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Theory of spontaneous emission in an optical cavity
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Spontaneous emission in a one-dimensional Fabry-Pe´rot-type optical cavity is analyzed quantum mechani-
cally. Via a monolayer dielectric cavity model, expressions describing the atomic-location dependence of the
emission intensities and the spectra observed on both sides of the cavity are obtained. The probability ampli-
tude for the upper atomic state is analyzed and its time-evolution equation is given. The probability amplitude
is shown to be proportional to ‘‘the electric field amplitude for a single emission event’’ introduced classically
by Huanget al. @Appl. Phys. Lett.61, 2961~1992!#. An expression for the emission spectrum applicable to a
general one-dimensional cavity structure is obtained.@S1050-2947~97!04509-5#

PACS number~s!: 42.60.2v
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I. INTRODUCTION

It has been demonstrated theoretically@1,2# and experi-
mentally @3–8# that spontaneous emission, which had be
believed to be an inherent nature of the atom, can be m
fied in a cavity comparable in size to the wavelength of lig
emitted. The modification includes enhancement and inh
tion of spontaneous emission in a cavity, which stem fr
the alteration of the vacuum field mode structure from tha
free space. These effects are accounted for by conside
the interaction between an atom and cavity modes. In
strong coupling regime, where a two-level atom is coupled
a single cavity mode of a high-Q cavity, spontaneous emis
sion can even be reversible@9,10#. From an engineering
viewpoint, controlling the spontaneous emission in suc
cavity ~microcavity! is of considerable interest because
suggests the possibility of optical devices such as a la
with an extremely low threshold due to the high coupli
ratio of the emission into a lasing mode. Accordingly t
spontaneous emission in the cavity is crucial for realiz
such a device as a semiconductor microcavity laser, and
been investigated both theoretically and experimentally b
number of authors@11–17#.

Spontaneous emission by a two-level atom in a Fab
Pérot-type cavity constitutes the basis for cavity QED, a
has been studied theoretically by many authors@18–24#. In
particular, a theory of the emission intensity and the sp
trum observed outside the cavity is of great interest beca
the experimental verification of the theory is straightforwa
For example, De Martiniet al. @22# have obtained expres
sions for the spontaneous emission rates for different act
dipole orientations and cavity configurations using the qu
tized radiation field with the three-dimensional travelin
wave modes of the cavity. They showed the spontane
emission pulse shape detected outside the cavity to be
erally nonexponential. Huanget al. @25# have derived an ex
pression for the spectrum of spontaneous emission fro
GaAs quantum well localized in an AlxGa12xAs planar mi-
crocavity using a classical, one-dimensional theory. Th
showed that the intensity and the spectrum of spontane
emission outside the cavity depend on the precise dipole
sition, and each of these differs on the two sides of the c
ity. Both the intensities and emission spectra were meas
561050-2947/97/56~3!/2299~9!/$10.00
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on the two sides of the cavity and excellent agreement
found between theory and experiment. However, their ‘‘el
tric field amplitude for a single emission event’’ was left
an unknown function. Although Deppeet al. @26# considered
that problem using the quantum-mechanical wave-packet
proach and obtained the same expression for the emis
spectrum, the emission spectrum from the dipole in the
sence of cavity was not derived from first principles. Fe
and Ujihara have derived in a strict way a delay-different
equation of the atomic state in a one-dimensional opt
cavity with output coupling using mode functions with
continuous spectrum, and have demonstrated the time de
opment of emission intensity observed outside the cavity
well as the enhancement and inhibition of spontaneous e
sion @20,21#. Recently, Gieben et al. @27# have considered
the propagation effects on the spontaneous emission b
two-level atom in a one-dimensional cavity with perfect
reflecting mirrors. They showed that the spontaneous em
sion always occurs first at the free space rate until the li
reflected by the cavity mirrors returns to the atom, thus ca
ing an abrupt change in further emission.

Motivated by earlier studies on microcavities, we analy
in this paper spontaneous emission in a one-dimensional
ity on the basis of the theory in Refs.@20,21#. Our main
objective is to calculate the atomic-location dependence
the emission intensities and the spectra observed on
sides of the cavity. Our theory can be applied not only to
general one-dimensional cavity but also to a one-dimensio
microcavity.

