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Electromagnetically induced transparency with coherent and stochastic fields
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This paper deals with electromagnetically induced transparéBEl), i.e., a significant suppression of
absorption at a material transitigim the form of a dip in an absorption spectryrdue to a strong laser field,
coupling the excited level with an auxiliary excitédnpopulatedl level. A comprehensive theory of EIT is
developed for the cases of coherent and Markovian phase- and amplitude-phase-fluctuating coupling fields. For
a coherent coupling field, a shift of the absorption minimum from the two-photon resonance is revealed in the
off-resonance case. Two models of amplitude-phase fluctuating fields are considered: the chaotic field and the
uncorrelated-jump field. Closed analytical expressions for EIT line shape are derived and exact limits of
different regimes of EIT are obtained, the emphasis being on the near-resonance case. The main conclusion is
that an amplitude-phase-fluctuating field can induce significant transparency, though reduced in comparison to
a phase-fluctuating field of the same average intensity and bandwidth. EIT decreases with the increase of the
bandwidth for all stochastic models considered. EIT with a chaotic field is generally less pronounced than EIT
with an uncorrelated-jump field of the same intensity and bandwidth, the difference increasing with the field
intensity. The possibility of experimental verification of the results obtained is discussed.
[S1050-294@7)03709-9

PACS numbg(s): 42.50.Gy, 42.50.Hz, 42.60.Mi, 42.62.Fi

[. INTRODUCTION ences between the two phenomena. The main purpose of this
paper is to show the possibility of inducing transparency by
A great interest was shown recently in resonance opticatmplitude-phase-fluctuating fields, the emphasis being made
phenomena in multilevel systems, which involve quantumon the chaotic field model. A comprehensive theory of EIT
interference[1]. The phenomena, which have been dis-with coherent, phase-fluctuating, and chaotic coupling fields,
cussed, include lasing without inversidowI) [2,3], electro- ~ Which allows for proper dephasing and arbitrary field band-
magnetically induced transparen¢gIT) [4—8], enhance- Width and detuning, is developed below. The analytic ap-
ment of the index of refractiof®], and steep dispersign0]. ~ Proach adopted here has allowed us to obtain explicit expres-
Of the above effects, EIT and' more genera”y, e|ectromagSi0nS for- thEElT line Shape as well as the exact limits for
netically modified absorptiofEMA) [11—14 are conceptu- EIT and its different regimes.
ally the simplest ones since they practically do not involve ~The paper is organized as follows. In Sec. I the general
transitions between atomic levels: the strong field couple§Xpressions for electromagnetically modified susceptibility
empty levels. As a result, the spectral manifestations ofare derived for two atom-laser coupling schemes, under
dressed states and their interference are unblurred by poplather general assumptions about the atomic relaxation. In
lation effects in observations of EIT and EMA, in contrast, Sec. Ill a simple expression for EIT and the exact validity
say, to LWI. Thus a good understanding of EIT and EMA, condition of EIT are obtained for the case of a coherent
important by itself, can help to attain a deeper insight intocoupling field. These results are extended to the case of a
more complicated phenomena. The study of EIT has also Markovian phase-fluctuating field in Sec. IV. The remaining
practical significance. A number of applications of EIT havepart of the paper is devoted to an amplitude-phase-
already been suggested, including second-harmonic geneructuating coupling field. Section V treats the case of a
tion [15], four-wave mixing[16], control of optical bistabil- narrow-band coupling field with the Rayleigh intensity dis-
ity [17], and isotope discriminatiof18]. Other fields of cur- tribution. The effects of the field bandwidth are studied for
rent interest, which have much in common with EIT andtwo models: the chaotic fielSec. V) and the uncorrelated-
EMA, are laser-induced continuum structufd®] and co- jump model(Sec. VI). Section VIII presents numerical re-
herent control of chemical reactiofi20]. sults and discussion. Section IX provides concluding re-
Observations of the above processes would require strorfg"arks- The Appendixes contain details of the calculations.
laser fields, which are often stochastic. The effects of laser

noise_ depend ge_nerally on the type of ra_ndo_m modulation of Il. GENERAL FORMALISM
the field. In particular, effect of phase diffusion of the cou-
pling field on EIT can be readily taken into accoybi. In In the previous treatments of EIT and EMA various spe-

contrast, effects of amplitude-phase fluctuations are poorlgific three-level schemes were studied. In this section we
known and a failure of attempts to produce EIT with a mul-consider EMA and EIT under rather general assumptions.
timode laser was reportef#t]. Vemuri et al. [3] demon- We assume that a weak probe fieldy(t)
strated by numerical simulations that a chaotic coupling field=Ep(t)e™'*'+c.c. is nearly resonant to the transition from
can be used to produce lasing without inversion. This resulthe ground statgl) to an excited statg2), which is coupled
cannot be readily extended to EIT due to the above differby a strong laser field.(t)=E(t)e '“c'+c.c. to an auxil-
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FIG. 1. Schemes of the atom-laser couplif@:ladder scheme
and(b) A scheme.

iary excited statd3). The complex amplitude&(t) and

ELECTROMAGNETICALLY INDUCED TRANSPARENC ...

