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Electromagnetically induced transparency with coherent and stochastic fields

A. G. Kofman
Chemical Physics Department, Weizmann Institute of Science, Rehovot 76 100, Israel

~Received 17 October 1996; revised manuscript received 14 May 1997!

This paper deals with electromagnetically induced transparency~EIT!, i.e., a significant suppression of
absorption at a material transition~in the form of a dip in an absorption spectrum!, due to a strong laser field,
coupling the excited level with an auxiliary excited~unpopulated! level. A comprehensive theory of EIT is
developed for the cases of coherent and Markovian phase- and amplitude-phase-fluctuating coupling fields. For
a coherent coupling field, a shift of the absorption minimum from the two-photon resonance is revealed in the
off-resonance case. Two models of amplitude-phase fluctuating fields are considered: the chaotic field and the
uncorrelated-jump field. Closed analytical expressions for EIT line shape are derived and exact limits of
different regimes of EIT are obtained, the emphasis being on the near-resonance case. The main conclusion is
that an amplitude-phase-fluctuating field can induce significant transparency, though reduced in comparison to
a phase-fluctuating field of the same average intensity and bandwidth. EIT decreases with the increase of the
bandwidth for all stochastic models considered. EIT with a chaotic field is generally less pronounced than EIT
with an uncorrelated-jump field of the same intensity and bandwidth, the difference increasing with the field
intensity. The possibility of experimental verification of the results obtained is discussed.
@S1050-2947~97!03709-8#

PACS number~s!: 42.50.Gy, 42.50.Hz, 42.60.Mi, 42.62.Fi
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I. INTRODUCTION

A great interest was shown recently in resonance opt
phenomena in multilevel systems, which involve quant
interference @1#. The phenomena, which have been d
cussed, include lasing without inversion~LWI ! @2,3#, electro-
magnetically induced transparency~EIT! @4–8#, enhance-
ment of the index of refraction@9#, and steep dispersion@10#.
Of the above effects, EIT and, more generally, electrom
netically modified absorption~EMA! @11–14# are conceptu-
ally the simplest ones since they practically do not invo
transitions between atomic levels: the strong field coup
empty levels. As a result, the spectral manifestations
dressed states and their interference are unblurred by p
lation effects in observations of EIT and EMA, in contra
say, to LWI. Thus a good understanding of EIT and EM
important by itself, can help to attain a deeper insight in
more complicated phenomena. The study of EIT has als
practical significance. A number of applications of EIT ha
already been suggested, including second-harmonic gen
tion @15#, four-wave mixing@16#, control of optical bistabil-
ity @17#, and isotope discrimination@18#. Other fields of cur-
rent interest, which have much in common with EIT a
EMA, are laser-induced continuum structures@19# and co-
herent control of chemical reactions@20#.

Observations of the above processes would require st
laser fields, which are often stochastic. The effects of la
noise depend generally on the type of random modulatio
the field. In particular, effect of phase diffusion of the co
pling field on EIT can be readily taken into account@5#. In
contrast, effects of amplitude-phase fluctuations are po
known and a failure of attempts to produce EIT with a m
timode laser was reported@4#. Vemuri et al. @3# demon-
strated by numerical simulations that a chaotic coupling fi
can be used to produce lasing without inversion. This re
cannot be readily extended to EIT due to the above dif
561050-2947/97/56~3!/2280~12!/$10.00
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ences between the two phenomena. The main purpose o
paper is to show the possibility of inducing transparency
amplitude-phase-fluctuating fields, the emphasis being m
on the chaotic field model. A comprehensive theory of E
with coherent, phase-fluctuating, and chaotic coupling fie
which allows for proper dephasing and arbitrary field ban
width and detuning, is developed below. The analytic a
proach adopted here has allowed us to obtain explicit exp
sions for the EIT line shape as well as the exact limits
EIT and its different regimes.

The paper is organized as follows. In Sec. II the gene
expressions for electromagnetically modified susceptibi
are derived for two atom-laser coupling schemes, un
rather general assumptions about the atomic relaxation
Sec. III a simple expression for EIT and the exact valid
condition of EIT are obtained for the case of a coher
coupling field. These results are extended to the case
Markovian phase-fluctuating field in Sec. IV. The remaini
part of the paper is devoted to an amplitude-pha
fluctuating coupling field. Section V treats the case of
narrow-band coupling field with the Rayleigh intensity di
tribution. The effects of the field bandwidth are studied f
two models: the chaotic field~Sec. VI! and the uncorrelated
jump model~Sec. VII!. Section VIII presents numerical re
sults and discussion. Section IX provides concluding
marks. The Appendixes contain details of the calculation

II. GENERAL FORMALISM

In the previous treatments of EIT and EMA various sp
cific three-level schemes were studied. In this section
consider EMA and EIT under rather general assumptions

We assume that a weak probe fieldEp(t)
5Ep(t)e2 ivt1c.c. is nearly resonant to the transition fro
the ground stateu1& to an excited stateu2&, which is coupled
by a strong laser fieldEc(t)5Ec(t)e

2 ivct1c.c. to an auxil-
2280 © 1997 The American Physical Society
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56 2281ELECTROMAGNETICALLY INDUCED TRANSPARENCY . . .
iary excited stateu3&. The complex amplitudesEp(t) and
Ec(t) of the probe and coupling fields are assumed to v
slowly with time. Two cases of atom-laser coupling, the la
der andL schemes~Fig. 1!, are considered. The three-lev
systems considered can be closed or open. Their relaxa
which can be induced by the field reservoir, matter, and
configuration interaction in the atom@1#, is described phe-
nomenologically by arbitrary relaxation constants. The en
gies of the levelsu1&, u2&, and u3& are e1 , e2 , ande3, re-
spectively. Consider first the ladder schemee2,e3.

Equations for density matrix elementsr i j of the three-
level atom in the rotating-wave approximation are written
the case of the ladder scheme as

ṙ1152Im@Vp* ~ t !s21#1G28r221G38r33,

ṙ2252Im@Vc* ~ t !s322Vp* ~ t !s21#2G2r221G39r33,

ṙ33522Im@Vc* ~ t !s32#2G3r33, ~2.1!

ṡ215~ iD2G!s211 iVp~ t !~r222r11!2 iVc* ~ t !s31,

ṡ315~ iD82G8!s311 iVp~ t !s322 iVc~ t !s21,

ṡ325~ iDc2G32!s321 iVp* ~ t !s311 iVc~ t !~r332r22!.

