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Spectral line shape of nonresonant four-wave mixing in Markovian stochastic fields
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~Received 22 August 1996; revised manuscript received 19 May 1997!

The spectral line shape of the four-wave mixing~FWM! signal, induced by broad bandwidth laser fields, is
derived in the case of a nonresonant interaction. The laser fields are assumed to have a Lorentzian spectrum
arising from Markovian stochastic fluctuations described by the phase-diffusion, chaotic field, and Gaussian-
amplitude models. The usual ‘‘phase conjugating’’ geometry for FWM is considered where the nonresonant
interaction is determined only by the statistics of, and the correlations between, the pump and probe fields. For
each one of the four possible correlation states between the three input fields and for each of the three
fluctuating field models, the line shape of the FWM signal is calculated and shown to be particularly sensitive
to the field statistics.@S1050-2947~97!02709-1#

PACS number~s!: 42.65.2k, 42.50.2p
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I. INTRODUCTION

The electromagnetic waves emitted by lasers are sub
to fluctuations of amplitude and phase that broaden the s
tral bandwidth of the optical field. The spectral line shape
a light field is thus intimately related to its temporal cohe
ence properties, which are in turn often determined by ph
cal processes occurring in the source. Measurements o
intensity spectrum or line shape of the light are not usua
sensitive to the field statistics since the phase informatio
lost in any measurement of intensity and the same spe
line shape may be presented by light fields having quite
ferent statistics. On the other hand, measurements of
spectrum of light generated by a phase-sensitive process
distinguish between different types of statistical fluctuatio
in the field. The statistical properties of the light field are
particular importance for nonlinear optical processes si
these are often sensitive to higher-order correlations in
fields @1#. The effects of such fluctuations have been stud
in several nonlinear optical processes including resona
fluorescence@2#, multiphoton absorption@3#, multiphoton
ionization @4#, and stimulated Raman scattering@5#. Studies
of two-photon absorption line shapes have allowed the
namics of fluctuations in a phase-diffusing field to be dist
guished@6#.

Four-wave mixing~FWM! is a fruitful area for the study
of field fluctuation effects where two pump fields and o
probe field interact via the third-order susceptibilityx (3) to
generate the signal field. The signal intensity arising from
interaction of chaotic pump fields and a monochroma
probe has been calculated in the case where the pump b
width b was smaller than the atomic linewidthG of the me-
dium @7#. The limit of very broad bandwidth lasers, whereb
exceedsG and all other relaxation rates in the problem, h
been explored theoretically@8# and experimentally@9# to de-
termine the signal dependence on the input laser inten
This work was extended to calculate and to measure exp
mentally the temporal evolution of resonant degenerate fo
wave mixing~DFWM! induced by pulsed, broad bandwid
fields @10#. These studies used the decorrelation approxim
tion appropriate for very broad band fields and were not s
sitive to the precise form of the statistics or to correlations
561050-2947/97/56~3!/2267~13!/$10.00
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the fields. Correlated fields in FWM have been considered
a number of other resonant situations such as weak fi
@11# and time-delayed pulses@12,13#. Solutions have been
found using decorrelation approximations or Monte Ca
methods@12,14#.

The role of field fluctuations in FWM has been shown
be similar to that of dephasing collisions in that the destr
tion of interferences between coherent pathways by the
lisions or fluctuations leads to extra resonances@15#. Such
extra resonances are characterized by their appearance
none of the input frequencies~or combinations of them! is
resonant with any transition from the initial atomic or m
lecular state@16#. The additional effect of correlations be
tween the fluctuating fields also has been shown to lea
extra resonances@17,18# and is considered in a general trea
ment by Kofman, Levine, and Prior@19#. In this work the
spectrum of a FWM signal is calculated when one or more
the input fields is broad and characterized by either Mark
ian or non-Markovian fluctuations. Although nonresona
the input field frequencies lie close to the material re
nances in the sense that the third-order susceptibility is
quency dependent in their spectral range@Eq. ~3.1! of Ref.
@19##. The appearance of extra resonances, induced eithe
collisions or field fluctuations, arises from this frequency d
pendence of the third-order susceptibility. The destruct
interference of coherent pathways is itself determined by
detuning of the input field frequencies from these mate
resonances. In the present work we consider a totally n
resonant situation and the medium response contains
resonant features. The effects on the observed spectrum
can depend only on the characteristics of the laser fields,
their correlations, if any.

The sensitivity of an atomic response to field statistics
been demonstrated so that an observable dependent
resonant response can be used to distinguish between
statistically different field models@20#. A comparative study
of resonant DFWM with chaotic and phase-diffusing fiel
has been presented in which the dependence of the s
intensity on the input intensity was calculated for each fi
model @21#. An alternative probe of the statistics is to me
sure the frequency spectrum of the signal generated in a
linear process. The measurement of the spectral line shap
a two-photon interaction to distinguish between differe
2267 © 1997 The American Physical Society
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2268 56R. BRATFALEAN AND P. EWART
characteristic time regimes of phase diffusion has been n
already @6#. The spectrum of broad bandwidth, resona
DFWM also has been studied theoretically for pha
diffusing fields using the decorrelation approximati
@22,23# and validated by experimental measurement@23#.

In this paper we describe the effects of different statisti
models on the spectral line shape of the signal generate
nonresonantfour-wave mixing. In previous work the spec
tral line shape of the signal wave was considered only in
case of resonant interaction between the light and the
dium, i.e., the bandwidth of the driving fields encompasse
strong resonant transition frequency@21,22#. In this case the
bandwidth of the generated FWM signal is strongly affec
by the resonant enhancement of the medium’s susceptib
We present here a simple treatment of FWM line sha
generated by a nonresonant light-matter interaction, wh
indicates that measurement of such a spectrum is a po
tially powerful technique for distinguishing between vario
types of field statistics.

By a nonresonant light-matter interaction we assume
the center laser frequency lies in a spectral region where
third-order susceptibility of the mediumx (3) exhibits no se-
lectivity. In the absence of medium resonances within
spectral bandwidth of the input light, a perturbation meth
may be used, provided also that we restrict the laser inte
ties to nonsaturating levels. The perturbation approach
lows an expansion of the polarization in powers of the el
tric field, which is usually assumed to bemonochromatic.
However, in the case of a nonresonant interaction,finite
bandwidth light fields may also be treated by this metho
This approach is valid provided the optical coherence de
rate is fast, a condition that may be satisfied if either or b
of two conditions are satisfied, viz., the transverse relaxa
rate T2 is short and/or the detuning from resonance is v
large.

