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Theory of spontaneous emission in an optical cavity
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Spontaneous emission in a one-dimensional FabrgtRgpe optical cavity is analyzed quantum mechani-
cally. Via a monolayer dielectric cavity model, expressions describing the atomic-location dependence of the
emission intensities and the spectra observed on both sides of the cavity are obtained. The probability ampli-
tude for the upper atomic state is analyzed and its time-evolution equation is given. The probability amplitude
is shown to be proportional to “the electric field amplitude for a single emission event” introduced classically
by Huanget al. [Appl. Phys. Lett.61, 2961(1992]. An expression for the emission spectrum applicable to a
general one-dimensional cavity structure is obtaii&d.050-294{@7)04509-3

PACS numbd(s): 42.60—v

[. INTRODUCTION on the two sides of the cavity and excellent agreement was
found between theory and experiment. However, their “elec-
It has been demonstrated theoreticdlly2] and experi- tric field amplitude for a single emission event” was left as
mentally [3—8] that spontaneous emission, which had beeran unknown function. Although Depyet al.[26] considered
believed to be an inherent nature of the atom, can be modihat problem using the quantum-mechanical wave-packet ap-
fied in a cavity comparable in size to the wavelength of lightproach and obtained the same expression for the emission
emitted. The modification includes enhancement and inhibispectrum, the emission spectrum from the dipole in the ab-
tion of spontaneous emission in a cavity, which stem fromsence of cavity was not derived from first principles. Feng
the alteration of the vacuum field mode structure from that ofand Ujihara have derived in a strict way a delay-differential
free space. These effects are accounted for by considerirgguation of the atomic state in a one-dimensional optical
the interaction between an atom and cavity modes. In theavity with output coupling using mode functions with a
strong coupling regime, where a two-level atom is coupled taontinuous spectrum, and have demonstrated the time devel-
a single cavity mode of a higf)- cavity, spontaneous emis- opment of emission intensity observed outside the cavity as
sion can even be reversibl®,10. From an engineering well as the enhancement and inhibition of spontaneous emis-
viewpoint, controlling the spontaneous emission in such aion [20,21]. Recently, Gi@en et al. [27] have considered
cavity (microcavity) is of considerable interest because itthe propagation effects on the spontaneous emission by a
suggests the possibility of optical devices such as a lasdwo-level atom in a one-dimensional cavity with perfectly
with an extremely low threshold due to the high couplingreflecting mirrors. They showed that the spontaneous emis-
ratio of the emission into a lasing mode. Accordingly thesion always occurs first at the free space rate until the light
spontaneous emission in the cavity is crucial for realizingreflected by the cavity mirrors returns to the atom, thus caus-
such a device as a semiconductor microcavity laser, and hasg an abrupt change in further emission.
been investigated both theoretically and experimentally by a Motivated by earlier studies on microcavities, we analyze
number of author§l1-17. in this paper spontaneous emission in a one-dimensional cav-
Spontaneous emission by a two-level atom in a Fabryity on the basis of the theory in Reff20,21. Our main
Paot-type cavity constitutes the basis for cavity QED, andobjective is to calculate the atomic-location dependence of
has been studied theoretically by many autfd&-24. In  the emission intensities and the spectra observed on both
particular, a theory of the emission intensity and the specsides of the cavity. Our theory can be applied not only to a
trum observed outside the cavity is of great interest becausgeneral one-dimensional cavity but also to a one-dimensional
the experimental verification of the theory is straightforward.microcavity.
For example, De Martinit al. [22] have obtained expres- In this paper, we first calculate quantum mechanically the
sions for the spontaneous emission rates for different activantensity of spontaneous emission and the spectrum observed
dipole orientations and cavity configurations using the quaneutside a one-dimensional monolayer optical cavity, which
tized radiation field with the three-dimensional traveling-in practice corresponds to a lo® cavity. The emission
wave modes of the cavity. They showed the spontaneouspectrum agrees with that of Hauref al. [25] and the
emission pulse shape detected outside the cavity to be gegquantum-mechanical counterpart of their “electric field am-
erally nonexponential. Huangt al. [25] have derived an ex- plitude for a single emission event” is given together with its
pression for the spectrum of spontaneous emission from ime-evolution equation. A closed-form expression for the
GaAs quantum well localized in an &ba _,As planar mi-  emission spectrum is obtained using the response function in
crocavity using a classical, one-dimensional theory. Theyhe general sensg8], admittance. This expression can be
showed that the intensity and the spectrum of spontaneolwapplied to a cavity with a general one-dimensional structure.
emission outside the cavity depend on the precise dipole po- In Sec. Il we summarize the theory given in Re¥l] for
sition, and each of these differs on the two sides of the cavthe quantum-mechanical formulation of the field. The inter-
ity. Both the intensities and emission spectra were measureattion between a quantized field and a two-level atom in the
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cavity is examined to yield a delay-differential equation for :
the atomic state. In Sec. Ill we derive expressions for the & g | &
intensity and the spectrum observed outside the monolayer :
cavity, showing in general an asymmetric property of emis- :
sions to the right and to the left of the cavity. We also derive L Za 2
the expression for the quantum-mechanical counterpart of :
“the electric field amplitude for a single emission event” of
Haunget al,, which is shown to be proportional to the prob-
ability amplitude of the upper atomic state. Furthermore we
generalize the expression for the emission spectrum to obtain
one that can be applied to an arbitrary one-dimensional cav-
ity structure. Numerical examples for microcavities are pre- . 1. The model cavity. The emitting atom is &t and the
sented in Sec. IV. A brief discussion and conclusions argpserving point is atg . The dielectric constants inside and outside
given in Secs. V and VI, respectively. the cavity ares; ande, respectively. A periodic boundary condi-
tion with a period 2+ L much larger thah is imposed on the mode
function Uj(2).

