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Spectral line shape of nonresonant four-wave mixing in Markovian stochastic fields
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The spectral line shape of the four-wave mixifVM) signal, induced by broad bandwidth laser fields, is
derived in the case of a nonresonant interaction. The laser fields are assumed to have a Lorentzian spectrum
arising from Markovian stochastic fluctuations described by the phase-diffusion, chaotic field, and Gaussian-
amplitude models. The usual “phase conjugating” geometry for FWM is considered where the nonresonant
interaction is determined only by the statistics of, and the correlations between, the pump and probe fields. For
each one of the four possible correlation states between the three input fields and for each of the three
fluctuating field models, the line shape of the FWM signal is calculated and shown to be particularly sensitive
to the field statistics[S1050-2947®7)02709-]

PACS numbds): 42.65—k, 42.50—p

[. INTRODUCTION the fields. Correlated fields in FWM have been considered in
a number of other resonant situations such as weak fields
The electromagnetic waves emitted by lasers are subjet¢il] and time-delayed pulsg42,13. Solutions have been
to fluctuations of amplitude and phase that broaden the spefQund using decorrelation approximations or Monte Carlo
tral bandwidth of the optical field. The spectral line shape offethods12,14. .
a light field is thus intimately related to its temporal coher-_ _11€ role of field fluctuations in FWM has been shown to
ence properties, which are in turn often determined by physit.’e similar to that of dephasing collisions in that the destruc-
cal processes occurring in the source. Measurements of tHig" Of interferences between coherent pathways by the col-
intensity spectrum or line shape of the light are not usuallyISIonS or fluctuations leads to extra resor_lanﬁfls@. Such
g . -~ ) ) . Jextra resonances are characterized by their appearance when
sensitive to the field statistics since the phase information I;L

| 8 t of intensit d th ¢ one of the input frequencider combinations of thenis
ost In any measurement of intensity and the same spectralq,nant with any transition from the initial atomic or mo-

line shape may be presented by light fields having quite difioc1ar state16]. The additional effect of correlations be-
ferent statistics. On the other hand, measurements of thgeen the fluctuating fields also has been shown to lead to
spectrum of light generated by a phase-sensitive process c@htra resonancdd7,1§ and is considered in a general treat-
distinguish between different types of statistical fluctuationspent by Kofman, Levine, and Prigd9]. In this work the
in the field. The statistical properties of the light field are of spectrum of a FWM signal is calculated when one or more of
particular importance for nonlinear optical processes sincghe input fields is broad and characterized by either Markov-
these are often sensitive to higher-order correlations in th@an or non-Markovian fluctuations. Although nonresonant,
fields[1]. The effects of such fluctuations have been studiedhe input field frequencies lie close to the material reso-
in several nonlinear optical processes including resonancgances in the sense that the third-order susceptibility is fre-
fluorescence2], multiphoton absorptior{3], multiphoton  quency dependent in their spectral rarige. (3.1) of Ref.
ionization[4], and stimulated Raman scatteriff§]. Studies [19]]. The appearance of extra resonances, induced either by
of two-photon absorption line shapes have allowed the dyeollisions or field fluctuations, arises from this frequency de-
namics of fluctuations in a phase-diffusing field to be distin-pendence of the third-order susceptibility. The destructive
guished[6]. interference of coherent pathways is itself determined by the
Four-wave mixing(FWM) is a fruitful area for the study detuning of the input field frequencies from these material
of field fluctuation effects where two pump fields and oneresonances. In the present work we consider a totally non-
probe field interact via the third-order susceptibiligf?) to  resonant situation and the medium response contains no
generate the signal field. The signal intensity arising from th@esonant features. The effects on the observed spectrum then
interaction of chaotic pump fields and a monochromaticcan depend only on the characteristics of the laser fields, and
probe has been calculated in the case where the pump bantiteir correlations, if any.
width b was smaller than the atomic linewidthof the me- The sensitivity of an atomic response to field statistics has
dium [7]. The limit of very broad bandwidth lasers, whdre been demonstrated so that an observable dependent on a
exceedd” and all other relaxation rates in the problem, hasresonant response can be used to distinguish between two
been explored theoretical[8] and experimentally9] to de-  statistically different field modelg20]. A comparative study
termine the signal dependence on the input laser intensityf resonant DFWM with chaotic and phase-diffusing fields
This work was extended to calculate and to measure experiras been presented in which the dependence of the signal
mentally the temporal evolution of resonant degenerate fourintensity on the input intensity was calculated for each field
wave mixing(DFWM) induced by pulsed, broad bandwidth model[21]. An alternative probe of the statistics is to mea-
fields [10]. These studies used the decorrelation approximasure the frequency spectrum of the signal generated in a non-
tion appropriate for very broad band fields and were not senlinear process. The measurement of the spectral line shape of
sitive to the precise form of the statistics or to correlations ina two-photon interaction to distinguish between different
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characteristic time regimes of phase diffusion has been noteghces between the detunings of the three input laser line
already [6]. The spectrum of broad bandwidth, resonantcenters are also much less than eagh so that the spectral
DFWM also has been studied theoretically for phasetesponse of the medium within the whole spectral range of
diffusing fields using the decorrelation approximation the laser fields will be essentially flat. Thus every frequency
[22,23 and validated by experimental measuren|@3. within the spectral range of laser fields experiences the same
In this paper we describe the effects of different statisticahjrg-order nonlinear susceptibility®. This condition is
models on the spectral line shape of the signal generated By,cessary to allow us to expand the polarization in powers of