Heres215r21e
ivt, s315r31e

i (v1vc)t, ands325r32e
ivct are

the density matrix elements in the rotating frame,s i j 5s j i* ,

Vp~ t !52d21Ep~ t !/\, Vc~ t !52d32Ec~ t !/\, ~2.2!

\ is the Planck’s constant,di j is a matrix element of the
atom dipole moment,

D5v2v21, D85v2v2p , Dc5vc2v32, ~2.3!

D andDc are, respectively, the probe and coupling field d
tunings,D8 is the detuning from the two-photon resonanc
v2p5v312vc and v i j 5(e i2e j )/\ ( i , j 51,2,3); G2 and
G3 are the decay rates of the statesu2& andu3&, respectively;
G28 , G38 , and G39 are the rates of reservoir-induced tran
tions u2&→u1&, u3&→u1&, and u3&→u2&, respectively~for a
closed systemG25G28 and G35G381G39); and G, G8, and
G32 are the damping rates ofr21, r31, and r32, respec-
tively. Assuming that the fieldsEp(t) andEc(t) are turned on
at t50, the initial conditions for Eqs.~2.1! are

r i j ~0!5d1id1 j , ~2.4!

FIG. 1. Schemes of the atom-laser coupling:~a! ladder scheme
and ~b! L scheme.
y
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d i j being the Kronecker symbol.
The probe field induces the dipole moment per unit v

umeP(t)e2 ivt1P* (t)eivt. Here

P~ t !5Nvd12s21~ t !, ~2.5!

whereN is the number of the atoms under consideration
unit volume. The solution of Eqs.~2.1! can be obtained per
turbatively. In the zeroth order inEp Eqs. ~2.1! with the

initial condition ~2.4! yield r i j (t)5r i j
(0)(t)5d1id1 j . Using

the latter values, in the first order inEp one obtains the
equations@21#

ṡ215~ iD2G!s212 iVc* ~ t !s312 iVp~ t !,

ṡ315~ iD82G8!s312 iVc~ t !s21, ~2.6!

with the initial conditions s12(0)5s13(0)50. Formally
solving Eqs.~2.6! for s21 and inserting the result into Eq
~2.5! yields

P~ t !5
iNud21u2

\ E
0

t

dt8ca~ t,t8!Ep~ t8!. ~2.7!

Hereca(t,t8) is a component of the vector

c5S ca

cb
D , ~2.8!

which as a function oft obeys the equation

ċ5A~ t !c, ~2.9!

with the initial conditionsca(t8,t8)51,cb(t8,t8)50. In Eq.
~2.9!

A~ t !5S iD2G 2 iVc* ~ t !

2 iVc~ t ! iD82G8
D . ~2.10!

If the coupling field is a stationary random process, th
c̄ (t,t8)5 c̄ (t2t8), wherec̄ (t) is the average over the fiel
fluctuations of the solutionc(t) of Eq. ~2.9! with the initial
condition ca(0)51 andcb(0)50. In this case, as follows
from Eq. ~2.7!, the average polarization amplitude is

P̄~ t !5
iNud21u2

\ E
0

t

dt8c̄a~ t2t8!Ep~ t8!. ~2.11!

Henceforth we assume that the probe field has a cons
amplitudeEp(t)5Ep . Then for sufficiently long times Eq
~2.11! yields P̄5 x̄ (v)Ep , where the average susceptibilit

x̄ ~v![ x̄ 81 i x̄ 95
iNud21u2

\ E
0

`

dtc̄a~ t !. ~2.12!

In the case of a stochastic coupling field, assuming for s
plicity that the sample is optically thin, the transmitted inte
sity of the probe field is attenuated by the fact
12 āL ( āL!1), whereL is the sample length along th
direction of the probe propagation andā is the average ab
sorption coefficient. For a sufficiently dilute medium~i.e.,
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2282 56A. G. KOFMAN
u x̄ u!1), ā5(4pv/c) x̄ 9, wherec is the vacuum speed o
light. The latter equation and Eq.~2.12! yield

ā ~v!5KReE
0

`

c̄a~ t !dt, ~2.13!

where K54pNvud21u2/\c53pc2NG28/v
2. Note that Eqs.

~2.11!–~2.13! hold also for a coherent coupling field with
constant amplitudeEc(t)5Ec if one drops the averaging in
Eqs.~2.11!–~2.13!.

Turning to the case of theL schemee2.e3, one can
show, on writing equations for the density matrix eleme
similar to Eq.~2.1!, that Eqs.~2.7!–~2.13! remain valid upon
the substitutions

vc→2vc , Vc~ t !↔Vc* ~ t !. ~2.14!

Henceforth, for definiteness, the ladder system is discus
The above results~2.7! and ~2.11!–~2.13! hold if the

pumping of the excited levelsu2& andu3& by the fieldsEp(t)
andEc(t) is weak. This takes place if the rateW21 of transi-
tions induced by the probe field is sufficiently small,

W215~2uVpu2/K !ā~v!!G2 ,G3 . ~2.15!

For L systems and open ladder systems the above treat
holds until the ground level is depopulated noticeably, i
for t!W21

21 .

III. COHERENT COUPLING FIELD

Before we proceed to study effects of a stochastic c
pling field, it is helpful to consider EIT with a coherent co
pling field Ec(t)5const. This case is important by itse
Moreover, we shall need it for a comparison with the resu
obtained below for a stochastic coupling field. Here we g
an overview of EIT with the emphasis on those aspects of
problem that were not treated sufficiently or even overlook
in the previous studies.

For a coherent coupling field, Eqs.~2.9!, ~2.10!, and
~2.13! yield @11,12# the absorption coefficient

a~v!5KRe@G2 iD1I /~G82 iD8!#21, ~3.1!

whereI 5uVcu2 is proportional to the coupling field intensity
The spectrum is significantly modified under the conditio

I @~G1uDu!~G81uD8u!, ~3.2!

which allows one to expand Eq.~3.1! to the second order in
(G2 iD)(G82 iD8)/I and obtain foruD8u!AI ,I /(G1uDcu)
that

a~v!5
K

I FG81
G

I
~v2vm!2G . ~3.3!

Here the position of the minimum

vm5v2p1G8Dc /~G12G8!. ~3.4!