2281

d; being the Kronecker symbol.
The probe field induces the dipole moment per unit vol-
umeP(t)e '+ P*(t)e'“!. Here

P(t)=Nawd,0:(1), (2.5

whereN is the number of the atoms under consideration per
unit volume. The solution of Eq$2.1) can be obtained per-
turbatively. In the zeroth order i, Egs. (2.1) with the
initial condition (2.4) yield p;;(t)=p{(t)=61;8;;. Using
the latter values, in the first order i, one obtains the
equationg21]

5'21=(iA_F)0'21_iV:(t)Usl_in(t),

E.(t) of the probe and coupling fields are assumed to vary

slowly with time. Two cases of atom-laser coupling, the lad-

der andA schemedFig. 1), are considered. The three-level

03=(A"—T")og—iV (1) o, (2.6

systems considered can be closed or open. Their relaxatio}!th the initial conditions a15(0)= 0,5(0)=0. Formally
which can be induced by the field reservoir, matter, and/of°Ving Egs.(2.6) for o2, and inserting the result into Eq.

configuration interaction in the atofii], is described phe-

nomenologically by arbitrary relaxation constants. The ener-

gies of the leveldl), |2), and|3) are €, €,, andes, re-
spectively. Consider first the ladder schemec e;.
Equations for density matrix elemengs; of the three-

level atom in the rotating-wave approximation are written for

the case of the ladder scheme as
p11=2IM[V} () 021] + T 5p oot T'3pss,
p2o=2IM[ V3 (1) 03— V5 (1) 021] — T 2p 20+ Tipaa,

paz=—2IM[VE (t)og5] — T'3pas, (2.2)

0= (1A=T) ooy +iV (1) (poo— p1) —1VE (D oay,
o3=(A —I'")ost+iVp(t)ozm—iVe(t) oy,

03=(iA;—Tg) o9+ IV (1) og1+iVe(t) (pzs—p2o)-

Here op1=p1€'*", 031= pa1' (" @', and orz,= p3e'c" are

the density matrix elements in the rotating framg,= o'j*i ,
Vp(t)=—dpEp(t)/h, V(t)=—dgE()/A, (2.2

#i is the Planck’s constanty;; is a matrix element of the

atom dipole moment,

Ac=wc— w3, (239

A=0—wy, A'=o—wy,

A andA. are, respectively, the probe and coupling field de-

tunings,A’ is the detuning from the two-photon resonance
wop=wz— w0 and w;;=(&—¢)/h (i,j=1,2,3); ', and
I'; are the decay rates of the stat@s and|3), respectively;
I';, T';, andI'y are the rates of reservoir-induced transi-
tions [2)—|1), |3)—|1), and|3)—|2), respectively(for a
closed systenl’,=T'}, andI'3=T4+T1%); andI', T, and
I's, are the damping rates qgfy;, ps3;, and ps,, respec-
tively. Assuming that the field§,(t) and&(t) are turned on
att=0, the initial conditions for Eq92.1) are

pij(0)=64i64;, (2.9

(2.5 yields

iN|dp/? [t , , ,
P(t)= z fodt Ya(t,t)Ep(t). (2.7
Here y,(t,t’) is a component of the vector
t/fa)
= : (2.9
v <¢b
which as a function of obeys the equation
y=At) ¢, (2.9

with the initial conditionsy,(t',t") =1,,(t',t")=0. In Eq.
(2.9

iA-T
—iV(1)

—iVE ()

2.1
iA' =T (210

A(t)=(

If the coupling field is a stationary random process, then
Y(t,t")=y(t—t"), wherey(t) is the average over the field
fluctuations of the solutions(t) of Eq. (2.9 with the initial
condition ,(0)=1 and ,(0)=0. In this case, as follows
from Eq. (2.7), the average polarization amplitude is

iN|d,?
5 ',fl'

ftdt'@(t—t’)Ep(t'). (2.11)
0

Henceforth we assume that the probe field has a constant
amplitudeE(t)=E,. Then for sufficiently long times Eq.

(2.1)) yields P= x(w)E,, where the average susceptibility

7+i7:iN|

2 o J—
Ao fo dtga(t). (212

x(w) -

In the case of a stochastic coupling field, assuming for sim-
plicity that the sample is optically thin, the transmitted inten-
sity of the probe field is attenuated by the factor
1-al (aL<1), wherelL is the sample length along the
direction of the probe propagation amdis the average ab-
sorption coefficient. For a sufficiently dilute mediutie.,
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Ix|<1), a=(4wwl/c)x", wherec is the vacuum speed of For the validity of I_Eq.(3.3) inquglity(3.2) should hold at
light. The latter equation and E¢.12) yield least ato = wy,, yielding the condition

o . IST'[T+T'+A2/(T+T")]. (3.5
a(w)=KRe[ y,(t)dt, (2.13
0 A very significant reduction of absorption in a vicinity of

i.e., EIT) occurs if the inequalit < ,
where K=47Nw|d,,|%/Ac=37c?NI' 5/ »?. Note that Egs. \C/Uvﬁese D qualitya (o) <aol wm)

(2.11)—(2.13 hold also for a coherent coupling field with a
constant amplitud&,(t) = E, if one drops the averaging in ao(w)=KI'/(I'?+A?) (3.6)
Egs.(2.1)—-(2.13.

Turning to the case of thd schemee,>e;, one can is the absorption coefficient in the absence of the coupling
show, on writing equations for the density matrix elementsfield [cf. Eq.(3.1)], holds simultaneously with Eq3.5). As
similar to Eq.(2.1), that Eqgs(2.7)—(2.13 remain valid upon @ result, one obtains th&iT occurs in the region

the substitutions
HSHI I>T"(T+T" +A2/T). 3.7

*
We= e, V(D Ve(b). 219 Equation(3.7) simplifies for the two alternative casgz3]
Henceforth, for definiteness, the ladder system is discussed.
The above result$2.7) and (2.11)—(2.13 hold if the
pumping of the excited level?) and|3) by the fieldsEy(t)
and&.(t) is weak. This takes place if the rafé,, of transi-
tions induced by the probe field is sufficiently small,

IST'T+A2T/T  (if T'<I), (3.83
I>T'2+A2T' T (if T'>T). (3.8b

EIT has been explaindd] as resulting from the ac Stark
splitting combined with interference of the states dressed by
the coupling field. The effect of interference is easy to esti-

For A systems and open ladder systems the above treatmeWtate in the strong-field regime,
holds until the ground level is depopulated noticeably, i.e., IST2+T'2+A2 3.9
for t<W,,*. ¢