nolnlr_esonsnfour;wr?ve_mixilng. In previous yc\j/orkdthe Isp_ec-h the electric field when the polarization is induced by an elec-
tra mefs ape o tt_etS|gnta W%V? was Ct?]nsi. ehrte odn Yhm tNic field of finite bandwidth. A further condition for the va-
case of resonant interaction between the ight and the Mgy o the polarization expansion is that the incident fields
dium, i.e., the bandwidth of the driving fields encompassed & e restricted to low intensities. We note that for larger
strong resonant transition frequenj@1,23. In this case the he upper limit of the allowed .ran e of laser intensities is
pandwidth of the generated FWM signal i-s strongly aff(a-CFe&ncre;spe([ZS] More details on the v%lidit of this expansion
by the resonant enhancement of the medium’s susceptlbmty‘. A X Yy p
We present here a simple treatment of FWM line shape§f the polarization can be found in Re5], p. 191, and
generated by a nonresonant light-matter interaction, whic 26], pp. 11-16. i o . )
indicates that measurement of such a spectrum is a poten- We now describe the statistics of the input fluctuating
tially powerful technique for distinguishing between variousfields, which are assumed to be governed by a Gaussian,
types of field statistics. stationary Markovian stochastic procd&l]. We treat the

By a nonresonant light-matter interaction we assume thdields classically and write them as

the center laser frequency lies in a spectral region where the

third-order susceptibility of the medium® exhibits no se-  E(XH=E(Xx,t) +c.c=E(x,)exp —iot+ikx)+c.c.
lectivity. In the absence of medium resonances within the e . _ _

spectral bandwidth of the input light, a perturbation method =E(t=x/c)exg —i[wt+ p(t=x/c) —kx]}+c.c.,
may be used, provided also that we restrict the laser intensi- D

ties to nonsaturating levels. The perturbation approach al-

lows an expansion of the polarization in powers of the elecWhere

tric field, which is usually assumed to lBonochromatic _ _ .

However, in the case of a nonresonant interactimite E(x,t)=E(t=x/c)=E(t—-x/clexg —ig(t=x/c)] (2)
bandwidthlight fields may also be treated by this method. is the fluctuating complex amplitude of the field.tE(x/c)

This approach is valid provided the optical coherence decay. . - — - .
rate is fast, a condition that may be satisfied if either or both%hgzef(l:u?Stl{[ﬁte'nsgp;ne%dgﬁ?gﬁtnif(ti]exrig diljrrllt?o?l:ﬁteugzré%lar

of two conditions are satisfied, viz., the transverse relaxatior?requencyw and wave vectok. The retardation effects in
rate T, is short and/or the detuning from resonance is VeI oth the modulus and phase 6f the field complex amplitude

large. o are accounted for by the terric. We note that in relation
Such conditions are met, for example, where the nonresao-,

nant interaction takes place in the far wing of an atomic(l) we have used the bold, the underlined, and the italic

transition in the aas phase. In this case the detu 6 character in order to distinguish between the real electric
gas phase. , ningf . field, the complex electric field, and the complex amplitude
=1,2,3) of the three incident laser fields from the center I|neOf the complex electric field, respectively. The normal char-

of the atomic transition must_be much Iarge_r than the homo:,chter was used in Eq&l) and (2) to denote the modulus of
geneous widtH" if a flat medium response is to be experi-

enced in the region of the laser frequency. Also the bandEhe complex amplitude, which consequently is equal to half

