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Coherent time evolution on a grid of Landau-Zener anticrossings
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A model of the time evolution of two interacting Rydberg manifolds of energy levels subject to a linearly
ramped electric field is solved exactly in the Landau-Zeih&r) approximation. Each manifold’s levels are
treated as linear in time, parallel, equally spaced, and infinite in number. Their pairwise interactions produce a
regular two-dimensional grid of isolated anticrossings. The time development of an initially populated state is
then governed by two-level LZ transitions at avoided crossings and adiabatic evolution between them, param-
etrized by the LZ transition probabilit and a dynamical phase urit The resulting probability distributions
of levels are given analytically in the form of recursion relations, generating functions, integral representations
involving D and ¢, and in certain limits by Bessel or Whittaker functions. Level populations are mapped out
versus location on the grid for a range of cases. Interference effects lead to two principal types of probability
distributions: a braiding adiabatic pattern with revivals for snalhnd a diabatic pattern fd»—1 in which
only certain levels parallel to the initial one are appreciably populated. The sensitivity of the coherent evolution
to ¢ is discussed, along with the relation of this model to others and to selective-field ionization.
[S1050-294{P7)06206-9

PACS numbefs): 31.15-p, 31.70.Hg, 32.60:i

[. INTRODUCTION general, the diabatic pattern of the various models is domi-
nated by a single nonadiabatic evolutionary path, even when
A common problem in atomic physics is the time evolu- the level in question is itself a member of a second group of
tion of a system with many potential-energy curves that crosfevels crossing the first. This situation is significant only for
one another. The dynamics depends on how strongly ththe most rapid traversals and only if all anticrossing gaps are
states are coupled, the rate at which the curve-crossing reelatively narrow.
gion is traversed, the level spacings, and perhaps quite sen- The more common, adiabatic pattern appears as an overall
sitively on coherence effects among the evolving states. ldliffusion of population among levels that avoid crossing one
the spectra of Rydberg atomsmanifolds interact and cross another. It might include enhancement of particular states’
in just this way under the application of increasing dc elec-amplitudes owing to interference. The slower the traversal
tric fields. As a case study in the coherent time evolution ofrate or the larger the anticrossing gaps, the narrower will be
interacting sets of states, Rydberg atoms offer several advathe spread of significantly populated levels about the single
tages[1,2]. Experimentally, their levels are easy to excite, path that would be found in the adiabatic limit. Such diffu-
while external fields can be tuned to control level splittingssive adiabatic broadening is the principal feature of the time
arbitrarily. On the theoretical side, Rydberg spectra havevolution of two groups of interacting levels when coherence
been widely studied and are often amenable to both simpleffects are ignored6]. In the present article we investigate
models and accurate calculations. the role of coherence in the time evolution of two interacting
Several modelg3—-7] of interacting manifolds exhibit two manifolds of parallel levels, specifically as it affects the adia-
generic classes of time evolution patterns, which may bévatic and diabatic types of evolution.
designated roughly as ‘“adiabatic” and “diabaticli.e., The aforementioned patterns have been realized experi-
nonadiabatit Different cases can be understood as multi-mentally in the many applications of selective-field ioniza-
level or multiple-crossing elaborations on the basic Landaution (SFI) of Rydberg atom$8]. SFl is used principally to
Zener model 3] of two coupled levels forming an avoided infer Rydberg state populations from ionization signals based
crossing as a function of time. For example, within a singleon some fairly simple ruleg8(a)] for predicting the pathway
n-manifold of Rydberg-Stark states, the levels fan out nearlyan initial state will most likely take through the thicket of
linearly from a(nea) degeneracy at zero electric field; in Rydberg-Stark levels. The identification of general patterns
nonhydrogenic atoms all levels of the manifold are coupledf evolution in such an evolving many-level system, includ-
by the atomic core to form a multilevel anticrossing. Whening the degree of diffusion of a state among its neighbors and
driven by a linearly ramped electric field, there is a strongthe appearance of unexpected resonances, is an important
propensity for an initially populated state to undergo either astep in the reliable interpretation of SFI signals.
purely adiabatic or diabatic transitidd]. In the Demkov- In a previous articl¢6], a model for two interacting mani-
Osherov mode]5], on the other hand, an “interloper” level folds of Rydberg levels was treated in the Landau-Zener
varies linearly in time while coupled pairwise to each mem-(LZ) approximatior{3]. Each manifold consists of an infinite
ber of a group of parallel levels. The interloper traverses theet of parallel, equally spaced levels that vary linearly with
group with a survival probability that stems, in effect, from atimet through some controllable parameter, e.g., an external
sequence of nonadiabatic transitions through the group. Ielectric field. The manifolds cross and the two sets of states
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interact as a function of. It is further assumed that their
coupling is appreciable only in a small neighborhood of each  (a)
two-level crossing9] and that this coupling is the same for

all pairs of states. The resulting spectrum is a network or grid 8
of pointlike avoided crossings of two bands of linear energy
levels. Interference among the states was ignored in order to
model the average, gross structure of the probability distri-
butions as a function of time, the field’'s ramp rafe
=dF/dt, and the coupling strength. We will refer to Ref.

[6] as the PWeb model because only probabilifiest am-
plitudes were mixed.

In the present article we keep the LZ approximation but
restore interference effects to describe coherent time evolu-
tion on the grid; this model is called the AWeb since we 0
properly add state amplitudes. A variation on the AWeb has
been investigated by Demkov and co-workgr$, without
the assumption of pointlike interactions between pairs of lev- —R
els. Although Ref[7] provides the exact energy spectrum of
the system and reduces the time-dependent problem to a set
of coupled, two-level kicked rotors, the full range of features

105

Energy

of the time evolution of two coupled manifolds has not yet (b) 107
been investigated.
To define the AWeb model more explicitly, consider two 8
infinite sets of equally spaced energy levels that vary linearly
with time t according to .
>y
En(t)=pt—me, E (1)=p't+m’e’. (1) %" Ak
I ?
This level map is shown in Fig.(&) for the general case of r g
unequal spacings and slope magnitudes; Filg) ¢hows the 2f
case where the level spacings are the same for both mani-
folds ¢’ =¢, while their slopepp=dE/dt are equal and op- ok
positep’ = —p<0. Employing the same notation as in Ref.
[6], the upward-going levelg,, are numberedn=0,1,2... ”

from the top down, while the downward-going ortgg, are
labeledm’=0",1",2',... from the bottom up(The indices
m andm’ should not be confused with the magnetic quan-

tum numbenm, .) . . FIG. 1. Generic maps of the energy levély for the AWeb

In Sec. Il we use the tWO'le\_IEI LZ result to obtain a_mpll- model vs time: (a) skewed map with unequal spacing and asym-
tudes for the up- and d_own-gomg Ie\_/els of th_e AWeb in theetric slopes andb) symmetric map with equal spacing (= )
form of recursion relations, generating functions, and inte-ynq opposite slopep(= —p). Shaded areas shows a unit of action
gral representations. We present results for a specific case gf[eq. (8)]; see Ref[12].
constructive interference in Sec. lll. We discuss the adiabatic
and diabatic limits in detail in Secs. IV and V and give