4 0 I I+L

Z—>

Il. SPONTANEOUS EMISSION IN THE CAVITY
rected along the andy axes, respectively. The velocities of

We present the quantum-mechanical formulation of theight inside and outside the cavity are denoted dayand
atom-cavity system following the theory described in Ref.co, respectively. The mode function of thth mode describ-
[21]. Figure 1 shows our one-dimensional model cavity,ing the spatial distribution of the field is denoted by(2). It
which comprises a dielectric slab extending in the regioncan be shown that there exist two kinds of orthonormal mode
—I<z<I with dielectric constant . The space outside is a functionsU]—"‘(z) and Ujb(z), differing in symmetry proper-
vacuum with dielectric constant,. The permeabilityw is ties, to which we refer as theand theb mode, respectively.
constant throughout the entire space. We impose a periodig the limit L—<, both modes are degenerate and continu-
boundary condition with a large period2L in thez direc-  ous, and the mode density js=L/2mc, for eacha andb
tion. The electric and magnetic fields are assumed to be dmode. The mode functions read

sinkj,2)  (|z]<1)

UJa(Z):CY]X . Co ) (213
sin(kjal)cogkjo(z— )]+ = coskjalsinlkjo(z—D] - (1<z<I+L),
cogkj;12) (|Z<I)

UP(2)= ;X (2.1b

cos{k,-ll)cos{kjo(z—l)]—? sin(kj1l)sinkjo(z—1)] (I<z<I+L).
1

Herek;=w;/c; (i=0,1), wherew; is the frequency of the 2 2c0 PN

jthe mode. It can be shown that the mode functibhéz) B'?:H C—E 175 cog 2nk;jql). (2.3b
anddU,(z)/dz are, respectively, mutually orthogonal in one 1= *1n=0 on

period 2 +L. The constants; and g; are obtained by nor-

malizing the mode functions with(z) as the weighting fac- Here,r[=(co—c1)/(co+c,)] is the amplitude reflectivity at
tor: the interfaces as seen from inside the cavity @hi$ the

Kronecker delta. The parameters characterizing the cavity
are given as follows:

2 1
aj=—— o, (2.2a
el 1-Ksin'(kjyl) wE=wy(2m+1), wl=2me, (M=0,1,23,.)
2 1
2__“ ¢ 1
Fi g1l 1-K cos(kjl)’ 2.2 Ye= In(;), (2.4
where K=1—(gq/e4). They can be expanded in Fourier 27 mcy
series as We=—=—,
t, 2l
2_ 2 ﬁ (—=n)" cos 2nki 1) (2.39 where o8, and w& are resonant frequencies far and b
j1l /s .

