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Reconstruction of engineered atomic wave functions
via phase-dependent population measurements
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A wave-packet interference technique is proposed to measure exotic atomic Rydberg wave functions. For
example, the subject wave packet is excited by an arbitrary pulse or pulse sequence. The resulting wave
function is probed by a well-characterized pulse that shares a phase relationship with the excitatish pulse
The observable is the population in each eigenstate after the probe pulse. By making a series of such mea-
surements, varying the phase between excitation and probe pulses, the wave function created by the excitation
pulse can be inferred. The method is experimentally feasible for atomic systems, and the extension of the
method to molecular systems also appears poss$iBl50-294{@7)05309-2

PACS numbe(s): 42.50.Md, 03.65.Bz, 32.80.Qk

A guantum system is fully defined by its wave function or effort linking wave functions of atomic wave packets to their
density matrix. However, neither of these is an observable. linotion. Leonhardt and Raymét9] studied the reconstruc-
is the conflict between the desire to know everything about @ion of wave packets in arbitrary one-dimensional systems.
system and this inability to make the measurement; that isTheir observable is the positional probability distribution
the source of the great interest in methods for experimentally?(x,t). From the Fourier transform d®?(x,t), the elements
extracting the wave function or density matrix of a system.of the density matrix may be extracted with the appropriate
These methods all rely upon preparingdentical systems, sampling functions. This technique does pose some experi-
and making a sequence of measurements upon these system&ntal challenges, e.g., the temporal and spatial sampling of
The wave function or density matrix is then inferred from P(x,t) are not trivial problems. Experimental progress has
this sequence of experimental observations, e.g., from mabeen made in measurir®g(p,t), the momentum probability
ginal probability distributions. distribution, for a Rydberg atom wave packt]. Although

The recent theoretical interest in the reconstruction oft has not been demonstrated, it is likely that a similar recon-
guantum states was motivated by the seminal work of Vogestruction of the wave function could be accomplished from
and Risker{1]. The original problem was actually posed by such momentum data.
Pauli many years agi®?]. Since that time, theoretical inves-  The reconstruction of exotic atomic Rydberg wave packet
tigations have been performed upon spin systgBishar-  states, such as the Schinger cat state, is the primary focus
monic systemse.qg., quantized field44—6], and bound7]  of this paper. We propose an experimentally feasible scheme
and free particle systen|8]. Experimental interest in the combining Ramsey interferen¢@2] between wave packets
coherent control or engineering of quantum systems has alse@ith state-selective field ionizatiof8SF) [23] to realize the
spurred interest in this measurement problem. It is now posreconstruction of the wave-packet state. These are well-
sible to generate engineered wave functions in a multitude ofstablished experimental techniques, but their combination
systemg9-14), so that techniques for measuring such exotichas surprising power. The reconstruction technique requires
states are particularly timely. For example, a Sdimger cat  only a small number of measurements and these measure-
state has been prepared experimentally in a Rydberg atomiments may be made with a high degree of quantum effi-
system[14] . ciency. The extension of this reconstruction technique to mo-

In Ref. [1] the Wigner function(which bears the same lecular systems also appears possible. This scheme utilizes a
information as the density matjixs linked to a set of mea- recently developed formalism to analyze the interference of
sured probability distributions? 4(X 4), of quadrature ampli- wave packet$24].
tudes by an inverse Radon transform. Sufficient information Wave packets in the hydrogenic Rydberg atomic system
to reconstruct the Wigner function is obtained by samplinghave been studied experimentally over the past decade. A
the phase from 0 tar. This type of reconstruction of the few examples are Ref$21,25-32. Typically, a coherent
Wigner quasiprobability distribution from such marginal superposition of Rydberg states is excited by a short optical
probability distributions is commonly known as quantum to-pulse, creating a wave packet that can display both classical
mography. Currently this type of tomography has been emand quantum-mechanical features. The creation of more ex-
ployed experimentally on such systems as quantized radiatic wave packets can be accomplished by a programmable
tion fields [15], trapped ions[16], vibrational modes of pulse[9], autoionization33], or through the Ramsey inter-
moleculed17], and free particlegl8]. Theoretical studies of ference of multiple pulsekl4,24,34. This last method will
anharmonic systems have just recently been performeserve, in this paper, as the basis for a concrete example of
[7,19,20. At present, the experimental application of tomog-our reconstruction technique. The essence of this Ramsey
raphic techniques to anharmonic systems has not been fulipterference is that the ultimate populations of the Rydberg
accomplished. states are sensitively dependent upon the optical phase and

Of particular interest to this paper is the recent theoreticalipon the motion of the wave packets. Thus, by introducing a
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pulse with a specific optical phase, at a suitable point in thexcites the Rydberg wave packet by a one-photon process
evolution of the already existing wave packet, the amplitude$rom the ground state fulfills this condition. The solution of
of the Rydberg states can be controlled in a nearly arbitrarghe differential equations, in this situation, is quite simple.
way. This idea has been described with a simple mathematiFhe excited-state amplitudes are given by the Fourier trans-
cal formalism in our previous papéR4]. This formalism form of the pulse shape. After the last excitation puseis
leads directly to the interference technique described here.