The absorption minimum is shifted with respect tov2p to-
wardsv21 @22#.
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For the validity of Eq.~3.3! inequality~3.2! should hold at
least atv5vm , yielding the condition

I @G8@G1G81Dc
2/~G1G8!#. ~3.5!

A very significant reduction of absorption in a vicinity o
vm ~i.e., EIT! occurs if the inequalitya(vm)!a0(vm),
where

a0~v!5KG/~G21D2! ~3.6!

is the absorption coefficient in the absence of the coup
field @cf. Eq. ~3.1!#, holds simultaneously with Eq.~3.5!. As
a result, one obtains thatEIT occurs in the region

I @G8~G1G81Dc
2/G!. ~3.7!

Equation~3.7! simplifies for the two alternative cases@23#

I @G8G1Dc
2G8/G ~ if G8&G!, ~3.8a!

I @G821Dc
2G8/G ~ if G8@G!. ~3.8b!

EIT has been explained@5# as resulting from the ac Star
splitting combined with interference of the states dressed
the coupling field. The effect of interference is easy to e
mate in the strong-field regime,

I @G21G821Dc
2 , ~3.9!

when the spectrum is split into two Lorentzian peaks se
rated by 2AI with approximately equal widths (G1G8)/2
and heights@11,12#. If the transitions to the two dresse
states were independent, the spectrum would be a mere
perposition of the two Lorentzians and the value of the
sorption coefficient at the minimum would be

K~G1G8!/2I . ~3.10!

Comparing the latter quantity with the correct minimal val
KG8/I , which follows from Eq.~3.3!, one infers that the
interference@24# of the dressed states is destructive f
G8,G, constructive forG8.G, and vanishes forG85G.
WhenG8;G (G8@G), the condition of EIT~3.8! is equiva-
lent to ~stricter than! the condition of the strong-field regim
~3.9!. By contrast, forG8!G the destructive interference i
significant enough to allow an observation of EIT even in t
weak-field regimeG8(G21Dc

2)/G!I !G21Dc
2 .

To depict EIT graphically it is convenient to plot th
length of absorptionl (v)[1/a(v), which is a peak in a
vicinity of vm when EIT takes place~cf. Fig. 2!. For
G8!G the peak is described approximately by the recipro
of Eq. ~3.3!, which is a Lorentzian with the half-width at ha
maximum~HWHM! width Gh5AIG8/G!AI ~see curve 1 in
Fig. 2!, whereas forG8*G the width of the peak is of the
order of the Stark splitting,Gh;AI , the reciprocal of Eq.
~3.3! describing only the top of the peak.

Note that the shiftDm5G8Dc /(G12G8) of the absorp-
tion minimum from the two-photon resonance frequen
v2p @see Eq.~3.4!# was not revealed in the previous trea
ments of EIT. As follows from condition~3.7!, uDmu*Gh ,
i.e., the shiftDm is well discernible only in the off-resonanc
case with a strong destructive interferenceuDcu@G@G8,
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56 2283ELECTROMAGNETICALLY INDUCED TRANSPARENCY . . .
whereDm'G8Dc /G. For all other cases the shift is hard
noticeable and one can setvm'v2p . Note that the off-
resonance case can be advantageous from the experim
point of view because for a sufficient detuning the effects
inhomogeneous~e.g., Doppler! broadening are not impor
tant.

IV. PHASE-FLUCTUATING COUPLING FIELD

For a coupling field with Markovian phase fluctuatio
~including the phase diffusion case! it was shown@5,12# that
the average absorption coefficientā (v) is described by the
results fora(v) obtained for the case of a coherent coupli
field ~Sec. III!, provided the substitution

G8→G81n ~4.1!

is made. In Eq.~4.1! n is the HWHM width of the Lorentzian
field band shape. Note that the EIT line shape in the pre
case, just as in the case of a coherent coupling field, is~ap-
proximately! symmetric, irrespective of the detuningDc.

V. RAYLEIGH COUPLING FIELD

The remaining part of the paper is devoted to the cas
an amplitude-phase-fluctuating coupling field. Hencefo
we restrict ourselves to the case of a destructive or neglig
interference of the dressed states, which requires, as m
tioned in Sec. III, thatG8<G. The general results will be
obtained below for an arbitrary detuning of the coupli
field. However, the analysis of the results will be made,
simplicity, for the~near-!resonance caseuDcu!G.

In this section we consider the case when the field ba
width n is negligibly small~the quasistatic regime!. In this
case the probe absorption is independent of the details o
stochastic evolution of the coupling field, being determin
only by the intensity distribution of the latter

FIG. 2. Length of absorptionl (v)51/ā (v) ~in units ofG/K) as
a function of the probe detuningD ~in units ofG) for the case of the
exact resonanceDc50. Curve 1, coherent and phase-fluctuati
(n51027G) coupling fields; curve 2, phase-fluctuating field wi
n5331024G; curve 3, the quasistatic limit as well as chaotic a
uncorrelated-jump fields withn51027G; curve 4, uncorrelated-
jump field with n5331024G; curve 5, chaotic field with
n5331024G; curve 6, no coupling field. The other paramete
used areG851023G and I 050.03G2.
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ā ~v!5E
0

`

dIf~ I !a~v!, ~5.1!

where f(I ) is the distribution ofI . Here we consider the
Rayleigh distribution

f~ I !5I 0
21exp~2I /I 0!, ~5.2!

whereI 0 is the average ofI . The Rayleigh distribution char
acterizes, in particular, the chaotic~i.e., complex Gaussian!
field model, which is believed to describe well lasers op
ating on many uncoupled modes@25#.

Inserting Eq.~3.1! into Eq. ~5.1! yields

ā ~v!5KI 0
21ReG̃8eG̃G̃8/I 0E1~ G̃G̃8/I 0!, ~5.3!

where G̃5G2 iD, G̃85G82 iD8, and E1( ) is the integral
exponential function@26#.

Consider the case of a significantly modified spectrum

I 0@~G1uDu!~G81uD8u!. ~5.4!

Then, using the expansion@26# of E1(z), one can get from
Eq. ~5.3! in the first approximation

ā ~v!5KI 0
21ReG̃8ln@C1I 0 /~ G̃G̃8!# ~5.5!

or

ā ~v!5
K

I 0
FG8ln

C1
2I 0

2

~G21D2!~G821D82!
1D8S arctan

D

G

1arctan
D8

G8
D G . ~5.6!