In this paper, we first calculate quantum mechanically
intensity of spontaneous emission and the spectrum obse
outside a one-dimensional monolayer optical cavity, wh
in practice corresponds to a lowQ cavity. The emission
spectrum agrees with that of Haunget al. @25# and the
quantum-mechanical counterpart of their ‘‘electric field a
plitude for a single emission event’’ is given together with
time-evolution equation. A closed-form expression for t
emission spectrum is obtained using the response functio
the general sense@28#, admittance. This expression can b
applied to a cavity with a general one-dimensional structu

In Sec. II we summarize the theory given in Ref.@21# for
the quantum-mechanical formulation of the field. The int
action between a quantized field and a two-level atom in
2299 © 1997 The American Physical Society
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cavity is examined to yield a delay-differential equation f
the atomic state. In Sec. III we derive expressions for
intensity and the spectrum observed outside the monol
cavity, showing in general an asymmetric property of em
sions to the right and to the left of the cavity. We also der
the expression for the quantum-mechanical counterpar
‘‘the electric field amplitude for a single emission event’’
Haunget al., which is shown to be proportional to the pro
ability amplitude of the upper atomic state. Furthermore
generalize the expression for the emission spectrum to ob
one that can be applied to an arbitrary one-dimensional c
ity structure. Numerical examples for microcavities are p
sented in Sec. IV. A brief discussion and conclusions
given in Secs. V and VI, respectively.

II. SPONTANEOUS EMISSION IN THE CAVITY

We present the quantum-mechanical formulation of
atom-cavity system following the theory described in R
@21#. Figure 1 shows our one-dimensional model cav
which comprises a dielectric slab extending in the reg
2 l ,z, l with dielectric constant«1 . The space outside is
vacuum with dielectric constant«0 . The permeabilitym is
constant throughout the entire space. We impose a peri
boundary condition with a large period 2l 1L in thez direc-
tion. The electric and magnetic fields are assumed to be
e
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rected along thex andy axes, respectively. The velocities o
light inside and outside the cavity are denoted byc1 and
c0 , respectively. The mode function of thej th mode describ-
ing the spatial distribution of the field is denoted byU j (z). It
can be shown that there exist two kinds of orthonormal mo
functionsU j

a(z) and U j
b(z), differing in symmetry proper-

ties, to which we refer as thea and theb mode, respectively.
In the limit L→`, both modes are degenerate and contin
ous, and the mode density isr5L/2pc0 for eacha and b
mode. The mode functions read

FIG. 1. The model cavity. The emitting atom is atzA and the
observing point is atzB . The dielectric constants inside and outsi
the cavity are«1 and«0 , respectively. A periodic boundary cond
tion with a period 2l 1L much larger thanl is imposed on the mode
function U j (z).
U j
a~z!5a j3H sin~kj 1z! ~ uzu, l !

sin~kj 1l !cos@kj 0~z2 l !#1
c0

c1
cos~kj 1l !sin@kj 0~z2 l !# ~ l ,z, l 1L !,

~2.1a!

U j
b~z!5b j3H cos~kj 1z! ~ uzu, l !

cos~kj 1l !cos@kj 0~z2 l !#2
c0

c1
sin~kj 1l !sin@kj 0~z2 l !# ~ l ,z, l 1L !.

~2.1b!
vity
Herekji 5v j /ci ( i 50,1), wherev j is the frequency of the
j the mode. It can be shown that the mode functionsU j (z)
anddUj (z)/dz are, respectively, mutually orthogonal in on
period 2l 1L. The constantsa j andb j are obtained by nor-
malizing the mode functions with«(z) as the weighting fac-
tor:

a j
25

2

«1L

1

12K sin2~kj 1l !
, ~2.2a!

b j
25

2

«1L

1

12K cos2~kj 1l !
, ~2.2b!

where K512(«0 /«1). They can be expanded in Fourie
series as

a j
2 5

2

«1L

2c0

c1
(
n50

`
~2r !n

11d0,n
cos~2nkj 1l !, ~2.3a!
b j
25

2

«1L

2c0

c1
(
n50

`
r n

11d0,n
cos~2nkj 1l !. ~2.3b!

Here,r @5(c02c1)/(c01c1)# is the amplitude reflectivity at
the interfaces as seen from inside the cavity andd is the
Kronecker delta. The parameters characterizing the ca
are given as follows:

vm
a 5vc~2m11!, vm

b 52mvc ~m50,1,2,3,. . .!

gc5
vc

p
lnS 1

r D , ~2.4!

vc5
2p

t r
5

pc1

2l
,

where vm
a and vm

b are resonant frequencies fora and b
modes, respectively,gc is the cavity decay constant~or half-
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56 2301THEORY OF SPONTANEOUS EMISSION IN AN . . .
width of the resonant mode!, vc is the mode separation, an
t r is the round-trip time in the cavity (54l /c1).