-2 0 2 4 6 8 10
time

. . X . me+m'e’ €
analytical results for the up-going amplitudes. Conclusions trm = - — (m+m’), (2a)
in Sec. VI touch upon the relation of the AWeb to other P—p oo, 2P
models of the time evolution of interacting manifolds and to p'=-p
experiments using selective-field ionization. A simplified
derivation of PWeb probabilities is included in the Appen- pm'e’+p'me 1
dix. Emm= Y 5 e(m —m), (2b)
p p 8’=8 2
p'=-p
1. AMPLITUDES

where the final expressions apply to a symmetric grid. Al-
To derive an analytical expression for the coherent-statthough neither slope need be negative, we will refer to the

amplitudes, we recast the time evolution on the LZ grid as states with levels(1) as “up-going” and “down-going”

two-level problem driven by a generating function. Follow- states, respectively. We assume here that only nhke0

ing the approach of Ref.6], we label the intersection of level is populated just prior to the intersections tatO.

levels E,(t) and E»(t) as[m,m’]. This corresponds to Given this initial condition, what are the subsequent state

time and energy populations as a function of time? Specifically, we will de-
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rive the amplitudesdlgr)n,(d,go) andAfﬁZn,(d,go) for arriving

at intersectionfm,m’] on the up- and down-going levels
En(t) andE,, (1), respectively. These will be built up from

(i) the nonadiabatic evolution through each avoided crossing

and (ii) the adiabatic evolution between avoided crossings

A. Transitions, dynamical phases, and paths

The basic two-state LZ problef8] involves two inter-
secting energy levelsn andm’ that vary linearly in time,
with slopesp andp’. At time t thesediabatic states have
amplitudesC{(t) andCl!)(t) that are coupled by an inter-
action v, =(m|H|m’) only at the point of their degen-
eracy ¢mn ,Emn). The probability of beginning in either
state|m) or |m’) at t<t,,,, and making a diabatici.e.,
nondadiabatictransition to the same state @ty is

|Umm'|2
m !
lp—p’|
The probability of making an adiabatic transition, i.e.
switching between up- and down-going levels, is jést

=a?=1-D (0<a<1). The amplitudes become mixed by
the interaction according 3]

|

where the Stokes phaskg is a measure of relative phase
accumulation induced by the coupling. In our uniform net

o=sdsl. (3

DEdzzex;{ -2

C'(=22)
Co (=)

Cn(+22)
Cot (+2)

d

—d
ae 1®s
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FIG. 2. Two interfering paths from the initial leveh=0 at
intersection[0,0] to up-going levelm=4 at intersection[4,6']

' (marked by X). Energy levels(1) are labeled bym andm’. A
typical pathj (one of 126 possible paths for these end poirgs
shown by the heavy solid curve; it has area1Zhaded as defined
by the action integral in Eq.(11), while its amplitude is
—d*a®e'’¢. Another pathj’ is shown by the heavy dashed curve;
it has area 12 (shadefiand amplitude- d®a®e'*?#. The difference
of their actions/dt[W;(t)—W;(t)]=5¢ is the net area enclosed
by the loop formed by pathsandj’, as shown, and enters into the
interference term between the two paths in E®). When either

-pathj or j’ continues on to intersectidd,7'] its action increases

work of such anticrossings, we assume that every two-statey me=4¢ [Eq. (20)], as shown by light shading.
interaction is described by the same values of the parameters
d and®g and that the interactions are sufficiently localized (5) in the space of all statgsn) and|m’). The topology of

in time for the asymptotic mixing4) to obtain. The phase
&4 can then be absorbed into all the amplitudf%%(t) and
hence ceases to be relevant hiir@].

the network guarantees that only paths for whinh=m;
andm;=m; have nonzero amplitudes.
During an intervalt;<t<t,, any two distinct paths be-

Between these 2 2 interactions the states are assumed tgween[my,m;] and [m,,m;] will accumulate dynamical

evolve adiabatically. The levelsn and m’, between their
intersection atfm,m’] and their arrival at intersections
[m,m’+1] and[m+1,m’], respectively, acquire the usual
dynamical phase factofd1]

(cﬂ)(tm,m,ﬂ)) ~ ( exd —iS\) .1 0
At ) 0 exif ~iSy. 1]
et m,)) -
X ' ,
Co ()
where the actions are
M tmm +1
Smym,ﬂzft , dt E (1), (6a)
(1) tm+1,m’
Sm+1’m,=f dt E,(t) (6b)

mm

andt*=lim__,+(t¥ €) indicates the time just before or af-
tert. Thepathfrom any intersectiofim;,m;] at timet, to a

phases that interfere as gauged by the phase difference

t
AD= | “dt AE()

ty

)

for the two paths, as illustrated in Fig. 2. Since EQ.equals
the area between the two patisp for the grid of levels(1)
is always an integral multiple of the unit of action

®

’
e =&

p'=-p

which is the area of one parallelogrdd?] between pairs of
adjacent up- and down-going levelsee Fig. 1. The two
parametersD (or d) and ¢, representing state-mixing and

interference effects, completely characterize the present

model, when supplemented by the boundary condition

A ) =C (o) =1, A (d,0)=Ci! (1) =0
©

later one[m,,m;] att,>t,, is characterized by a sequence att=0. All other states have zero amplitude &0 owing to

of alternating two-state mixing&}) and adiabatic evolution

normalization. Althougtd and ¢ are regarded here as inde-
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pendent parameters, in defining a model of two interactinghat path and then’ axis; see Fig. 2. This area is an integral
Rydberg manifoldsn and n’ they are related through the multiple n; of the action unity [Eq. (8)] with n;=0:

field ramp rateF in |p—p’|~2F(n?+n’?). The level spac- t

. 5 : A4 It —4 ; mm'’

ings atF}l/3n are typu;allya n~*ande’'~n'"% whﬂg f dt[Wo(t) —W;(t)]=n;¢; (14)
the core-induced couplings can be expresseduvasy| tog

=u2ee’, wheren is an average low-quantum defect. For . ) . .

a given atomic parametér, Egs.(3) and (8) imply thatd therefore, the difference integrals in E2) are also integral

and ¢ are related by multiples (;—n;,) ¢, as required. Obviously, the same con-
. cepts invoked for the up-going amplitudes in E¢kl) and
d=exp(—m’¢), ¢~(3Fni®)~1 (100 (12 also apply to down-going amplitude&fﬁ%,(d,cp).
Note, however, that our fundamental assumption of isolated B. Generating functions

anticrossings requires thlat,, | <e,e’ or|u|<1; thus val- _ _ , o
ues in the range € ¢=0O(1) are necessarily tied to the di- Given the constrain(9), successive appllcat|0n§ of Egs.
abatic limit d— 1. On the other hand, the amplitudes will (4) @nd (5) lead to all state populations =0, which we
depend not or but only one(mod2r), so the full range of  12bel by the next intersectigm,m’] as in Eq.(12):
idnterference effects can be expected for roughly any value of D
mm’
We introduce here a convenient bookkeeping method for 0
accounting for the phaség). Consider4'! (d,¢), the total Pram

mm’
amplitude for all paths fronj0,0'] that arrive af m,m’] in
the up-going statém). Each path, numbereidor j’, traces
out a sequence of diabatic level segmdi@ and this se- N=m+m’'=0, (16)
quence defines a continuous energy functigft) describ-
ing the path. IfC;(t) is the amplitude for each path as func- which marks the number of avoided crossings that have been

tion of time, then to within an overall phase factor the netencountered between the initial tinkg, , and the approach

(d,@)=|A0" (d, @) 2= |cP(tm)I? (159

mm’

(d,@) =] A (d @) 2= Cr) ()2 (15b)

mm’