Here C15e2g'0.56, whereg'0.58 is the Euler constan
@26#.

An analysis of Eq.~5.6! shows that for the case of intere
G8<G and uDcu!G, the minimum of absorption is atv2p ,
the value at the minimum being

ā ~v2p!5K
G8

I 0
ln

C1I 0

G8G
. ~5.7!

For uDcu!G one can setD'D8 in Eq. ~5.6!. Thereby one
obtains that the shape of the EIT peak in the funct
l (v)51/ā (v) is symmetric with the wings decaying a
1/uD8u ~Fig. 2, curve 3!.

As follows from Eq.~5.7!, EIT can be achieved with the
help of an amplitude-phase-fluctuating coupling field. The
magnitude of EIT is now reduced by a logarithmic factor,
comparison to the case of a coherent coupling field w
I 5I 0 @cf. Eq. ~3.3!#, due to contributions from smallI in the
integral ~5.1!. The comparison of Eq.~5.7! with Eq. ~3.10!
shows that destructive interference of the dressed state
G8!G is preserved now~though its magnitude is less tha
for a coherent coupling field with the same mean intensi!.
The validity condition of EIT is obtained from the cond
tion that Eq. ~5.4! at v5v2p and the inequality
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ā (v2p)!a0(v2p) hold simultaneously. In view of Eqs
~3.6! and ~5.7!, this means thatEIT takes place under the
condition

I 0@GG8, ~5.8!

which is a direct extension of Eq.~3.8a! in the present case
uDcu!G.

The results of this section are rather general, being v
for all statistical models of an amplitude-phase-fluctuat
coupling field, which share the Rayleigh distribution~5.2!.
The effects of the field bandwidth for two such models a
considered in the Secs. VI and VII.

VI. CHAOTIC FIELD

A. Formalism

Consider now the effects of the field bandwidth for t
case of chaotic field, which is the common model for mu
mode lasers@25#. Assume that the field line shape is
Lorentzian with the HWHM widthn, which means, by
Doob’s theorem@27#, that the field is Gaussian and Marko
ian. Then one can use the theory of stochastic differen
equations@27–29# and write the equation

ċ~u,v,t !5@A~u,v !1L#c~u,v,t ! ~6.1!

for c(u,v,t), the partially averagedc(t). In Eq. ~6.1!
H(u,v) is given by Eq.~2.10! with Vc(t)→u1 iv and the
stochastic operatorL5Lu1Lv takes into account tempora
fluctuations of the field. HereLu and Lv are the Fokker-
Planck operators

Lu5nS 11u
]

]u
1

I 0

2

]2

]u2D . ~6.2!

The initial condition for Eq. ~6.1! is c(u,v,0)
5c(0) f (u,v), where f (u,v)5 f (u) f (v) is the distribution
of the complex amplitude of the interaction, whereasf (u)
and f (v) are the one-dimensional distributions

f ~u!5exp~2u2/I 0!/ApI 0. ~6.3!

The integral ofc(u,v,t) over u andv yields c̄ (t).
We define the vector

C~u,v ![S Ca~u,v !

Cb~u,v !
D 5E

0

`

c~u,v,t !dt. ~6.4!

From Eqs.~6.1! and ~6.4! one obtains the equations for th
components ofC(u,v),

~ iD2G!Ca2 iVc* Cb1LCa52 f ~u,v !, ~6.5a!

~ iD82G8!Cb2 iVcCa1LCb50, ~6.5b!

whereVc5u1 iv. The average absorption coefficient can
written in terms ofCa(u,v) as

ā ~v!5KReE d2VcCa~u,v !, ~6.6!
id
g

e

-

al

whered2Vc5dudv. The set of the second-order differenti
equations~6.5! cannot be solved in a closed form. Therefo
an approximate approach is developed below.

B. Approximate solution

If G1uDu is sufficiently large, one can neglect the ter
LCa in Eq. ~6.5a!, yielding

Ca~u,v !5
f ~u,v !2 iVc* Cb~u,v !

G2 iD
. ~6.7!

Inserting Eq.~6.7! into Eq. ~6.5b! yields the equation for
Cb(u,v),

~ iD82G8!Cb2
u21v2

G2 iD
Cb1LCb5

iVcf ~u,v !

G2 iD
. ~6.8!

The solution of Eq.~6.8! has the form

Cb~u,v !52 i ~G2 iD!21E d2Vc8E
0

`

dt f~u8,v8!

3g~u8,v8,u,v,t !e~ iD82G8!t. ~6.9!

Here d2Vc85du8dv8 and g(u8,v8,u,v,t) as a function of
u, v, andt obeys the equation

]g

]t
52

u21v2

G2 iD
g1Lg, ~6.10!

with the initial condition g(u8,v8,u,v,0)
5d(u2u8)d(v2v8). Inserting Eq.~6.9! into Eq. ~6.7!, one
obtains from Eq.~6.6!

ā~v!5KRe~G2 iD!21F12E
0

`

dtG~ t !e~ iD82G8!tG ,
~6.11!

where

G~ t !5E E d2Vc8d
2VcVc8Vc* f ~u8,v8!g~u8,v8,u,v,t !.

~6.12!

Equation~6.10! is a stochastic differential equation an
henceg(u8,v8,u,v,t) is the average of

expF2~G2 iD!21E
0

t

dt8uVc~ t8!u2G ~6.13!

over all realizations of the stochastic field, subject the c
ditions Vc(0)5u81 iv8 andVc(t)5u1 iv. The full average
of quantity ~6.13! was calculated in@29,30#. Here we are
interested in a related average@cf. Eq. ~6.12!#

G~ t !5K Vc~0!Vc* ~ t !expF2~G2 iD!21E
0

t

dt8uVc~ t8!u2G L .

~6.14!

This average was calculated in@31# by the path integration
method. Alternatively,G(t) can be directly obtained from
Eqs.~6.12! and ~6.10! ~see Appendix A!. The result is
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G~ t !54I 0b2ent@S~ t !#22, ~6.15!

whereb5A112I 0 /nG̃ and

S~ t !52bcoshbnt1~11b2!sinhbnt. ~6.16!