We follow the quantization procedure for the free fie
using the orthogonality of the mode functions and consi
the spontaneous emission process by a two-level atom
cated atzA with transition frequencyvA @21#. The Hamil-
tonian of the atom-field system can be written as

Ĥ5(
j

\v j â j
†â j1ĤA2m̂Ê~zA!5(

j
\v j â j

†â j1ĤA

2 i(
j

S \v j

2 D 1/2

U j~zA!m̂@ â j2â j
†#, ~2.5!

whereĤA is the atomic Hamiltonian,Ê is the electric field
operator, andâ j and â j

† are the annihilation and creatio
operators, respectively, for thej th mode. An electric dipole
interaction is assumed withm̂ being thex component of the
electric dipole operator of the atom, and a dipole approxim
tion is made. The system wave function in the Schro¨dinger
picture is of the form

uc~ t !&5Cu~ t !uu&u0&e2 ivAt1(
j

Cl j ~ t !u l &u1 j&e
2 iv j t.

~2.6!

Here,uu&u0& denotes the state for which atom is at the up
state and no photon exists in any mode;u l &u1 j& denotes the
state for which the atom is at the lower state and one pho
exists in modej while no photon exists in all the othe
modes.Cu(t) and Cl j (t) are the probability amplitudes fo
the states uu&u0& and u l &u1 j&, having initial conditions
Cu(0)51 and Cl j (0)50, respectively. The Schro¨dinger
equation with Eqs.~2.5! and ~2.6! yields the following
coupled equations of motion for the probability amplitude

Ċu~ t !52(
j

S v j

2\ D 1/2

U j~zA!mAe2 i ~v j 2vA!tCl j ~ t !,

~2.7!

Ċl j ~ t !5S v j

2\ D 1/2

U j~zA!mA* ei ~v j 2vA!tCu~ t !, ~2.8!

wheremA is the x component of the dipole matrix eleme
and the dot indicates the time derivative. EliminatingCl j
usingCl j (0)50, we have

Ċu~ t !52
umAu2

2\ (
j

v jU j
2~zA!E

0

t

ei ~v j 2vA!~ t82t !Cu~ t8!dt8.

~2.9!

The above equation can be rewritten as

Ċu~ t !52
vAumAu2

2\ E
0

t

dt8E
2`

`

dv jr~v j !$@U j
a~zA!#2

1@U j
b~zA!#2%ei ~v j 2vA!~ t82t !Cu~ t8!. ~2.10!
r
o-

-

r

n

:

Here in the second integral we have replaced the summa
( j by an integral with the mode density and the lower lim
zero by negative infinity. The factorv j has been taken out o
the integral as a constantvA since the spectrum o
e2 ivAtCu(t) has a highly peaked value atvA . Substituting
the mode functions foruzu, l in Eqs. ~2.1a! and ~2.1b! into
~2.10!, and using Eq.~2.3!, we obtain a delay differentia
equation forCu(t):

Ċu~ t !52
A0

2 FCu~ t !H~ t !12(
n51

`

r 2neivAntrCu ~ t2ntr !

3H~ t2ntr !1 (
n50

`

r 2n11eivA~ntr1t1!Cu~ t2ntr2t1!

3H~ t2ntr2t1!1 (
n50

`

r 2n11eivA~ntr1t2!

3Cu~ t2ntr2t2!H~ t2ntr2t2!G , ~2.11!

where

t15
2~ l 2zA!

c1
, t25

2~ l 1zA!

c1
5t r2t1 . ~2.12!

H(t) is the unit step function andA0(5h2vAumAu2/\«0c0)
is the spontaneous emission rate in a one-dimensional
space of dielectric constant«1 . In the above expression fo
A0 , the effect of a medium in which the atom is embedd
on the spontaneous emission rate is included in the local fi
correction factor denoted byh @29#. Equation ~2.11! de-
scribes the interaction of the emitted photon with the em
ting atom with correct delay times corresponding to the d
tance traveled by the photon before coming back to the at
If we assume, for example, 0,t,t1,t2 , then all summa-
tion terms vanish and Eq.~2.11! reduces to a simple form
Ċu(t)52(A0/2)Cu(t)H(t). Obviously this equation state
that the upper atomic population decays exponentially at
free space rateA0 until the reflected light returns to the atom
at t1 @20,21#. Equation~2.11! determines the decay of th
atom completely and its numerical solution will be presen
in Sec. IV.