oy ——— . . .
I' gL c1a=0 1+ 6oy modes, respectivelyy,. is the cavity decay constafur half-
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width of the resonant modew, is the mode separation, and Here in the second integral we have replaced the summation

t, is the round-trip time in the cavity=4l/c,). 2; by an integral with the mode density and the lower limit
We follow the quantization procedure for the free field zero by negative infinity. The factes; has been taken out of

using the orthogonality of the mode functions and considethe integral as a constanb, since the spectrum of

the spontaneous emission process by a two-level atom le~'“A'C,(t) has a highly peaked value at,. Substituting

cated atz, with transition frequencyw, [21]. The Hamil-  the mode functions fofz|<I in Egs.(2.139 and(2.1b) into

tonian of the atom-field system can be written as (2.10, and using Eq(2.3), we obtain a delay differential

equation forC (t):

[’

H=2 fhwa/aj+Ha—aE(za)=2> fiwd/a+H, |

] ] C (t):—Aﬁ COH()+2>, r2neleatC (t—nt,)

1/2 L R u 2 u ] u r
Uj(za) [ —4]], (2.5

3

o

. A XH(t—nt,)+ >, r2+lgleaM+tc (t—nt, —t,)
whereH, is the atomic Hamiltoniank is the electric field n=0

operator, ancﬁj and éjT are the annihilation and creation o
operators, respectively, for thjegh mode. An electric dipole XH(t—nt,—t;)+ z r2n+lgioa(nt +tp)
interaction is assumed with being thex component of the n=0

electric dipole operator of the atom, and a dipole approxima-
tion is made. The system wave function in the Scdmger X Cy(t—nt,— t,)H(t—nt, —t,) 2.1
picture is of the form u r— L2 r— )|

where

[w()=Cylw0)e s+ 2 Cy(HInIL)e "
(2.6

2(1—=zp) 2(1+2zp)
Here,|u)|0) denotes the state for which atom is at the upper Yo t= C,
state and no photon exists in any mo¢¢|1;) denotes the
state for which the atom is at the lower state and one photo
exists in modej while no photon exists in all the other
modes.C,(t) andCy;(t) are the probability amplitudes for
the states|u)|0) and |I)|1;), having initial conditions
Cy(0)=1 and C;;(0)=0, respectively. The Schdinger
equation with Egs.(2.5 and (2.6) yields the following
coupled equations of motion for the probability amplitudes:

=t,—t;. (2.12

Fi(t) is the unit step function anflo(= 72wa| wal 2% e0Co)
is the spontaneous emission rate in a one-dimensional free
space of dielectric constamt;. In the above expression for
Ay, the effect of a medium in which the atom is embedded
on the spontaneous emission rate is included in the local field
correction factor denoted by [29]. Equation(2.11) de-
scribes the interaction of the emitted photon with the emit-
" ting atom V\I/itg gorrﬁct ﬂelay tti)mfes corre_sporgdinkg to rt}he dis-
: _ of (e — ot tance traveled by the photon before coming back to the atom.
C“(t)__; (E) Uj(za) pag ™17 “N1Cyi (1), If we assume, for example,<0t<t,;<t,, then all summa-
(2.7)  tion terms vanish and Ed2.11) reduces to a simple form
Cu(t)=—(Ap/2)C,(t)H(t). Obviously this equation states
. w: | 12 that the upper atomic population decays exponentially at the
Cj(t)= (j) Uj(zA)Mze“wrwA)tcu(t), (2.9 free space raté unful the reflected Il_ght returns to the atom
at t; [20,21]. Equation(2.11) determines the decay of the

) ) . atom completely and its numerical solution will be presented
where u, is thex component of the dipole matrix element j, gec. |v.

and the dot indicates the time derivative. EIiminatiﬁg
using C;;(0)=0, we have
I1l. EMISSION INTENSITY AND SPECTRUM

. 2 t .
] 0

The observable field intensity is the quantum-mechanical
average of the product of the negative and the positive fre-
(2.9  quency parts of the electric field operaté{~) and E(*)
[32], which are given by

The above equation can be rewritten as

. R fw: 1/2 R
A g1 [t (U320 Eo=E =3 ] uen. 6
0 —o0

Cu(t): -

+[U(za)]3e @7 e e (1), (210 Then the field intensity atg(>1) has the form{20]
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R R * et . ) 2
<t//(t)|E(_>(zB)E<”(ZB)|w(t)>=%Jodt'cu(t'); ;[ UR(za) U%(zg) + UP(2) UP(2g) Jle7 (@i~ en(=1)) | (3.2)

We note that the quantity in the absolute square is propompendent ofzg but dependent om,, as seen by the, andzg
tional to the integral transform a@(t) by the kernel thatis dependence di; andt, . Thus we can write the spectrum in
given by the summation in the integrand and contains théhe form

effect of the cavity on the observable fid83].