Following Ref.[6], we define the “generation” number

amplitude is to [m,m’] at timet_ . For fixedN we then define the
polynomials
AN (d, @)= > [0 (tym)|(— 1) "
painsi (T (T m, m’
: AN @i&m= 2 A (d )€1 o -,
Xexp{if " dt[WO(t)—Wj(t)]> (12) (173
togy
N
and the total probability is AD(d, 1€, 7)= D A%r)nr(d@)fm??mfm _

m’'=0

17b
Pram (610)= 20 20 ity )G (ty )| (= 1) o
by where ¢ and 7 are expansion parametdik3] whose powers
tony allow us to keep track of the various stafes) and|m’) at
Xexp(if dt[Wj,(t)—Wj(t)]), (120 fixed N. With each successive generation, Ms:N+1, a
too' pair of states is first mixed at eafm,N—m] according to
Eq. (4) and then each level acquires another dynamical phase
factor according to Eq(5). In the process, up-going levels
) e —1 B _ , wind up approachingm,N+ 1—m] with m’ increased by 1,
B =1 ("0 ) |Gt ) | is @ product ofn+m’ fac-  while down-going levels arrive dm+1,N—m] with m in-
tors ofd’s anda’s; andu; is the number of up-to-up travers- creased by 1. This can be summarized by combining the
als of avoided crossings along pattifrom the amplitudes series(17a and(17b) for N=0 into a two-component vector
—d in Eqg. (4)]. The action integral$6) depend on the arbi-
trary zero of the energy scale to which the levEls(t), (Aml(d,go;g,n)) (77 0\[-d a (Aﬂ)(d,go;g,n))
AW(d gi€,m))

whereW(t) is a reference function defined below. In Egs.
(11) and (12), the sums range over the possible pdik

En (1), andW;(t) are referred. Here all energies are referred | 4(1) (g o 0 ¢la d
et ; . ; N+1(d,@:€,7m)

to an arbitrary functionVy(t), which preserves allelative (18

phasesin Eg. (11) and hence alphase differences Eq.

(12). We define the action integrals in E¢L1) to be the The phase informatio(b) will be incorporated intay and

difference betweeiV;(t) and the reference path & SupposeN avoided crossings have been traversed and
consider the possible fates of pgtafter negotiating the next
Wo(t) = Eo(t), tog=t=tp,, (13 avoided crossing. If this path emerges on the down-going
()=

level, the next intersection it approaches is still marked by
the same value ain’ but by the next highesh; one more
In a skewed coordinate system with abscissand ordinate factor of ¢ is acquired in the second line of E(l8). The
m’, the integral for pathj simply equals the area between dynamical phase as defined in E¢$3) and (14) does not

Em/(t), tom/$t$tmmr .
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change. If, on the other hand, the path emerges on the ufdhe initial condition is given in Eq(9). Now summing Eq.
going level, the relevant value ofn does not change, (18) over N, the recursion relation$19) translate into a
whereasm’ increases by unity anthe path’s dynamical propagation statement that applies to the whole map yet is
phase increases by gnin the exponent in Eq(1l); thisis  condensed into the form of a two-state mixing problem
illustrated in Fig. 2. Thus the phase associated with each path

passing throughm,m’] acquires no extra phase upon its AD(d, o:%,p) 1 e’ 0\/—-d a

advance tofm+1m’], but does pick up a phase factor AV, @;%,p) =lo/ T o &*\a d

e'™? if it advances td m,m’+1]. The amplitudes for suc- .

cessive generations then satisfy the recursion relations X(A“(d,(p;x,p) 25)
_ AV(d,@:%,p) )"

A (di@)=[—dAL L (d @) +adl i (de)]e™,
(198 with

A(l) d _ A(T) d +dA(l) d 2 2
mm'( ,QD) a m_j_'mf( i(P) m—l,m’( v(P)i d“+a“=1, O=d,a<l1. (26)

(19b)

The inhomogeneous “seed” term fan=m’=0 must ap-
pear here to make up for the absenceNef0 on the left-
hand side in Eq(18). Notice that the factors in Eq$243
and(24b) are ordered “normally,” so that all factors involv-
ing the operatop lie to the right of those withx. This is
significant because the two coupled equati(®® cannot be
solved as a simple 22 eigenvalue problem: The operator
PEM s eimegmy, (20) eif"p appeatrs to tht_'eft of the amplitudes, which greatly com-
plicates an analysis by diagonalization.
which results in the correct phase factors being appended to
all paths. Both expansion parametérand » in Eq. (18) will C. Series solutions and generating functions
henceforth be treated as operators and expressed in terms of for the amplitudes
noncommuting, positionlike and momentumlike operators ] o ] -
andp: Th‘q matrix containing the phase-generating factgﬁi@
o X ande’™ in Eq. (25) increments the power of eithér or £ in
f=eX, p=evP  [x,p]=i. (21)  the generating functions on the right-hand side by one. This
R increasesN=m+m’ by one: Every state evolves through
For an arbitrary polynomial functiori(x) the translation one more avoided crossing. Recursive substitution of the

which completely determine the system’s evolution.

To encode this information into E¢18), we regardzy as
an operatory that measures the power 6fin each term of
the polynomialsA{’(d, ¢; &,7) and A{(d,¢; &, 7) and ef-
fects the replacemerf—e'¢£. This behavior in turn pro-
duces

property two-vector into itselfN times yields the evolution through
FioP S amieP— £(% N generations explicitly. This produces, in effect, a Dyson
e ' Pf(x)e ' *P=f(X+ o) (22 series: The initiaN=0 term generates the amplitudes for
N successiviN>0,
implies
oPaikemioh aifeit  or S Feai#}3 AdeiEn) [ 0)(—d a|]Y1
+ippaix iop — AlXale —ale N 2 _ -
e ee e*e or pé=¢€'%ény, (23 (Aﬁ,“(d,cp;fﬁy) = (0 Hla d 0). (27)

so the substitution&21) indeed produce Eq20).

Matters are greatly simplified if we now generalize the This generating function is exact and, together with Etj8)
procedure of Ref[6] in order to treat all up-going ampli- and(23), provides the basis for a computational scheme for
tudesAﬁZﬂ,(QQD) over the entire grid as a single entity and obtqining amplitudes and pro'babilities in this model. Nu-
likewise treat all down-going amplitudeAfﬁ?n,(d,cp) as a Mmerical r_esults are pre_senf[ed in Secs. llI-V.
second distinct object. We therefore define generating funcl-E Eq;émofn(RZ?% |565|r_n|larr:n r?trLilct_ure ]EO the PWﬁeb result,
tions of the operatorg and p that extend the sums in Egs. . q. (39 of Ref. [6], in which all inter erence eflects are
(179 and (17b) to all valuesN=0, i.e., to allm=0 and |gnored[13]. The present result, however, ',S Ies; amenabl_e