Wa1=(2|V|?/K) (@) <T'2,T. (2.15

when the spectrum is split into two Lorentzian peaks sepa-
Ill. COHERENT COUPLING FIELD rated by /1 with approximately equal widthsI(+T')/2
and heights[11,12. If the transitions to the two dressed
oo o ! ) States were independent, the spectrum would be a mere su-
pling field, it is helpful to consider EIT with a coherent cou- perposition of the two Lorentzians and the value of the ab-

pling field E.(t) = const. This case is ir_nporta.nt by itself. sorption coefficient at the minimum would be
Moreover, we shall need it for a comparison with the results

obtained below for a stochastic coupling field. Here we give K(L+I")/2l. (3.10
an overview of EIT with the emphasis on those aspects of the
problem that were not treated sulfficiently or even overlookedComparing the latter quantity with the correct minimal value

Before we proceed to study effects of a stochastic cou

in the previous studies. KT''/l, which follows from Eq.(3.3), one infers that the
For a coherent coupling field, Eq$2.9), (2.10, and interference[24] of the dressed states is destructive for
(2.13 yield [11,17] the absorption coefficient I''<T, constructive forTI'’>T", and vanishes fol''=T.
WhenI''~T" (I''>T), the condition of EIT(3.8) is equiva-
a(w)=KRgT—iA+1/(I'"—iA")] ™, (3.D)  lent to(stricter than the condition of the strong-field regime

5. ] o . (3.9. By contrast, forl''<I' the destructive interference is
wherel =|V| is proportional to the coupling field intensity. gjgnificant enough to allow an observation of EIT even in the
The spectrum is significantly modified under the condition \,o5k_field regimel“’(F2+A§)/F<I <F2+A§.

s , , To depict EIT graphically it is convenient to plot the
1> @+]Aha+[a’]), 32 length of absorption (w)=1/a(w), which is a peak in a
which allows one to expand E3.1) to the second order in \lil(’:gllzyth(: ngk \illhj:scfilgegﬂ(;;rozli?:;g&/ E)I/gt.h:)fecl::ig:ocal
f{at A)(I"—iA")/1 and obtain forlA’|< VLT +[A) - o Eq.(3.3), which is a Lorentzian with the half-width at half
maximum(HWHM) width T',= IT'/T </l (see curve 1in
Fig. 2), whereas fod''=I" the width of the peak is of the
: (3.3 order of the Stark splittingl',~ /1, the reciprocal of Eq.
(3.3) describing only the top of the peak.
Here the position of the minimum Note that the shifA,,=I""A./(I'+2I'") of the absorp-
tion minimum from the two-photon resonance frequency
Om= w0+ A/(T+20). (3.9 w5, [see Eq.(3.4] was not revealed_ i_n the previous treat-
ments of EIT. As follows from conditioni3.7), |A, =T,
The absorption minimum is shifted with respectdg, to-  i.e., the shiftA, is well discernible only in the off-resonance
wards w,; [22]. case with a strong destructive interference,|>T'>T",

r
a(w)=— F'+I—(co—wm)2
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o]
(=]

a_<w)=f:dl¢<l>a<w>, (5.1

N
;]

where ¢(1) is the distribution ofl. Here we consider the
Rayleigh distribution

d() =1y exp—1/1y), (5.2

N
o

-y
o

wherel is the average df. The Rayleigh distribution char-
acterizes, in particular, the chaotice., complex Gaussian
field model, which is believed to describe well lasers oper-

Length of absorbtion (units of T/K)
o

-0.01 -0.005 0 0.005 0.01 ating on many uncoupled modg25].
Resonance detuning A (units of ') Inserting Eq.(3.1) into Eq. (5.1) yields
FIG. 2. Length of absorptiol{w) = 1/a(w) (in units of [/K) as a(w)=Kly'Rel"e"oE(TT /), (5.3

a function of the probe detuningy (in units ofI") for the case of the _ _
exact resonancé.=0. Curve 1, coherent and phase-fluctuatingwhereI'=T"—iA, I''=T""—iA’, and E;() is the integral
(v= 10’71“) coupling fields; curve 2, phase-fluctuating field with exponential functiof26].

v=3X10 “T'; curve 3, the quasistatic limit as well as chaotic and  Consider the case of a significantly modified spectrum
uncorrelated-jump fields withh=10""T"; curve 4, uncorrelated-

jump field with »=3Xx107*T"; curve 5, chaotic field with I0>(I‘+|A|)(I"+|A’|). (5.9
y=3X10"“T"; curve 6, no coupling field. The other parameters
used ard’’ =10"°T andl,=0.03"2. Then, using the expansid26] of E;(z), one can get from

o Eq. (5.3 in the first approximation
whereA,,~T'"A./T". For all other cases the shift is hardly

noticeable and one can set,~w,,. Note that the off- a_(w)=KlglReT“’In[Cllol('f'f’)] (5.5
resonance case can be advantageous from the experimental

point of view because for a sufficient detuning the effects of,,

inhomogeneousge.g., Doppler broadening are not impor-

tant. o K Cilg A
a(w)=|— I'n VTN +A’ arctanI:
IV. PHASE-FLUCTUATING COUPLING FIELD 0 (AT +A)
For a coupling field with Markovian phase fluctuations A’
(including the phase diffusion casié was showr[5,12] that +arctan1: ' (5.6

the average absorption coefficiea?(w) is described by the
results fora(w) obtained for the case of a coherent couplingHere C;=e~ 7~0.56, wherey~0.58 is the Euler constant

field (Sec. lll), provided the substitution [26].
An analysis of Eq(5.6) shows that for the case of interest
"—=I'"+v (4  I’<T and|A<T, the minimum of absorption is aby,,

the value at the minimum being
is made. In Eq(4.1) v is the HWHM width of the Lorentzian

field band shape. Note that the EIT line shape in the present o ' Cil,
case, just as in the case of a coherent coupling fieltaps a(wap)= Kl—lnf. (5.7
proximately symmetric, irrespective of the detunidyg.. o I'I

For |A;<T one can setA~A’ in Eq. (5.6). Thereby one
obtains that the shape of the EIT peak in the function