Such conditions are met, for example, where the nonre
nant interaction takes place in the far wing of an atom
transition in the gas phase. In this case the detuningsD j ( j
51,2,3) of the three incident laser fields from the center l
of the atomic transition must be much larger than the hom
geneous widthG if a flat medium response is to be expe
enced in the region of the laser frequency. Also the ba
widths bj ~full width at half maximum! and the Doppler
width DD should be much less thanD j .

In Sec. II of this paper a more detailed justification of t
use of perturbation theory is given and the three statist
field models to be considered are outlined, viz., the pha
diffusion model~PDM!, the chaotic field model~CFM!, and
the Gaussian-amplitude model~GAM! @24#. All three models
provide a Lorentzian line shape and the finite bandwidth
the laser light is considered to arise from Markovian fluctu
tions of the complex amplitude of the field. In Sec. III w
present the theoretical approach to be followed in deriv
the frequency spectrum of the FWM signal in the particu
case where all three input fields areuncorrelated. The effects
on the signal line shape of correlations between the in
fields are considered in Sec. IV for each of the three fi
models. Section V is devoted to conclusions.

II. PERTURBATION THEORY AND FIELD STATISTICS

We consider the case where the detunings of the incid
fields D j are much larger thanG, bj , andDD and the differ-
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ences between the detunings of the three input laser
centers are also much less than eachD j , so that the spectra
response of the medium within the whole spectral range
the laser fields will be essentially flat. Thus every frequen
within the spectral range of laser fields experiences the s
third-order nonlinear susceptibilityx (3). This condition is
necessary to allow us to expand the polarization in power
the electric field when the polarization is induced by an el
tric field of finite bandwidth. A further condition for the va
lidity of the polarization expansion is that the incident fiel
are restricted to low intensities. We note that for largerD j
the upper limit of the allowed range of laser intensities
increased@25#. More details on the validity of this expansio
of the polarization can be found in Ref.@25#, p. 191, and
@26#, pp. 11–16.

We now describe the statistics of the input fluctuati
fields, which are assumed to be governed by a Gauss
stationary Markovian stochastic process@24#. We treat the
fields classically and write them as

E~x,t !5EI ~x,t !1c.c.5E~x,t !exp~2 ivt1 ikx!1c.c.

5E~ t2x/c!exp$2 i @vt1f~ t2x/c!2kx#%1c.c.,

~1!

where

E~x,t !5E~ t2x/c!5E~ t2x/c!exp@2 if~ t2x/c!# ~2!

is the fluctuating complex amplitude of the field. E(t2x/c)
is its fluctuating modulus andf(t2x/c) is its fluctuating
phase.c is the speed of light in the medium for the angul
frequencyv and wave vectork. The retardation effects in
both the modulus and phase of the field complex amplitu
are accounted for by the termx/c. We note that in relation
~1! we have used the bold, the underlined, and the ita
character in order to distinguish between the real elec
field, the complex electric field, and the complex amplitu
of the complex electric field, respectively. The normal ch
acter was used in Eqs.~1! and ~2! to denote the modulus o
the complex amplitude, which consequently is equal to h
of the amplitude of the real field.

The mean value ofE(x,t) is assumed to be zero
^E(x,t)&50, and its first-order correlation is exponenti
@24#:

^E~x1 ,t1!E* ~x2 ,t2!&5E0
2expF2

b

2
u~ t12x1 /c!

2~ t22x2 /c!uG . ~3!

b is the full width at half maximum of the Lorentzian spe
trum. We can see by inspection that E0

25^E2(t2x/c)&.
The form of the first-order correlation function, as e

pressed in Eq.~3!, is a general feature of the three differe
stochastic models. As we shall see, this correlation func
is sufficient for obtaining the signal line shape when t
input laser fields are uncorrelated. Thus, in this uncorrela
case, the signal line shape will be the same for all th
stochastic models. However, when dealing with correla
input laser fields the statistical features that characterize e
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56 2269SPECTRAL LINE SHAPE OF NONRESONANT FOUR-WAVE . . .
stochastic field must be considered. The individuality of ea
stochastic model resides in the marginal probability den
and conditional probability density functions@24#. By use of
these probability density functions we can calculate the c
relation function of the fields in any order. In the four po
sible cases of correlated input fields we shall need to c
sider higher-order correlation functions in the derivation
the signal line shape. Specifically, in dealing with the case
all three fields being correlated we shall need to cons
correlation functions up to third order. In contrast to the fir
order correlation function, the higher-order correlation fun
tions will be different for the three stochastic models. The
fore, for correlated input fields we shall have a differe
signal line shape for each stochastic model.

So we need to know the probability density functions a
how they may be used to calculate higher-order correla
functions of the fields,̂EN(x,t1)E* N(x,t2)&. The line shape
will be derived for all four possible cases of correlated inp
fields, but a detailed description of the mathematical cal
lations will be presented in only one of the four cases. W
shall choose the case of correlated inputs fields that are
correlated with the probe field. In this case the required c
relation functions may be reduced to products of first- a
second-order correlation functions. Therefore, we shall
interested in the correlation functions forN51 and 2. We
first introduce the specific forms of the probability dens
functions for each field model and show how they may
used to derive the required higher-order correlation fu
tions. In particular we shall calculate explicitly the secon
order correlation function̂E2(x,t1)E* 2(x,t2)&. A detailed
description of the stochastic fields is given by Georges@24#.
In what follows we shall recall only the salient features ne
essary for obtaininĝE2(x,t1)E* 2(x,t2)&.

A. Phase-diffusion model

In the PDM we have a constant modulus of the comp
amplitude, but the phase of the complex amplitude und
goes a continuous random walk@27–29#. For this stochastic
model the averagêEN(x1 ,t1)E* N(x2 ,t2)& can be written as
~see details in Appendix A!

^EN~x1 ,t1!E* N~x2 ,t2!&5E0
2NexpF2N2

b

2
u~ t12x1 /c!

2~ t22x2 /c!uG . ~4!

B. Chaotic field model

In the CFM the complex amplitude of the fieldE(x,t) can
be written as the sum of two independent Gaussian stoch
real amplitudes that are 90° out of phase. SoE(x,t)
5Ea(x,t)1 iEb(x,t), where Ea(x,t) and Eb(x,t) are inde-
pendent Gaussian stochastic processes with zero mean
equal variance. For this stochastic model the aver
^EN(x1 ,t1)E* N(x2 ,t2)& can be written as~see details in Ap-
pendix B!