Inserting Eq.~6.15! into Eq. ~6.11! and reducing the inte
gral to Eq. 3.194.1 of@32#, one obtains

ā ~v!5
KG

G21D2
2Re

8KI 0bF~2,d;11d;b!

~G2 iD!2~11b!4nd
, ~6.17!

where F( ) is the hypergeometric function @26#,
b5(b21)2/(b11)2, and

d5@~2b21!n1G̃8#/~2bn!. ~6.18!

Equation~6.17! can be transformed to a somewhat simp
form with the help of Eq. 15.3.4 from@26#. As a result, one
obtains

ā ~v!5
KG

G21D2
2KI 0Re

F~2,1;11d;2z!

G̃2@ G̃81~2b21!n#
,

~6.19!

wherez5(b21)2/4b. As shown in Appendix B, Eqs.~6.17!
and ~6.19! hold for

G1uDu@n. ~6.20!

If the coupling-field intensity is so high that both Eq.~5.4!
and

I 0@n~G1uDu! ~6.21!

hold, one should require also that

AI 0n!~G1uDu!~AG1uDu1AG81uD8u!. ~6.22!

Equation~6.19! @or, equivalently, Eq.~6.17!# and its validity
conditions represent one of the main results of this pape

C. Special cases

It is shown in Appendix C that forn→0 the quasistatic
limit ~5.3! is recovered from Eq.~6.19!, as one should ex
pect. In the region~5.4! and~6.21! that is of interest here, Eq
~6.19! can be reduced in the first approximation to~see Ap-
pendix C!

ā~v!5
K

I 0
ReG̃8F1

2
ln

C1
2I 0

8nG̃
2c~a11!1

1

2aG , ~6.23!

where c( ) is the logarithmic derivative of theG function
@26# anda5G̃8(G̃ /8I 0n)1/2. For very smalln,

An!G8A~G1uDcu!/I 0, ~6.24!

one can use the asymptotic expansion@26#

c~a11!5 lna1
1

2a
2

1

12a2
1OS 1

uau4D ~6.25!
r

to reduce Eq.~6.23! in the first approximation to Eq.~5.5!. In
this case the quasistatic results~5.3! and ~5.5!–~5.7! are re-
covered approximately. In the opposite case

An@G8A~G1uDcu!/I 0, ~6.26!

absorption significantly depends onn.
The above results hold for arbitrary field detuning

Henceforth in this section we will focus on the nea
resonance caseuDcu!G. Now in the region~6.26! formula
~6.23! yields that the absorption is minimal in a vicinity o
the two-photon resonance frequencyv2p , where one gets

ā ~v!'KA2n/~ I 0G! ~ uD8u!AI 0n/G!. ~6.27!

The line shape of the EIT window is symmetric~Fig. 2,
curve 5!, the wings of the line shape foruD8u@AI 0n/G being
quasistatic~see Sec. V!.

D. Limits of regimes of EIT

Consider now the validity conditions of different regime
of EIT for the near-resonance case. According to Eq.~6.26!,
the absorption minimum depends significantly on the fi
bandwidth if

AI 0n@G8AG. ~6.28!

In this case, as follows from Eqs.~6.22! and~6.27!, the mini-
mum absorption increases withn asAn, while

AI 0n!G3/2. ~6.29!

The EIT effect takes place ifā (v2p)!a0(v2p). In view of
Eqs. ~3.6! and ~6.27!, this corresponds in the region~6.28!
and ~6.29! to the condition

An/I 0!1/AG. ~6.30!

Figure 3~a! depicts graphically the region of existence
EIT and the boundaries between different regimes of EIT
Fig. 3~a! boundaries 1–4 relate to the conditions~5.8!,
~6.28!, ~6.29!, and~6.30!, respectively. Region I in Fig. 3~a!
depicts the quasistatic stage of EIT, whereas region II
notes the stage where Eq.~6.27! holds. Figure 3~a! shows
that the necessary and sufficient condition for the existe
of region II is G8!G, which suggests the idea of the pre
ence of a strong destructive interference of the dressed s
in region II. Indeed, region II allows for EIT with the wea
and intermediate couplingsI 0&G2, which is a sign of a
strong destructive interference, whereas for the stro
coupling caseI 0@G2 the minimum absorption~6.27! is
much less than that given by Eq.~3.10!. On boundary 3 of
region II @Fig. 3~a!# the interference is negligible. Indeed
there Eq.~6.27! yields ā (v2p);KG/I 0, as in the case of a
coherent coupling field withG;G8 @cf. Eq. ~3.3!#, which
means negligible interference.

The approximation used in this section describes corre
EIT ~at least, the maximum EIT value! to the left of bound-
ary 3 and the negative ordinate half axis in Fig. 3~a!, i.e.,
under the conditions~6.29! andn!G @the latter follows from
Eq. ~6.20!#. One can show@33# that to the right of line 5 in
Fig. 3~a!, i.e., for
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I 0!n2 ~n*G!, ~6.31!

the stochastic perturbation theory holds. An analysis of
corresponding solution shows an absence of any EIT di
the absorption spectrum@33#. Hence the only region for the
possible existence of EIT, not covered by the available
proximate methods, is the sector between lines 3 and
Fig. 3~a!, i.e., the regime of a strong-coupling field with th
bandwidth in the intervalG3/I 0&n&AI 0. To consider this
case requires the full solution of the problem, with due
gard for the stochastic operators in both Eqs.~6.5!, which is
beyond the scope of the present paper. Note that the a
delimitation of various regimes of EIT holds actually fo
uDcu&G and not only foruDcu!G.

VII. UNCORRELATED JUMP MODEL

In the model of Markovian uncorrelated jumps the co
plex amplitude of the field experiences at random tim

FIG. 3. Boundaries of different regimes of EIT in the parame
space for two models of the amplitude-phase fluctuating coup
field in the caseuDcu&G: ~a! chaotic field and~b! uncorrelated-
jump field. Region I, the quasistatic regime; region II, t
n-dependent regime with strong destructive interference of
dressed states; region III, then-dependent regime without destru
tive interference of the dressed states.
e
in

-
in

-

ve

-
s

abrupt changes comparable by magnitude to the amplit
itself. This is in sharp contrast to a continuous evolutio
expected for the field of a multimode laser. Therefore,
uncorrelated-jump model is considered to be much less s
able for real lasers than the model of chaotic field. Howev
the uncorrelated-jump model has the advantage that i
readily solvable in the most general form and therefore t
model has been used@12,34# to obtain at least insight into the
problem if not quantitative results. In view of this, it is im
portant to compare the two models whenever it is possi
Another reason to consider the uncorrelated-jump mo
here is to check the sensitivity of EIT to statistical details
the field.