The remaining part of the paper is devoted to the case dfiw)=1/a(w) is symmetric with the wings decaying as
an amplitude-phase-fluctuating coupling field. Henceforthl/|A’| (Fig. 2, curve 3.
we restrict ourselves to the case of a destructive or negligible As follows from Eq.(5.7), EIT can be achieved with the
interference of the dressed states, which requires, as mehelp of an amplitude-phase-fluctuating coupling fielthe
tioned in Sec. Ill, thafl’<T'. The general results will be magnitude of EIT is now reduced by a logarithmic factor, in
obtained below for an arbitrary detuning of the couplingcomparison to the case of a coherent coupling field with
field. However, the analysis of the results will be made, forl =1, [cf. Eqg. (3.3)], due to contributions from smadlllin the
simplicity, for the(nearjresonance cade\ | <T . integral (5.1). The comparison of Eq5.7) with Eq. (3.10

In this section we consider the case when the field bandshows that destructive interference of the dressed states at
width » is negligibly small(the quasistatic regimeln this I''<I" is preserved nowthough its magnitude is less than
case the probe absorption is independent of the details of tHer a coherent coupling field with the same mean intensity
stochastic evolution of the coupling field, being determinedThe validity condition of EIT is obtained from the condi-
only by the intensity distribution of the latter tion that Eq. (5.4 at w=w,, and the inequality

V. RAYLEIGH COUPLING FIELD



2284 A. G. KOFMAN 56

a_(wzp)<ao(w2p) hold simultaneously. In view of Egs. whered?V =dudv. The set of the second-order differential
(3.6) and (5.7), this means thaEIT takes place under the e€quationg6.5 cannot be solved in a closed form. Therefore,

condition an approximate approach is developed below.
lo>TT", (5.9 B. Approximate solution
which is a direct extension of E¢3.8a in the present case !f I'+[A| is sufficiently large, one can neglect the term
|A|<T. LW, in Eqg. (6.53, yielding
The results of this section are rather general, being valid F(U,0)—iVEW(U,)
for all statistical models of an amplitude-phase-fluctuating U (Up)= — F—iCA i 6.7)

coupling field, which share the Rayleigh distributi¢B12).
The effects of the field bandwidth for two such models are

considered in the Secs. VI and VII. Inserting Eq.(6.7) into Eq. (6.5b yields the equation for

\I’b(u,v),
VI. CHAOTIC FIELD u+vp? iVef(u,v)
iIA =Ty — =—V,+LV¥,= . 6.8
A. Formalism a o r—iA ® b I'-iA 6.8
Consider now the effects of the field bandwidth for the The solution of Eq(6.9) has the form
case of chaotic field, which is the common model for multi-
mode laserg25]. Assume that the field line shape is a _ o o [ .,
Lorentzian with the HWHM widthv, which means, by Vy(u,v)=—i(I'=i4) d?Ve o dtf(u’,v”)
Doob’s theorenj27], that the field is Gaussian and Markov-
ian. Then one can use the theory of stochastic differential xg(u',v’,u,v,t)eld =T, (6.9

equationg27-29 and write the equation
Here d?V.=du’dv’ and g(u’,v’,u,v,t) as a function of

(u,v,t)=[A(u,v)+L]g(u,v,t) (6.)  u, v, andt obeys the equation
for (u,v,t), the partially averagedy(t). In Eq. (6.1) g u+p?
H(u,v) is given by Eq.(2.10 with V (t)—u+iv and the - Toad97ke (6.10
stochastic operatoc=L,+L, takes into account temporal
fluctuations of the field. Heré , and L, are the Fokker- with the initial condition g(u’,v’,u,v,0)
Planck operators =8(u—u")é(v—v'). Inserting Eq.(6.9 into Eq.(6.7), one
obtains from Eq(6.6)
g g 92
u=v| LU=+ — . (6.2 _ © L,
du - 2 gy a(w)=KRe(F—iA)‘1[1—f dtG(t)ela ~Tt)
0

The initial conditon for Eq. (6.1) is ¢(u,v,0) (6.1

=(0)f(u,v), wheref(u,v)=f(u)f(v) is the distribution
of the complex amplitude of the interaction, wherda)
andf(v) are the one-dimensional distributions

where

G(t)=f fdzvgdzvcvgvgf(u’,v')g(u',v',u,v,t).

f(u)=exp(—u?/1g)/mlg. (6.3 6.12
The integral ofy(u,v,t) overu andv yields y(t). Equation (6.10 is a stochastic differential equation and
We define the vector henceg(u’,v’,u,v,t) is the average of
()= oY) —fw ndt. (6.9 r—iA *1ftd'v "2 6.1
(u)= Vo))~ Otp(u,v, : . exp —(I'—iA) . t'[Ve(t))] (6.13

From Eqgs.(6.1) and(6.4) one obtains the equations for the over all realizations of the stochastic field, subject the con-
components of¥' (u,v), ditionsV (0)=u'+iv" andV (t)=u+iv. The full average
of quantity (6.13 was calculated if29,30. Here we are
(IA-T)W,—iVE¥,+L¥,=—f(uv), (658 interested in a related averaf¥. Eq. (6.12)]

AT . — t
(IAT=TOW=iVelatLW,=0, (6.5b G(t)=<VC(0)V§(t)ex;{—(F—iA)‘lf dt’|VC(t’)|2}>.