Here we define the following characteristic times: w3 wal?
= ———T|D(w)|?
S(ZA,Q)) A nE1CAC | (w)l
N ZA_I ZB_I _tl’ ZA+I ZB_I I 0°1~0~1
R Tt Wt T, (ze=1), y 1+R+2R cog2w[(za+1)/cq]}
3.3 1+R?—2R cog4wl/cy)

wherety is the time required for the light to travel rightward
from the atom tazg, andt, is the time required to travel to
the left interface and then to the observation pajnt Using
the mode functions in Eq92.1) with normalization con-
stants in Eq(2.3) and replacing the summation by an inte-
gral, we can calculate Eq3.2) to obtain[34]

(P(V)|E)(2g)EF)(zg)| (1))

(zg>1), (3.6

whereR=r2 and T=1—R. If the observation point is lo-
cated to the left of the cavityzg<—1, the factorz,+I
should be replaced by z,+1. This equation is of the same
form as that derived classically in R425] and explicitly
shows the dependence of the power spectrum on the atomic

locationz, .
w2| 2 We note thaD (t), which is a product of a carrier wave of
:%(142)“(2/4,251”2, (3.9 frequencywA and an upper atomig statg probability ampli-
€081CoCy tude C(t), is of quantum-mechanical origin and represents

the probability amplitude in the form of a wave packet going
back and forth in the cavity and is the quantum-mechanical
0 counterpart of “the electrical field amplitude for a single
f(zp,2g,1) =€ 1ol E r2Ngloat HRIC, (t—nt, —tg) emission event” of Huanga.t al. [25]. Note also thaF Eg.

n=0 (2.11), or Eq.(2.10, determinesD(t) completely, while it
remains as an unknown function in the classical, intuitive
theory of Huanget al.

In the expression for the emission spectrum €96), we
note that the term in curly braces represents the effect of
multiple reflection at interfaces on the field outside the cav-
XCy(t—nt—t)H{E—nt—t,)| (zg>1). ity. In other words, that term can be regarded as the response

of the space to a source inside the cavity. If we define the
(3.5 admittanceY(zg,z5,w) as the expectation value of the
steady state electric field operatorzgtdue to a classical unit
point current sourcépolarized in thex direction located at
z, with frequencyw [28], then the explicit expression of
admittance for the monolayer model is given by

where

[’

XH(t—nt,—tR)-f- E r2n+1eiwA(ntr+tL)
n=0

Equation(3.4) together with(3.5 shows that the observable
field intensity atzg andt results from a superposition of
probability waves emitted by the atom tat (nt+tg) andt
—(nt,+t,) with amplitudes proportional taC, at those

times, showing the effect of multiple reflection at interfaces 141 [1+r expli2o[(za+1)/cy]}
on the emission process. The field intensitgg@t — 1 can be Y(2g,2p,0)= 5 l 12 Gol]
obtained from Eqs(3.4) and (3.5) by replacing bottz, and €101 reexpi(4wl/cy)]

zg by —z, and —zz in Egs.(3.3), respectively. X el R (z5>1). (3.7

If we assume for the moment that the functifz, ,zg ,t)
represents a classical wave a@g(t) a classical amplitude, We can obtain the admittance fag<—1 by replacingz,
then we can calculate the power spectrum of the emission ofindzg by — z, and — zg, respectively. Comparing E¢3.6)
a purely classical ground. A quantum-mechanical justificawith the absolute square of E(B.7), we see that the emis-
tion for this procedure will be given later in this section. To sion spectrum for a monolayer cavity is proportional to the
find the power spectrum that is proportional to the absoluteibsolute square of the admittance. Thus we can express the

square of the Fourier transform of emission spectrum E@3.6) in terms of the admittance:

the “field amplitude” f(za,zg,t), we define D(t)