^EN~x1 ,t1!E* N~x2 ,t2!&5N!E0
2Nexp$2Nb@~ t12x1 /c!

2~ t22x2 /c!#/2%. ~5!
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C. Gaussian-amplitude model

The Gaussian-amplitude field has a complex amplitu
that has no imaginary part, so it is modeled by a real Gau
ian stochastic amplitude with zero mean. Thus we may n
that E(x,t)5E(t2x/c), where in this case E(t2x/c) is no
longer a modulus but a real quantity allowed to fluctuate
both positive and negative regions. For this stochastic mo
the averagê E2(x1 ,t1)E* 2(x2 ,t2)& can be written as~see
details in Appendix C!

^E2~x1 ,t1!E* 2~x2 ,t2!&5E0
2
„112 exp$2b@~ t12x1 /c!

2~ t22x2 /c!#%…. ~6!

The general expression of^EN(x1 ,t1)E* N(x2 ,t2)& can be
calculated following the iterative method of complete ma
ematical induction. However, we shall stop here becau
as we previously mentioned, we are interested
^EN(x1 ,t1)E* N(x2 ,t2)& only for N51 and 2.

III. THEORY OF BROAD BANDWIDTH, NONRESONANT,
FWM LINE SHAPE

We consider the standard ‘‘phase conjugating’’ arran
ment for FWM consisting of counterpropagating pump fie
interacting with a probe field crossing at a small angle. T
input fields will be described by the statistical models o
lined above, which have a Lorentzian line shape. Then,
the particular case when the probed medium is a gas,
shall take into account the atomic motion by considering o
well-defined velocity class of atoms. We shall find the e
pressions of the light fields in the rest frame of these ato
use these expressions to derive the induced polarizatio
the medium, and then translate this polarization back to
laboratory frame. We shall show that the polarization, a
hence the signal line shape, will not be influenced by atom
motion in this nonresonant interaction. The strength of
signal field is then calculated by integration of the polariz
tion along the interaction lengthL. We then calculate the
field autocorrelation function, which, by use of the Wiene
Khintchine theorem, will provide the frequency spectrum
the signal wave. The line shape of the FWM signal will
calculated first for the case ofuncorrelatedinput fields. The
result forcorrelated input fields will be calculated in detai
only for the case of correlated pump fields. The results
other combinations of correlations between pump and pr
fields will be presented without showing the details of t
calculations.

A. Atomic motion

We take the incident laser beams to propagate along
x axis and the electric fields to be linearly polarized, para
to they axis. We further assume that they are not depleted
propagating through the interaction region. The fields will
expressed in the most general form of relation~1!; E1(x,t)
and E2(x,t) are the pump fields andE3(x,t) is the probe
field:
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2270 56R. BRATFALEAN AND P. EWART
E1~x,t !5EI 1~x,t !1c.c.5E1~ t2x/c1!

3exp$2 i @v1t1f1~ t2x/c1!2k1x#%1c.c.,

~7!

E2~x,t !5EI 2~x,t !1c.c.5E2~ t2x/c2!

3exp$2 i @v2t1f2~ t2x/c2!2k2x#%1c.c.,

~8!

E3~x,t !5EI 3~x,t !1c.c.5E3~ t2x/c3!

3exp$2 i @v3t1f3~ t2x/c3!2k3x#%1c.c.

~9!

All quantities in Eqs.~7!–~9! are defined in the laborator
frame. Sox is the coordinate along the interaction regi
defined in the laboratory frame.

Now we shall include the effects of atomic motion for th
particular case of a gaseous medium. We consider first o
one class of atoms having a well-defined velocityv and the
electric fields in the rest frame of these moving atoms. If
denote byx8 the coordinate along the interaction region
the frame of the moving atom then the transformation re
tion betweenx andx8 will be

x5x81v•t, ~10!

wherev is the velocity of the molecule, which is assum
not to be relativistic. Substituting Eq.~10! into Eqs.~7!–~9!,
we find the electric fields in the frame of the moving atom

E18~x8,t !5EI 18~x8,t !1c.c.5E1@ t~12v/c1!2x8/c1#

3exp„2 i $~v12k1v !t1f1@ t~12v/c1!

2x8/c1#2k1x8%…1c.c., ~11!

E28~x8,t !5EI 28~x8,t !1c.c.5E2@ t~12v/c2!2x8/c2#

3exp„2 i $~v22k2v !t1f2@ t~12v/c2!

2x8/c2#2k2x8%…1c.c., ~12!

E38~x8,t !5EI 38~x8,t !1c.c.5E3@ t~12v/c3!2x8/c3#

3exp„2 i $~v32k3v !t1f3@ t~12v/c3!

2x8/c3#2k3xr%…1c.c. ~13!

As we have noted previously, the polarization of the m
dium can be expanded in a power series of the total elec
field strength. Therefore, in the rest frame of the mov
atoms, the polarization of the medium will be

P8~x8,t !5x~1!E8~x8,t !1x~2!E82~x8,t !1x~3!E83~x8,t !

1••• , ~14!

where

E8~x,t !5E18~x8,t !1E28~x8,t !1E38~x8,t !. ~15!

In Eq. ~15! we have not included the signal beam as it
assumed to be weak relative to the input fields. This is p
ly

e

-

:

-
c-

r-

ticularly true in dilute media, where the absorption of t
input beams is also negligible. Then the polarization te
responsible for the FWM signal generation, will be given

P48~x8,t !5PI 48~x8,t !1c.c.5x~3!EI 18~x8,t !EI 28~x8,t !@EI 38~x8,t !#*

1c.c. ~16!

The electric-field strength in the laboratory frame is deriv
from the third-order nonlinear polarization, in the sam
~laboratory! frame, by substitutingx8 into Eq. ~16! by
x2vt according to Eq.~10!. This gives

P4~x,t !5PI 4~x,t !1c.c.5x~3!EI 1~x,t !EI 2~x,t !@EI 3~x,t !#*

1c.c., ~17!

a result that is independent of the atomic velocity.
The conclusion is that there is no distinction between

induced polarization of two classes of atoms of different v
locities in the laboratory frame. The physical argument s
porting this conclusion is based on our assumption that
medium response is the same whether or not the freque
domain of the input lasers is shifted within a Doppler widt
The mathematical translation of the above statement con
in putting the same third-order susceptibility in both relatio
~16! and ~17!, which refer to the moving molecular fram
and laboratory frame, respectively. Therefore, within the
lidity of perturbation theory, in the case of our nonresona
light-medium interaction, the signal frequency spectrum w
not be affected by atomic motion or the associated Dopp
broadening. This result distinguishes the nonresonant c
from the resonant interaction where the line shape of br
bandwidth FWM was found to involve the convolution of
homogeneous line shape with the square of the Dopp
broadened line profile@23#.

