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Reconstruction of engineered atomic wave functions
via phase-dependent population measurements
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Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
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A wave-packet interference technique is proposed to measure exotic atomic Rydberg wave functions. For
example, the subject wave packet is excited by an arbitrary pulse or pulse sequence. The resulting wave
function is probed by a well-characterized pulse that shares a phase relationship with the excitation pulse~s!.
The observable is the population in each eigenstate after the probe pulse. By making a series of such mea-
surements, varying the phase between excitation and probe pulses, the wave function created by the excitation
pulse can be inferred. The method is experimentally feasible for atomic systems, and the extension of the
method to molecular systems also appears possible.@S1050-2947~97!05309-2#

PACS number~s!: 42.50.Md, 03.65.Bz, 32.80.Qk
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A quantum system is fully defined by its wave function
density matrix. However, neither of these is an observable
is the conflict between the desire to know everything abo
system and this inability to make the measurement; tha
the source of the great interest in methods for experiment
extracting the wave function or density matrix of a syste
These methods all rely upon preparingn identical systems,
and making a sequence of measurements upon these sys
The wave function or density matrix is then inferred fro
this sequence of experimental observations, e.g., from m
ginal probability distributions.

The recent theoretical interest in the reconstruction
quantum states was motivated by the seminal work of Vo
and Risken@1#. The original problem was actually posed b
Pauli many years ago@2#. Since that time, theoretical inves
tigations have been performed upon spin systems@3#, har-
monic systems~e.g., quantized fields! @4–6#, and bound@7#
and free particle systems@8#. Experimental interest in the
coherent control or engineering of quantum systems has
spurred interest in this measurement problem. It is now p
sible to generate engineered wave functions in a multitud
systems@9–14#, so that techniques for measuring such exo
states are particularly timely. For example, a Schro¨dinger cat
state has been prepared experimentally in a Rydberg ato
system@14# .

In Ref. @1# the Wigner function~which bears the sam
information as the density matrix! is linked to a set of mea
sured probability distributions,Pf(Xf), of quadrature ampli-
tudes by an inverse Radon transform. Sufficient informat
to reconstruct the Wigner function is obtained by sampl
the phase from 0 top. This type of reconstruction of the
Wigner quasiprobability distribution from such margin
probability distributions is commonly known as quantum
mography. Currently this type of tomography has been e
ployed experimentally on such systems as quantized ra
tion fields @15#, trapped ions@16#, vibrational modes of
molecules@17#, and free particles@18#. Theoretical studies o
anharmonic systems have just recently been perform
@7,19,20#. At present, the experimental application of tomo
raphic techniques to anharmonic systems has not been
accomplished.

Of particular interest to this paper is the recent theoret
561050-2947/97/56~3!/2316~5!/$10.00
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effort linking wave functions of atomic wave packets to the
motion. Leonhardt and Raymer@19# studied the reconstruc
tion of wave packets in arbitrary one-dimensional system
Their observable is the positional probability distributio
P(x,t). From the Fourier transform ofP(x,t), the elements
of the density matrix may be extracted with the appropri
sampling functions. This technique does pose some exp
mental challenges, e.g., the temporal and spatial samplin
P(x,t) are not trivial problems. Experimental progress h
been made in measuringP(p,t), the momentum probability
distribution, for a Rydberg atom wave packet@21#. Although
it has not been demonstrated, it is likely that a similar rec
struction of the wave function could be accomplished fro
such momentum data.

The reconstruction of exotic atomic Rydberg wave pac
states, such as the Schro¨dinger cat state, is the primary focu
of this paper. We propose an experimentally feasible sche
combining Ramsey interference@22# between wave packet
with state-selective field ionization~SSFI! @23# to realize the
reconstruction of the wave-packet state. These are w
established experimental techniques, but their combina
has surprising power. The reconstruction technique requ
only a small number of measurements and these meas
ments may be made with a high degree of quantum e
ciency. The extension of this reconstruction technique to m
lecular systems also appears possible. This scheme utiliz
recently developed formalism to analyze the interference
wave packets@24#.

Wave packets in the hydrogenic Rydberg atomic syst
have been studied experimentally over the past decade
few examples are Refs.@21,25–32#. Typically, a coherent
superposition of Rydberg states is excited by a short opt
pulse, creating a wave packet that can display both class
and quantum-mechanical features. The creation of more
otic wave packets can be accomplished by a programm
pulse@9#, autoionization@33#, or through the Ramsey inter
ference of multiple pulses@14,24,34#. This last method will
serve, in this paper, as the basis for a concrete exampl
our reconstruction technique. The essence of this Ram
interference is that the ultimate populations of the Rydb
states are sensitively dependent upon the optical phase
upon the motion of the wave packets. Thus, by introducin
2316 © 1997 The American Physical Society
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56 2317RECONSTRUCTION OF ENGINEERED ATOMIC WAVE . . .
pulse with a specific optical phase, at a suitable point in
evolution of the already existing wave packet, the amplitu
of the Rydberg states can be controlled in a nearly arbitr
way. This idea has been described with a simple mathem
cal formalism in our previous paper@24#. This formalism
leads directly to the interference technique described he