For the uncorrelated-jump model Eqs.~6.5! still hold with
the only difference that the stochastic operatorL is now @12#

LC52nFC~u,v !2 f ~u,v !E d2VcC~u,v !G , ~7.1!

wheren21 is the average time between the jumps. As abo
the field spectrum is Lorentzian with the HWHM widt
equaln. For the model~7.1! Eqs.~6.5! can be solved in the
general form, yielding@12#

ā~v!5KReJ~v!@12nJ~v!#21, ~7.2!

where

J~v!5E
0

`

dIf~ I !@G1n2 iD1I /~G81n2 iD8!#21.

~7.3!

In particular, for the Rayleigh distribution~5.2! one obtains

J~v!5@~ G̃81n!/I 0#e~ G̃1n!~ G̃81n!/I 0E1„~ G̃1n!~ G̃81n!/I 0…,
~7.4!

Assume that

nuJ~v!u!1 ~7.5!

~this condition is verified in the last paragraph of the pres
section!. Then Eq.~7.2! yields that

ā ~v!'KReJ~v!, ~7.6!

i.e., the absorption coefficient is given by the quasistatic
~5.3!, where the effect of the temporal field fluctuations
accounted for by the substitutions

G→G1n, G8→G81n. ~7.7!

Correspondingly, in the region~7.5! the results for EIT
obtained in Sec. V are extended to the case of a nonvan
ing n by means of the substitution~7.7!. In particular, under
the condition of significantly modified spectrum@cf. Eq.
~5.4!#

I 0@~G1n1uDu!~G81n1uD8u!, ~7.8!

Eq. ~7.6! becomes approximately

r
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e
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ā ~v!5KRe
G̃81n

I 0
ln

C1I 0

~ G̃1n!~ G̃81n!
, ~7.9!

which is an analog of Eq.~5.5!.
Thus far in this section the results hold for arbitraryDc .

Henceforth we confine ourselves to the caseuDcu!G. Now
Eq. ~7.9! implies that the absorption coefficient at the min
mum is @cf. Eq. ~5.7!#

ā~v2p!5K
G81n

I 0
ln

C1I 0

~G81n!~G1n!
. ~7.10!

Note that condition~7.8! guarantees that the argument of t
logarithm in Eq.~7.10! is much greater than one.

The different regimes of EIT for the uncorrelated-jum
model are shown in Fig. 3~b!, where the EIT boundaries 1, 4
and 5 correspond, respectively, to inequalities~5.8!, ~6.30!,
and

I 0@n2. ~7.11!

These boundaries are obtained from Eq.~7.8! and the condi-
tion ā (v2p)!a0(v2p), taking into account Eqs.~3.6! and
~7.10!.

The quasistatic regime@region I in Fig. 3~b!# holds for
n!G8. The n-dependent regime with the strong destruct
interference of the dressed states~region II! takes place if
G8!n!G. In this case one can use the results of Sec
obtained forG8!G with the only substitutionG8→n. In
particular, as follows from Eq.~7.10!, the minimum value of
absorption,

ā ~v2p!5K
n

I 0
ln

C1I 0

nG
, ~7.12!

increases withn almost linearly. This can be compared wi
the An law for the field-bandwidth dependence of the min
mum absorption coefficient in the case of the chaotic fi
model @Eq. ~6.27!#.

When the field bandwidth exceeds significantly the ma
rial relaxation constantsn@G one can use the results of Se
V with the equal relaxation constantsG,G8→n, which im-
plies negligible interference between the dressed state
particular, Eq.~7.10! yields that the minimum absorption is

ā ~v21!5
Kn

I 0
ln

C1I 0

n2
. ~7.13!

One can estimate from Eqs.~7.3! and~7.9! that condition
~7.5! is equivalent to the inequalitiesI 0@n2 for I 0*G2 and
n!G for I 0&G2, i.e., it holds to the left of boundary 5 an
the negative part of the ordinate axis in Fig. 3~b!. As in the
case of the chaotic field model~see Sec. VI D!, to the right of
boundary 5 the stochastic perturbation theory can be u
@33#, implying an absence of an EIT dip. Thus the results
this section fully describe the EIT dip in the probe absorpt
in the frame of the uncorrelated-jump model.
V
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VIII. NUMERICAL RESULTS AND DISCUSSION

Figure 2 shows the dependence of the length of abs
tion on the probe-field frequency for a coherent coupli
field, as well as for three stochastic models of the rand
coupling field: the Markovian phase-fluctuating, chaotic, a
uncorrelated-jump fields. Here and henceforth the curves
the coherent, phase-fluctuating, and uncorrelated-jump m
els are calculated by the exact formulas, i.e., Eq.~3.1!, Eq.
~3.1! with the substitution Eq.~4.1!, and Eq.~7.2! with the
definition ~7.4!, respectively, whereas the curves for the ch
otic field are obtained with the help of the most gene
available formula~6.17!. Figure 2 illustrates the case of
weak coupling fieldI 0!G2 ~the lower half plane in Fig. 3!,
exactly resonant to the transitionu2&↔u3&, for two values of
the bandwidth. When the bandwidth is very sm
n51027G, curve 1 obtained for the phase-fluctuating fie
coincides with the curve for the coherent field of the sa
intensity and frequency, whereas curves 3 obtained for c
otic and uncorrelated-jump fields coincide with each oth
and with the result~5.3! of the quasistatic limitn→0. Figure
4 shows the maximum value of the length of absorption a
function of the dimensionless bandwidth for the above s
chastic models, the values of other parameters being
same as in Fig. 2. Figures 2 and 4 demonstrate the follow
facts. ~i! Amplitude-phase fluctuations reduce EIT notic
ably, even forn→0, but do not destroy the effect.~ii ! EIT
decreases with the increase of the field bandwidth, irresp
tive of the stochastic model.~iii ! For a given bandwidth and
intensity of the field, EIT is significantly lower for an
amplitude-phase-fluctuating field than for a phase-fluctua
field @35# and is less pronounced for a chaotic field than
an uncorrelated-jump field.