=e '“AlC (t)H(t) and write its Fourier transform d3(w). S(zp,w)=wa| wal?|D(®)|?|Y(z5,25,0)]%. (3.8

The term of, for exampleg '“Alr2Nel“a(Mi™RIC (t—nt,

—tg)H(t—nt,—tg) is transformed tor2"e'*("t*RD (). This equation shows that the emission spectrum observed

Then the spectrum corresponding to E8}4) becomes inde- outside the cavity is proportional to the product of the spec-
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trum corresponding to the atomic motion in the cavity and o T
the absolute square of admittance. e -
We have obtained Eq3.8) heuristically for a monolayer o | 1
cavity. However, we can easily show that this equation, ex- S L _— (b) node ]
pressing the observable field intensity in terms of the admit- s | ]
tance, applies to a general structure: The field intensity in Eq. §.
(3.2) can also be written as & 057 i
<
(P(DIET (29 B (z) Y1) 20 @ aninode
3 | _
® :Q)" L " (C) i
=‘$ - #aUj(za)Vj(28) o =
Time t.'t,

. t P
><e"<‘"i‘“’A)‘f D(t")e'i dt’
0

where w; has been factored outside the summationwas

becaus® (w) has a highly peaked value @}, . The integral
over w comes from the Fourier transform Bf{(t"). Note that

2

=wilual?l | Y(zg.za,0)D(w)e"“dw| , (3.9

the field amplitude given by the last integral is in the form of

the inverse Fourier transform &(zg,z5,w)D(w). Thus it

follows from Eq. (3.9 that the expression for the emission
spectrum Eq(3.8) holds for a general structure. The above
discussion leading to E@3.9) can be considered a quantum-
mechanical justification for the procedure of obtaining the

power spectrum, Eq3.6).

Our main results of the present paper include Eg<l)—
(3.6), and their generalization Eqé3.8) and (3.9). Another
result is thatD(t)=e '“A'C,(t)H(t) corresponds to the
classical “unknown function” of Huanggt al.

To gain the physical meaning of numerical results in the

FIG. 2. Time evolution of the upper-state population for a low-
Q cavity: |Cy(t)|? vs t/t,, wheret, is the round-trip time in the
cavity. The atom is set dB) an antinode £,/1=0.2), (b) a node
(zp/1=0.4), and(c) a position g, /1 =0.35) between the node and
the antinode. BA=2.5 (wp=w3=5w,), r =0.6, andt,A;=0.5 for
curves(a), (b), and(c).

QZ
2

_ wcAg

Sirf(wita), (3.13

oo

andty=z,/c,. For an underdamped cavity,<(), we can
easily find the inverse Laplace transform of Eg.12):

, Q
D(t)Ee_"”Ate_VCWCO{? t). (3.19

In the same manner, for an overdamped cawity (), the
inverse operation yields

D(t) = e—iwAIe—taMyc.

(3.19

next section, let us now consider the decay process of th@quations(B 14 and(3.15 agree with Eqs(3.18 and(3.19

atom Eq.(2.9) and obtain approximate solutions for a single-
resonant-mode limit of the monolayer cavity, where only the

resonant mode}, (mth a mode contributes appreciably to
the interaction with the atorf21]. To this end we denote by
D(s) the Laplace transform oD(t)=e '“A'C (t)H(t),

multiply Eq. (2.9 by e '“A!, and take the Laplace transform

with the initial conditionD(0)=1. The result is given by

1
D(s)=— -
(S) S+|&)A_81C1AOY(ZA,ZA,|S)'

(3.10

wherew; has been factored outside the summation as a co

stant frequencyw, in Eq. (2.9). Evaluating the admittance at
the location of the atom with the help of Eq2.4), (2.12),
and the single-resonant-mode conditi¢a4]

Ap<lht,, ye<o So0f, of=oa, (3.11
and substituting into Eq3.10, we obtain
Stiwpt+
D(s)= AT Yo (3.12

(stiwat vd2)%— (y:2)%+ (Q12)%

where() is the vacuum Rabi frequency given [31]

in Ref.[21], respectively.

Numerical examples will be presented in the next section,
with emphasis on the atomic-location dependence of the
emission intensities and the spectra observed on both sides of
the cavity.