0
whereV.=u+iv. The average absorption coefficient can be (6.14
written in terms of¥ ,(u,v) as
This average was calculated [i81] by the path integration
method. AlternativelyG(t) can be directly obtained from

— _ 2
a(w)=KRe| dV W¥,(u,v), (6.6 Egs.(6.12 and(6.10 (see Appendix A The result is
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G(t)=4l,8%"[S(1)] 2, (6.15 to reduce Eq(6.23 in the first approximation to Eq5.5). In
this case the quasistatic resul&3) and (5.5—(5.7) are re-
where 8=+1+21,/+»T and covered approximately. In the opposite case
S(t)=2BcoshBut+(1+ B2)sinhBrt.  (6.16 VvsT /(T +]AD M, (6.26
Inserting Eq.(6.15 into Eq.(6.11) and reducing the inte- absorption significantly depends on _ _
gral to Eq. 3.194.1 of32], one obtains The above results hold for arbitrary field detunings.
Henceforth in this section we will focus on the near-
_ KT 8Kl,BF(2,d;1+d:;b) resonance casé\ | <I'. Now in the region(6.26 formula
a(w)= e

, (6.17  (6.23 yields that the absorption is minimal in a vicinity of
the two-photon resonance frequensy,, where one gets

where F() is the hypergeometric function[26], — N N
b=(B—1)2/(8+1)% and a(w)~K\2v/(1o)  (JA'|<lgvIT).  (6.27)

T2+A2  (F—iA)%(1+8)*vd

=, The line shape of the EIT window is symmetriEig. 2,
d=[(28-1)v+I"]I(2Bv). €18 curve 5, the wings of the line shape fbA’|> 1 ,»/T" being

Equation(6.17 can be transformed to a somewhat simplerquaS'Stat'dsee Sec. ¥

form with the help of Eq. 15.3.4 frorf26]. As a result, one

obtains D. Limits of regimes of EIT
Consider now the validity conditions of different regimes
— KT _F(2114d;-2) of EIT for the near-resonance case. According to B6),
x(w)= 24 A2 _KloR“fz['ferﬁ_l)V]* the absorption minimum depends significantly on the field
(6.19 bandwidth if
wherez=(8—1)%/48. As shown in Appendix B, Eq$6.17 Vigr>T"\T. (6.28

and (6.19 hold for In this case, as follows from Eq&.22 and(6.27), the mini-

I+|Al>v. (6.20 mum absorption increases withas /v, while
If the coupling-field intensity is so high that both E.4) VIgr<I'¥2, (6.29
and _
The EIT effect takes place ik(w,p) <ag(wyp). In view of
Io>v(I'+]|A]) (6.2)  Egs.(3.6) and (6.27), this corresponds in the regid6.29
and(6.29 to the condition

hold, one should require also that
Jvlg<1/\T. (6.30

Vlgr<(T+[AD(T+[A[+T7+]AT).  (6.22
Figure 3a) depicts graphically the region of existence of
Equation(6.19 [or, equivalently, Eq(6.17)] and its validity ~ EIT and the boundaries between different regimes of EIT. In
conditions represent one of the main results of this paper. Fig. 3@ boundaries 1-4 relate to the conditiofs.8),
(6.28), (6.29, and(6.30), respectively. Region | in Fig.(3)

C. Special cases depicts the quasistatic stage of EIT, whereas region Il de-
notes the stage where E6.27) holds. Figure &) shows
that the necessary and sufficient condition for the existence
of region Il isT"'<TI", which suggests the idea of the pres-
ence of a strong destructive interference of the dressed states
in region 1l. Indeed, region Il allows for EIT with the weak

It is shown in Appendix C that for—0 the quasistatic
limit (5.9 is recovered from Eq(6.19, as one should ex-
pect. In the regioii5.4) and(6.21) that is of interest here, Eq.
(6.19 can be reduced in the first approximation(see Ap-

pendix Q and intermediate couplingg,<I'2, which is a sign of a
K 1 c? 1 strong destructive interference, whereas for the strong-

a(w)=—Re"’ —In¥—¢(a+ 1)+ =, (6.23  coupling casel,>I'? the minimum absorption6.27) is

lo 28T 2a much less than that given by E.10. On boundary 3 of

region Il [Fig. 3@)] the_interference is negligible. Indeed,

where () is the logarithmic derivative of thé' function there Eq.(6.27) yields a(w,;)~KI'/lo, as in the case of a

[26] anda=T"(T'/8Iv)"2 For very smallv, coherent coupling field witl'~T"’ [cf. Eq. (3.3)], which
, means negligible interference.
Jr<r V(I +[A) 1o, (6.24 The approximation used in this section describes correctly

EIT (at least, the maximum EIT valué¢o the left of bound-

ary 3 and the negative ordinate half axis in Figa)3i.e.,

1 under the condition&.29 andv<TI [the latter follows from

O(—) (6.25  Ed.(6.20]. One can show33] that to the right of line 5 in
la|* Fig. 3a), i.e., for

one can use the asymptotic expandigf]

1
+1D=Ilna+ —— +
Yy(a+1l)=Ina 8 1o
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I abrupt changes comparable by magnitude to the amplitude
In (2’ itself. This is in sharp contrast to a continuous evolution,
r expected for the field of a multimode laser. Therefore, the

uncorrelated-jump model is considered to be much less suit-
able for real lasers than the model of chaotic field. However,
the uncorrelated-jump model has the advantage that it is
readily solvable in the most general form and therefore this
model has been us¢ii2,34] to obtain at least insight into the
problem if not quantitative results. In view of this, it is im-
portant to compare the two models whenever it is possible.
Another reason to consider the uncorrelated-jump model
here is to check the sensitivity of EIT to statistical details of
the field.

For the uncorrelated-jump model E¢6.5) still hold with
the only difference that the stochastic operdtas now[12]

LV =—yp . (7))

‘I’(u,v)—f(u,v)f d?V ¥ (u,v)

wherev ™1 is the average time between the jumps. As above,
the field spectrum is Lorentzian with the HWHM width
equalv. For the model7.1) Egs.(6.5 can be solved in the
general form, yieldind12]

a(w)=KRe)(w)[1-1I(w)] ", (7.2
where

J(w)ZJOded)(I)[I‘-i- v—iA+I/(T +v—iA")] L.
(7.3

(b) In particular, for the Rayleigh distributiof5.2) one obtains

FIG. 3. Boundaries of different regimes of EIT in the parameter J(w)=[ (T’ + v)/1,]e VT +»/oE, (T + v)(T' + v)/1y),
space for two models of the amplitude-phase fluctuating coupling (7.9
field in the casdA.|<T: (@) chaotic field and(b) uncorrelated-
jump field. Region |, the quasistatic regime; region Il, the  Assume that
v-dependent regime with strong destructive interference of the
dressed states; region lll, thedependent regime without destruc- y|J(w)|<1 (7.5
tive interference of the dressed states.
(this condition is verified in the last paragraph of the present
lo<v? (v=I), (6.3)  section. Then Eq.(7.2) yields that
the stochastic perturbation theory holds. An analysis of the a(w)~KRel(w), (7.6
corresponding solution shows an absence of any EIT dip in
the absorption spectrufi33]. Hence the only region for the i.e., the absorption coefficient is given by the gquasistatic Eq.
possible existence of EIT, not covered by the available ap¢5.3), where the effect of the temporal field fluctuations is
proximate methods, is the sector between lines 3 and 5 iaccounted for by the substitutions
Fig. 3a), i.e., the regime of a strong-coupling field with the