: . : of the amplitude of the real field.
widths b; (full width at half maximum and the Doppler .
width Ap should be much less thak . The mean value ofE(x,t) is assumed to be zero,

In Sec. Il of this paper a more detailed justification of theaEIZEAE]>.(’t)>:0’ and its first-order correlation is exponential

use of perturbation theory is given and the three statistic
field models to be considered are outlined, viz., the phase- b
diffusion model(PDM), the chaotic field moddICFM), and (E(X1,1)E* (X5,t5))= Eﬁexp{ 3 [(t;—x%,/c)
the Gaussian-amplitude mod€AM) [24]. All three models

provide a Lorentzian line shape and the finite bandwidth of

the laser light is considered to arise from Markovian fluctua- —(t,—Xy/c)]
tions of the complex amplitude of the field. In Sec. Ill we

present the theoretical approach to be followed in deriving, js the full width at half maximum of the Lorentzian spec-
the frequency spectrgm of'the FWM signal in the parﬂculartrum We can see by inspection tha§£<E2(t—x/c)).
case where all three input fields anecorrelated The effects The form of the first-order correlation function. as ex-

?n the signal I|_ne sha_pe of correlations between the 'np%ressed in Eq(3), is a general feature of the three different
lelds are cor_13|der(_ad in Sec. IV for each of the three fiel tochastic models. As we shall see, this correlation function
models. Section V is devoted to conclusions. is sufficient for obtaining the signal line shape when the
input laser fields are uncorrelated. Thus, in this uncorrelated
case, the signal line shape will be the same for all three
We consider the case where the detunings of the incidergtochastic models. However, when dealing with correlated
fields A; are much larger thah, b;, andAp and the differ-  input laser fields the statistical features that characterize each

. 3

II. PERTURBATION THEORY AND FIELD STATISTICS
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stochastic field must be considered. The individuality of each C. Gaussian-amplitude model

stochastic model resides in the marginal probability density The Gaussian-amplitude field has a complex amplitude

and conditionla.l probat_)ility denSity functiofiz4]. By use of that has no imaginary part, so it is modeled by a real Gauss-
thesg probab_|I|ty densny. funct_lons we can calculate the COlan stochastic amplitude with zero mean. Thus we may note
relation function of the fields in any order. In the four pos- that E(x,t) = E(t — x/c), where in this case E¢ x/c) is no

sible cases of correlated input fields we shall need to con- ’ ’ . .
sider higher-order correlation functions in the derivation Oflonger a.modulus but a real qgantlty aIIov_ved o qucFuate n
the signal line shape. Specifically, in dealing with the case O{aoth positive and negative regions. For this stochastic model

2 2 ;
all three fields being correlated we shall need to considefn® average(E“(x;,t) E*%(xz,t;)) can be written agsee
correlation functions up to third order. In contrast to the first-details in Appendix ¢
order correlation function, the higher-order correlation func- 2 %2 2
tions will be different for the three stochastic models. There- (EZ(x1 1) E* (%2, 1)) = Eg(1+ 2 exl — bl (t, =X, /€)
fqre, fqr correlated input fields we shall have a different —(ta— X /) ). (6)
signal line shape for each stochastic model.

So we need to know the probability density functions and
how they may be used to calculate higher-order correlation

2 t N * N H
fu.nct|ons gf the fields(E (X’tl)I.E (x,t5)). The line sha_pe calculated following the iterative method of complete math-
will be derived for all four possible cases of correlated input L .
) . S : ematical induction. However, we shall stop here because,
fields, but a detailed description of the mathematical calcu;i o previouslv mentioned e are interested in
lations will be presented in only one of the four cases. We EN w pE*\'G usly | 'f N'—lw 42 ' S !
shall choose the case of correlated inputs fields that are uﬁ- (X1,12) (x2,tz)) only for N=1 and 2.
correlated with the probe field. In this case the required cor-
relation functions may be reduced to products of first- and
second-order correlation functions. Therefore, we shall béll. THEORY OF BROAD BANDWIDTH, NONRESONANT,
interested in the correlation functions fdi=1 and 2. We FWM LINE SHAPE
first introduce the specific forms of the probability density . . . -
functions for each field model and show how they may be V& consider the standard “phase conjugating” arrange-

used to derive the required higher-order correlation func.ment for FWM consisting of counterpropagating pump fields

tions. In particular we shall calculate explicitly the second-Interacting with a probe field crossing at a small angle. The

order correlation functiofE2(x,t;)E*2(x,t,)). A detailed input fields will be described by the statistical models out-
description of the stochastic fields is given by Georj¢=s.