The subject wave function is created by a sequence i p( A2g?

nexp —

n .
of pulses. For now, we will assume that all the pulses @n=—5{} 1+§i: exgi(w+Ay)7]|.
are identical and have a Gaussian shapgt)=(1/ @)
J2mo)exp(—t?/20?), whereo characterizes the width of the

pulse. Generalization of this to an arbitrary excitation pulsegy manipulating the phaser; and suitably choosing the
shape will be discussed later in this paper. Following thisjejay time 7,, engineered wave functions such as $ehro
sequence of Gaussian pump pulses, a probe pulse excitegjmger Cat states can be generafdd,24. Next we will

wave packet that interferes with the previously generatedhow how such an engineered state can be reconstructed by a
wave packets. Here the probe pulse is also taken to be Gausgsries of measurements.

ian in shape, and has a definite phase relationship with the A simple, but informative reconstruction can be found for

initial pump pulse. This condition on the probe pulse shapg wave packet excited by a single Gaussian pulse. The prob-
may be relaxed somewhat, and will be discussed later in thigp;jity amplitudea, after that pulse is

paper. Following each pump-probe interaction, the popula-

tion of each Rydberg state is measured by some high- i
resolution techniquée.g., state-selective field ionizatjorA an=— EQ,@X;{ -
few such measurements of the Rydberg state population dis-

tribution, in which the relative optical phase between the

pump and probe pulses is varied, is sufficient to reconstruéf‘ote thata,, is a_purely Imaginary m_Jr_nber. The experiment
the wave function to reconstruct this wave packet is trivial. All that is required

The atomic system may be described by the radial WaV(i,‘S that we p(_arform SS.FI upon the atom, a}nd so retrieve the
function populations in the various eigenstates. This assumes that the
' Fourier transform of the probe pulse is real and positas
W (r,t)=ag(t)exp —iwgt)ugy(r) is the case for a Gaussian pylsalso note that the sign for
Q, is determined by the phase convention for the eigen-
states. Therefore the populatiofe,|? uniquely determine
these amplitudes except for a phase factor common to all the
) Rydberg states.
where a, and w, are the Schidinger amplitudes and In the above situation, where the excitation pulse is well
eigenenergies for the Rydberg states apdndwy are these  characterized, the reconstruction of the quantum state is
quantities for the ground state. For convenience, we will sestraightforward. However, when multiple pulses excite a Ry-
wg=0. Under the rotating-wave approximation, the interac-dberg atom, the probability amplitude after the last pulse
tion of a pulselor pulse$ with the Rydberg states is given by excitation is, in general, a complex quantity. The probability

A2g?
) - 4

2

+ 2, ap(t)exp —iwpt)ug(t),

the Schrdinger equation, amplitudesa,, cannot simply be determined via a single mea-
i surement of either the fringe amplitude resulting from Ram-
) i . ; i
a(t)=— _Qnagemntf(t)’ (1) sey interference or of the population as fou_nd by SSFI. How-
2 ever, several measurements made upon identically prepared

_ _ o wave packets can regain the amplitudes of the states of the
where(},, is the Rabi frequency for the excitation between prepared wave packet. Following each excitation sequence, a
the ground state and a given Rydberg statéor Rydberg probe pulse is applied whose phase with respect to the initial
states, this Rabi frequency is proportionalrto®? The de-  excitation pulse is varied. In each measurement, the post-
tuning is defined asd,= w,~ , andf(t) is the multipulse  probe population of the various Rydberg states is found by

envelope function, SSFI or some other high-resolution method.
The result of a multiple pulse excitation sequence is given
f(H=9(1)+2 g(t-n)explion), @ by
i
where ther, are the time delays for the individual pulses. We a,=— EQne*(Aﬁ"z’a(anr iyn), (5)