III. EMISSION INTENSITY AND SPECTRUM

The observable field intensity is the quantum-mechan
average of the product of the negative and the positive
quency parts of the electric field operator,Ê(2) and Ê(1)

@32#, which are given by

Ê~1 !~z!5@Ê~2 !~z!#†5 i(
j

S \v j

2 D 1/2

U j~z!â j . ~3.1!

Then the field intensity atzB(. l ) has the form@20#
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^c~ t !uÊ~2 !~zB!Ê~1 !~zB!uc~ t !&5UmA*

2 E
0

t

dt8Cu~ t8!(
j

v j@U j
a~zA!U j

a~zB!1U j
b~zA!U j

b~zB!#e2 i ~v j 2vA!~ t2t8!U2

. ~3.2!
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We note that the quantity in the absolute square is prop
tional to the integral transform ofCu(t) by the kernel that is
given by the summation in the integrand and contains
effect of the cavity on the observable field@33#.

Here we define the following characteristic times:

tR52
zA2 l

c1
1

zB2 l

c0
, tL5

t r

2
1

zA1 l

c1
1

zB2 l

c0
~zB. l !,

~3.3!

wheretR is the time required for the light to travel rightwar
from the atom tozB , andtL is the time required to travel to
the left interface and then to the observation pointzB . Using
the mode functions in Eqs.~2.1! with normalization con-
stants in Eq.~2.3! and replacing the summation by an int
gral, we can calculate Eq.~3.2! to obtain@34#

^c~ t !uÊ~2 !~zB!Ê~1 !~zB!uc~ t !&

5
vA

2 umAu2

4«0«1c0c1
~12r 2!u f ~zA ,zB ,t !u2, ~3.4!

where

f ~zA ,zB ,t !5e2 ivAtF (
n50

`

r 2neivA~ntr1tR!Cu~ t2ntr2tR!

3H~ t2ntr2tR!1 (
n50

`

r 2n11eivA~ntr1tL!

3Cu~ t2ntr2tL!H~ t2ntr2tL!G ~zB. l !.

~3.5!

Equation~3.4! together with~3.5! shows that the observabl
field intensity atzB and t results from a superposition o
probability waves emitted by the atom att2(nt1tR) and t
2(ntr1tL) with amplitudes proportional toCu at those
times, showing the effect of multiple reflection at interfac
on the emission process. The field intensity atzB,2 l can be
obtained from Eqs.~3.4! and ~3.5! by replacing bothzA and
zB by 2zA and2zB in Eqs.~3.3!, respectively.

If we assume for the moment that the functionf (zA ,zB ,t)
represents a classical wave andCu(t) a classical amplitude
then we can calculate the power spectrum of the emissio
a purely classical ground. A quantum-mechanical justifi
tion for this procedure will be given later in this section. T
find the power spectrum that is proportional to the abso
square of the Fourier transform o
the ‘‘field amplitude’’ f (zA ,zB ,t), we define D(t)
5e2 ivAtCu(t)H(t) and write its Fourier transform asD(v).
The term of, for example,e2 ivAtr 2neivA(ntt1tR)Cu(t2ntr
2tR)H(t2ntr2tR) is transformed tor 2neiv(ntr1tR)D(v).
Then the spectrum corresponding to Eq.~3.4! becomes inde-
r-

e

s

on
-

e

pendent ofzB but dependent onzA , as seen by thezA andzB
dependence oftR andtL . Thus we can write the spectrum i
the form

S~zA ,v!5
vA

2 umAu2

4«0«1c0c1
TuD~v!u2

3H 11R12AR cos$2v@~zA1 l !/c1#%

11R222R cos~4v l /c1! J
~zB. l !, ~3.6!

where R5r 2 and T512R. If the observation point is lo-
cated to the left of the cavity,zB,2 l , the factor zA1 l
should be replaced by2zA1 l . This equation is of the sam
form as that derived classically in Ref.@25# and explicitly
shows the dependence of the power spectrum on the ato
locationzA .

We note thatD(t), which is a product of a carrier wave o
frequencyvA and an upper atomic state probability amp
tudeCu(t), is of quantum-mechanical origin and represe
the probability amplitude in the form of a wave packet goi
back and forth in the cavity and is the quantum-mechan
counterpart of ‘‘the electrical field amplitude for a sing
emission event’’ of Huanget al. @25#. Note also that Eq.
~2.11!, or Eq. ~2.10!, determinesD(t) completely, while it
remains as an unknown function in the classical, intuit
theory of Huanget al.