The general expression GEN(x4,t1)E*N(x,,t,)) can be

lined above, which have a Lorentzian line shape. Then, for
In what follows we shall recall only the salient features nec-the particular case when the probed medium is a gas, we
essary for obtainingE2(x,t;) E*2(x,t,)). shall take into account the atomic motion by considering one
well-defined velocity class of atoms. We shall find the ex-
pressions of the light fields in the rest frame of these atoms,
use these expressions to derive the induced polarization of
In the PDM we have a constant modulus of the compleXhe medium, and then translate this polarization back to the
amplitude, but the phase of the complex amplitude undertaporatory frame. We shall show that the polarization, and
goes a continuous random wdlR7—-29. For this stochastic hence the signal line shape, will not be influenced by atomic
model the averagéE™(x,t,)E*N(x,,t,)) can be written as  motion in this nonresonant interaction. The strength of the

A. Phase-diffusion model

(see details in Appendix A signal field is then calculated by integration of the polariza-
b tion along the interaction length. We then calculate the

(EN(xy,t,) E* N(Xz,t2)>:EgNex% —N2 = |(t;—x,/c) fiel_d auFocorreIation fupction,_which, by use of the Wiener-

2 Khintchine theorem, will provide the frequency spectrum of

the signal wave. The line shape of the FWM signal will be
(4)  calculated first for the case ahcorrelatedinput fields. The
result for correlatedinput fields will be calculated in detail
only for the case of correlated pump fields. The results for
other combinations of correlations between pump and probe
fields will be presented without showing the details of the
In the CFM the complex amplitude of the fidi{x,t) can  calculations.
be written as the sum of two independent Gaussian stochastic
real amplitudes that are 90° out of phase. E¢x,t)
=E,(x,t) +iEy(x,t), where E(x,t) and E(x,t) are inde- A. Atomic motion
pendent Gaussian stochastic processes with zero mean and
equal variance. For this stochastic model the averag
(EN(xq,t1)E*N(x;,t,)) can be written agsee details in Ap-
pendix B

—(ta—x,/0)|

B. Chaotic field model

We take the incident laser beams to propagate along the
§ axis and the electric fields to be linearly polarized, parallel
to they axis. We further assume that they are not depleted on
propagating through the interaction region. The fields will be
(EN(Xq,t1) E*N(Xy,t5)) = NV EZNexp{ — NIb[ (t; — X, /C) expressed in the most gengral form of relat_(am Ei(x,t)
and E,(x,t) are the pump fields an#;(x,t) is the probe
—(ta—x,/c)]/2}. (5) field:
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Ei(X,t)=E;(x,t)+c.c=E;(t—x/c;) ticularly true in dilute media, where the absorption of the
] input beams is also negligible. Then the polarization term,
xexp{—i[wit+ @1 (t—x/c) —kx]}+c.c., responsible for the FWM signal generation, will be given by

(7

PA(X" ) =Py(x",t) +c.c= xVE (X, E5 (X" [ Ea(X' ;) ]*

E,(x,t)=Ex(X,t)+c.c=Ey(t—x/c,) Lec. (16

Xexp{ —i[wat+ ¢o(t—x/cy) —kox]}+c.c.,
A-ilwat+ d 2 X} The electric-field strength in the laboratory frame is derived
8 from the third-order nonlinear polarization, in the same
B _ (laboratory frame, by substitutingx’ into Eq. (16) by

Es(x,t)=Es(X,t) +c.c=Es(t—X/c3) x— vt according to Eq(10). This gives
Xexp{—i[ wat+ ¢3(t—x/c3) —ksx]}+c.c.