Consider the case of a strong coupling field~the upper
half plane in Fig. 3!. Figure 5 shows~on a logarithmic scale!
the field-bandwidth dependence of the maximum length
absorption in the exact-resonance case for three stoch
models of the strong-coupling field. The range of then de-
pendence of the plot for the chaotic field is limited fro
above by the condition~6.29! ~boundary 3 in Fig. 3!. The
comparison of Figs. 4 and 5 shows that the absolute
relative differences between the results for the chaotic
uncorrelated-jump models increase with the field intensit

FIG. 4. Maximum length of absorption 1/ā (v21) as a function
of n/G. The values of the parameters areDc50, G851023G, and
I 050.03G2.
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2288 56A. G. KOFMAN
IX. CONCLUSION

In the previous sections the EIT dip in the probe-fie
absorption spectrum has been considered for the case
coherent, phase-fluctuating, and amplitude-phase-fluctua
coupling fields with the Rayleigh distribution. In particula
two atom-field coupling schemes for the generation of E
have been studied under rather general assumptions.
equations describing EMA and EIT have been derived
the conditions of their validity have been discussed. A co
prehensive study of the EIT line shape for a coherent c
pling field has been performed, which complements the p
vious treatments. A shift of the absorption minimum fro
the two-photon resonance frequency has been revealed i
off-resonance case. The role of quantum interference in
has been discussed and the dependence of the quantu
terference on the relaxation constants has been obta
Since the above treatment holds for an arbitrary relaxa
scheme, the results obtained here allow one to study eff
of dephasing collisions. Moreover, the results obtained ab
for a coherent coupling field can be readily used to desc
effects of phase fluctuations of the coupling field, due
relation ~4.1!.

The above treatment puts the emphasis on the case o
amplitude-phase fluctuating coupling field since this pra
cally important case was not considered previously. The c
of narrow-band fields with the Rayleigh distribution~the
quasistatic regime! has been considered quite generally. W
have shown thatamplitude-phase-fluctuating fields are c
pable of inducing significant transparency, though somewha
reduced as compared to the coherent field. The effects o
bandwidth have been considered for two stochastic mod
which share the same intensity distribution and band sh
viz., the chaotic and uncorrelated-jump fields. Closed a
lytical solutions have been obtained and the validity con
tions of different regimes of EIT have been derived. As f
lows from the above results, stochastic fluctuations
detrimental for EIT for all stochastic models considered.

The comparison of the two models of an amplitude-pha
fluctuating field considered above has shown a substa
difference between the results of the models, despite tha
models have identical line shapes and phase-amplitude
tributions. The differences concern all EIT features, inclu
ing EIT line shapes, the dependence of the absorption s

FIG. 5. Logarithm of the maximum length of absorptio

2 log10(amG/K) @wheream5 ā (v21)# as a function of the dimen
sionless bandwidth for various models of the stochastic field.
values of the parameters areG850.01G, Dc50, andI 05100G2.
of
ng

he
d
-
-

e-

the
IT
in-

ed.
n
ts
e
e

o

an
i-
se

he
ls,
e,

a-
i-
-
e

-
ial
he
is-
-
c-

trum on the relevant parameters, and the limits of vario
regimes of EIT. Thus EIT proves to behighly sensitive to
fine statistical details of the coupling-field fluctuations. This
can be compared to the population dynamics induced b
resonant Rayleigh field in the rate approximation@29#. This
process proved to be not very sensitive to the difference
tween the chaotic and uncorrelated-jump fields. Thereby
servations of EIT can be utilized for study of laser fluctu
tions.

Consider the experimental verification of the present p
dictions for the chaotic field. The results obtained above
this case hold if the field bandwidthn is much less than the
material widthG @cf. Fig. 3~a!#. This condition may prove
rather restrictive when transparency is induced with a mu
mode laser, since then the bandwidth is limited from bel
by the intermode frequency spacingpc/n0d. Hered is the
laser resonator length andn0 is the index of refraction. For
n0;1 and d51 m one getsn.109 s21, which requires
G.1010 s21 to satisfy the above condition. This can b
achieved by considering sufficiently broad material tran
tions, e.g., transitions to autoionizing states or homo
neously broadened absorption lines of impurities in co
densed matter. Synthesized chaotic field@36,37# also can be
employed in the experiment. In this case the conditionn!G
is not so crucial since the bandwidth of synthesized fluct
tions can be rather small.
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APPENDIX A: DERIVATION OF EQ. „6.15…

One can write

g~u8,v8,u,v,t !5h~u8,u,t !h~v8,v,t !, ~A1!

whereh(u8,u,t) obeys the equation@cf. Eq. ~6.10!#

]h

]t
52

u2

G2 iD
h1Luh, ~A2!

with the initial condition h(u8,u,0)5d(u2u8). Note that
the change of the dependent variable that cancels the
derivatives with respect tou and v transforms Eqs.~6.10!
and~A2! to the Schro¨dinger equations for, respectively, two
and one-dimensional harmonic oscillator with purely ima
nary time.

To solve Eq.~A2! we extend the method of Ref.@38# by
writing the ansatz

h~u8,u,t !5exp@A0~ t !1A1~ t !a1A2~ t !a2#, ~A3!

wherea5u/AI 0. Inserting Eq.~A3! into Eq.~A2! and taking
into account Eq.~6.2! yields the set of equations

dA0 /dt5A1
2/21A211, dA1 /dt5A112A1A2 ,

~A4!

dA2 /dt52A212A2
22I 0 /@~G2 iD!n#,

e
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where t5nt. The singular initial condition for Eq.~A2!
yields singular initial conditions for Eqs.~A4!: for t→0 one
gets A2p/A2exp@A02A1

2/(4A2)#→1, A1 /A2→22a8, and
A2→2`, where a85u8/AI 0. The solution of Eqs.~A4!
yields

f ~u8!h~u8,u,t !5
Ab

pA12e22bt
expF2

~b21!t

2
1S b21

2

2
b

12e22btD ~a21a82!1
baa8

sinhbtG .

~A5!

As follows from Eq. ~A5!, the function f(u8,u,t)
5 f (u8)h(u8,u,t) has the properties

f~u8,u,t !5f~u,u8,t !5f~2u8,2u,t !. ~A6!