bandwidth in the interval'3/ly<v=<\/l,. To consider this r—T+v, I''=T'+w. (7.7
case requires the full solution of the problem, with due re-
gard for the stochastic operators in both E@s5), which is Correspondingly, in the regiofv.5 the results for EIT

beyond the scope of the present paper. Note that the abowdbtained in Sec. V are extended to the case of a nonvanish-
delimitation of various regimes of EIT holds actually for ing » by means of the substitutio{7.7). In particular, under
|A¢=T and not only for]A.|<T. the condition of significantly modified spectrufef. Eq.
(5.4]
VIl. UNCORRELATED JUMP MODEL o> (D4 v [A]) (I + v+ A7), 7.8
In the model of Markovian uncorrelated jumps the com-
plex amplitude of the field experiences at random timesEq. (7.6) becomes approximately



T’+V CIIO

a(w)=KRe In—= — ,
lo (T+wv)(T' +v)

(7.9

which is an analog of Eq5.5).

Thus far in this section the results hold for arbitraxy.
Henceforth we confine ourselves to the casg <I". Now
Eqg. (7.9 implies that the absorption coefficient at the mini-
mum is[cf. Eq. (5.7)]

I'+v

— Cilo
a(wyp) =K —

n .
('"+v)(I'+v)

(7.10

Note that conditior(7.8) guarantees that the argument of the ¢ /-

logarithm in Eq.(7.10 is much greater than one.

The different regimes of EIT for the uncorrelated-jump

model are shown in Fig.(B), where the EIT boundaries 1, 4,
and 5 correspond, respectively, to inequalitibsd), (6.30),
and

o> 12 (7.1
These boundaries are obtained from E48) and the condi-
tion a(wyp) <ag(wyp), taking into account Eqs3.6) and

(7.10.
The quasistatic regimgregion | in Fig. 3b)] holds for
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FIG. 4. Maximum length of absorptionI(wﬂ) as a function
The values of the parameters axg=0, I'’ =10"%T", and
lo=0.03"2,

VIIl. NUMERICAL RESULTS AND DISCUSSION

Figure 2 shows the dependence of the length of absorp-
tion on the probe-field frequency for a coherent coupling
field, as well as for three stochastic models of the random
coupling field: the Markovian phase-fluctuating, chaotic, and
uncorrelated-jump fields. Here and henceforth the curves for
the coherent, phase-fluctuating, and uncorrelated-jump mod-
els are calculated by the exact formulas, i.e., 891, Eq.

(3.1) with the substitution Eq(4.1), and Eq.(7.2) with the

v<I''. The v-dependent regime with the strong destructivedefinition (7.4), respectively, whereas the curves for the cha-

interference of the dressed staigsgion Il) takes place if

otic field are obtained with the help of the most general

I'"<v<T. In this case one can use the results of Sec. Vavailable formula(6.17). Figure 2 illustrates the case of a

obtained forI'’<I" with the only substitution[’’ —v. In
particular, as follows from Eq.7.10), the minimum value of
absorption,

14 CIIO
EInT, (712

a—(pr) =K

increases withy almost linearly. This can be compared with
the \/v law for the field-bandwidth dependence of the mini-

weak coupling field ,<I'? (the lower half plane in Fig.)3
exactly resonant to the transitip®)«|3), for two values of

the bandwidth. When the bandwidth is very small
v=10"'T, curve 1 obtained for the phase-fluctuating field
coincides with the curve for the coherent field of the same
intensity and frequency, whereas curves 3 obtained for cha-
otic and uncorrelated-jump fields coincide with each other
and with the resul¢5.3) of the quasistatic limiv— 0. Figure

4 shows the maximum value of the length of absorption as a

mum absorption coefficient in the case of the chaotic fieldunction of the dimensionless bandwidth for the above sto-

model[Eq. (6.27)].

chastic models, the values of other parameters being the

When the field bandwidth exceeds significantly the matesame as in Fig. 2. Figures 2 and 4 demonstrate the following

rial relaxation constants>1I" one can use the results of Sec.
V with the equal relaxation constantsI"’' — v, which im-
plies negligible interference between the dressed states.
particular, Eq.7.10 yields that the minimum absorption is

KVI C1|0
—In
lo 22

a(wy)

. (7.13

One can estimate from Eg&.3) and(7.9) that condition
(7.5 is equivalent to the inequalitidg> v? for |,=I"2 and
v<I for 1,=<T?, i.e., it holds to the left of boundary 5 and
the negative part of the ordinate axis in FighB3 As in the
case of the chaotic field modg@ee Sec. VI I, to the right of

facts. (i) Amplitude-phase fluctuations reduce EIT notice-
ably, even forv—0, but do not destroy the effedfi) EIT
bhecreases with the increase of the field bandwidth, irrespec-
tive of the stochastic modefiii) For a given bandwidth and
intensity of the field, EIT is significantly lower for an
amplitude-phase-fluctuating field than for a phase-fluctuating
field [35] and is less pronounced for a chaotic field than for
an uncorrelated-jump field.