IV. NUMERICAL EXAMPLES

In this section, we present some numerical examples
based on the theory developed so far. Our main concern here
is the atomic-location dependence of the emission intensity

nd the spectrum observed on both sides of monolayer mi-

crocavities. Figures illustrated here include the time evolu-
tion of the upper state population of the atd@(t)|? cal-
culated from the delay differential equation EG.11), the
spectrum|D(w)|? calculated from the Fourier transform of
D(t)=e '“A'C,(t)H(t), the absolute square of the admit-
tance atzg, |Y(zg,2za,®)|?, calculated from Eq(3.7), and
the emission spectrum as a quantity proportional to the prod-
uct of |D(w)|? and|Y(zg,2a, ) |?.

Figure 2 shows the time evolution of the upper state popu-
lation|C(t)|? vs the scaled tim#'t, for a 2.5\ cavity where
\ is the wavelength in the cavity and the atom is located at
an antinode %Z,/1=0.2) [curve (a)], a node g£,/1=0.4)
[curve (b)], and a position £, /1 =0.35) between the node
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and the antinode of the cavity resonant mddarve (c)].
Other parameters include the amplitude reflectivity 0.6
and the spontaneous emission r#tg=0.5t, in the free
space of dielectric constamst;. The curve(a) shows a fast
decay with a very weak Rabi oscillation. From E(&4) and
(3.14), this corresponds to the cavity decay constaqt
=0.16w. and the Rabi frequenc§ =0.32w.. Thus the con-
ditions for the single resonant mode limit for an under-
damped cavity are roughly satisfied. When the atom is lo-
cated at the node, as shown in cufig the atomic decay is
quite slow compared with curvéa) and the spontaneous
emission is substantially suppressed. In this case the approxi-
mate solution Eq(3.13 yields the zero Rabi frequency be-
cause sin3ta)=0(m=2), and the upper state population re-

[x107]

4_

o 2[D(w)P

antinode A

-2 -1 0 1 2
(0-w )/,

(@

mains a constant equal to unity from E®.15. However,

the slow decay indicates that other modes in which the atom
may be near or just at an antinode contribute to the emission
[20]. When the atom is located between the node and the
antinode, the atom-field coupling is medium and the decay
curve lies between the curvéa) and (b), as shown in(c).
Abrupt changes in the curves indicate the counteraction of
reflected radiations on the atom. In particular, a closer look
at the figure shows that the first interactions of the atom with
the reflected radiations for curvéa), (b), and(c) occur at
t=0.4t,, 0.3t,, and 0.325 , respectively, which are consis-
tent with Eq.(2.11).

Figure 3a) shows the spectrufid (w)|? corresponding to
the atomic curvga) in Fig. 2. The spectrum is symmetric
about the atomic transition frequenay, and displays two
peaks ato=wa*0.16w, reflecting the Rabi oscillation of
|Cu(t)|? with frequencyQ=0.32w.. Other numerical re-
sults (not shown hergindicate that when the atom is at a
node or at an antinode of a resonant cavity where the cavity
length is an integral multiple of the half wavelength of light,
the spectrun{D(w)|? is almost symmetric aboub,. The
same is true of the admittance spectrMizg ,z, , »)|>.

The absolute square of the admittandd(zg,za,)|?
versus (—wp)/w. for outside the monolayer cavity is
shown in Fig. 8b) for the case wherg, is at the antinode.
The solid and the dashed curves are Zgr-1 andzg<—1,
respectively. It can be shown from E@.7) that for a reso- 2 -1 0 I
nant cavity,|Y(zg,zs,)|? has the same value fag>1 and (-0, ),
zg<—1| at a resonant frequency where{ w,)/w; is an ©
integer. In fact the figure shows that at resonant frequencies
;{/r;?uzdvrcrlltﬁznﬁ]eﬁo; l%rBelejee:lrz:(;/ frO(-:*rgZi?ji b(le)twheivr:e ttfrl]: ?eirgﬁanzutside the cavity corresponding to curi@ in Fig. 2, where the

. . . . atom is at an antinodezf /| =0.2). The spectra of (zg,z,,w) are
frequencies they are different. In particular we note that in,

he f . h . ition f also shown.(@) Spectrum ofD(t): wZ|D(w)|? vs (0— wa) w.
the requenc_y region near the atomic transition requencyr,q peaks atw=w,*0.16w, correspond to the Rabi oscillation
wp, the admittance spectra fag>1 and forzg<<—1I almost