Inserting Eq.~A1! into Eq.~6.12! and taking into accoun
Eq. ~A6! yields

G~ t !52J0~ t !J1~ t !, ~A7!

where

Jn~ t !5E
2`

`

du8duu8nunf ~u8!h~u8,u,t !. ~A8!

The functionJ0(t) was calculated in@29#. Inserting Eq.~A5!
into Eq. ~A8! and performing the integration yields

Jn~ t !5A2I 0
nbn11/2ent/2@S~ t !#2n21/2 ~n50,1!. ~A9!

Equations~A7! and ~A9! result in Eq.~6.15!.

APPENDIX B: VALIDITY CONDITIONS
OF EQS. „6.17… AND „6.19…

Consider corrections to the first-order approximation
veloped in Sec. VI B. In the second-order approximation E
~6.5a! becomes

2G̃Ca
~2!1LCa

~2!52Q~u,v !, ~B1!

where

Q~u,v !5 f ~u,v !2 iVc* Cb
~1!~u,v !. ~B2!

HereCb
(1)(u,v) equals the first-order result~6.9!. The solu-

tion of Eq. ~B1! has the form

Ca
~2!~u,v !5E d2Vc8Q~u8,v8!E

0

`

dt f~u8,v8,u,v,t !e2G̃ t,

~B3!

where f (u8,v8,u,v,t) is the conditional probability of the
Gaussian-Markovian processVc(t). f (u8,v8,u,v,t) is the
solution of the two-dimensional Fokker-Planck equati
ḟ 5L f with the initial condition f (u8,v8,u,v,0)
5d(u2u8)d(v2v8). It is easy to show that

f ~u8,v8,u,v,t !5 f 1~u8,u,t ! f 1~v8,v,t !, ~B4!
-
.

where f 1(u8,u,t) is the Green’s function of the Fokker
Planck equation@27# ḟ 15Luf 1,

f 1~u8,u,t !5
1

ApI 0~12e22nt!
expF2

~u2u8e2nt!2

I 0~12e22nt!
G .

~B5!

Inserting Eqs.~A1! and~A5! into Eq.~6.9! and integrating
over u8 andv8 yields that

Cb
~1!~u,v !5E

0

`

dtP~u,v,t !e2G̃8t, ~B6!

where

P~u,v,t !5
2 iVcb

2

pI 0G̃R2~ t !
expFnt2

S~ t !I

2I 0R~ t !G . ~B7!

Here I 5u21v2 and R(t)5bcoshbnt1sinhbnt. Equation
~B7! yields the limiting cases

P~u,v,t !'2
iVcf ~u,v !

G̃
exp~2It /G̃ !, ubunt!1

~B8a!

and

P~u,v,t !'2
iVcf ~u,v !b2

G̃~11b!2
expF2

~b21!I

2I 0
22bnt G ,

eubunt@1. ~B8b!

On inserting Eq.~B8a! into Eq. ~B6!, one obtains

Cb
~1!~u,v !'2

iVcf ~u,v !

G̃G̃81I
, I @I 1 , ~B9!

whereI 15nubG̃ u. From Eqs.~B6! and~B8! one can estimate
that

uCb
~1!~u,v !u;

uVcu f ~u,v !

uG̃~ G̃81bn!u
, I !I 1 . ~B10!

Combining Eqs.~B2!, ~B9!, and~B10! yields

Q~u,v !' f ~u,v !H G̃G̃8/~ I 1G̃G̃8!, I @I 1

1, I !I 1.
~B11!

HenceQ(u,v) as a function ofI has the characteristic width
I 25min$I11uG̃G̃8u,I0%. On the other hand, as follows from
Eqs.~B4! and~B5!, under the condition~6.20! the character-
istic width of the function*0

`dt f(u8,v8,u,v,t)e2G̃ t in the

(u8,v8) plane isI 0n/uG̃ u. Therefore, if

I 0n/~G1uDu!!I 2 , ~B12!

one can write f (u8,v8,u,v,t)'d(u2u8)d(v2v8) in Eq.
~B3!. This yields, taking into account Eq.~B2!, that
Ca

(2)(u,v)'Q(u,v)/ f 'Ca
(1)(u,v), where the first-order re-
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sult
Ca

(1)(u,v) is given by Eqs.~6.7! and~6.9!. Thus the approxi-
mation described in Sec. VI B has been proved here to h
under conditions~6.20! and ~B12!. One can show that Eq
~B12! is equivalent to Eq.~6.22! if inequalities ~5.4! and
~6.21! hold simultaneously and to Eq.~6.20!, otherwise.

APPENDIX C: ANALYSIS OF EQ. „6.19…

To show that Eq.~6.19! has the correct static limitn→0,
we use Eq. 6.8~1! of @39#. Then one obtains that

lim
n→0

F~2,1;11d;2z!5y2C~2,2;y!, ~C1!

where C( ) is the confluent hypergeometric function an
y5G̃G̃8/I 0. On the other hand, Eqs. 13.6.28@where
U( )5C( )#, 5.1.45, and 5.1.14 of@26# yield that

C~2,2;y!5y212eyE1~y!. ~C2!

With the help of Eqs.~C1! and ~C2! one obtains that the
n→0 limit of Eq. ~6.19! equals Eq.~5.3!.

In the case~6.20!, which is of interest here, one ge
ubu@1, yielding

z'b/421/2'AI 0/8nG̃21/2. ~C3!
. A

t.

. A

e-

.

h.
ld

Now one can use the expansion of the hypergeometric fu
tion for largeuzu ~Eq. 15.3.14 in@26#! to obtain

F~2,1;11d;2z!5dH 1

z
2 (

n50

`
~d21!•••~d212n!

n!zn12

3@ lnz1c~n11!2c~d212n!#J .

~C4!

Keeping in this expansion only the first two terms yields t
expression

F~2,1;11d;2z!'dz21$12~d21!z21

3@ lnz1c~1!2c~d21!#%. ~C5!

The smallness parameter in expansion~C4! is ud/zu. This
means that Eq.~C5! is valid if conditions~5.4! and ~6.21!
hold simultaneously. Inserting Eq.~C5! into Eq.~6.19!, using
equalities@26# c(1)52g and c(d21)5c(d)2(d21)21

and the formulas~6.18! and ~C3! for d and z, and keeping
only the lowest-order nonvanishing terms in the parame
(nuG̃ u/I 0)1/2 results in Eq.~6.23!.
.
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