The subject wave function is created by a seque
of pulses. For now, we will assume that all the puls
are identical and have a Gaussian shape,g(t)5(1/
A2ps)exp(2t2/2s2), wheres characterizes the width of th
pulse. Generalization of this to an arbitrary excitation pu
shape will be discussed later in this paper. Following t
sequence of Gaussian pump pulses, a probe pulse exc
wave packet that interferes with the previously genera
wave packets. Here the probe pulse is also taken to be Ga
ian in shape, and has a definite phase relationship with
initial pump pulse. This condition on the probe pulse sha
may be relaxed somewhat, and will be discussed later in
paper. Following each pump-probe interaction, the popu
tion of each Rydberg state is measured by some h
resolution technique~e.g., state-selective field ionization!. A
few such measurements of the Rydberg state population
tribution, in which the relative optical phase between t
pump and probe pulses is varied, is sufficient to reconst
the wave function.

The atomic system may be described by the radial w
function,

C~r ,t !5ag~ t !exp~2 ivgt !ug~r !

1(
n

an~ t !exp~2 ivnt !un~ t !,

where an and vn are the Schro¨dinger amplitudes and
eigenenergies for the Rydberg states andag andvg are these
quantities for the ground state. For convenience, we will
vg50. Under the rotating-wave approximation, the intera
tion of a pulse~or pulses! with the Rydberg states is given b
the Schro¨dinger equation,

ȧn~ t !52
i

2
VnageiDnt f ~ t !, ~1!

whereVn is the Rabi frequency for the excitation betwe
the ground state and a given Rydberg staten. For Rydberg
states, this Rabi frequency is proportional ton23/2. The de-
tuning is defined asDn5vn2v, and f (t) is the multipulse
envelope function,

f ~ t !5g~ t !1(
i

g~ t2t i !exp~ ivt i !, ~2!

where thet i are the time delays for the individual pulses. W
assume the intensity of the laser pulses are sufficiently
so that they may be assumed to be perturbative, in wh
case the ground-state amplitude remains almost uncha
after the short-pulse excitations. This perturbative condit
on the excitation pulse is essential to the reconstruc
method described in this paper. If the ground state is alte
by a strong interaction effect~e.g., the ac Stark effect!, the
reconstruction cannot be accomplished by this techniq
Fortunately, the common situation in which a weak pu
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excites the Rydberg wave packet by a one-photon proc
from the ground state fulfills this condition. The solution
the differential equations, in this situation, is quite simp
The excited-state amplitudes are given by the Fourier tra
form of the pulse shape. After the last excitation pulse,an is

an52
i

2
VnexpS 2

Dn
2s2

2 D F11(
i

exp@ i ~v1Dn!t i #G .
~3!

By manipulating the phasevt i and suitably choosing the
delay time t i , engineered wave functions such as Sch¨-
dinger Cat states can be generated@14,24#. Next we will
show how such an engineered state can be reconstructed
series of measurements.

A simple, but informative reconstruction can be found f
a wave packet excited by a single Gaussian pulse. The p
ability amplitudean after that pulse is

an52
i

2
VnexpS 2

Dn
2s2

2 D . ~4!

Note thatan is a purely imaginary number. The experime
to reconstruct this wave packet is trivial. All that is require
is that we perform SSFI upon the atom, and so retrieve
populations in the various eigenstates. This assumes tha
Fourier transform of the probe pulse is real and positive~as
is the case for a Gaussian pulse!. Also note that the sign for
Vn is determined by the phase convention for the eig
states. Therefore the populationsuanu2 uniquely determine
these amplitudes except for a phase factor common to al
Rydberg states.

In the above situation, where the excitation pulse is w
characterized, the reconstruction of the quantum state
straightforward. However, when multiple pulses excite a R
dberg atom, the probability amplitude after the last pu
excitation is, in general, a complex quantity. The probabil
amplitudesan cannot simply be determined via a single me
surement of either the fringe amplitude resulting from Ra
sey interference or of the population as found by SSFI. Ho
ever, several measurements made upon identically prep
wave packets can regain the amplitudes of the states of
prepared wave packet. Following each excitation sequenc
probe pulse is applied whose phase with respect to the in
excitation pulse is varied. In each measurement, the p
probe population of the various Rydberg states is found
SSFI or some other high-resolution method.