Consider the case of a strong coupling fié¢lHe upper
half plane in Fig. 3 Figure 5 showsgon a logarithmic scale
the field-bandwidth dependence of the maximum length of
absorption in the exact-resonance case for three stochastic
models of the strong-coupling field. The range of thee-
pendence of the plot for the chaotic field is limited from

boundary 5 the stochastic perturbation theory can be useabove by the conditiort6.29 (boundary 3 in Fig. 8 The

[33], implying an absence of an EIT dip. Thus the results ofcomparison of Figs. 4 and 5 shows that the absolute and
this section fully describe the EIT dip in the probe absorptionrelative differences between the results for the chaotic and
in the frame of the uncorrelated-jump model. uncorrelated-jump models increase with the field intensity.
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4 mase fuotuating trum on the relevant parameters, and _the limits _o_f various
regimes of EIT. Thus EIT proves to Heghly sensitive to
3 fine statistical details of the coupling-field fluctuatiofi$is
< Chaotie can be compared to the population dynamics induced by a
EE resonant Rayleigh field in the rate approximatj@d]. This
=2 Uncorrelated-jump process proved to be not very sensitive to the difference be-
2 tween the chaotic and uncorrelated-jump fields. Thereby ob-
Ty servations of EIT can be utilized for study of laser fluctua-
tions.
No coupling field Consider the experimental verification of the present pre-
0 5 5 4 a3 =2 4 —0 dictions for the chaotic field. The results obtained above for

this case hold if the field bandwidth is much less than the

material widthI" [cf. Fig. 3@]. This condition may prove
FIG. 5. Logarithm of the maximum length of absorption rather restrictive when transparency is induced with a multi-

—logyo( @ I'/K) [where a,,= a(w,y)] as a function of the dimen- mode laser, since then the bandwidth is limited from below

sionless bandwidth for various models of the stochastic field. ThdY the intermode frequency spacing/nqd. Hered is the

l0g;o(v/T)

values of the parameters afé=0.01", A.=0, andl,=1002. laser resonator length amg is the index of refraction. For
no~1 andd=1 m one getsy>10° s~ %, which requires
IX. CONCLUSION I'>10' s~ to satisfy the above condition. This can be

In the previous sections the EIT dip in the probe-fieldaChieVEd by considering sufficiently broad material transi-

absorption spectrum has been considered for the cases Bf"S: €-9. transitions to autoionizing states or homoge-
coherent, phase-fluctuating, and amplitude-phase-fluctuatifgE@usly Proadened absorption lines of impurities in con-
coupling fields with the Rayleigh distribution. In particular, ensed matter. Synthe_S|zed chao_t|c fied8,37) also can be
two atom-field coupling schemes for the generation of EITEMPloyed in the experiment. In this case the conditiefl’
have been studied under rather general assumptions. TI’I%”Ot so crucial since the bandwidth of synthesized fluctua-
equations describing EMA and EIT have been derived and{O"S can be rather small.

the conditions of their validity have been discussed. A com-

prehensive study of the EIT line shape for a coherent cou- ACKNOWLEDGMENTS

pling field has been performed, which complements the pre- The author thanks Professor M. Shapiro, Professor R. J.

vious treatments. A shift of the absorption minimum frqm Gordon, Professor C. S. Stroud, and Professor Y. Silberberg
the two-photon resonance frequency has been revealed in the

X ; r useful discussions.
off-resonance case. The role of quantum interference in El
has been discussed and the dependence of the quantum in-
terference on the relaxation constants has been obtained. APPENDIX A: DERIVATION OF EQ. (6.19
Since the above treatment holds for an arbitrary relaxation One can write
scheme, the results obtained here allow one to study effects
of dephasing collisions. Moreover, the results obtained above g(u’,0",uw,)=h(u’,u,H)h(v’,0,t), (A1)
for a coherent coupling field can be readily used to describe
effects of phase fluctuations of the coupling field, due toynereh(u’,u,t) obeys the equatiofcf. Eq. (6.10)]
relation (4.1).
The above treatment puts the emphasis on the case of an oh u?
amplitude-phase fluctuating coupling field since this practi- e thr Lyh, (A2)
cally important case was not considered previously. The case
of na_\r;ol/y-ban(_j fleldis|th the %ayleoigh _(tj|str|but|c(|t|hew with the initial conditionh(u’,u,0)=é8(u—u’). Note that
g;szlssgg\fv;e?r:ma?t gen ﬁong ﬂeret c:_w efge;gera Y- Weihe change of the dependent variable that cancels the first
pitude-phase-fiuctuating Nelds are ca- yo;,qives with respect ta andv transforms Eqs(6.10

pable of inducing significant transparendhough somewhat N X . )
reduced as compared to the coherent field. The effects of thaénd(Az) to the Schrdinger equations for, respectively, two

bandwidth have been considered for two stochastic modelﬁg?yciinn?édlmensmnal harmonic oscillator with purely imagi-

which share the same intensity distribution and band shape,

viz., the chaotic and uncorrelated-jump fields. Closed ana, ri-tEg gS?r:\éeaEg;gZ) we extend the method of ReB8] by
lytical solutions have been obtained and the validity condi-
tions of different regimes of EIT have been derived. As fol-
lows from the above results, stochastic fluctuations are

detrimental for EIT for all stochastic models considered. _ . . .
The comparison of the two models of an amplitude-phasey\’herea_ U/‘/E' Inserting EQ(A3) into Eq.(A2) and taking

fluctuating field considered above has shown a substanti:l{lnO account Eq(6.2) yields the set of equations
difference between the results of the models, despite that the a2 _

models have identical line shapes and phase-amplitude dis- dAg/dT=A1/2H A+ 1, dA/dT=A+2A1A,, (Ad)
tributions. The differences concern all EIT features, includ-

ing EIT line shapes, the dependence of the absorption spec- dAz/dT=2A+2A5— 1o /[(T =iA)¥],

h(u’,u,t)=exg Ag(t) + Ay (t)a+Ay(t)a?], (A3)
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where 7=vt. The singular initial condition for Eq(A2)
yields singular initial conditions for Eq$A4): for t—0 one
gets \— m/AexAg—Al(4A)]1—1, Ai/A,——2a’, and
A,— —, where a’=u’/\l,. The solution of Eqs(A4)
yields

B F{_(ﬁ—l)u(ﬁ—l

f(u")h(u',u,t)= ex
B 2 2
B 2, 2, Bad
_—1—e72'87 (a“+a )+sinh/37- .