9

All quantities in Egs.(7)—(9) are defined in the laboratory

frame. Sox is the coordinate along the interaction region a result that is independent of the atomic velocity.

defined in the laboratory frame. The conclusion is that there is no distinction between the
Now we shall include the effects of atomic motion for the induced polarization of two classes of atoms of different ve-

particular case of a gaseous medium. We consider first onllocities in the laboratory frame. The physical argument sup-

one class of atoms having a well-defined velocitand the  porting this conclusion is based on our assumption that the

electric fields in the rest frame of these moving atoms. If wemedium response is the same whether or not the frequency

denote byx’ the coordinate along the interaction region in domain of the input lasers is shifted within a Doppler width.

the frame of the moving atom then the transformation relaThe mathematical translation of the above statement consists

P4(X,t) = |_34(X!t) +c.c= X(s)El(X,t)Ez(X,t)[Eg(X,t)]*
+c.c., 17

tion betweerx andx’ will be in putting the same third-order susceptibility in both relations
(16) and (17), which refer to the moving molecular frame
x=x"+v-t, (100 and laboratory frame, respectively. Therefore, within the va-

) ) L lidity of perturbation theory, in the case of our nonresonant
whereu is the velocity of the molecule, which is assumed iyt medium interaction, the signal frequency spectrum will
not to be relativistic. Substituting EGLO) into Eqs.(7)~(9),  not pe affected by atomic motion or the associated Doppler
we find the electric fields in the frame of the moving atoms:pqadening. This result distinguishes the nonresonant case

Pt ) _ _ o from the resonant interaction where the line shape of broad
E;(xXD)=E(X",t) +c.c=E[t(1-v/cy) —x'/cq] bandwidth FWM was found to involve the convolution of a
X exp(—i{(w;—kiv)t+ ¢q[t(1—v/cy) homogeneous line shape with the square of the Doppler-

broadened line profilg23].
—x'lcy]—kx'P)+c.c,, (11
B. FWM line shape for uncorrelated fields
EL(X,t) = E4(X' 1)+ c.c= B[ t(1—v/cp) —X'/C,] P
The polarization |{(x,t) acts as a source term in the non-

X exp(—i{(wa—kav)t+ @[ t(1—v/Cy) linear wave equation leading to a signal field strength

—x'Icy]—kox' M +c.c., (12 Ea(x,t) =E4(X,t)exp{ —i[ wat —kax]}, (18)
Ea(x',t)=Eg(X’,t) +c.c=E5[t(1—v/c3) —x'/cs] where the angular frequency of the signal wave is

X exp(—i{(w3— kv )t+ o[ t(1—v/c) 1= 01+ 0 g 19

—x'lez]—kax'P+c.c. (13

and the signal wave vector is
As we have noted previously, the polarization of the me-
dium can be expanded in a power series of the total electric- k4= (w1+ 0~ w3)/c4= wy/Cy. (20)
field strength. Therefore, in the rest frame of the moving o i i
atoms, the polarization of the medium will be We denote byc; the velocity in the medium of the input
pump, j=1,2; probe,j=3; and signal,j=4. Using the
P (x",t)=xVE' (X" ,t) + xPE"2(x",t) + xPE"3(x' 1) slowly varying envelope approximation integration of the
space derivative ofE,(x,t) along the interaction length

L (14) yields the generated signal field stren@i{(L,t) (details are
where given in Appendix D,
! ’ ! 12 ’ ’ L
FO=ZROGOTELCDTENL. (19 E(LD)=C f Ex(t—x/c1) Exlt—xX/c))
0

In Eqg. (15 we have not included the signal beam as it is . ]
assumed to be weak relative to the input fields. This is par- X Ej3 (t—x/cg)expiAkx)dx, (21
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whereC is a complex constant antik is the wave-vector Using Eqgs.(18) and(21), relation(23) can be written again
mismatch, both of which are defined in Appendix D. as

In order to derive the frequency spectrum of the signal
wave we need first to form its autocorrelatibgL, ), where
L indicates that we are interested in the signal emerging from . . L (L
the end of the interaction region. This autocorrelation willbe  I'(L,7)=(CC™)exp(—iw,7) Jo Jo {dx dx(Ey(t+r
defined ag30]

—X/Cq)Eo(t+ 7—x/Cy)E} (t+ 7—X/C3)

1T .
F(L,T): lim E f,TE4(L,t+T)[E4(L't)] dt (22) ><E‘ic(t_Xllcl)Eizc(t_Xr/CZ)E3(t_XI/C3)>