B. FWM line shape for uncorrelated fields

The polarization PI4(x,t) acts as a source term in the no
linear wave equation leading to a signal field strength

EI 4~x,t !5E4~x,t !exp$2 i @v4t2k4x#%, ~18!

where the angular frequency of the signal wave is

v45v11v22v3 ~19!

and the signal wave vector is

k45~v11v22v3!/c45v4 /c4 . ~20!

We denote bycj the velocity in the medium of the inpu
pump, j 51,2; probe, j 53; and signal, j 54. Using the
slowly varying envelope approximation integration of th
space derivative ofE4(x,t) along the interaction length
yields the generated signal field strengthE4(L,t) ~details are
given in Appendix D!,

E4~L,t !5CE
0

L

E1~ t2x/c1!E2~ t2x/c2!

3E3* ~ t2x/c3!exp~ iDkx!dx, ~21!
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whereC is a complex constant andDk is the wave-vector
mismatch, both of which are defined in Appendix D.

In order to derive the frequency spectrum of the sig
wave we need first to form its autocorrelationG(L,t), where
L indicates that we are interested in the signal emerging f
the end of the interaction region. This autocorrelation will
defined as@30#

G~L,t!5 lim
T→`

1

2T E
2T

T

EI 4~L,t1t!@EI 4~L,t !#* dt ~22!

or

G~L,t!5^EI 4~L,t1t!@EI 4~L,t !#* &, ~23!

where the angular brackets in relation~23! indicate that an
average must be performed over the fluctuations of the fie
se

o
dt
n
th

ifi

r-
t

l

m

s.

Using Eqs.~18! and ~21!, relation~23! can be written again
as

G~L,t!5~CC* !exp~2 iv4t!E
0

LE
0

L

$dx dx8^E1~ t1t

2x/c1!E2~ t1t2x/c2!E3* ~ t1t2x/c3!

3E1* ~ t2x8/c1!E2* ~ t2x8/c2!E3~ t2x8/c3!&

3exp@ iDk~x2x8!#%. ~24!

In the case where the three input beams are uncorrelated
average in the integrand in Eq.~24! can be written as a
product of three averages, leading to the result
^E1~ t1t2x/c1!E2~ t1t2x/c2!E3* ~ t1t2x/c3!E1* ~ t2x8/c1!E2* ~ t2x8/c2!E3~ t2x8/c3!&

5^E1~ t1t2x/c1!E1* ~ t2x8/c1!&^E2~ t1t2x/c2!E2* ~ t2x8/c2!&^E3* ~ t1t2x/c3!E3~ t2x8/c3!&

5E01
2 E02

2 E03
2 expF2

S b1Ut2
x2x8

c1
U1b2Ut2

x2x8

c2
U1b3Ut2

x2x8

c3
U D

2
G , ~25!

wherebj , j 51,2,3, indicates the bandwidths of each individual field. The last equality in Eq.~25! is based on relation~3!.
Substituting Eq.~25! into Eq. ~24!, we get the expression for the autocorrelation

G~L,t!5E01
2 E02

2 E03
2 ~CC* !exp~2 iv4t!

3E
0

LE
0

LH dxdx8 expF2

S b1Ut2
x2x8

c1
U1b2Ut2

x2x8

c2
U1b3Ut2

x2x8

c3
U D

2
1 iDk~x2x8!G J . ~26!
e

ve,
n-

gi-
an-
In what follows we consider the coherence length of the la
Lc to be much longer than the interaction lengthL. This is
the case for most FWM experiments with the exception
those multiplexing techniques using very broad bandwi
lasers@31#. So, sinceLc@L, we can neglect the retardatio
effects along the interaction length. This basically means
1@bi(x2x8)/ci for everyx andx8 in the interaction region.
Therefore, the final frequency spectrum will not be sign
cantly altered if we set (x2x8)/ci equal to zero in every
modulus in Eq.~26!. So Eq.~26! may be written as

G~L,t!5D exp~2 iv4t!exp$2@~b11b21b3!utu/2#%,
~27!

where

D5E01
2 E02

2 E03
2 ~CC* !E

0

LE
0

L

$dx dx8exp@2 iDk~x2x8!#%.

~28!

Conversely, whenLc!L, retardation effects along the inte
action length can no longer be neglected. Besides altering
FWM signal dependence onL @32# it is likely also that the
r

f
h

at

-

he

frequency spectrum will be altered. So, in what follows w
consider only the caseLc@L.

Now that we have the autocorrelation of the signal wa
given in Eq.~27!, we may calculate its power spectral de
sity by use of the Wiener-Khintchine theorem as

P~v!5E
2`

`

G~L,t!exp~ ivt!dt. ~29!

Substituting Eq.~27! into Eq. ~29! we obtain

P~v!5DE
2`

`

exp@ i ~v2v4!t#exp

3@2~b11b21b3!utu/2#dt. ~30!

The integrand in the above integral will have an odd ima
nary part so the spectral power density will yield a real qu
tity and relation~30! may be written
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P~v!5DE
2`

`

cos@~v2v4!t#

3exp@2~b11b21b3!utu/2#dt. ~31!

This integral may be evaluated@33# to yield the spectral
power density of the signal wave

P~v!52D
b/2

~b/2!21~v2v4!2 , ~32!

where

b5b11b21b3 . ~33!

So, according to Eq.~31!, in the uncorrelated case the lin
shape of the signal wave is a Lorentzian centered onv4
5v11v22v3 and of bandwidth equal to the sum of th
bandwidths of the input fields. This result is valid whichev
stochastic model is used to describe the statistics of the fi
since, in relation~25!, we used only the first-order correla
tion function, which is the same for all three stochastic mo
els.

C. FWM line shape for correlated fields

The three input waves in a FWM process may be co
lated in one of four possible ways: one case when all
fields are correlated and three when only two of the fields
correlated. We present a complete calculation of the sig
wave line shape for all three models of stochastic field
only one of these four correlation cases, viz., where the
ward and backward pump fields are fully correlated~no de-
lay! and both are uncorrelated with the probe. Thusv1
5v2 and b15b2 . For the other three correlated cases
shall present only the results as the mathematical proce
is the same. We maintain the assumption made when dea
with the uncorrelated fields, i.e.,L!Lc . Therefore, we shal
ignore all retardation terms in the complex amplitudes.