assume the intensity of the laser pulses are sufficiently low
so that they may be assumed to be perturbative, in which : _
case the ground-state amplitude remains almost unchang’_%)ﬂ1ere X and Yn are the real and Imaginary parts of the
after the short-pulse excitations. This perturbative conditio rackete.d quantity in Ed3). NOV.V a probe puls(adentpal to
on the excitation pulse is essential to the reconstruction'© prewous__pul’sesnteractS with the atom, producing the
method described in this paper. If the ground state is altereB€W Probabilityan(7),

by a strong interaction effede.g., the ac Stark effegtthe i

reconstruction cannot be accomplished by this technique. PN —(A25212) ; i0Tai AT
Fortunately, the common situation in which a weak pulse an(7)= ZQ”e G Ty TerTet), (6
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wherer is the delay time for the probe pulse. Agadti( 7) is In the above example, we assumed that the pump and

not an observable, but the populatid)ar;(r)|2, may be mea- probe pulses are identical pulses. However this is not a nec-

sured using SSFI. This population can be expressed as ~ €ssary condition for our formalism to work. A generalization
to a more arbitrary excitation pulse can be made. There has

v [Qn _a22p 2 s recently been much interest in tailoring optical pulses so that
lap(n)|*=| 5 e ") {G+yat+1) both the magnitude and phase of the complex scalar field
W (r,t) are controlled in a programmable w9—11]. To
+2[X,co08 A7) +Y,SI(A,7)]cOS wT) generalize our scheme we need only assume that the pump

pulsds) is weak(i.e., the interaction is perturbativand that

it is phase coherent with the probe pulse. The probe pulse is
(7)  still assumed to be weak and Gaussian in shape. The

probability amplitude after the pump pulse is,
The terms dependent upen in Eq. (7), each contain terms = — (i/2)Q, (X, +iY,), whereX,, andY,,, respectively, are
that oscillate at markedly different frequencies under typicathe real and imaginary parts of the Fourier-transformed en-

conditions for wave-packet excitation. Typically the oscilla- yelope function. The interaction of the probe pulse produces
tion frequency of the wave packet is 1000 times smaller thathe probability amplitude

the optical frequency of pulse. There is one notable excep-
tion: Wave packets generated by half-cycle pulszd do i 20
not fulfill this condition, and this reconstruction technique is a,=- 52X +iYnt e (Ao Rglorgldn) - (10)
not appropriate for analysis of these wave packets. If we

consider only the more typical optical excitation, a change o el 12

the optical phasewr, by 27 leavesA,r essentially un- fThus the probabilitya,|* is
changed. Thus the problem of reconstructing the wave
packet is reduced to a series of measurements of the popul?ar|2:
tions, |a/,(7)|2, produced by probe pulses with different but "

+2[ —X,SIiN(A,7) +Y,co0L A7) ]SINwT)}.

2
7“) X2+ Y24~ (3107 1 2 g~ (80072

known optical phases. The particular optical phases are cho- . —(A262p2)
sen that simplify the extraction of, andy,, from the data. X[XaCogAp7) +YpSIN(Ap7) JCOS wT) +2 €8 Fn
For example, here we choose a solution that requires mea- X[ = X,Sin(A,7) + Y, cog A7) ]sin(wT). (11)

surements at delay times,,, that yield the four specific
phases, i.e.¢=wr,=0,7, w/2, and 37/2 [all modulo

(2)]. Thusx, andy, are The desired values of,, andY,, can be obtained in a manner
) |. n n

similar to the previous multipulse example, via measure-
@l (o) 2= |al(7)? ments of the population with appropriately pha;ed probe
_ n(7o n\ Tz Cog A7) pulses. More precisely, the valuesXf andY,, are given by
QZefAﬁaz ~ nT
n

n
lay(ro)2-lay(r,)[?

2
SiNA,7),  (8) " 0%t

_ |arI1(T7T/2)|2_|arI1(T377/2)|2 COiAnT)

2 2
Q2e 407

_ |ar’1(7-77/2)|2_|ar,1(7'377/2)|2
02~ (Ana?i2)
n

_lan(ro)|*~[ag(7x)| sinAp7), (12

2
e e LW
n

n

Y :|a|I1(TO)|2_|ar’](T7T)|2

+ A (T2 2= an(T3472) |2 n

2 2
Q2e 407

Sin(A,7)

2
cogAr). (9 0% A7)