In the expression for the emission spectrum Eq.~3.6!, we
note that the term in curly braces represents the effec
multiple reflection at interfaces on the field outside the c
ity. In other words, that term can be regarded as the respo
of the space to a source inside the cavity. If we define
admittanceY(zB ,zA ,v) as the expectation value of th
steady state electric field operator atzB due to a classical uni
point current source~polarized in thex direction! located at
zA with frequencyv @28#, then the explicit expression o
admittance for the monolayer model is given by

Y~zB ,zA ,v!52
11r

2«1c1
H 11r exp$ i2v@~zA1 l !/c1#%

12r 2exp@ i ~4v l /c1!# J
3eivtR ~zB. l !. ~3.7!

We can obtain the admittance forzB,2 l by replacingzA
andzB by 2zA and2zB , respectively. Comparing Eq.~3.6!
with the absolute square of Eq.~3.7!, we see that the emis
sion spectrum for a monolayer cavity is proportional to t
absolute square of the admittance. Thus we can expres
emission spectrum Eq.~3.6! in terms of the admittance:

S~zA ,v!5vA
2 umAu2uD~v!u2uY~zB ,zA ,v!u2. ~3.8!

This equation shows that the emission spectrum obse
outside the cavity is proportional to the product of the sp
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trum corresponding to the atomic motion in the cavity a
the absolute square of admittance.

We have obtained Eq.~3.8! heuristically for a monolayer
cavity. However, we can easily show that this equation,
pressing the observable field intensity in terms of the adm
tance, applies to a general structure: The field intensity in
~3.2! can also be written as

^c~ t !uÊ~2 !~zB!Ê~1 !~zB!uc~ t !&

5U(
j

v j

2
mA* U j~zA!U j~zB!

3e2 i ~v j 2vA!tE
0

t

D~ t8!eiv j t8dt8U2

5vA
2 umAu2U E

2`

`

Y~zB ,zA ,v!D~v!e2 ivtdvU2

, ~3.9!

where v j has been factored outside the summation asvA
becauseD(v) has a highly peaked value atvA . The integral
overv comes from the Fourier transform ofD(t8). Note that
the field amplitude given by the last integral is in the form
the inverse Fourier transform ofY(zB ,zA ,v)D(v). Thus it
follows from Eq. ~3.9! that the expression for the emissio
spectrum Eq.~3.8! holds for a general structure. The abo
discussion leading to Eq.~3.9! can be considered a quantum
mechanical justification for the procedure of obtaining t
power spectrum, Eq.~3.6!.

Our main results of the present paper include Eqs.~3.4!–
~3.6!, and their generalization Eqs.~3.8! and ~3.9!. Another
result is that D(t)5e2 ivAtCu(t)H(t) corresponds to the
classical ‘‘unknown function’’ of Huanget al.

To gain the physical meaning of numerical results in
next section, let us now consider the decay process of
atom Eq.~2.9! and obtain approximate solutions for a sing
resonant-mode limit of the monolayer cavity, where only t
resonant modevm

a (mth a mode! contributes appreciably to
the interaction with the atom@21#. To this end we denote by
D(s) the Laplace transform ofD(t)5e2 ivAtCu(t)H(t),
multiply Eq. ~2.9! by e2 ivAt, and take the Laplace transform
with the initial conditionD(0)51. The result is given by

D~s!>
1

s1 ivA2«1c1A0Y~zA ,zA ,is!
, ~3.10!

wherev j has been factored outside the summation as a c
stant frequencyvA in Eq. ~2.9!. Evaluating the admittance a
the location of the atom with the help of Eqs.~2.4!, ~2.12!,
and the single-resonant-mode conditions@21#

A0!1/t r , gc!vc<vm
a , vm

a >vA , ~3.11!

and substituting into Eq.~3.10!, we obtain

D~s!>
s1 ivA1gc

~s1 ivA1gc/2!22~gc/2!21~V/2!2 , ~3.12!

whereV is the vacuum Rabi frequency given by@21#
-
t-
q.

f

e
he

e

n-

S V

2 D 2

>
vcA0

p
sin2~vm

a tA!, ~3.13!

and tA5zA /c1 . For an underdamped cavitygc!V, we can
easily find the inverse Laplace transform of Eq.~3.12!:

D~ t !>e2 ivAte2gct/2cosS V

2
t D . ~3.14!

In the same manner, for an overdamped cavitygc@V, the
inverse operation yields

D~ t !>e2 ivAte2V2t/4gc. ~3.15!

Equations~3.14! and~3.15! agree with Eqs.~3.18! and~3.19!
in Ref. @21#, respectively.