1. Correlated pump fields uncorrelated with the probe field

(a) Phase-diffusion model.For this case relation~25!
takes the form

^E1~ t1t!E2~ t1t!E3* ~ t1t!E1* ~ t !E2* ~ t !E3~ t !&

5E02
2 /E01

2 ^E1
2~ t1t!E1*

2~ t !&^E3* ~ t1t!E3~ t !&

5E01
2 E02

2 E03
2 exp$2@~4b11b3!utu/2#%, ~34!

where in the last equality of relation~34! we have used re
lation ~4!. Now we just have to follow the standard calcul
tion procedure described by relations~25!–~32! in order to
see that the line shape of the signal wave will be given by
relation

PPDM~1,2!~v!52D
~4b11b3!/2

@~4b11b3!/2#21~v2v4!2 . ~35!

So the line shape is a Lorentzian with a bandwidth equa
(b11b21b3)12b1 , which is larger than that of the unco
related case by the addition of 2b1 .

(b) Chaotic field model.In this case relation~25! becomes
r
ds

-

-
e
re
al
n
r-

e
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ng

e

to

^E1~ t1t!E2~ t1t!E3* ~ t1t!E1* ~ t !E2* ~ t !E3~ t !&

5E02
2 /E01

2 ^E1
2~ t1t!E1*

2~ t !&^E3* ~ t1t!E3~ t !&

52E01
2 E02

2 E03
2 exp$2@~2b11b3!utu/2#%, ~36!

where in the second equality of Eq.~36! we have used rela
tion ~5!. Now we simply follow the same calculation proce
dure described by relations~25!–~32! and arrive at the rela-
tion

PCFM~1,2!~v!54D
~2b11b3!/2

@~2b11b3!/2#21~v2v4!2 . ~37!

So the line shape is a Lorentzian with a bandwidth equa
2b11b35(b11b21b3), which is the same result as in th
case of the uncorrelated fields.

(c) Gaussian-amplitude model.For the GAM, relation
~25!, in this case of correlated fields, becomes

^E1~ t1t!E2~ t1t!E3* ~ t1t!E1* ~ t !E2* ~ t !E3~ t !&

5E02
2 /E01

2 ^E1
2~ t1t!E1*

2~ t !&^E3* ~ t1t!E3~ t !&

5E01
2 E02

2 E03
2 @112 exp~2b1utu!#@exp~2b3utu/2!#

5E01
2 E02

2 E03
2 $exp~2b3utu/2!

12 exp[2~2b11b3!utu/2#%, ~38!

where in the second equality of Eq.~38! we have used rela
tion ~6!. Again following the standard calculation procedu
described by relations~25!–~31!, we find that the line shape
of the signal wave will be given by the relation

PGAM~1,2!~v!54D
~2b11b3!/2

@~2b11b3!/2#21~v2v4!2

12D
b3/2

~b3/2!21~v2v4!2 . ~39!

So the line shape is the sum of two Lorentzians of differ
bandwidths and different magnitudes.

The normalized line shapes of nonresonant broadb
FWM calculated for each stochastic field model are shown
Fig. 1 for the case of correlated pump fields. The result in
case of all fields being uncorrelated is also shown for co
parison. We see that the line shape for the CFM is ident
in both the correlated and uncorrelated cases. However,
result for the PDM shows a larger bandwidth in the cor
lated case, whereas the GAM yields a narrower line in
correlated case relative to the uncorrelated case. The di
ences are even more dramatic when the bandwidth of
probe is narrower than that of the pumps. This situation
illustrated in Fig. 2 for the case of correlated pumps that
uncorrelated with a probe that has a linewidth 10 times n
rower than the pumps.

Using the above procedure, we can calculate the sig
line shape for the other cases of correlated input laser fie
We quote the results below and, for the sake of an ove
picture, we present again the case we have just detailed
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FIG. 1. Normalized FWM signal line shape
in the case of correlated pump fields, uncorrelat
with the probe for each stochastic model: PDM
dotted line; CFM, dot-dashed line; GAM, dashe
line, when all the input laser fields have equ
bandwidthsb15b25b35b. The line shape for
uncorrelated input laser fields~solid line! is dis-
played for reference and overlies the CFM curv
2. Correlated pump fields uncorrelated with the probe field

This impliesv15v2 andb15b2 :

PPDM~1,2!~v!52D
~4b11b3!/2

@~4b11b3!/2#21~v2v4!2 , ~40!

PCFM~1,2!~v!54D
~2b11b3!/2

@~2b11b3!/2#21~v2v4!2 , ~41!

PGAM~1,2!~v!54D
~2b11b3!/2

@~2b11b3!/2#21~v2v4!2

12D
b3/2

~b3/2!21~v2v4!2 . ~42!

The normalized line shapes of Eqs.~40!–~42! are shown
graphically in Fig. 1 for the case whereb15b25b35b and
in Fig. 2 for the case whereb15b2510b andb35b.
3. Forward pump and probe fields correlated and uncorrelated
with the backward pump field

This impliesv15v3 andb15b3 :

PPDM~1,3!~v!52D
b2/2

~b2/2!21~v2v4!2 , ~43!

PCFM~1,3!~v!52D
~2b11b2!/2

@~2b11b2!/2#21~v2v4!2

12D
b2/2

~b2/2!21~v2v4!2 , ~44!

PGAM~1,3!~v!54D
~2b11b2!/2

@~2b11b2!/2#21~v2v4!2

12D
b2/2

~b2/2!21~v2v4!2 . ~45!

The normalized line shapes of Eqs.~43!–~45! are shown
graphically in Fig. 3 for the case whereb15b25b35b.
s
ed
,

d
e

s
s

FIG. 2. Normalized FWM signal line shape
in the case of correlated pump fields, uncorrelat
with the probe for each stochastic model: PDM
dotted line; CFM, dot-dashed line; GAM, dashe
line, when the pump bandwidth is 10 times th
probe bandwidthb15b2510b and b35b. The
line shape for uncorrelated input laser field
~solid line! is displayed for reference and overlie
the CFM curve.
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FIG. 3. Normalized FWM signal line shape
in the case of the forward~backward! pump cor-
related with the probe and uncorrelated with t
backward ~forward! field for each stochastic
model: PDM, dotted line; CFM, dot-dashe
line; GAM, dashed line, when all the input lase
fields have equal bandwidthsb15b25b35b.
The line shape for uncorrelated input laser fiel
~solid line! is displayed for reference.
d

t

he
4. Backward pump and probe fields correlated and uncorrelate
with the forward pump field

This impliesv25v3 andb25b3 :

PPDM~2,3!~v!52D
b1/2

~b1/2!21~v2v4!2 , ~46!

