, while the other arm fad
away.~Both branches of the down-going populations fade
d→1.! The degree of this rotation is given by the same f
mula, Eq.~63!, that characterizes the evolutionary path f
thew50 case.

The resonances inPmm8
(↑) (d,w) in Figs. 8~b! and 8~c! are

concentrated along up-going levels whose indicesm are in-
tegral multiples of the periodm58 @Eq. ~66!#. Accompany-
ing the exponential decay of them50 state population with
increasingm8 is the growth of the parallelm58 level, which
in turn transfers population tom516, etc. In general, evolu
tionary paths whose dynamical phases differ by 0(mod2p)
will interfere constructively. Since the unit of phase@Eq. ~8!#
is w5 1

8(2p) here, the phase difference~7! should encom-
pass 0, 8, 16, ... such units. Moreover, to maximize proba
ity whena is small, loss from state-to-state diffusion shou
be minimized, which favors paths with few adiabatic tran
tions ~e.g., two!. The initial evolution, which follows the
purely diabatic path, has many branches tom58 that satisfy
these conditions and thus favors strong resonances betw
states havingm50 and 8. Likewise, the increasedm58
population resonates strongly withm516 and so forth, form-
ing the up-going lanes seen in the figure. No such optimi
tion can occur for constant-m8 paths, so down-going level
are relatively insignificant in the diabatic limit. That is, the
is a kind of ‘‘diabatic momentum’’ to the evolution of inter
acting manifolds.

In the special casew50(mod2p) all dynamical phases
vanish; then Eq.~75! simplifies to

Amm8
~↑ !

~d,0!5~21!m8
1

2p E
0

2p

du8

3exp@2 i $2dm8 cot~ 1
2u8!1mu8%#. ~76!

Substitution ofz5cot(12u8) yields

Amm8
~↑ !

~d,0!5~21!m8
1

p E
2`

`

dz e2 i ~2dm8!z
~z2 i !m21

~z1 i !m11 ,

~77!

which is recognized as the integral representation of a W
taker function@19#. In the diabatic limit, therefore, the popu
lations

Pmm8
~↑ !

~d,0!5u~4dm8!e22dm8
1F1„2~m21!;2;4dm8…u2

~78!

are seen to vary like the probability density of a squa
Coulomb function~for Z51! evaluated at a ‘‘radius’’r
52dmm8 and having effective quantum numbersneff5m
and l eff50.

A scaling relation ford→1 follows for nonintegral but
rationalm[n/ j based on the above limiting integrals. Whe
m5Mn and m85M 8n are both integral multiples of the
integer n (M ,M 8>0), the sum of cotangents in Eq.~75!
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FIG. 8. Three-dimensional and contour plots of probabilitiesPmm8
(↑) (d,w) ~left! and Pmm8

(↓) (d,w) ~right! vs (m,m8) in the diabatic
approximation@cf. Eq. ~78!# for fixedw5

1
4p (m58) and larger values ofD5d2→1: ~a! d50.70, ~b! 0.80, and~c! 0.90. Contours are as

in Fig. 4.
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reduces toM 8n cot(nu8). Then a redefinition of the variabl
to u95nu8 yields an integral of the form of Eq.~76!, which
implies

PMn,M8n
~↑ ! S d, 2p j

n D5PM ,M8n
~↑ !

~d,0!. ~79!

Thus, for w52p j /n, up-going-level populations are sti
given by the analytical result~78! for w(mod2p)50, at least
near the intersections@Mn,M 8n#, except for an inflation by
a factor ofn along them axis. Note, however, that a com
parison of this rescaling with a numerical calculation
Pmm8
(↑) (d,w) has found it to hold accurately only in the e

treme diabatic limit~e.g.,d.0.9!.
When m is nonintegral or even irrational, one can st

observe quasirevivals in the time evolution. Figure 9 sho
Pmm8
(↑) (d,w) for a very diabatic case and three slightly diffe

ent values of the number of phase cycles per unit of ac
a[1/m5w/2p' 3

8. As expected, the rational case@Fig.
9~a!#, with numeratorj53 and denominatorn58, displays
prominent resonances alongm58, 16, 24, and 32, as well a
smaller peaks along constant-m lanes approximately one
Fi
f
k
n
on
e

y

er

rs

a
te
f

s

n

third of the way between the main lanes. The latter re
nances are made plausible by a continued-fraction expan
of a for this case:

3

8
5

1

21
1

11
1

2

'
1

2
→

1

3
→
3

8
, ~80a!

where the chain of ‘‘convergents,’’ which follow from keep
ing successive denominators of the expansion, represent
better approximations to the actual value ofa @20#. On the
basis of these estimates ofj /n, resonances are expected
spacings ofDm5n52, 3, and 8. With the assumption tha
improved values produce more substantial peaks, the app
ance of subsidiary resonances for rational but noninte
values ofa51/m is predictable.

Turning to the irrational cases in Figs. 9~b! and 9~c!, we
see that the evolution in these cases is similar to Fig. 9~a! up
to the first main lane atm58 and thereafter less and les
similar, the more so for Fig. 9~c!, whose value fora departs
further from3

8. For Figs. 9~b! and 9~c! we have the continued
fractions
1

A7
5

1

21
1

11
1

11
1

11
1

41
1

11�

'
1

2
→

1

3
→

2

5
→

3

8
→

14

37
→

17

45
→••• ~80b!

and
32A5
2

5
1

21
1

11
1

11
1

11
1

11
1

11�

'
1

2
→

1

3
→

2

5
→

3

8
→

5

13
→

13

21
→••• . ~80c!
the
ve
re-

ral
di-
by
a
he
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er of
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ble
Although the correspondence is not perfect, we see in
9~b! the expected peaks alongm5n52, 3, 5, 8 and some o
their multiples given in Eq.~80b!. The especially large pea
atm537 may be ascribed to a more substantial correctio
a convergent coming from a large denominator of the c
tinued fraction~4 in this case!, which supports the abov
assumption regarding peak heights.~The extra peak along
m529 follows from approximating the fifth convergent b
replacing the denominator 4 with 31 1

1, producing the inter-
mediate fraction11

29.! The fraction ~80c! is related to the
golden mean, so its expansion produces the Fibonacci s
of integers. The peaks seen alongm53, 5, 8, 13, 21, and 34
~and their multiples! indeed correspond to the denominato
n from this series.

The use of continued-fraction convergents should also
ply in the adiabatic limit. Though the arguments presen
g.

to
-

ies

p-
d

here rationalize the appearance of resonance peaks in
time evolution on a LZ grid, the association of their relati
heights with particular convergents awaits quantitative p
diction.

VI. CONCLUSION

The AWeb model considered here exhibits two gene
classes of coherent time evolution, roughly adiabatic and
abatic. When the two-level interactions are governed
adiabatic transitions, the redistribution of probability from
single initial state follows a pattern that recurs in time in t
neighborhood of the purely adiabatic path. Then only tho
states tend to be populated whose levels lie near the cent
the manifold-mixing region. When, on the other hand, t
two-level transitions are predominantly diabatic, apprecia



g
ave
it of
ed

batic

ts

es
ely
and
o-
.
h
er
e

air-
e

ant
lly

he
se

u-

-

rily
een

on
and

r
li-

cts
atic
s
re,
ds.
es:
nd

s to

st
ic
er-
atic
at

ies

56 249COHERENT TIME EVOLUTION ON A GRID OF . . .
FIG. 9. Three-dimensional and contour plots of probabilit
Pmm8
(↑) (d,w) vs (m,m8) in the diabatic approximation@cf. Eq. ~75!#

for fixed d50.95 and nearly equala5(w/2p)(mod 1): ~a! a
5

3
850.375 00, ~b! a51/A750.377 96..., and ~c! a5(32A5)/2

50.381 96... . Contours are as in Fig. 4.
probability is found only along lanes of certain up-goin
levels. These levels are parallel to the initial one and h
quasiregular spacings that depend sensitively on the un
phasew. One might also distinguish the more sharply peak
constructive interference patterns forw(mod2p)50, which
are to be found for any transition probabilityD, but these
may be viewed as special cases of the adiabatic and dia
distributions.