Numerical examples will be presented in the next secti
with emphasis on the atomic-location dependence of
emission intensities and the spectra observed on both sid
the cavity.

IV. NUMERICAL EXAMPLES

In this section, we present some numerical examp
based on the theory developed so far. Our main concern
is the atomic-location dependence of the emission inten
and the spectrum observed on both sides of monolayer
crocavities. Figures illustrated here include the time evo
tion of the upper state population of the atomuCu(t)u2 cal-
culated from the delay differential equation Eq.~2.11!, the
spectrumuD(v)u2 calculated from the Fourier transform o
D(t)5e2 ivAtCu(t)H(t), the absolute square of the adm
tance atzB , uY(zB ,zA ,v)u2, calculated from Eq.~3.7!, and
the emission spectrum as a quantity proportional to the pr
uct of uD(v)u2 and uY(zB ,zA ,v)u2.

Figure 2 shows the time evolution of the upper state po
lation uCu(t)u2 vs the scaled timet/t r for a 2.5l cavity where
l is the wavelength in the cavity and the atom is located
an antinode (zA / l 50.2) @curve ~a!#, a node (zA / l 50.4)
@curve ~b!#, and a position (zA / l 50.35) between the node

FIG. 2. Time evolution of the upper-state population for a lo
Q cavity: uCu(t)u2 vs t/t r , where t r is the round-trip time in the
cavity. The atom is set at~a! an antinode (zA / l 50.2), ~b! a node
(zA / l 50.4), and~c! a position (zA / l 50.35) between the node an
the antinode. 2l /l52.5 (vA5vm

a 55vc), r 50.6, andt rA050.5 for
curves~a!, ~b!, and~c!.
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2304 56ICHIRO TAKAHASHI AND KIKUO UJIHARA
and the antinode of the cavity resonant mode@curve ~c!#.
Other parameters include the amplitude reflectivityr 50.6
and the spontaneous emission rateA050.5/t r in the free
space of dielectric constant«1 . The curve~a! shows a fast
decay with a very weak Rabi oscillation. From Eqs.~2.4! and
~3.14!, this corresponds to the cavity decay constantgc
50.16vc and the Rabi frequencyV50.32vc . Thus the con-
ditions for the single resonant mode limit for an unde
damped cavity are roughly satisfied. When the atom is
cated at the node, as shown in curve~b!, the atomic decay is
quite slow compared with curve~a! and the spontaneou
emission is substantially suppressed. In this case the app
mate solution Eq.~3.13! yields the zero Rabi frequency be
cause sin(vm

a tA)50(m52), and the upper state population r
mains a constant equal to unity from Eq.~3.15!. However,
the slow decay indicates that other modes in which the a
may be near or just at an antinode contribute to the emis
@20#. When the atom is located between the node and
antinode, the atom-field coupling is medium and the de
curve lies between the curves~a! and ~b!, as shown in~c!.
Abrupt changes in the curves indicate the counteraction
reflected radiations on the atom. In particular, a closer lo
at the figure shows that the first interactions of the atom w
the reflected radiations for curves~a!, ~b!, and ~c! occur at
t50.4t r , 0.3t r , and 0.325t r , respectively, which are consis
tent with Eq.~2.11!.

Figure 3~a! shows the spectrumuD(v)u2 corresponding to
the atomic curve~a! in Fig. 2. The spectrum is symmetri
about the atomic transition frequencyvA and displays two
peaks atv>vA60.16vc reflecting the Rabi oscillation o
uCu(t)u2 with frequencyV50.32vc . Other numerical re-
sults ~not shown here! indicate that when the atom is at
node or at an antinode of a resonant cavity where the ca
length is an integral multiple of the half wavelength of ligh
the spectrumuD(v)u2 is almost symmetric aboutvA . The
same is true of the admittance spectrumuY(zB ,zA ,v)u2.

The absolute square of the admittanceuY(zB ,zA ,v)u2

versus (v2vA)/vc for outside the monolayer cavity i
shown in Fig. 3~b! for the case wherezA is at the antinode.
The solid and the dashed curves are forzB. l andzB,2 l ,
respectively. It can be shown from Eq.~3.7! that for a reso-
nant cavity,uY(zB ,zA ,v)u2 has the same value forzB. l and
zB,2 l at a resonant frequency where (v2vA)/vc is an
integer. In fact the figure shows that at resonant frequen
the admittances~for zB. l and for zB,2 l ) have the same
value while in the frequency region between the reson
frequencies they are different. In particular we note that
the frequency region near the atomic transition freque
vA , the admittance spectra forzB. l and forzB,2 l almost
coincide. In this case we can expect symmetric emiss
spectra with respect tozB. l andzB,2 l , since the emission
spectrum is proportional touD(v)u2uY(zB ,zA ,v)u2 in which
D(v) is independent of the observation point~more explicit
conditions for symmetric emission spectra will be giv
later!.