to a statistical analysis. To extract the paths’ relative dynami-

m'=0, cal phases, all products must be brought into the normal
% o ordering of Eqgs.(24). Owing to the difficulty of disentan-
AV, o;%,p)= >, AV, 06, 7)=> > gling the various factors of' P ande™ for all 2N paths, Eq.
N=0 m=0 m'=0 (27) for arbitraryN cannot be analyzed in a straightforward
M imiim’ ob way in all cases.
X A (d, @)e™e™ #P, (243 On the other hand, Ed25) is a simple pair of operator
. . equations that can be solved exactly. One has only to invert
~on ~ A the matrix
AV, eixp)= 2 AV(dgiE =2 X
N=0 m=0 /=g R R
S 1 1+dyp —ang
XALL(dg)eme™ P (2ap ¢l ek 1-ag) 29
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taking into account the noncommutativity of and ¢ via A(ri?+1,m—l(d’(p):“4%,)r11'(_d'(P)
Egs.(21) and(23), to find
. =(~1)™ ™AL (de), (39
AD(d,@;6,7)| A(l)
AN, @&, 7) =Glo which holds independently af and ¢. The sign < 1)N"1
follows from the fact that a down-going level can only be
[1+d(77 gei?)— 775] 1(1 dge"") reached from the up-going initial state through an odd num-
[1+d(77e"€°—g) gy,] lag " ber of adiabatic transitions, so that the number of powers of
(29) d must be oddeven if N=m+m’ is even(odd). Equation
A (34) expresses a symmetfto within a phasgof the down-
The operator matrbxG plays the role of a propagator. The going amplitudes about the origin of a grid shifted to inter-
generating functiong29) are also exact: When combined section[1,0']. Such a relation is identical to that found for
with the definitions24a and(24b), they yield all amplitudes ~ down-going-level probabilities in the PWeb modeH].
over the entire grid. The analog of this result for the PWeb In & similar way, the upgoing amplitudes of EQ9) can
model, where noncommutativity gfand 7 is not an issue, is D€ rewritten as
given in the Appendix. . A .
A symmetry property of the down-going amplitudes is AD(d,@;&,7)= 7l 1+d(7— &) — &) H(1—-d&) 7 *
revealed by examining the kernel of their generator in Eq.

— - NSt o W
(29). After passing the factog to the left of [ 17 in =1t 91+d(n=8)—&n] 7 (¢-d),
AW(d, ¢: £, %), one has (35
AD(d, @& 7)) =akg(d, ;& 7) where this time a factor oh has been swept to the left of the

L. entire expression. Although the coefficiem&ﬂ?n,(d,cp) de-
A S A #2011 cimi
— AL d,o)E™n™ (30 pend on a kernel [1+d(n—&)—&7] similar to
mzzo fz: mmy (0, 2) €77 (30 9(d,¢;£,7), a simple symmetry like Eq34) is not forth-
coming owing to the factorg—d) in Eq. (35).

where Specific cases and limits emerge directly from E@§),

. . (31), and(39). At intersections with then=0 level, the am-
o(d,@; &) =[1+d(7—&)— &t plitudes are the coefficients @P (equivalently one can set

[’ [ fzo),

=a iy 2 A deEy (6D . L ,
=057 AL o (dygi& ) =[1+dy] L = AOm,<d,¢>=<—d(>ma

36

and the indices have been renamedm—1 ands=m’'.
The kernel(31) appears to be symmetric under interchange,
of ¢ and 7 if d also flips sign. This turns out to be the case
even thougﬁ;g% £7. Interchanging: and %, and therr and Er1n> 0(d,¢; E7)=0= AOm’(d ©)=0. (36D
s, in EqQ. (31) yields
A N The sequence of intersectioign=0, m’'=0] represents
9(d,¢;7,6)=[1-d(n— &) — &l successive diabatic transitions, defining a “purely diabatic
o path,” from which population leaks exponentially as
=a 1> > Agﬁ)lyr(d,cp)?f%’. 32 P (d,¢)=D™, as in the PWet6] and Demkov-Osherov
r=0s=0 [5] models. Since no levels are ever populated above this

] . o sequence on the grid, down-going levels have zero amplitude
On the other hand, the series expansiorg@d,¢;£,%) is  ynjl they cross then=0 level. Similarly, no up-going levels

homogenous in powers of(— ¢) and (¢). Hence an ex- are populated below their intersection with =0 excepthe
change ofy and& anda sign change af should produce the initial m=0 level itself. Them’=0 amplitudes are the co-

same joint weighting of powers'7° as in Eq.(31), if all  efficients of ° (or one can sej=0),
factors ¢ are instead moved to theght and all factors of R R
7 are moved to théeft: AEQ,:O)(dxp;&,;?):l = AR, @:&,7) = Smo

. A a (379
9(—d,¢;7,6)=[1+d(7—&)— &l *
o w and
=a! AL (d, @) €. (33 . . .
a2 2 Ahdeie. (9 AL, (it =ad[1-dE] T = AW(d.e:E7)

Comparing the amplitudes in Eg&82) and (33) we obtain ~]0, m=0

the relation “lad™ 1 m>o. (37b
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Other specific cases, for higher valuesnofandm’, can be  Each term on the right-hand side of the first line of E2p)
obtained explicitly for intersections between these extremesacquires an additional power @¢P, whereas the second

but their forms get progressively more complicated. line does not. The terms on both sides of EG&a and
In the diabatic limitd—1 (or a—0), the generating func- (40b) are therefore related by
tions give

. F+1(d,@; %€/ (™ *DeP=gleP[ —dF_,(d, ;%)

d—1 +aG,, (d,@:%)]el™ P,
(M m' (429
= ‘Amm’(l'QD): 5m0(_1) ) (38@ - ) B
G (d,@;%)e™ ¢P=e[aF, (d,¢;X)
AV 87 —— 0= A (14)=0, (38D £ A6 (d e R)]E™ . (42D

d—)l
The solution of these equations using Eg2) yields a re-

since the only path taken at very large ramp rates or for vergursion relation among the up-going partial generating func-
small coupling is the purely diabatic one, E®6). In the  1ONS:
opposite, adiabatic limitl—0 (a—1), one finds instead

ei(;(+(p)_d
A - Fm'+1(d:¢;§<):(—i<;ﬁ—))Fmr(d,go;f(-i-(p),
A(T) d,o; ,A - [1-7 -1 1—d¢€ ¢
(d,¢;€,7m) - [1- 7] 34
H 1 ’ a
= A (0,p)= 8 me™ (M D2, Gy (d, ;%) = (——)F (d,@:%). (43b
(393 e

. - -~ Finally, the amplitudes of up-going levels crossing thé
W(d,;é,m) —— 1-7n&] ™t =0 level are knowrjfrom, e.g., the coefficient of° in Eq.
d=0 (35)] to be nonzero only fom=0, soF(d,¢;X)=1. Then

iterating Eq.(439 yields

A(l) ( ¢):5m m,+1eim’(m'+1)<p/2
mm/ Lk y "

(39b _m o glkegik_g
For(de;%) =11 1—dd<ea® (449
Equations(39) single out the “purely adiabatic” path run- k=1 Ll—derre
ning through the center of the grid; it alternates between upz 4
and down-going levels, which approach intersections
[m,m] (N even and[m,m—1] (N odd), respectively. a6 m’ aikegix_ g
G (d9i%)= 7— 5 11 (44b)

] |k¢ iX
D. Integral representations of the amplitudes “k=1 1-de

In order to obtain the amplitudes in closed form, we solvefor all m’ =0, if we adopt the convention that the null-range
the pair of equationg25) by matching like powersy™  productll{ equals unity.