It is interesting that many similar models that involve se
of interacting levels undergoing forces linear int display the
same partitioning of a state’s time evolution into two typ
of distributions: a sharp diabatic one prevalent at relativ
fast ramps and an adiabatic one, possibly more diffuse
involving more complex structure, at slow ramps. The tw
level LZ model itself@3# is of course the prototypical system
In the Demkov-Osherov model@5#, one level passes throug
and interacts with a manifold of parallel levels; the interlop
exponentially decays and diffuses into the manifold. W
have generalized this here in the AWeb model to the p
wise interaction of levels from two whole manifolds. Th
extension of one up-going interloper~Demkov-Osherov! to a
set of coherently evolving up-going levels~AWeb! accord-
ingly extends the decay of that one level to the reson
population and decay of a set of levels parallel to an initia
populated one. The PWeb model@6#, the incoherent version
of the Aweb model, also finds a sharp distribution in t
extreme diabatic limit, but otherwise there is a single, diffu
bump in the mixing region of the grid.

A subtle point is that the incoherent probability distrib
tions for the PWeb model at givenN ~see the Appendix! do
notgenerally follow from the coherent AWeb model by sim
ply averagingPmm8

(↑) (d,w) or Pmm8
(↓) (d,w) over w after tra-

versal of a fixed numberN of avoided crossings@21#. A
measurement that destroys an interference patternafter the
system has already evolved coherently will not necessa
reproduce the pattern arising from evolution that has b
incoherent throughout.

This general twofold behavior of the patterns of evoluti
has also been observed in investigations of Stark states
SFI of Rydberg atoms@8#. The ‘‘bowtie’’ model @4# of state
mixing among nonparallel levels of a single Rydberg
n-manifold identifies a high probability of only diabatic o
adiabatic transitions, in the context of a multilevel genera
zation of the two-level LZ effect. Most generally, for low
ml , high enoughn, and fast enough ramp rates, one expe
to see a sharp diabatic signal from a succession of diab
transitions, whereas at lowern or Ḟ, in most cases one see
a more diffuse adiabatic signal, possibly with some structu
from mostly adiabatic transitions among Rydberg manifol
A precise analysis of SFI is complicated by several issu
Each manifold’s levels are not parallel; the couplings, a
hence the values ofD, w, andFS , vary from one anticross-
ing to the next; the avoided crossings might be so broad a
be not even distinct~as in Na!; and in the region of a Stark
map below the classical ionization limit, for givenn, not 2
but at least 3n/16 manifolds will cross and mix. The greate
difficulty in grafting simple models onto realistic atom
problems stems from the extreme sensitivity of any interf
ence to the dynamical phases, especially in the adiab
limit, and the rapidly increasing accumulation of phase
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higher fields as nonparallel Stark levels diverge.
In a recent theoretical study of Stark maps@22# and SFI in

Rydberg atoms, direct numerical integration of the Sch¨-
dinger equation, including couplings among all levels, p
duced field-ionization populations that qualitatively mim
the diabatic and adiabatic signals observed in SFI exp
ments@23#. These calculations advanced a cruder study@24#
of SFI that considered only two-level couplings but also p
duced reasonable quasi-ionization signals at a qualita
level. More accurate calculations are planned and are ne
to understand how models such as the AWeb can be app
to the interpretation of experiments on coherent-state mix

Note added in proof.Experimental evidence of quantum
resonances, recurrences, and suppression of diffusion
Landau-Zener grid realized in a classical optical system~an
‘‘optical Galton board’’! has been obtained by Dir
Bouwmeester, Ph.D. thesis, University of Leiden, 1995~un-
published!. Steven van Enk~private communication!.
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APPENDIX