The emission spectra corresponding to curve~a! in Fig. 2
are shown in Fig. 3~c!. The spectrum is proportional to th
product of spectrauD(v)u2 in Fig. 3~a! and uY(zB ,zA ,v)u2
in Fig. 3~b!. The solid and dashed curves are forzB. l and
zB,2 l , respectively, as before. As can be seen from
figure the solid and dashed curves almost coincide, show
-
-

xi-

m
n
e
y

of
k
h

ity

es

nt
n
y

n

e
g

symmetric radiations to the right and to the left of the cav
(zB. l andzB,2 l ), as mentioned above.

Figure 4 shows the spectra corresponding to the curve~b!
in Fig. 2 where the atom is located at the node. The fig

FIG. 3. Spectrum ofD(t) and the emission spectra observ
outside the cavity corresponding to curve~a! in Fig. 2, where the
atom is at an antinode (zA / l 50.2). The spectra ofY(zB ,zA ,v) are
also shown.~a! Spectrum ofD(t): vc

2uD(v)u2 vs (v2vA)/vc .
Two peaks atv>vA60.16vc correspond to the Rabi oscillatio
of uCu(t)u2 with V50.32vc . ~b! Admittance spectrum:
«0

2c0
2uY(zB ,zA ,v)u2 vs (v2vA)/vc . The solid and the dashe

curves represent the spectra observed on the right (zB. l ) and on
the left (zB,2 l ) side of the cavity, respectively.~c! Emission
spectrum proportional to the product of spectra in~a! and~b!, show-
ing almost symmetric emission. The solid and the dashed curve
the spectra observed on the right (zB. l ) and on the left (zB,
2 l ) side of the cavity, respectively.
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56 2305THEORY OF SPONTANEOUS EMISSION IN AN . . .
shows almost identical radiations to the right and to the
of the cavity. Since the atomic decay is quite slow, the c
responding spectrumuD(v)u2 is highly peaked atvA , where
the admittances have the same value, as stated earlier.
we have symmetric emission spectra (zB. l andzB,2 l ).

When the atom is located between the node and the a
node, i.e.,zA / l 50.35, as shown in Fig. 5, we have slight
asymmetric emission spectra forzB. l and for zB,2 l due
to the difference in admittance spectra nearvA . The spectra
are highly peaked atvA and are similar to those of Fig. 4
because the atomic location (zA / l 50.35) is close to the node
(zA / l 50.4) where the atom-field coupling is quite weak.

The differences in the emission spectra in Figs. 3~c!, 4,
and 5 show an example of the fact that the emission sp
trum depends on the atomic location. The numerical res
including those not shown in this paper suggest that
emission spectra for our monolayer cavity are symmetric
roughly speaking, the following conditions are satisfied.~1!
The cavity length is an integral multiple of the half wav
length of light.~2! The atomic location is at a node or at a

FIG. 4. Emission spectra corresponding to curve~b! in Fig. 2,
where the atom is at a node (zA / l 50.4). The solid and the dashe
curves are the spectra observed on the right (zB. l ) and on the left
(zB,2 l ) side of the cavity, respectively, showing symmetric em
sion spectra.

FIG. 5. Emission spectra corresponding to curve~c! in Fig. 2,
where the atom is located atzA / l 50.35 between the node (zA / l
50.4) and the antinode (zA / l 50.2). The solid and the dashe
curves are the spectra observed on the right (zB. l ) and on the left
(zB,2 l ) side of the cavity, respectively, showing slightly asym
metric emission spectra.
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antinode of the cavity resonant mode.~3! The linewidth of
the spectrumuD(v)u2 is much smaller than the atomic tran
sition frequencyvA .

Emission spectra for a nonresonant cavity are illustra
in Fig. 6, where 2l /l52.2, zA / l 50.4, and other parameter
are the same as those for 2l /l52.5. We observe that both
the emission line shapes and the spectrally integrated in
sities differ for zB. l and zB,2 l , showing asymmetric
emission spectra. The differences arise essentially from
difference inuY(zB ,zA ,v)u2 in the frequency region close t
v5vA , since the resultant emission spectrum is prop
tional to uD(v)u2uY(zB ,zA ,v)u2, where D(v) is indepen-
dent of the observation point.