PCFM~2,3!~v!52D
~2b21b1/2!

@~2b21b1!/2#21~v2v4!2

12D
b1/2

~b1/2!21~v2v4!2 , ~47!

PGAM~2,3!~v!54D
~2b21b1!/2

@~2b21b1!/2#21~v2v4!2

12D
b1/2

~b1/2!21~v2v4!2 . ~48!

The normalized line shapes of Eqs.~46!–~48! are also shown
graphically in Fig. 3 for the case whereb15b25b35b. We
note that the results are the same when either one of
 he

pump fields, forward or backward, is correlated with t
probe and uncorrelated with the other pump.

5. All three fields are correlated

This impliesv15v25v3 andb15b25b3 :

PPDM~1,2,3!~v!52D
b2/2

~b2/2!21~v2v4!2 , ~49!

PCFM~1,2,3!~v!54D
3b1/2

~3b1/2!21~v2v4!2

18D
b1/2

~b1/2!21~v2v4!2 , ~50!

PGAM~1,2,3!~v!512D
3b1/2

~3b1/2!21~v2v4!2

118D
b1/2

~b1/2!21~v2v4!2 . ~51!

The normalized line shapes of Eqs.~49!–~51! are shown
graphically in Fig. 4 for the case whereb15b25b35b.
e
ch
t-
n-

t
.

FIG. 4. Normalized signal line shapes in th
case of all three input fields correlated for ea
stochastic model: PDM, dotted line; CFM, do
dashed line; GAM, dashed line, when all the i
put laser fields have equal bandwidthsb15b2

5b35b. The line shape for uncorrelated inpu
laser fields~solid line! is displayed for reference
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D. Integrated signal magnitude

The integrated signal magnitude is obtained by integra
the spectral power density along the frequency axis fr
2` to 1`. We denote byI 0 the integrated signal magn
tude in the case of uncorrelated input fields. We find tha
any case where only two of the three input laser fields
correlated, the integrated signal magnitude is equal toI 0 for
the PDM, 2I 0 for the CFM, and 3I 0 for the GAM. In the
case where all the three input laser fields are correlated
integrated signal magnitude is equal toI 0 for the PDM, 6I 0
for the CFM, and 15I 0 for the GAM. It is easy to verify that
the value of the integrated signal magnitude, in terms ofI 0 ,
is equal to half the sum of the coefficients ofD in the ex-
pression of the signal line shape as given by relations~40!–
~51!.

IV. DISCUSSION

The results of the calculations presented here show cle
the influence of the field statistics on the line shape of n
resonant four-wave mixing. It is more difficult to get a cle
picture of the physical origins of the effects in each case
correlated fields and each type of fluctuating field. Howev
some insight may be gained by considering the case of
phase-diffusion model. The electric field in the PDM may
considered to be a single frequency with an instantane
value v(t) that varies in time around an average val
^v(t)&. Now let us consider for simplicity a FWM proces
where the input waves have the same average frequ
^v i(t)&5^v j (t)&, i , j 51,2,3. However, the instantaneou
frequenciesv i(t) and v j (t) are equal only when thei , j
fields are correlated. The instantaneous signal frequency

v4~ t !5v1~ t !1v2~ t !2v3~ t !. ~52!

When the three input fields areuncorrelated it is easy to
show that the signal bandwidthb45b11b21b3 since any
frequency within the band of one field can couple equa
with all frequencies in another band. When one of the fie
is correlated with either or both of the other input fields th
the range of possible signal frequencies is constrained. C
sider the case of the probe correlated with the forward pu
i.e., v1(t)5v3(t). Then clearlyv2(t)5v4(t) and the range
of the values of the signal is the same as that of the backw
pump, i.e.,b2 . This is the result given in Eq.~43!.

Similarly, when the backward pump and probe are cor
latedv2(t)5v3(t) andv1(t)5v4(t) and we obtain the re
sult given in Eq.~46!. When all input fields are correlate
v1(t)5v2(t)5v3(t) and sov4(t)5v2(t) and again the
signal bandwidthb45b2 , which is the result in Eq.~49!.

The case of correlated pumps and an uncorrelated p
requires careful consideration. For uncorrelated pumps
an uncorelated probe~i.e., all fields uncorrelated! the result
may be written as

b452b11b3 . ~53!

The signal bandwidth is the result of adding the probe ba
width b3 to the sum frequency bandwidth 2b1 . In the corre-
lated pumps case the result is

b454b11b3 , ~54!
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i.e., the sum frequency bandwidth (v11v2) is twice the
result for the uncorrelated pumps. In the uncorrelated pu
case we consider a given instantaneous frequency in
pump beam to bêv&1Dv, where Dv is some random
detuning within the bandwidthb1 . This frequency may
couple with any frequency within the bandwidth of the se
ond pump. However, the most probable value of this sec
pump frequency iŝv& giving a signal frequency

vS52^v&1Dv. ~55!

In the correlated pump case the second pump frequenc
constrained to be the same as the first and must therefor
detuned also byDv. Thus

vS52^v&12Dv. ~56!

The frequency excursions of the sum frequency in the co
lated case are thus twice that in the uncorrelated case. H
the bandwidth of the sum frequency of correlated pumps
twice that of uncorrelated pumps, i.e., 4b1 rather than 2b1 ,
and we obtain the result of Eq.~54!, which validates Eq.
~40!.

V. CONCLUSION

We have considered the effect of field statistics on
spectral line shape of nonresonant FWM induced by br
bandwidth lasers that have a Lorentzian spectrum. Usin
perturbation approach, the line shape has been calculate
fields whose statistics belong to one of the three Markov
stochastic models considered: the phase-diffusion model
chaotic field model, and the Gaussian-amplitude model. P
vided that the nonresonant condition is satisfied for all f
quencies within the input laser bandwidth, the signal is fou
to be unaffected by atomic motion and hence by Dopp
broadening. This contrasts with the result for resonant deg
erate FWM where the line shape involves a convolution w
the square of the Doppler profile@23#.