Tow
N X exgdiAk(x—x")]}. (24

I'(L,7)=(Es(L,t+ 7)[E4(L,t)]*), (23
(L) =B [E(LDI) In the case where the three input beams are uncorrelated the

where the angular brackets in relati@B) indicate that an average in the integrand in E§24) can be written as a
average must be performed over the fluctuations of the fieldgroduct of three averages, leading to the result

(Eq(t+7=x/C)Ex(t+7—X/C)E5 (t+ 7—X/C3)ET (t—X'/c1)E5 (t—X'/Cy)E5(t—X'/C3))
=(E(t+7=x/c)ET (t=X'/cy) }{Ex(t+7—X/Co)E5 (t—X'/Co) }E% (t+ 7—x/Cc3)E3(t—X'/C3))

(bl C2 ] )

2 1
whereb;, j=1,2,3, indicates the bandwidths of each individual field. The last equality ifZyis based on relatiof3).
Substituting Eq(25) into Eq. (24), we get the expression for the autocorrelation

I'(L,7)=E5E5ES(CC*exp( —iw,7)

Xx—x’ X—x’ X—x’

T— T— T—

+b, +bs

=E5ESE5exp| — (29

v/ v/ ’

X—X

T— —

+b,

+bs

T— T—

Cz ]

2

+iAk(x—=x") || . (26

L (L (bl
xf f dxdx exp —
oJo

In what follows we consider the coherence length of the lasefrequency spectrum will be altered. So, in what follows we
L. to be much longer than the interaction lengithThis is  consider only the case.>L.

the case for most FWM experiments with the exception of Now that we have the autocorrelation of the signal wave,
those multiplexing techniques using very broad bandwidttgiven in Eq.(27), we may calculate its power spectral den-
lasers[31]. So, sinceL.>L, we can neglect the retardation sity by use of the Wiener-Khintchine theorem as

effects along the interaction length. This basically means that

1>b;(x—x")/c; for everyx andx’ in the interaction region.

Therefore, the _final frequency spectrum will not _be signifi- P(w)= Jw (L, Dexpi on)dr. (29)
cantly altered if we setx—x’)/c; equal to zero in every —w

modulus in Eq.(26). So Eq.(26) may be written as

I'(L,7)=D exp —iws7)exp[—[(by+by+bs3)|7|/2]}, Substituting Eq(27) into Eq. (29) we obtain
27

0

where
P(w)=D J7 exgi(w—w,)T]exp

D=E2E2E?2 (cc*)foL{dx dx exg —i Ak(x—x") ]}
01=02=03 .
0JO
(29)

X[—=(by+by+b3)|7|/2]d7. (30

Conversely, whem..<L, retardation effects along the inter- The integrand in the above integral will have an odd imagi-
action length can no longer be neglected. Besides altering theary part so the spectral power density will yield a real quan-
FWM signal dependence dn [32] it is likely also that the tity and relation(30) may be written
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P~ cot(o-wqr (Ea(t+ mE(t+ DES (t+ ET(DES (DEq(1)

= EZJE2(E2(t+ 1)E* WNES (t+ 7E4(1))

Xexn:_(b1+b2+b3)|T|/2]dT. (31) :ZECZ)IE(Z)ZESSEXQ_[(Zbl_Fb3)|7-|/2]}! (36)

This integral may be evaluateg®3] to yield the spectral
power density of the signal wave where in the second equality of E(R6) we have used rela-
b/2 tion (5). Now we simply follow the same calculation proce-

_ dure described by relatio5)—(32) and arrive at the rela-
P(w) 2D (b/2)2+(w_w4)21 (32) tion
where . 0 (2b,+bg)/2 ;
b=b, +by-+ by, 33 crur2(@) =40 Fop Sh o (0?37

So, according to Eq(31), in the uncorrelated case the line g the line shape is a Lorentzian with a bandwidth equal to

shape of the signal wave is a Lorentzian centeredw@n 2p, +b,=(b,+b,+bs), which is the same result as in the

stochastic model is used to describe the statistics of the field$s) in this case of correlated fields, becomes

since, in relation(25), we used only the first-order correla-

tion function, which is the same for all three stochastic mod-

ols. SIoCNasiie MOTE ,(t+m)Ex(t+ M ES (t+ DET(DES (DES(D)

=EG/EoEX(t+ DETA(D)NEZ (t+DEs(D))