=¢eMmed The coefficient of each power ™ 9P in the From the definitiong41), the amplitudesﬁlﬁr)n,(d ¢) and
generating function$24) is itself a partial generating func- fnlzn,(d ¢) now follow from extracting the various integral
tion, a series in powers & powers ofe'* from F(d,¢;X) and G, (d,;X). For this
" purpose it suffices to treatas just a variabléd and to Fou-
AN, o5 p)= S Fo(de:X)emed, a0y Ner analyze Eq(44a:
m’ =0
elk(pela_d
. A= 5= [Tdoe 'mGH e
AD(d, ¢;%,p) = ZO G (d, ;%)™ ¢P, (40D (45)
m' =

Note that this and all subsequent representations are invari-
where ant underf— 6+ 2. This integral will first be evaluated
explicitly by analyzing its poles, then approximated as an
" inx integral representation of well-known functions. Once the
Fov(d, @:%)= Z A (d, @), (418 5 going amplitudest') (d,¢) are known, the down-going
ones follow from, e.g.,

Gr(diiR)=3 Al (dg)e™.  (41b A(rim'(d'*"):a_l[A("I')""“(d"P)e_'m“dA:‘Ir)”'(d’(P)&e)
m=
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or equivalent recursion relations obtained from E(i93a
and(19b). _

The substitutiorz=e'? converts Eq.(45) to an integral
over a counterclockwise contour of unit modulus in the
complexz plane:

m gikez—
1-dékez

(47)

The simple poles at=e ™ '*¢/d have|z|>1 whend<1, so
only the pole of ordem+ 1 atz=0 contributes to Eq47):

1
4
Zm+1

A(T)

rd -
mar (0 ¢) = 27 lz2j=1 k=1

. 1 dm ek¢z—d
A (€)= 1oy g | L, 1-dev 49
z=0

This result also follows by simple inspection of E¢é4a
and(41a. Alternatively, using/=e'? leads to

m’

zmlﬂ

<=1

|k<p d§
—i'k_v

(49

mm,(d so)— s

which now has no pole at=0 (if m>0) and whose simple
poles atz=de*¢ lie within |¢|<1 (if d<1). If m'=0, Eq.
(49) reduces taS,¢, as in Eq.(373; otherwise

m’

(d,p)= a2gm-m 2 elmktpH

k=1

1 de ke
I(k k)(p_l

(50

A(T)

mm’ ’

where &, is the complementary Kronecker delti van-

ishes only ifk=k; otherwise it equals unijy
Though exact, the general equatio@8) and (50) are

inconvenient for purposes of analysis. But note that each

factor in the product in Eq(45) has unit modulus and an
argument of the form @ (d;¥) + ¥, where

s

with 9= 6+Kke. The entire integrand is thereforesingle
phase factor with a sum of-dependent phases. With'
= 0+ ¢, the amplitudeg45) become

2w
mm,(d Q)= <D12—f de’ ex;{i[
+(m’—m)0’”,

where the phase prefactor is

sin &

. — —1
0(d;9)=tan Cosd—d

(51)

m' —1

2> 0(d; 6 +ko)
k=0

(52

q)l:ei[m+m'(m’—l)/2]qo_ (53
Figure 3 shows the phase functiéh(d;9) over the whole
range ofd: It has a single oscillation with extremal values
+[i7—cos {(d)] at 9==*cos Y(d), but becomes more

nearly triangular in the diabatic limit. Its limiting forms are
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FIG. 3. A log-log plot of the phase functiofi(d; 6) [Eq. (51)]
vs 6(mod2r) for d=0, 0.2, 0.4, 0.6, 0.8, and 0.99(d; )
changes from a sinusoidal form @t=0 to a sawtooth ad— 1.

O(d;9) —— d sin 9+0(d?) (54)
d—0
and
O(d;9) —— 7— 39— 6 cot(39)+0(6?),
d—1
Pl 55
“1ia =

where Eg. (55 is an asymptotic expansion good for
sirf(39)>15. More generally, Eq(51) can be expanded as a
convergent Taylor series id:

0

O(d; 9=, % d" sin(nd).

n=1

(56)

Then the coefficients al” in the integrand’s exponent com-
prise a sum ofn’ shifted phases,

m -1
Z sin(n@’ +kng)=c,(m’,¢)sin(nd”),  (57)
where
sin(zm’'ne)
n ,1 = — 58
Ca(m’, ) sning) (58)

and 0"=6'+3(m' —1)e.
the amplitudeg52) yields

Insertion of Egs.(56)—(58) into

Al (d, @)= i Taer
mm’( v(P) 22
< 2 .
Xex;{l[ > = dcy(m’,@)sin(ng”)
n=1

(59

+(m’—m)0”} ,
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with For eachd, the band within which up-going states are
most likely found is well approximated by the locus of inter-
O ,= P, ell(m=m)m' -Di2le_ gilmm’+12le  (go)  sectiong'm,m’] for which

which is still an exact result. Note that whelr= 0, Eq. (60) m

) . (63
reproduces the correct phase for the lif893. Equation m

(59), which suggests an integral representation of a kind of

“hyper-Bessel” function, simplifies to known representa- On @ map of energy vs time, this slope is simplf/dt
tions in the limits(54) and (55). =pd [for a symmetric grid, Eqs(2)]. As d increases the

band “angle,” of which Eg.(63) is the tangent, rotates
smoothly towards the purely diabatic path, froia/dt=0 in
the adiabatic limit tadE/dt=p in the diabatic limit. Such a

In the particular case of totally constructive interference rotation from adiabatic- to diabatic-path directions proves to
in the sense thap— 0(mod2r), Eq. (49) can be evaluated be a general feature of the AWeb probability distributions
directly for any value ofd. For m>0 the integral has one even fore#0(mod2r).
pole of orderm’ at {=d, which yields

IIl. CONSTRUCTIVE INTERFERENCE

IV. ADIABATIC EVOLUTION

Amn,(dp)zg (T:__ll)("; )(_1)m’—ka2kdm+m’—2k_ Adiabatic passage through the grid is characterized by
k=1 small D=d2. To lowest order ind, Eq. (54) or then=1
(618  term of Eq.(59) gives
This is precisely the form that one would obtain for . 1 (2w
Pﬂ,)n,(d,O) by following the derivation in Ref]6], if one Amm'(d’@):q’Zﬂ fo do
were to replace the sum of different paths’ probabilities con-
sidered there with a sum over the path amplitudes of Sec. sin(zm’ @)
Il A here[15,14. Similar reasoning then leads to Xexp i ——|sin¢"
sin(z ¢)
D om-1) m
o5 _
Al (d,0) gl ( K—1 (k_l +_,,+(m,_m)0”} , 64)
X(—1)m Ttk igmem e, (61D the ellipsis indicating terms-O(d?). Equation(64) is just

o ) the integral representation of the regular Bessel function of
The probabilities forp=0 andm>0 are now expressible as jntegral order—m’. Therefore, when adiabatic transitions
hypergeometric functionfsL5] dominate, evolution through the grid can be approximated by
the probabilities

Pﬂ,)nr(d,O)=Dm+m'|2Fl(—m,—m’;1;—A/D) i
sin(zm’ ¢)
—2Fy(1-m,—m’1-AD)]’, (629 Pl de)=|3,[ 2d ———|| , v=m-m".
sin(z ¢)
P (d,00=AD™ ™ “1|,F (1-m,—m’;1;—A/D)|?, (65)

(62 The Bessel-function behavior applies to sequences of inter-
. 2 _ 2 B sections of constanh—m’, i.e., to loci parallel to the time
with D=d” and A=1—d" Form=0, Egs.(48) and (46) s (for a symmetric gritl and straddling the purely adia-
give A (d,¢)=(—d)™ and AJ),(d,¢)=0, as in Egs. batic path. However, because the grid is boundedrby0