The spectral line shapes of the FWM signal were cal
lated in the limit where the laser coherence lengthLc ex-
ceeds the interaction lengthL. For uncorrelated input fields
the line shape of the signal wave is found to be independ
of the precise form of the statistics. In this case the resu
simply a Lorentzian centered on the signal frequencyv4
5v11v22v3 , with a bandwidth equal to the sum of th
bandwidths of the input fields. However, for correlated inp
fields the signal line shape is found to depend on the sta
tics and to be sensitive to the type of correlations betw
the input laser fields.

The rather trivial result obtained in the case of uncor
lated laser fields is maintained only in the CFM and only
the case of correlated pump beams that are uncorrelated
the probe beam. In this specific correlation case the sig
wave bandwidth is larger in the PDM and in the GAM th
line shape is no longer a Lorentzian but the sum of t
Lorentzians of different bandwidths and magnitudes. Res
for the other possible correlations between the pump
probe fields have been derived.

The most important conclusion of this paper, expres
by the results in relations~40!–~51!, is that nonresonant four
wave mixing allows distinctions to be made between diff
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ent kinds of fluctuation statistics in the light field if corre
lated input fields are used. In practice it should be possibl
detect these effects by measuring the signal line shape
controlling the degree of correlation between pump a
probe fields by time delays or polarization state. Methods
distinguish between different field statistics have been p
posed that mostly use resonant single-photon or multipho
interactions@19,20#. We note that the method proposed he
involves a fully nonresonant interaction and so the results
potentially less complicated by the dynamics of station
atomic or molecular states. It is also worth pointing out th
in principle, the statistics of a pulsed laser field could
determined by measurements on a single laser pulse.
experimental requirement would be that the spectrum of
FWM signal be resolved on a given pulse and this could
achieved, for example, by use of a charge coupled de
camera to record an interferogram produced by a hi
resolution Fabry-Pe´rot interferometer. Experiments to dem
onstrate this possibility are currently planned in our labo
tory.

It has been proposed recently that correlations betw
longitudinal modes of laser fields may be probed by tim
delayed FWM experiments that measure the pulse auto
relation function@34#. Finally, we note that the mathematic
procedure we have used in this paper could be used to de
the signal line shapes of other nonresonant, nonlinear op
processes.
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APPENDIX A

Considering relation~2!, the complex amplitude of the
field in the PDM can be written as

E~x,t !5E0exp@2 if~ t2x/c!#, ~A1!

where E0 is a positive real quantity that can easily be ide
tified with E0 from relation ~3!. The marginal probability
density is given by

f ~f,t !5e2f2/2bt/A2pbt ~A2!

and the conditional probability density is given by

f ~f1 ,t1uf2 ,t2!

5expF2
~f12f2!2

2b~ t12t2!G Y A2pb~ t12t2!,

t1.t2 . ~A3!

The averagê EN(x,t1)E* N(x,t2)&, where N is a natural
number, can be calculated using the marginal probab
density and the conditional probability density as@24#
tuating
^EN~x,t1!E* N~x,t2!&5E
2`

`

df2f ~f2 ,t2!E
2`

`

df1f ~f1 ,t1uf2 ,t2!EN~x,t1!E* N~x,t2!5E0
2NexpF2N2

b

2
u~ t12t2!uG .

~A4!

In relation ~A4! we have assumed that the average is calculated atx5x15x2 . If x1 andx2 are different then formally we
have to replace, in relation~A4!, t1 by t12x1 /c and t2 by t22x2 /c. Then relation~A4! will become

^EN~x1 ,t1!E* N~x2 ,t2!&5E0
2NexpF2N2

b

2
u~ t12x1 /c!2~ t22x2 /c!uG . ~A5!

APPENDIX B

The marginal probability density and the conditional probability density can be expressed in terms of the fluc
modulus of the complex amplitude and fluctuating field phase as defined by relation~2!. The marginal probability density is
given by

f ~E,f!5Ee2E2/E0
2
/~pE0

2! ~B1!

and the conditional probability density is given by

f ~E1,f1 ,t1uE2,f2 ,t2!5FE1expS 2
E1

21r 2E2
222rE1E2cos~f12f2!

E0
2~12r 2!

D G Y @pE0
2~12r 2!#, ~B2!
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wherer 5exp@2b/2(t12t2)# is the correlation coefficient, E1 is the modulus of the complex amplitude at timet1 , and E2 is the
modulus of the complex amplitude at timet2 . f1 andf2 are the instantaneous values of the fluctuating phase at timest1 and
t2 , respectively. In order to perform the average of the type^EN(x,t1)E* N(x,t2)&, whereN is a natural number, we note tha
the conditional probability density is related to the associated Laguerre polynomials as@24#

E
0

2p

df1E
0

`

dE1FLN
mS E1

2

E0
2D GE1

m@exp~2 imf1!# f ~E1,f1 ,t1uE2,f2 ,t2!5$exp@2~2N1m!b~ t12t2!/2#%FLN
mS E2

2

E0
2D GE2

m

3exp~2 imf2!, ~B3!

whereLN
m(x) is the associated Laguerre polynomial.N andm are natural numbers. Considering the form of these polynom

@33,34# and settingN50, Eq. ~B3! becomes

E
0

2p

df1E
0

`

dE1E1
m@exp~2 imf1!# f ~E1,f1 ,t1uE2,f2 ,t2!5$exp@2mb~ t12t2!/2#%E2

mexp~2 imf2!. ~B4!

The averagêEN(x,t1)E* N(x,t2)& is performed in a similar manner to Eq.~A4! and taking into account Eq.~B4! we obtain

^EN~x,t1!E* N~x,t2!&5E
0

`

dE2E
0

2p

df2• f ~E2,f2!E
0

`

dE1E
0

2p

df1 f ~E1,f1 ,t1uE2,f2 ,t2!EN~x,t1!E* N~x,t2!

5$exp@2Nb~ t12t2!/2#%E
0

`

dE2E
0

2p

df2 f ~E2,f2!E2
2N5N!E0

2N$exp@2Nb~ t12t2!/2#%. ~B5!
a

e

te

.

If t15t2 we obtain a well-known relation for the CFM@24#,
which is

^EN~x,t1!E* N~x,t2!&5N! ^E~x,t !E* ~x,t !&N,

and so Eq.~B5! is verified.
In relation~B5! we have assumed that the average is c

culated atx5x15x2 . If x1 andx2 are different then we have
to replace, in relation~B5!, t1 by t12x1 /c and t2 by t2
2x2 /c. Then relation~B5! will become

^EN~x1 ,t1!E* N~x2 ,t2!&5N!E 0
2Nexp$2Nb@~ t12x1 /c!