The incoherent PWeb model of Ref.@6# requires no phase
information and so depends only on the diabatic transit
probabilityD. Generating functions for up- and down-goin
probabilities are obtained by following the steps detailed
,
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n

Sec. II, Eqs.~24!–~29!, with the following changes:~i! the
operatorsĵ and ĥ commute~effectively, w50! and so are
just dummy variables@13#; ~ii ! the 232 amplitude-mixing
matrix (a

2d
d
a) in Eqs.~25! and~27! must be replaced by the

probability-mixing matrix (A
D

D
A) whereA[12D; and~iii !

the amplitudesAmm8
(↑) (d,w) and Amm8

(↓) (d,w) should be re-

placed with probabilitiesPmm8
(↑) (D) andPmm8

(↓) (D) in all for-
mulas. In analogy to Eqs.~24a! and ~24b! we define the
generating functions

P~↑ !~D ![ (
m50

`

(
m850

`

Pmm8
~↑ !

~D !jmhm8, ~A1a!

P~↓ !~D ![ (
m50

`

(
m850

`

Pmm8
~↓ !

~D !jmhm8. ~A1b!

These functions satisfy the 232 matrix equation

SP~↑ !~D !

P~↓ !~D ! D5S 10D1S h
0

0
j D SDA A

D D SP~↑ !~D !

P~↓ !~D ! D , ~A2!

whose solution is

P~↑ !~D !5
12Dj

12D~j1h!1~D2A!jh
, ~A3a!

P~↓ !~D !5
Aj

12D~j1h!1~D2A!jh
. ~A3b!

Expansion of these functions in powers ofj andh and iden-
tification of their coefficients with the probabilities in Eq
~A1a! and ~A1b! lead to all the PWeb results found in Re
@6#.
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bings and F. B. Dunning~Cambridge University Press, New
York, 1983!.

@2# T. F. Gallagher,Rydberg Atoms~Cambridge University Press
New York, 1994!.

@3# C. Zener, Proc. R. Soc. London, Ser. A137, 696 ~1932!.
@4# D. A. Harmin, Phys. Rev. A44, 433 ~1991!.
@5# Yu. N. Demkov and V. I. Osherov, Zh. Eksp. Teor. Fiz.53,

1589 ~1967! @Sov. Phys. JETP26, 916 ~1968!#.
@6# D. A. Harmin and P. N. Price, Phys. Rev. A49, 1933~1994!.
@7# V. N. Ostrovsky, inAbstracts of the Eighth International Con

ference on the Physics of Electronic and Atomic Collisio
Belgrade, 1973, edited by B. C. C˘ obić and M. V. Kurepa~In-
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to the topological ‘‘adiabatic phase’’ introduced by M. V
Berry, Proc. R. Soc. London, Ser. A392, 45 ~1984!.

@12# The result of Eq.~8! for the area of the parallelograms th
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derived using simple geometry. The vertical spacings« and«8
and slopesp andp8Þp of each manifold’s levels are arbitrary
An exotic but obvious extension would be to any grid of leve
$Em(t)% and$Em8(t)% that tessellate theE-t plane; the phasew
would still be given by the area of each ‘‘tile.’’

@13# The expansion parametersj and h here play the respective
roles thatx21 andx played in Sec. V of Ref.@6#.
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m1m822k diabatic ones, of whichm82k are of the up-to-up
variety, for a path probability ofA2kDN22k. The amplitude
factors of the present Eq.~61! therefore partition themselves a

a2k(2d)m82kdm2k @m82k[uk in Eqs. ~11! and ~12!#, with
the multiplicity of each such type of path the same in bo
models. Here, of course, one must square the series.

@16# Yet another form for the series~61a!, good form.0 andm8
.0, is

Amm8
~↑ !

~d,0!5a2dm2m8 (
k50

m821 Sm1k
m D S m21

m8212kD ~2d2!k.
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