(3639 and(36b). andm’ =0, the argument of, representing the grid bound-
In Fig. 4 we present contour plots d?ﬂ%q,(d,O) and ary form’>m is 2dc,(|v|;¢) (at m=0), while form’<m
Pﬁfzn,(d,o) covering most of the range of values @f The and the samé@/| it is zero(at m’ =0). Therefore, these prob-

ability distributions are not quite symmetric abaut =m
even thoughJ,(x)|=]J_,(x)|; asd increases the distribu-
tions appear more “sheared(in a counterclockwise sense

adiabatic ¢l=0) limit has the single path approximated in
Fig. 4(@, where d=0.05; the diabatic limit(d=1, not
shown would have only the path followingn= 0. For inter-

mediate values odl, interference of many paths is such that abcl)r:ltli? ZSmWe resent three-dimensional and contour plots
non-negligible values op!!) (d,0) are confined mainly to a g P P

mm’ (1) D ;
narrow band in therg,m’) plane, along which it decreases of Pmm’(dfgp) and p(mm’(fj"p) fqr vfanogs small value_s of
and a fixed valuep= 37, while in Fig. 6 we plot just

as ~1/\/N. In the adiabatic limife.g., Figs. 4b) and 4c)] 0

this band is mirrored by a weaker one, producing a nearly mm(d:®) ~ for various  ¢(mod27) and fixed

symmetric pattern about the purely adiabatic path. Thé@=0.25. [Here and in all subsequent plots Bf'),, and

(1) ; : apth) : ; -
Py (d,0) plots, which are always symmetric about the line?,.”, we display numerical results only, not approximations,

m-—m’=1, have two weaker bands in all cases. using recursion relations obtained from E(k9) or, equiva-
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IS e
7 __ et L ST

FIG. 4. Contour plots of probabilitie@ﬂr)n,(d,O) (left) and Pﬁé,)n,(d,O) (right) for totally constructive interference=0(mod2s) and
various values of the diabatic transition probabildy=d? [Egs.(3) and(10)]: (a) d=0.05, (b) 0.20,(c) 0.35,(d) 0.50,(e) 0.70, and(f)
0.90. Each case is plotted as probability ws,1fh') on a symmetric, discrete grid of intersectigms,m’], up toN=m+m’=280. Contours
are interpolated in steps of 0.05. The initial up-going state;0 at the intersection witlm’ =0, has the maximum value of unity. The
horizontal axis is proportional to time, the vertical axis to endiggs. (2)].
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FIG. 4. (Continued.
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FIG. 6. Three-dimensional and contour plots of probabiliﬂ{:%],(dmp) vs (m,m’) in the adiabatic approximatidief. Eq.(65)] for fixed
D=0.25 and variousp(mod27): (@ ¢=0 (u—=), (b) ¢=0.207 (u=10), (c) ¢=0.407 (u=5), (d) ¢=0.607 (,u=%°), e ¢
=0.807 (u=13), and(f) o= (u=2). Contours are as in Fig. 4.
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lently, Egs.(24)—(27).] Note that the evolution typically fol-
lows a braiding pattern about the center of the grid, unless
¢—0(mod2m) as in Fig. 4.

Figures 5 and 6 illustrate that in the adiabatic limit there is
a nearly perfectrecurrence of the entire distributiowith 107
integral periodAm’. From Eq.(65), the condition for such a
revival is Am’'¢=0(mod27) if we note J,(—x)= H
(—=1)"3,(x). This period should equal the number of action sl
units it takes to complete one phase cycle,

2w
Mzmzz, — m<gp(mod2m)<m, (66) |

if u is precisely an integer(This w is not related to the
guantum defectg, .) Since the period66) applies for any

_ o1 i .. 10
orderv, we haveAm= u as well, so Fik
P(nzlﬂ,m/ﬂt(dv‘»u)zpmn/(d"ﬁ’) as d—0. (67) FIG. 7. A log-log plot of the level periogk [Eq. (66)] vs res-

caled ramp rat&/F,. Based on the dependenge- 1/F, this func-
The pattern recurs after eveyN=2u generations of anti- tion is = 1/|(F?/F)(m9d 1), where the modulus is taken be-
crossings have been traversgthe repetition occurs time ~ tween—3and +3. A typical scale, from Eq(10), is provided by
with At=pu(e+¢')/(p—p’), from Eq.(2a).] In particular, =~ Fo~1/6mn'®a.u=(40.3h)* kv/cm us™".

7>(MTL Mﬂ(d,(p):p&),(d,@)z 1, M=0,1,2..., asd—0; This spread remains constrained evemeandm’ increase,
’ (68)  which should be contrasted with the undifferentiated hump
of the PWeb model, whose width increases~agd\m+m’
the initial population interferes totally constructively at the (i.e., like a random walk[18].
“knots” of the braid. At the same point®,,v(d,¢) van- A degenerate case arises whegn>0(mod2r), shown in
ishes. This is evident in all cases shown in Figs. 5 a6 Figs. 4 and ). Thenc,;(m’,¢)—m’ and Eq.(65) assumes
6(e). Revivals in the short-time propagator of a similar the noncyclic form
model were noted in Ref7].
However, them andm’ period is not necessarily integral; P(gzn/(d,q,) |3 mi(2d m')|2 (70)
e.g., in Figs. &) and Ge) it equalsAm=Am’=10 and 5, oo
respectively, althoughu=Xand 3. If u=n/j is rational
(vyith n andj relatively prime), the recurrence condition im- oo long asm’ <. This result serves as a smllapproxi-
pliesAm=Am’=n. There is therefore generally more than nation to the series fort61a in Sec. Iil. Appreciable popu-
one type of pattern with the same period, sucmaslO in  |ation can now be expected to be four[d8] when
Figs. 8b) and 6d) (j=1 and 3 andn=5 in Figs. &c) and Im—m’|<2dm’ or
6(e) (j=1 and 2. Even though slight variations in the value
of w include an excursion through irrational numbers, these 1 m’ 1
may nevertheless be considered approximately rational in a < <_- (71)
well-defined sensésee Sec. Y Even the rational valueg 1+2d m 1-2d
=2 in Fig. 6(d) and u=3 in Fig. 6(e) exhibit subdominant
peaks alm~ u~3 andAm=~ u~2-3, respectively. How- Both these bands were already seen in Figb) 4nd 4c)
ever, this exposes a difficulty with applying this model di- and the upper one accords with E§3) for smalld.
rectly to ramped fields in Rydberg atoms. In a linearly driven  In the opposite extreme of maximally destructive interfer-
system the phase parameter varies with ramp ratep as ence, whenp(mod2m)— = 7 and u— 2, Eq.(69) implies a
~1/F [Eq. (10)], leading to the qualitative dependencewof very narrow adiabatic band of surviving population. This
onF shown in Fig. 7. Variations i are therefore especially case is plotted in Fig.(6). The sharp patterns seen in Figs.
sensitive toF at slower ramps. 6(a)—6(e) break up here, although t_here is a residue of a
From Eq. (65 we also see that the repeated pattern of €currence along a weaker band witm=2. Resonances
probabilities dilates and includes more oscillations either agmong the phaseEELgl@(d;e’Jrk(p) in Eq. (52) quickly
d grows or ag¢(mod2r)| decreasesi.e., asu increases  destabilize the amplitude in this case, as soonzad terms
see Figs. 5 and 6. This happens because the Bessel functitnEqg. (59) get magnified. In fact, the adiabatic pattern for
makes excursions betwedp(0) andJ,(Xma) With @ maxi-  any u ultimately becomes unstable.rifis the smallest inte-
mum argumenk,,,,= = 2d/sin(w/u). Furthermore, the small- ger for which n/u is approximately integralli.e., ne
x behavior ofl,(x) [17] guarantees that appreciable popula-~0(mod2r), n=2], the term that is ~O(d") has
tion will be found only for intersections with cy(m’,¢)~m’ and is thus not bounded. The approximation
(64) is then good only as long as at least this term can be
[m—m’|=<2d/sin(7/ ). (69) ignored compared to the=1 term, implying
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n

dn-1 sin(z)
Mm

in general andn’<2/d for uw=2. Equation(72) serves to
delimit the stability of the adiabatic resul65) since this

/

m=

(72

t|on width (69).