C. FWM line shape for correlated fields E2E2E2140 byl bgl 112

= +2 exg — expl—

The three input waves in a FWM process may be corre- 0rF0E ol P=Dbaf 7)) JLexp( =l 7i/2)]

lated in one of four possible ways: one case when all the =E3,E2,E3.{exp —bs|7]/2)

fields are correlated and three when only two of the fields are

correlated. We present a complete calculation of the signal ~ +2 exp[—(2b,+bs)|7]/2]}, (38)
wave line shape for all three models of stochastic field in

only one of these four correlation cases, viz., where the forwhere in the second equality of E(8) we have used rela-
ward and backward pump fields are fully correlated de- tion (6). Again following the standard calculation procedure
lay) and both are uncorrelated with the probe. Thug  described by relation&5)—(31), we find that the line shape
=w, andb;=b,. For the other three correlated cases weof the signal wave will be given by the relation

shall present only the results as the mathematical procedure

is the same. We maintain the assumption made when dealing (2b;+b3)/2
with the uncorrelated fields, i.e <L .. Therefore, we shall Peam(1,(@)=4D [(201+b3)/2]2+ (w— w4)?
) . . . 1703 0= wy)
ignore all retardation terms in the complex amplitudes.
ba/2
1. Correlated pump fields uncorrelated with the probe field +2D (b3/2)2+(w—w4)2' (39
(a) Phase-diffusion modelror this case relation25)
takes the form So the line shape is the sum of two Lorentzians of different
. . . bandwidths and different magnitudes.
(Ea(t+ nEp(t+7)EZ (t+7)ET (DEZ (HE3(1) The normalized line shapes of nonresonant broadband

I ) %2 * FWM calculated for each stochastic field model are shown in
= Eod Bo( Bt DB (D)(E3 (t+1)E4(1)) Fig. 1 for the case of correlated pump fields. The result in the
=E3E2,E2exp—[(4b,+by)|7/2]}, (34)  case of all fields being uncorrelated is also shown for com-
parison. We see that the line shape for the CFM is identical
where in the last equality of relatiof34) we have used re- in both the correlated and uncorrelated cases. However, the
lation (4). Now we just have to follow the standard calcula- result for the PDM shows a larger bandwidth in the corre-
tion procedure described by relatio(®5)—(32) in order to  lated case, whereas the GAM yields a narrower line in the
see that the line shape of the signal wave will be given by theorrelated case relative to the uncorrelated case. The differ-
relation ences are even more dramatic when the bandwidth of the
probe is narrower than that of the pumps. This situation is
(4b;+Db3)/2 illustrated in Fig. 2 for the case of correlated pumps that are
Prom1,.2(w)=2D [(4b;+b3)/2]°+(w—w4)?" (39) uncorrelated with a probe that has a linewidth 10 times nar-
rower than the pumps.
So the line shape is a Lorentzian with a bandwidth equal to Using the above procedure, we can calculate the signal
(by+by+bg)+2b,, which is larger than that of the uncor- line shape for the other cases of correlated input laser fields.
related case by the addition ob2. We quote the results below and, for the sake of an overall
(b) Chaotic field modeln this case relatioi25) becomes picture, we present again the case we have just detailed.
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S
> FIG. 1. Normalized FWM signal line shapes
- . .
© 60 in the case of correlated pump fields, uncorrelated
% with the probe for each stochastic model: PDM,
& dotted line; CFM, dot-dashed line; GAM, dashed
E 40 I line, when all the input laser fields have equal
i bandwidthsb;=b,=bs;=b. The line shape for
§ 20 L uncorrelated input laser fieldsolid ling) is dis-
£ played for reference and overlies the CFM curve.
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Detuning (in units of b)

2. Correlated pump fields uncorrelated with the probe field 3. Forward pump and probe fields correlated and uncorrelated

This implies ;= w, andb; =b,: with the backward pump field

This impliesw;= w3 andb;=Dbj:

o ()= 2D (4by+Dbg)/2 40 bo/2
POML2L @)= 2 [(4by +103) 217+ (w— wy) >’ Provaal@) =20 G 7 oz @Y
2b,+b,)/2
(2by+b3)/2 P =2D (201 2
PCFM(l,Z)(U’):4D [(2b1+b3)/2]2+(w_w4)21 (41) CFM(1,3)(w) [(2b1+ b2)/2]2+((1)_w4)2
+2D bel2 (44)
2 _ 2
(2by+b3)/2 (bal2" (00
P (w)=4D
GAM(1,2 [(2b1+b3)/2]2+(w—w4)2 (2b;+by)/2
1 2
P =4D
top —Da? 42 o3 ) =40 [ b 2T+ (w0 )
(b3/2)%+ (w—w,)?" b,/2
+2 (45