\ oy ? . L of |Cu()]? with Q=0.32w.. (b) Admittance spectrum:
coincide. 'In this case we can expect symmetric emission2c2|y(z, 2, w)|? vs (w—wp)/w,. The solid and the dashed
spectra with respect zy>1 andzg<—1, since the emission ¢yrves represent the spectra observed on the right ) and on
spectrum is proportional tD (w)|?|Y(zg,za,®)|? in which  the left (zg<—1) side of the cavity, respectivelyc) Emission
D(w) is independent of the observation poimore explicit  spectrum proportional to the product of spectréanand(b), show-
conditions for symmetric emission spectra will be givening almost symmetric emission. The solid and the dashed curves are
later). the spectra observed on the rightg1) and on the left £5<

The emission spectra corresponding to cu@en Fig. 2 —1) side of the cavity, respectively.
are shown in Fig. @). The spectrum is proportional to the
product of spectrdD(w)|? in Fig. 3@ and|Y(zg,za,»)|>  symmetric radiations to the right and to the left of the cavity
in Fig. 3b). The solid and dashed curves are fge>1 and  (zg>| andzg<—1), as mentioned above.
zg<—1, respectively, as before. As can be seen from the Figure 4 shows the spectra corresponding to the c(bye
figure the solid and dashed curves almost coincide, showinmp Fig. 2 where the atom is located at the node. The figure

antinode

& ¢ op? [Y(zpza, @)

[XIOS] T T T T T

S
T

antinode

Intensity (arb. units)
5

0 A L 1 L.
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FIG. 3. Spectrum oD(t) and the emission spectra observed
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FIG. 4. Emission spectra corresponding to cufbgin Fig. 2, FIG. 6. Emission spectra for a nonresonant cavity wheva 2

where the atom is at a node,(/l =0.4). The solid and the dashed =2-2,7=0.6,t,Ao=0.5, andz,/I=0.4. The solid and the dashed

curves are the spectra observed on the right=(1) and on the left ~ curves are the spectra observed on the righ=() and on the left

(zs<-—1) side of the cavity, respectively, showing symmetric emis-(Zs<—1) side of the cavity, respectively, showing asymmetric
sion spectra. emission spectra.

shows almost identical radiations to the right and to the lef@ntinode of the cavity resonant mod&) The linewidth of

of the cavity. Since the atomic decay is quite slow, the corthe spectrumD(w)|? is much smaller than the atomic tran-

responding spectrufid (w)|? is highly peaked ai,, where  Ssition frequencyw, .

the admittances have the same value, as stated earlier. ThusEmission spectra for a nonresonant cavity are illustrated

we have Symmetric emission SpeCtZ@;Zél and zg< _|) in Flg 6, where 2/)\:22, ZA” :0.4, and other parameters
When the atom is located between the node and the antfre the same as those fol/R=2.5. We observe that both

node, i.e.zx/l =0.35, as shown in Fig. 5, we have slightly the emission line shapes and the spectrally integrated inten-

asymmetric emission spectra fog>| and forzg<—1| due  Ssities differ for zg>| and zg<—I, showing asymmetric

to the difference in admittance spectra near. The spectra emission spectra. The differences arise essentially from the

are highly peaked ab, and are similar to those of Fig. 4, difference in|Y(zg,za,®)| in the frequency region close to

because the atomic locatiom,(/| = 0.35) is close to the node ®@=®a, SINCE the resultant emission spectrum Is propor-

(z4/1=0.4) where the atom-field coupling is quite weak. tional to |D()|?|Y(zg,za,®)|? whereD(w) is indepen-
The differences in the emission spectra in Fig&)34, dent of the observation point. _

and 5 show an example of the fact that the emission spec- It should be noted that the sum of the energy radiated

trum depends on the atomic location. The numerical result§om both sides of the cavity should be a constahivf)

inc|uding those not shown in this paper Suggest that théndependent of the atomic location. We have verified nu-

emission spectra for our monolayer cavity are symmetric if merically that the sum is constant by calculating the spec-

roughly speaking, the following conditions are satisfier). ~ trally integrated intensity, for cavities of lengthsl| 2

The cavity length is an integral multiple of the half wave- =1.35\, 1.5A, 2.5\, and 18.1.