V. DIABATIC EVOLUTION

, representing duration, is always larger than the distribu;
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of time-evolution pattern in fact arises as a modified form of
the adiabatic braids seen in Fig. 5: one of the arms that
passes through each recurrence p@8k can be described as
undergoing a rotation on the grid, while the other arm fades
away.(Both branches of the down-going populations fade as
d—1.) The degree of this rotation is given by the same for-
mula, Eq.(63), that characterizes the evolutionary path for
the ¢=0 case.

The resonances iﬁ’ﬂ%,(d,cp) in Figs. 8b) and &c) are
concentrated along up-going levels whose indieeare in-
tegral multiples of the periog=8 [Eq. (66)]. Accompany-

When the two-level transitions tend towards diabaticitying the exponential decay of the=0 state population with

(D>A), terms of all ordersd" become significant in the

expansion(56) of ®(d;). It is then appropriate to use in-

stead of the phase$l) an expansion in powers of-1d.
Noting that the factors of Eq45) have the functional form
e'f with B=m—2tan 5cot}9)] and 9=6"+(k+1)e,
the diabatic analog of Ed59) is

A dr=(=1meme o [“ap
mm’'\ 2 0

Xexr{—i[ > Eénbn(m’,¢;6’)+m9’H,

n=1
(73

with & defined in Eq.(55). Here the sum runs over odd
only, while the sum over shifted phases gives

m' -1
1)(n-1)72 E
k=0

cof'(6' + 3ke),
(74

ba(m',;6")=(—

in contrast to the closed form of E(p7) with its diffraction-
like coefficientc,(m’,¢). In the diabatic limit §—1), Eq.
(55), we keep just thev=1 term of Eq.(73):

2

. 1
Al (@) =(~ 1" e'”wﬂf do’

0

m' -1
xex;{—i[w >
k=0

+---+m¢9’] :

cot(3 6"+ 3ke)

(79

For the perfectly diabatic case€0), this reduces to Eq.

(383. Otherwise, Eq.(75 cannot be handled straightfor-
wardly on account of the uneven distribution of poles in the

sum of cotangents.

increasingm’ is the growth of the paralleh=8 level, which
in turn transfers population tm= 16, etc. In general, evolu-
tionary paths whose dynamical phases differ by 0(med2
will interfere constructively. Since the unit of phdseg. (8)]
is ¢=1(2m) here, the phase differend¢&) should encom-
pass 0, 8, 16, ... such units. Moreover, to maximize probabil-
ity whena is small, loss from state-to-state diffusion should
be minimized, which favors paths with few adiabatic transi-
tions (e.g., twg. The initial evolution, which follows the
purely diabatic path, has many brancheste 8 that satisfy
these conditions and thus favors strong resonances between
states havingn=0 and 8. Likewise, the increasad=38
population resonates strongly with= 16 and so forth, form-
ing the up-going lanes seen in the figure. No such optimiza-
tion can occur for constamtt’ paths, so down-going levels
are relatively insignificant in the diabatic limit. That is, there
is a kind of “diabatic momentum” to the evolution of inter-
acting manifolds.

In the special case=0(mod2r) all dynamical phases
vanish; then Eq(75) simplifies to

A(@0=(-1 5 [ “ap
mm’'\ 2 0
xexd —i{26m’ cot(360')+me’'}]. (76)

Substitution ofz=cot(36’) yields

f dz e i(26m’)

which is recognized as the integral representation of a Whit-
taker function19]. In the diabatic limit, therefore, the popu-
lations

L (z=)™ ™t
(z+|)m+1'

(77

A(T

mm’

(d,0=(-1"

(d,0)=|(48m")e" 2™ |F (—(m—1);2;46m")|?
(79)

D

mny

Figure 8 shows the exact up- and down-going probabili-

ties for =37 and for three values a approaching unity.

The populationst (d,¢) become markedly asymmetric, Coulomb function(for Z=1) evaluated at a

mm’

are seen to vary like the probability density of a squared
“radius’r

peaking preferentially along loci of levels nearly parallel to =2émm’ and having effective quantum numbemgs=m

one another and to the originad=0 level, thereby forming

andl =0.

“resonance lanes” on the grid. These diabatic results are to A scaling relation ford— 1 follows for nonintegral but
be contrasted with the more adiabatic cases shown in Figs. fational u=n/j based on the above limiting integrals. When
and 6, where high probability is associated with proximity tom=Mn and m’=M'n are both integral multiples of the

the purely adiabatic pathn{’ ~m). This new diabatic type

integern (M,M’=0), the sum of cotangents in E{75)
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FIG. 8. Three-dimensional and contour plots of probabiliﬂé#,)n,(d,go) (left) and P(nfr)n,(d,<p) (right) vs (m,m’) in the diabatic
approximatior{cf. Eq. (78)] for fixed ¢=%7r (w=8) and larger values dd=d?>—1: (a) d=0.70,(b) 0.80, andc) 0.90. Contours are as
in Fig. 4.
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reduces tdM'n cot(né’). Then a redefinition of the variable third of the way between the main lanes. The latter reso-
to @’=né’ yields an integral of the form of Eq76), which ~ hances are made plausible by a continued-fraction expansion

implies of « for this case:
27 3 1 1 1 3 80
Pm,m(d, T)=P§2?M,n<d,0>. (79 8 1 238 (803
2+—1
Thus, for ¢=27j/n, up-going-level populations are still 1+§

given by the analytical resu{¥8) for ¢(mod2#) =0, at least ' _

near the intersectiofdvin,M’n], except for an inflation by where the chain of “convergents,” which follow from keep-

a factor ofn along them axis. Note, however, that a com- ing successive denominators of the expansion, represent ever
parison of this rescaling with a numerical calculation of better approximations to the actual valuef20]. On the

(1) ; ; basis of these estimates pfn, resonances are expected at
P’ (d,e) has found it to hold accurately only in the ex- ' . )
mr (d:) y only spacings oiAm=n=2, 3, and 8. With the assumption that

treme diabatic limite.g.,d>0.9). improved values produce more substantial peaks, the appear-

bWhen K |s.nor.1|nt|eg_ral hor even |rr'Tlt|9naI,Fpne an r?t'" ance of subsidiary resonances for rational but nonintegral
observe quasirevivals in the time evolution. Figure 9 shows, ) e ofa=1/u is predictable.