2~ t22x2 /c!#/2%. ~B6!

APPENDIX C

The marginal probability density is given by

f ~E!5Ee2E2/2E0
2
/A2pE0

2 ~C1!

and the conditional probability density is given by

f ~E1,t1uE2,t2!5FexpS 2
~E12rE2!

2

2E0
2~12r 2! D G Y A2pE0

2~12r 2!,

~C2!

where E1 is the real amplitude at timet1 and E2 the real
amplitude at timet2 . In order to perform the average of th
type ^EN(x,t1)E* N(x,t2)&, whereN is a natural number, we
use the fact that the conditional probability density is rela
to Hermite polynomials as@24#
l-

d

E
2`

`

dE1FHNS E1

A2E0
2D G f ~E1,t1uE2,t2!

5$exp@2Nb~ t12t2!/2#%FHNS E2

A2E0
2D G . ~C3!

Considering the form of Hermite polynomials@33,34# and
settingN51 in Eq. ~C3!, we obtain

E
2`

`

dE1 E1 f ~E1,t1uE2,t2!5E2exp@2b~ t12t2!/2#.

~C4!

So, as in the derivation of Eq.~A4!, the correlation function
^E(x,t1)E* (x,t2)& will be given by

^E~x,t1!E* ~x,t2!&

5E
2`

`

dE2 E2 f ~E2!E
2`

`

dE1 E1 f ~E1,t1uE2,t2!

5exp@2b~ t12t2!/2#E
2`

`

dE2 E2
2 f ~E2!

5E0
2exp@2b~ t12t2!/2#, ~C5!

where for the second equality in Eq.~C5! we have used Eq
~C4!.

Now in evaluating the averagêE2(x,t1)E* 2(x,t2)& we
shall start with relation~C3!, where we shall considerN
52. Then we obtain
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E
2`

`

dE1F2S E1
2

E0
2D 22G f ~E1,t1uE2,t2!

5F2S E2
2

E0
2D 22Gexp@2b~ t12t2!# ~C6!

or

E
2`

`

dE1 E1
2 f ~E1,t1uE2,t2!5E0

21~E2
22E0

2!exp@2b~ t12t2!#,

~C7!

where in deriving Eq.~C7! we have used the fact that

E
2`

`

dE1 f ~E1,t1uE2,t2!51, ~C8!

which can be obtained from Eq.~C3! by settingN50.
Now, as before, we can calculate^E2(x,t1)E* 2(x,t2)& in

the same way as for relation~A4!, obtaining

^E2~x,t1!E* 2~x,t2!&

5E
2`

`

dE2 f ~E2!E
2`

`

dE1 ~E1E2!
2 f ~E1,t1uE2,t2!

5E
2`

`

dE2 f ~E2! E2
2$E0

21~E0
22E0

2!exp@2b~ t12t2!#%

5E0
2$112 exp@2b~ t12t2!#%, ~C9!

where in deriving the second equality in Eq.~C9! we have
used relation~C7!. The result in Eq.~C9! can be verified by
settingt15t2 , which for N52 yields the particular form of
the usual relation for the GAM@24#:

^EN~x,t1!E* N~x,t2!&5@1333•••3~2N21!#

3^E~x,t1!E* ~x,t2!&N.

In relation~C9! we have assumed that the average is c
culated atx5x15x2 . If x1 andx2 are different then formally
we have to replace, in relation~C9!, t1 by t12x1 /c andt2 by
t22x2 /c. Then relation~C9! will become

5^E2~x1 ,t1!E* 2~x2 ,t2!&5E0
2
„112 exp$2b@~ t12x1 /c!

2~ t22x2 /c!#%…. ~C10!

APPENDIX D

We start with the nonlinear wave equation

¹2E4~x,t !2
1

c2

]2

]t2 E4~x,t !5m0

]2

]t2 P4~x,t !, ~D1!

where the source polarization termP4(x,t) arises from the
third-order nonlinear response of the medium to the th
input fields
l-

e

P4~x,t !5x~3!E1~ t2x/c1!E2~ t2x/c2!E3* ~ t2x/c3!

3exp$2 i @v4t2~k11k22k3!x#%1c.c.
~D2!

andE4(x,t) can be written, using the least restrictive form
as

E4~x,t !5E4~x,t !1c.c.5E4~x,t !exp$2 i @v4t2k4x#%1c.c.,
~D3!

where byE4(x,t) we denote the fluctuating complex amp
tude ofE4(x,t). The optical angular frequency of the FWM
signal is

v45v11v22v3 . ~D4!

We substitute Eqs.~D3! and~D2! into Eq.~D1! and perform
the derivatives over space and time. On the right-hand s
of Eq. ~D1! we neglect the time derivatives arising from th
product E1(t2x/c1)E2(t2x/c2)E3* (t2x/c3) relative to that
arising from the frequency term (v4t) since the rate of
fluctuation-induced change inP4(x,t) is much smaller than
the optical frequency. For the same reason, on the left-h
side of Eq.~D1! we neglect time derivatives ofE4(x,t) with
respect to time derivatives of exp(2iv4t). After doing these
calculations we multiply both sides of the resulting equat
by exp(2iv4t). Then, using the slowly varying envelope a
proximation, we arrive at the final result

2ik4F ]

]x
E4~x,t !Gexp~ ik4x!1c.c.

52m0v4
2x~3!E1~ t2x/c1!E2~ t2x/c2!E3* ~ t2x/c3!

3exp@ i ~k11k22k3!x#1c.c. ~D5!

Hence

]

]x
E4~x,t !52

m0v4
2x~3!

2ik4

3
E1~ t2x/c1!E2~ t2x/c2!E3* ~ t2x/c3!

exp@2 i ~k11k22k32k4!x#
.

~D6!

We denote byC the constant

C[2
m0v4

2x~3!

2ik4
~D7!

and the wave-vector mismatch

Dk[k11k22k32k4 . ~D8!

Substituting Eqs.~D7! and ~D8! into Eq. ~D6! and integrat-
ing along the interaction region, assuming thatE4(x,t)50
for x50, we finally get the generated signal field in the for

E4~L,t !5CE
0

L

dx E1~ t2x/c1!E2~ t2x/c2!E3* ~ t2x/c3!

3exp~ iDkx!, ~D9!

which is identical to relation~21!.
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