+ |ar'1(7'7r/2)|2_|ar'1(7'3w/2)|2

2,.—(A20202)
Qe Ano

Since A, 7, is essentially unchanged for the range ¢ COSA 7). (13
(0 to 27) the subscript has been dropped when thésare
associated with\ ,. As we see, only four measurements are
sufficient to retrievea, for all the Rydberg states and, in ~ To examine the feasibility of the proposed method, we
turn, reconstruct the wave function. Note that the specificonsider the accuracy of the reconstruction of a quantum
position of the wave packet in its orbit is not crucial to this State of an atomic wave packet produced by the arbitrarily
method. It is commonly stated that the interaction of a waveshaped weak pulse described above. One of the primary con-
packet with a probe pulse is minimal if the probability of cerns is the effect of a less than perfect probe pulse. We
finding the wave packet near the nucleus is small during thévestigate this problem by examining the reconstruction that
application of the probe pulse. It is true that the visibility of is obtained for a probe pulse with a small linear chirp and
Ramsey fringes does go to a minimum at this point. How-compare it to that obtained for a transform-limited
ever, the amplitudes of the individual eigenstates can be sigsaussian pulse. This chirped pulse is definéqt)
nificantly altered even when the wave packet is away from= (1/\2o)exd —(1+ib)t?%(26%)]. For a chirped pulse with

the nucleus. Therefore, the measurement can take place gmall values ofb (keeping only terms linear ib), X, and

any position upon the wave packet'’s trajectory. Y, become
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idly (those dominated by spontaneous processes, dephasing,
etc) are not well suited to this interference technique. If the
dephasing time is of a similar magnitude to the measurement
time, then this method cannot be employed. For a typical
wave packet, the measurement time can be a small fraction
of the period of the wave packet’s oscillation. The system we
have been discussing, atomic Rydberg states, have excep-
tionally slow dephasing process@sughly 16 times longer
€than the orbital period Molecular systems typically have
shorter dephasing times but they are long enough that many
with a value ofb=0.01, the value oiX, obtained for the periods of the wave packet's motion can and have been ob-
chirped pulse unknowingly has at maximum 1% ¥{  served[10,11,17,3% Therefore, there is a significant period
added to the desire)dgo). It should be noted that it is experi- of time in which the molecular wave packet is essentially a
mentally straightforward to create such nearly transform lim-pure state. This reconstruction scheme also requires that a
ited pulseq35]. Therefore, it is possible to reconstruct the means for resolving the populations in the various states of
wave function to a high degree of accuracy. In addition, thehe superposition exist. Recent experiments suggest that such
ability to characterize ultrafast pulses has recently seen sigesolution is possible for molecular vibrational wave packets
nificant advance§36—39. In fact, transform-limited pulses [39]. The situation with solid-state systems is less certain.
are not essential to this reconstruction scheme; any perturbatere the dephasing times are quite short. For example, in the
tive pulse that has been characterized to a similar level cabulk semiconductor the dephasing time for a free exciton is
be used as a probe pulse. approximately 100 f§40]. However, in a confining potential,

A further requirement on the probe pulse is that its bande.g., a one-dimensional quantum well, this dephasing time
width must equal or exceed that of the pump pulse. The onlgan be increased to approximately 3[g4]. In that work, a
conditions placed upon the pump pulse are that the interaggump and a delayed probe pulses were used to produce
tion is perturbative, and the pulse is coherent with the subphase-sensitive control of THz radiation from a polarized
sequent probe pulse. An additional experimental requiremerglectron-hole pair. This retention of coherence suggests that
is that the measurement of the population must resolve ththere may be a short time in which the reconstruction could
eigenstates of the system. The technique of SSFI easily sate accomplished for the quantum well system.
isfies the criteria for resolving the population in weakly The interference technique described in this paper is ide-
bound, low angular momentum Rydberg states. The highally suited to the study of Rydberg atomic wave packets. We
guantum efficiency of SSFI is an added advantage. All othave demonstrated that the reconstruction of the wave func-
these experimental conditions are straightforward to realizéion of an atomic Rydberg wave packet requires only a small
in Rydberg-atom wave packet experiments. number of measurements. These phase-dependent population

To what other systems may this reconstruction scheme bmeasurements offer a means of determining the wave func-
applied? This scheme is aimed at the reconstruction of wavons of the programmed or engineered Rydberg atomic
functions of pure states. Systems which lose coherence raprave packets that have recently been generated.

—(A%52
Xn=X{Y—b(A%?—1)e 4nr 2y (0 (14)

Vo= YO 4 b(AZg2—1)e Ga X0 (15)

whereX(?) and Y are the results for a transform-limited

Gaussian as defined by E¢%2) and(13). The magnitude of
2

the term A202—1)e~(4no*/ is always less than 1. There-

fore, the degree of entanglement of the desired quantiti

X and Y is b. That is, if we unknowingly have a pulse
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