P1).(d, ) for a very diabatic case and three slightly differ- Turning to the irrational cases in Figs(b® and dc), we
ent values of the number of phase cycles per unit of actiosee that the evolution in these cases is similar to Fig). 8
a=1lu=o¢l2m~3. As expected, the rational cag€ig. to the first main lane am=8 and thereafter less and less
9(a)], with numeratorj =3 and denominaton=28, displays similar, the more so for Fig.(8), whose value for departs
prominent resonances along=_8, 16, 24, and 32, as well as further from2. For Figs. $b) and 9c) we have the continued

smaller peaks along constamt-lanes approximately one- fractions

1 1 1 1 2 3 14 17
i, 1 “273 758 37 a5 (808)
1
1+ 1
1+ 1
1+ 1
4+ g
and
3—.5 1 1 1 2 3 5 13
2 1 27375 8 B oA (809
2+ 1
1+ 1
1+ 7
1+ 1
1+

Although the correspondence is not perfect, we see in Fighere rationalize the appearance of resonance peaks in the
9(b) the expected peaks alomg=n=2, 3, 5, 8 and some of time evolution on a LZ grid, the association of their relative
their multiples given in Eq(80b). The especially large peak heights with particular convergents awaits quantitative pre-
atm= 37 may be ascribed to a more substantial correction taliction.
a convergent coming from a large denominator of the con-
tinued fraction(4 in this casg which supports the above
assumption regarding peak height¥he extra peak along
m=29 follows from approximating the fifth convergent by = The AWeb model considered here exhibits two general
replacing the denominator 4 with+31, producing the inter- classes of coherent time evolution, roughly adiabatic and di-
mediate fraction3s.) The fraction (800 is related to the abatic. When the two-level interactions are governed by
golden mean, so its expansion produces the Fibonacci seri@sliabatic transitions, the redistribution of probability from a
of integers. The peaks seen alamg-3, 5, 8, 13, 21, and 34 single initial state follows a pattern that recurs in time in the
(and their multiplesindeed correspond to the denominatorsneighborhood of the purely adiabatic path. Then only those
n from this series. states tend to be populated whose levels lie near the center of
The use of continued-fraction convergents should also apthe manifold-mixing region. When, on the other hand, the
ply in the adiabatic limit. Though the arguments presentedwo-level transitions are predominantly diabatic, appreciable

VI. CONCLUSION
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probability is found only along lanes of certain up-going
levels. These levels are parallel to the initial one and have
quasiregular spacings that depend sensitively on the unit of
phasep. One might also distinguish the more sharply peaked
constructive interference patterns fetmod2s) =0, which
are to be found for any transition probabiliy, but these
may be viewed as special cases of the adiabatic and diabatic
distributions.

It is interesting that many similar models that involve sets

e | [T
Sl o
SNES s 23
EIAL ey
LA\ Vg \\\\),;:,.... .
# Vi ey l‘“
\ et

2%

= &}.::Z::-:Zfi.i%:;:#: of interacting levels undergoing forces lineartidisplay the
ZATE sy

LA

same partitioning of a state’s time evolution into two types
of distributions: a sharp diabatic one prevalent at relatively
fast ramps and an adiabatic one, possibly more diffuse and
involving more complex structure, at slow ramps. The two-
level LZ model itself{ 3] is of course the prototypical system.
In the Demkov-Osherov modgh], one level passes through
and interacts with a manifold of parallel levels; the interloper
exponentially decays and diffuses into the manifold. We
have generalized this here in the AWeb model to the pair-
wise interaction of levels from two whole manifolds. The
extension of one up-going interlopeemkov-Osheroyto a

set of coherently evolving up-going leveldWeb) accord-
ingly extends the decay of that one level to the resonant
population and decay of a set of levels parallel to an initially
populated one. The PWeb modél|, the incoherent version

of the Aweb model, also finds a sharp distribution in the
extreme diabatic limit, but otherwise there is a single, diffuse
bump in the mixing region of the grid.

A subtle point is that the incoherent probability distribu-
tions for the PWeb model at giveM (see the Appendjxdo
not generally follow from the coherent AWeb model by sim-
ply averaginngTIr)n,(d,cp) or P(rﬁgn,(d,go) over ¢ after tra-
versal of a fixed numbeN of avoided crossing$21]. A
measurement that destroys an interference patifter the
system has already evolved coherently will not necessarily
reproduce the pattern arising from evolution that has been
incoherent throughout.

This general twofold behavior of the patterns of evolution
has also been observed in investigations of Stark states and
SFI of Rydberg atomg3]. The “bowtie” model[4] of state
mixing among nonparallel levels of a single Rydberg
n-manifold identifies a high probability of only diabatic or
adiabatic transitions, in the context of a multilevel generali-

zation of the two-level LZ effect. Most generally, for low

m;, high enoughm, and fast enough ramp rates, one expects
i o to see a sharp diabatic signal from a succession of diabatic
e | Tigewy transitions, whereas at loweror F, in most cases one sees
; : a more diffuse adiabatic signal, possibly with some structure,
from mostly adiabatic transitions among Rydberg manifolds.
A precise analysis of SFI is complicated by several issues:
Each manifold’s levels are not parallel; the couplings, and
hence the values @, ¢, anddg, vary from one anticross-
ing to the next; the avoided crossings might be so broad as to
be not even distinctas in Ng; and in the region of a Stark
map below the classical ionization limit, for given not 2

FIG. 9. Three-dimensional and contour plots of probabilitiesbut at least 8/16 manifolds will cross and mix. The greatest
ngn,(d,@ vs (m,m’) in the diabatic approximatiofcf. Eq. (75)] difficulty in grafting simple models onto realistic atomic
for fixed d=0.95 and nearly equak=(¢/27)(mod 1): (@ « problems stems from the extreme sensitivity of any interfer-
=$=0.37500,(b) @a=1/7=0.37796.., and(c) a=(3—\5)/2  ence to the dynamical phases, especially in the adiabatic
=0.38196... . Contours are as in Fig. 4. limit, and the rapidly increasing accumulation of phase at
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higher fields as nonparallel Stark levels diverge. Sec. Il, Egs.(24)—(29), with the following changesti) the
In a recent theoretical study of Stark md@&] and SFlin  operatorsé and 7 commute(effectively, ¢=0) and so are
Rydberg atoms, direct numerical integration of the Sehrojust dummy variable$13]; (ii) the 2x2 amplitude-mixing
dinger equation, including couplings among all levels, pro-matrix (;¢ 32) in Egs.(25) and(27) must be replaced by the
duced field-ionization populations that qualitatively mimic pyopapility-mixing matrix §  4) whereA=1-D; and iii)
the diabatic and adiabatic signals observed in SFI experi; - 6) (1) ’ )
ments[23]. These calculations advanced a cruder sl the amplftudesAmmc(.ql,cp)(T?nd Amm’(d’(ﬁ) Sho‘ﬂ'd be re
of SFI that considered only two-level couplings but also pro-Placed with probabilities?;:, (D) and P, (D) in all for-
duced reasonable quasi-ionization signals at a qualitativlulas. In analogy to Eqg24a and (24b) we define the
level. More accurate calculations are planned and are needé&gnerating functions
to understand how models such as the AWeb can be applied w o
to the interpretation of experiments on coherent-state mixing. (D)= (1) (Dy&my™ Ala
Note added in proofExperimental evidence of quantum P(D) mE:O m,E,O Py (D)7 (Ala)
resonances, recurrences, and suppression of diffusion on a

Landau-Zener grid realized in a classical optical systam 5 B 0 o
“optical Galton board) has been obtained by Dirk P (D)Emzo 2 Prm (D) EM ™. (Alb)
Bouwmeester, Ph.D. thesis, University of Leiden, 1995 m’=0
published. Steven van Enkprivate communication These functions satisfy thex22 matrix equation
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APPENDIX 1 DErp+ DAy AP

The incoherent PWeb model of Rg8] requires no phase Expansion of these functions in powersédénd » and iden-
information and so depends only on the diabatic transitiortification of their coefficients with the probabilities in Egs.
probability D. Generating functions for up- and down-going (Ala) and (Alb) lead to all the PWeb results found in Ref.
probabilities are obtained by following the steps detailed in6].
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