length of light.(2) The atomic location is at a node or at an

V. DISCUSSION

[X104] T T T T T T ) )
In Secs. Il and Il we have made an approximation that

the factorw; can be taken out of the summation or the inte-
gral as a constant frequenay, because the function in the
1k - summation or the integrand has a highly peaked spectrum at
wp Or several peaks near, . This is equivalent to the con-
dition that the atomic state varies much slower than the pe-
riodic motion of the light. This can be seen as follows: If the
width Aw; of the spectrum is much smaller thas,, we
have approximatelyC (t)/C(t)|~Ao/2~Awj<w,. This
A condition is satisfied even for a cavity with its length being
ob— ! G\ \ of the order of the wavelength as well as for a conventional
R | 0 1 2 : .
(0w ) one, as discussed in Réﬂl.]. . .
e In Sec. Ill we have derived the expressions for the field
FIG. 5. Emission spectra corresponding to cufein Fig. 2,  intensity and the spectrum observed outside the cavity. The
where the atom is located af /I =0.35 between the nodez{/I following discussion will aid comparison between theory and
=0.4) and the antinodez{/I=0.2). The solid and the dashed €xperiment: Classically the spontaneously emitted light from
curves are the spectra observed on the riggtl) and on the left the cavity will be of the form of wave trains of finite length,
(zg<—1) side of the cavity, respectively, showing slightly asym- €ach of which corresponds to a single emission and enters
metric emission spectra. the detector at random. N is the number of wave trains

Intensity (arb. units)
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entering the detector during the time intervdl Bequired for  dimensional dielectric slab with the transverse dimensions
a measurement, then the mean intenkitg proportional to  much larger than the cavity length, there exist guided modes
the integral of the Fourier compone8g(za,w) of a single  as well as longitudinal modes. Part of the radiation from the
wave train and is given b}35] atom will couple to the guided modes resulting in guided
waves along the transverse directions. Also, depending on
the cavity length, there exist oblique resonant modes. The
waves in these modes never return to the atom again, which
would otherwise interact with the atom, causing kinks in the
The Sc(za,w) may be replaced in our case by the functionatomic decay process. Thus in a three-dimensional case we
S(zp,w) in Eq. (3.6). It follows from this consideration that expect less kinky character in the time evolution of upper
we can obtain an expression for the measurable mean inteatomic populatiorC,(t)|?.

sity using S(z,,w), and that thisS(z,,w) exactly repro-
duces the steady state observed spectrum.

We have seen thatD(t)=e '“AlC (t)H(t) is the
guantum-mechanical counterpart of “the electric field ampli- In conclusions, we have analyzed in a consistent
tude for a single emission event” of Huareg al. Indeed  guantum-mechanical way the spontaneous emission in a
D(t) may be loosely regarded as “a wave packet for a singlanonolayer optical cavity following closely the theory de-
emission” from the atom at with the envelope equal to the scribed in Ref[21]. We have derived expressions for the
upper atomic state probability amplitu@,(t) in which the intensity and the spectrum of spontaneous emission observed
effects of multiple reflection and the interaction of reflectedoutside the cavity. The emission spectrum derived is of the
light with the atom are contained, as can be seen from theame form as that given classically by Huagtgal. In par-
delay differential equatiori2.11). Therefore our expression ticular, we have shown that the probability amplitude for the
for the spontaneous emission spectrum observed outside th@per atomic state is proportional to their “electric field am-
cavity (3.6) is of the same form as that derived classically byplitude for a single emission event.” We have also shown
Huanget al. Our quantum-mechanical method, however, al-that the spontaneous emission intensities as well as the spec-
lows us to calculate th®(t) from first principles without tra are dependent on the atomic location, and that the emis-
using experimental results. sions to the right Zg>1) and to the left gg<—1I) are in

Although the analysis presented in this paper is limited togeneral asymmetric. This asymmetry for the monolayer cav-
one dimension, it can be served as an approximation to thigy stems from that of admittance. We have given an expres-
situations in the three-dimensional world as has been seen Isjon for the emission spectrum applicable to a general one-
the work of Huanget al. [25]. If the cavity is a three- dimensional cavity structure.

N 0
|=EJ_WSC(ZA,w)dw. (5.1

VI. CONCLUSIONS
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