The result of a multiple pulse excitation sequence is giv
by

an52
i

2
Vne2~Dn

2s2/2!~xn1 iyn!, ~5!

where xn and yn are the real and imaginary parts of th
bracketed quantity in Eq.~3!. Now a probe pulse~identical to
the previous pulses! interacts with the atom, producing th
new probabilityan8(t),

an8~t!52
i

2
Vne2~Dn

2s2/2!~xn1 iyn1eivteiDnt!, ~6!



ca
a-
ha
e

is
w
o

av
pu
ut
ch

e

re
n
ifi
is
v

of
th
of
w
si
om
e

and
ec-
n
has
hat
eld

ump

e is
The

en-
ces

r
re-
be

we
tum
rily
con-
We
hat
nd
d

2318 56XIN CHEN AND JOHN A. YEAZELL
wheret is the delay time for the probe pulse. Again,an8(t) is
not an observable, but the population,uan8(t)u2, may be mea-
sured using SSFI. This population can be expressed as

uan8~t!u25S Vn

2
e2Dn

2s2/2D 2

$~xn
21yn

211!

12@xncos~Dnt!1ynsin~Dnt!#cos~vt!

12@2xnsin~Dnt!1yncos~Dnt!#sin~vt!%.

~7!

The terms dependent upont, in Eq. ~7!, each contain terms
that oscillate at markedly different frequencies under typi
conditions for wave-packet excitation. Typically the oscill
tion frequency of the wave packet is 1000 times smaller t
the optical frequency of pulse. There is one notable exc
tion: Wave packets generated by half-cycle pulses@21# do
not fulfill this condition, and this reconstruction technique
not appropriate for analysis of these wave packets. If
consider only the more typical optical excitation, a change
the optical phase,vt, by 2p leavesDnt essentially un-
changed. Thus the problem of reconstructing the w
packet is reduced to a series of measurements of the po
tions, uan8(t)u2, produced by probe pulses with different b
known optical phases. The particular optical phases are
sen that simplify the extraction ofxn and yn from the data.
For example, here we choose a solution that requires m
surements at delay times,tf , that yield the four specific
phases, i.e.,f5vtf50, p, p/2, and 3p/2 @all modulo
(2p)#. Thusxn andyn are

xn5
uan8~t0!u22uan8~tp!u2

Vn
2e2Dn

2s2 cos~Dnt!

2
uan8~tp/2!u22uan8~t3p/2!u2

Vn
2e2Dn

2s2 sin~Dnt!, ~8!

yn5
uan8~t0!u22uan8~tp!u2

Vn
2e2Dn

2s2 sin~Dnt!

1
uan8~tp/2!u22uan8~t3p/2!u2

Vn
2e2Dn

2s2 cos~Dnt!. ~9!

Since Dntf is essentially unchanged for the range oft ’s
(0 to 2p) the subscript has been dropped when theset ’s are
associated withDn . As we see, only four measurements a
sufficient to retrievean for all the Rydberg states and, i
turn, reconstruct the wave function. Note that the spec
position of the wave packet in its orbit is not crucial to th
method. It is commonly stated that the interaction of a wa
packet with a probe pulse is minimal if the probability
finding the wave packet near the nucleus is small during
application of the probe pulse. It is true that the visibility
Ramsey fringes does go to a minimum at this point. Ho
ever, the amplitudes of the individual eigenstates can be
nificantly altered even when the wave packet is away fr
the nucleus. Therefore, the measurement can take plac
any position upon the wave packet’s trajectory.
l

n
p-

e
f

e
la-

o-

a-

c

e

e

-
g-

at

In the above example, we assumed that the pump
probe pulses are identical pulses. However this is not a n
essary condition for our formalism to work. A generalizatio
to a more arbitrary excitation pulse can be made. There
recently been much interest in tailoring optical pulses so t
both the magnitude and phase of the complex scalar fi
C(r ,t) are controlled in a programmable way@9–11#. To
generalize our scheme we need only assume that the p
pulse~s! is weak~i.e., the interaction is perturbative! and that
it is phase coherent with the probe pulse. The probe puls
still assumed to be weak and Gaussian in shape.
probability amplitude after the pump pulse isan
52( i /2)Vn(Xn1 iYn), whereXn andYn , respectively, are
the real and imaginary parts of the Fourier-transformed
velope function. The interaction of the probe pulse produ
the probability amplitude

an852
i

2
Vn~Xn1 iYn1e2~Dn

2s2/2!eivteiDnt!. ~10!

Thus the probabilityuan8u
2 is

uan8u
25S Vn

2 D 2

$Xn
21Yn

21e2~Dn
2s2!12 e2~Dn

2s2/2!

3@Xncos~Dnt!1Ynsin~Dnt!#cos~vt!12 e2~Dn
2s2/2!

3@2Xnsin~Dnt!1Yncos~Dnt!#sin~vt!. ~11!