It should be noted that the sum of the energy radia
from both sides of the cavity should be a constant (\vA)
independent of the atomic location. We have verified n
merically that the sum is constant by calculating the sp
trally integrated intensity, for cavities of lengths 2l
51.35l, 1.5l, 2.5l, and 18.1l.

V. DISCUSSION

In Secs. II and III we have made an approximation th
the factorv j can be taken out of the summation or the in
gral as a constant frequencyvA because the function in th
summation or the integrand has a highly peaked spectrum
vA or several peaks nearvA . This is equivalent to the con
dition that the atomic state varies much slower than the
riodic motion of the light. This can be seen as follows: If th
width Dv j of the spectrum is much smaller thanvA , we
have approximatelyuĊu(t)/Cu(t)u;A0/2;Dv j!vA . This
condition is satisfied even for a cavity with its length bei
of the order of the wavelength as well as for a conventio
one, as discussed in Ref.@21#.

In Sec. III we have derived the expressions for the fie
intensity and the spectrum observed outside the cavity.
following discussion will aid comparison between theory a
experiment: Classically the spontaneously emitted light fr
the cavity will be of the form of wave trains of finite length
each of which corresponds to a single emission and en
the detector at random. IfN is the number of wave trains

-

FIG. 6. Emission spectra for a nonresonant cavity where 2l /l
52.2, r 50.6, t rA050.5, andzA / l 50.4. The solid and the dashe
curves are the spectra observed on the right (zB. l ) and on the left
(zB,2 l ) side of the cavity, respectively, showing asymmet
emission spectra.
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2306 56ICHIRO TAKAHASHI AND KIKUO UJIHARA
entering the detector during the time interval 2T required for
a measurement, then the mean intensityI is proportional to
the integral of the Fourier componentSC(zA ,v) of a single
wave train and is given by@35#

I 5
N

2TE2`

`

SC~zA ,v!dv. ~5.1!

The SC(zA ,v) may be replaced in our case by the functi
S(zA ,v) in Eq. ~3.6!. It follows from this consideration tha
we can obtain an expression for the measurable mean in
sity using S(zA ,v), and that thisS(zA ,v) exactly repro-
duces the steady state observed spectrum.

We have seen thatD(t)5e2 ivAtCu(t)H(t) is the
quantum-mechanical counterpart of ‘‘the electric field amp
tude for a single emission event’’ of Huanget al. Indeed
D(t) may be loosely regarded as ‘‘a wave packet for a sin
emission’’ from the atom att with the envelope equal to th
upper atomic state probability amplitudeCu(t) in which the
effects of multiple reflection and the interaction of reflect
light with the atom are contained, as can be seen from
delay differential equation~2.11!. Therefore our expressio
for the spontaneous emission spectrum observed outsid
cavity ~3.6! is of the same form as that derived classically
Huanget al. Our quantum-mechanical method, however,
lows us to calculate theD(t) from first principles without
using experimental results.

Although the analysis presented in this paper is limited
one dimension, it can be served as an approximation to
situations in the three-dimensional world as has been see
the work of Huanget al. @25#. If the cavity is a three-
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dimensional dielectric slab with the transverse dimensi
much larger than the cavity length, there exist guided mo
as well as longitudinal modes. Part of the radiation from
atom will couple to the guided modes resulting in guid
waves along the transverse directions. Also, depending
the cavity length, there exist oblique resonant modes.
waves in these modes never return to the atom again, w
would otherwise interact with the atom, causing kinks in t
atomic decay process. Thus in a three-dimensional case
expect less kinky character in the time evolution of upp
atomic populationuCu(t)u2.

VI. CONCLUSIONS

In conclusions, we have analyzed in a consist
quantum-mechanical way the spontaneous emission i
monolayer optical cavity following closely the theory d
scribed in Ref.@21#. We have derived expressions for th
intensity and the spectrum of spontaneous emission obse
outside the cavity. The emission spectrum derived is of
same form as that given classically by Huanget al. In par-
ticular, we have shown that the probability amplitude for t
upper atomic state is proportional to their ‘‘electric field am
plitude for a single emission event.’’ We have also sho
that the spontaneous emission intensities as well as the s
tra are dependent on the atomic location, and that the e
sions to the right (zB. l ) and to the left (zB,2 l ) are in
general asymmetric. This asymmetry for the monolayer c
ity stems from that of admittance. We have given an expr
sion for the emission spectrum applicable to a general o
dimensional cavity structure.
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