(A5)

As follows from Eg. (A5), the function ¢(u’,u,t)
=f(u’)h(u’,u,t) has the properties

d(u’,u,t)=¢(u,u’,t)=p(—u’,—u,t).

Inserting Eq.(Al) into Eq.(6.12 and taking into account
Eq. (A6) yields

(AB)

G(1)=2Jo(1)J1(1), (A7)

where

Jn(t)zf:du’duu’”u”f(u’)h(u’,u,t). (A8)

The functionJy(t) was calculated ifi29]. Inserting Eq(A5)

into Eq. (A8) and performing the integration yields
Jn(t)=+2158" Y S(t)] " (n=0,1). (A9)

Equations(A7) and (A9) result in Eq.(6.15.

APPENDIX B: VALIDITY CONDITIONS
OF EQS. (6.17) AND (6.19

Consider corrections to the first-order approximation de-
veloped in Sec. VI B. In the second-order approximation Eq

(6.59 becomes
—TYP+LvP=-Q(u,v), (B1)
where
Q(u,v)=f(u,v)—iV¥¥P(u,v). (B2)
HereW{M(u,v) equals the first-order resui6.9). The solu-
tion of Eq.(B1) has the form
\Ifff)(u,v)zf dzng(u',v')fwdtf(u',v',u,v,t)e*ft,
i (B3)

where f(u’,v’,u,v,t) is the conditional probability of the
Gaussian-Markovian procesg.(t). f(u',v’,u,v,t) is the

solution of the two-dimensional Fokker-Planck equation

f=Lf with the initial condition f(u’,v’,u,v,0)
=8(u—u')é(v—vu'). Itis easy to show that

f(u',v",uv,t)y="Ff,(u",u,tH)f,(v',v,t), (B4)

2289

where f;(u’,u,t) is the Green’'s function of the Fokker-
Planck equatiofi27] f;=Lf;,

a2
fi(u’,u,t)= _(u ue )1.

lo(1—e~2")
(B5)

1
AY, 77l 0(1_ e Vt) exr{

Inserting Egs(Al) and(A5) into Eq.(6.9) and integrating
overu’ andv’ yields that

\IIE,D(U,U)IfxdtP(u,v,t)e’F", (B6)
0
where
iVt S(H)l
P(U,U,t)—mex% vt— 2|0R(t)} (B7)

Here |=u?+v? and R(t)=BcoshBit+sinhBit. Equation
(B7) yields the limiting cases

P(u,v,t)~—Mexp(—lt/T), |Blvt<1
(B8a)
and
P(U,v,t)~— '\%C(fl(i’z))fzex;{—(ﬁz_lj)l —28ut|,
elfltsq, (B8b)

On inserting Eq(B8a) into Eq. (B6), one obtains

iV:f(u,v)

WP (u,)~— == 1Pl

(B9)

wherel ;= »| 8T'|. From Eqs(B6) and(B8) one can estimate
that

|VC|f(u1v)
v~ =, I<ly. B10
| b (U U)| rF'(I,,+BV)| < 1 ( )
Combining Egs(B2), (B9), and(B10) yields
_ TT//(1+TT"), I>1 811
Q(u,v)~f(u,v) 1 <l (B1y

HenceQ(u,v) as a function of has the characteristic width

I ,=min{l;+|TT"|,lo}. On the other hand, as follows from
Egs.(B4) and(B5), under the conditiori6.20 the character-

istic width of the functionfgdtf(u’,v’,u,u,t)e‘Ft in the
(u',v') plane islov/|T|. Therefore, if

one can writef(u’,v’,u,v,t)=~8(u—u’)s(v—o') in Eq.
(B3). This yields, taking into account Eq(B2), that
W (u,0)~Q(u,v)/f~¥MV(u,v), where the first-order re-
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sult Now one can use the expansion of the hypergeometric func-
w(V(u,v) is given by Eqs(6.7) and(6.9). Thus the approxi- tion for large|z| (Eq. 15.3.14 i 26]) to obtain

mation described in Sec. VI B has been proved here to hold

under conditiong6.20 and (B12). One can show that Eq. 1 & (d=1)---(d—1—n)

(B12) is equivalent to Eq(6.22 if inequalities (5.4) and F(2,1;1+d;—-2z)=d > E e

(6.21) hold simultaneously and to E¢6.20), otherwise. n=0 n!z

APPENDIX C: ANALYSIS OF EQ. (6.19 X[Inz+¢y(n+1)—g(d—1—n)];.
To show that Eq(6.19 has the correct static limig¢—0,

we use Eq. 6.&) of [39]. Then one obtains that (C4
lImF(2,1;1+d; —z)=y?¥(2,2}y), (Cy Keeping in this expansion only the first two terms yields the
v—0 expression

where ¥ () is the confluent hypergeometric function and 1 1
— F(2,1;1+d;—2z)~d 1-(d-1

y=IT"/l,. On the other hand, Egs. 13.6.28vhere ( 2)~dz H{1=( )z

U()=w()], 5.1.45, and 5.1.14 dP6] yield that X[Inz+ ¢y(1)—(d—1)]}. (CH

w) —v—1_
V(2,2)y)=y "—eEa(y). €2 The smallness parameter in expansi@¥) is |d/z|. This
With the help of Eqs(C1) and (C2) one obtains that the means that Eq(C5) is valid if conditions(5.4) and (6.21)

»—0 limit of Eq. (6.19 equals Eq(5.3. hold ;imultaneously_.lnserting E(C5) int_o Eqg.(6.19, usi{]g
In the case(6.20, which is of interest here, one gets €dualities[26] y(1)=—y and y(d—1)=y(d)—(d—1)"
|8|>1, yielding and the formulag6.18 and (C3) for d and z, and keeping

only the lowest-order nonvanishing terms in the parameter
z~ Bla—1/2~\1,/8vT — 1/2. €3 (v[T|/1)* results in Eq(6.23.
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