The desired values ofXn andYn can be obtained in a manne
similar to the previous multipulse example, via measu
ments of the population with appropriately phased pro
pulses. More precisely, the values ofXn andYn are given by

Xn5
uan8~t0!u22uan8~tp!u2

Vn
2e2~Dn

2s2/2!
cos~Dnt!

2
uan8~tp/2!u22uan8~t3p/2!u2

Vn
2e2~Dn

2s2/2!
sin~Dnt!, ~12!

Yn5
uan8~t0!u22uan8~tp!u2

Vn
2e2~Dn

2s2/2!
sin~Dnt!

1
uan8~tp/2!u22uan8~t3p/2!u2

Vn
2e2~Dn

2s2/2!
cos~Dnt!. ~13!

To examine the feasibility of the proposed method,
consider the accuracy of the reconstruction of a quan
state of an atomic wave packet produced by the arbitra
shaped weak pulse described above. One of the primary
cerns is the effect of a less than perfect probe pulse.
investigate this problem by examining the reconstruction t
is obtained for a probe pulse with a small linear chirp a
compare it to that obtained for a transform-limite
Gaussian pulse. This chirped pulse is definedE(t)
5(1/A2ps)exp@2(11ib)t2/(2s2)#. For a chirped pulse with
small values ofb ~keeping only terms linear inb), Xn and
Yn become
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Xn5Xn
~0!2b~Dn

2s221!e2~Dn
2s2/2!Yn

~0! , ~14!

Yn5Yn
~0!1b~Dn

2s221!e2~Dn
2s2/2!Xn

~0! , ~15!

whereXn
(0) and Yn

(0) are the results for a transform-limite
Gaussian as defined by Eqs.~12! and~13!. The magnitude of

the term (Dn
2s221)e2(Dn

2s2/2) is always less than 1. There
fore, the degree of entanglement of the desired quant
Xn

(0) andYn
(0) is b. That is, if we unknowingly have a puls

with a value ofb50.01, the value ofXn obtained for the
chirped pulse unknowingly has at maximum 1% ofYn

(0)

added to the desiredXn
(0) . It should be noted that it is exper

mentally straightforward to create such nearly transform l
ited pulses@35#. Therefore, it is possible to reconstruct th
wave function to a high degree of accuracy. In addition,
ability to characterize ultrafast pulses has recently seen
nificant advances@36–38#. In fact, transform-limited pulses
are not essential to this reconstruction scheme; any pertu
tive pulse that has been characterized to a similar level
be used as a probe pulse.

A further requirement on the probe pulse is that its ba
width must equal or exceed that of the pump pulse. The o
conditions placed upon the pump pulse are that the inte
tion is perturbative, and the pulse is coherent with the s
sequent probe pulse. An additional experimental requirem
is that the measurement of the population must resolve
eigenstates of the system. The technique of SSFI easily
isfies the criteria for resolving the population in weak
bound, low angular momentum Rydberg states. The h
quantum efficiency of SSFI is an added advantage. All
these experimental conditions are straightforward to rea
in Rydberg-atom wave packet experiments.

To what other systems may this reconstruction schem
applied? This scheme is aimed at the reconstruction of w
functions of pure states. Systems which lose coherence
.
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idly ~those dominated by spontaneous processes, depha
etc.! are not well suited to this interference technique. If t
dephasing time is of a similar magnitude to the measurem
time, then this method cannot be employed. For a typ
wave packet, the measurement time can be a small frac
of the period of the wave packet’s oscillation. The system
have been discussing, atomic Rydberg states, have ex
tionally slow dephasing processes~roughly 106 times longer
than the orbital period!. Molecular systems typically have
shorter dephasing times but they are long enough that m
periods of the wave packet’s motion can and have been
served@10,11,17,39#. Therefore, there is a significant perio
of time in which the molecular wave packet is essentially
pure state. This reconstruction scheme also requires th
means for resolving the populations in the various states
the superposition exist. Recent experiments suggest that
resolution is possible for molecular vibrational wave pack
@39#. The situation with solid-state systems is less certa
Here the dephasing times are quite short. For example, in
bulk semiconductor the dephasing time for a free exciton
approximately 100 fs@40#. However, in a confining potential
e.g., a one-dimensional quantum well, this dephasing t
can be increased to approximately 3 ps@41#. In that work, a
pump and a delayed probe pulses were used to prod
phase-sensitive control of THz radiation from a polariz
electron-hole pair. This retention of coherence suggests
there may be a short time in which the reconstruction co
be accomplished for the quantum well system.

The interference technique described in this paper is
ally suited to the study of Rydberg atomic wave packets.
have demonstrated that the reconstruction of the wave fu
tion of an atomic Rydberg wave packet requires only a sm
number of measurements. These phase-dependent popu
measurements offer a means of determining the wave fu
tions of the programmed or engineered Rydberg ato
wave packets that have recently been generated.
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