P 027+ (0—wa?
The normalized line shapes of Eq&l0)—(42) are shown
graphically in Fig. 1 for the case whebg=b,=bs;=b and  The normalized line shapes of Eqgl3)—(45) are shown

in Fig. 2 for the case where;=b,=10b andb;=b. graphically in Fig. 3 for the case whebg=b,=b;=b.

100 [-
E
‘c 80
S
> FIG. 2. Normalized FWM signal line shapes
o 60 in the case of correlated pump fields, uncorrelated
3 with the probe for each stochastic model: PDM,
& dotted line; CFM, dot-dashed line; GAM, dashed
> 4w line, when the pump bandwidth is 10 times the
‘@ probe bandwidthb,=b,=10b and bz=b. The
§ line shape for uncorrelated input laser fields
£ 20 (solid line) is displayed for reference and overlies

the CFM curve.
0 —
1 1 1 1 1

Detuning (in units of b)
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100 |-

2 80|
S FIG. 3. Normalized FWM signal line shapes
Fay in the case of the forwartbackward pump cor-
g 6o related with the probe and uncorrelated with the
'-é backward (forward) field for each stochastic
8 pry model: PDM, dotted line; CFM, dot-dashed
2 line; GAM, dashed line, when all the input laser
2 fields have equal bandwidthb;=b,=bs;=b.
8 2l The line shape for uncorrelated input laser fields
= (solid line) is displayed for reference.

or " 1 " 1 | 1 1 1 L 1
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4. Backward pump and probe fields correlated and uncorrelated pump fields, forward or backward, is correlated with the
with the forward pump field probe and uncorrelated with the other pump.

This impliesw,= w3 andb,=bs: 5. All three fields are correlated

b,/2 This impliesw,= w,= w3 andb;=b,=b;:
Ppromiz3(w)=2D (07227 (0—wy)2 (46) b2
Peom(1,2,3(w)=2D 7 ——7, (49
P (w)—2D (2b,+Db,/2) (0o/2)"+ (0= w4)
CAMEIT T [(2by+ by) 2T+ (0= wy)? ; (o)—aD 3b,/2
- by/2 . CRM23T T (30427 + (0= wg)?
BN L pr L " by/2 .
T8 o (0wt 0
5 w0 (2b,+b,)/2
eamza(*)=4D (50, 75 ) 217+ (0 wa)? Pop1a(@) = 12D 12
o)
o b,/2 s ea2s (361/2)%+ (0~ w,)?
b/2)%+ (w— 2: b,/2
(1 ) (o a)4) +18D 1 (51)

(01/2)°+ (0 —w4)?
The normalized line shapes of E¢46)—(48) are also shown

graphically in Fig. 3 for the case whebg=b,=bs=b. We  The normalized line shapes of Eq&l9—(51) are shown
note that the results are the same when either one of thgraphically in Fig. 4 for the case whebg=b,=b;=h.
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§ 6o | FIG. 4. Normalized signal line shapes in the
5 case of all three input fields correlated for each
'-§ stochastic model: PDM, dotted line; CFM, dot-
E b dashed line; GAM, dashed line, when all the in-
2 put laser fields have equal bandwidths=Db,
2 =bs=b. The line shape for uncorrelated input
% 20 F laser fields(solid line) is displayed for reference.
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D. Integrated signal magnitude i.e., the sum frequency bandwidtho{+ w,) is twice the

The integrated signal magnitude is obtained by integrating€Sult for the uncorrelated pumps. In the uncorrelated pump
the spectral power density along the frequency axis fronF@S€ We consider a given instantaneous frequency in one
—w to +o. We denote byl, the integrated signal magni- PUMP beam to b&w)+Aw, whereAw is some random
tude in the case of uncorrelated input fields. We find that irff€tuning within the bandwidttb,. This frequency may
any case where only two of the three input laser fields ar€OUPIe with any frequency within the bandwidth of the sec-
correlated, the integrated signal magnitude is equéaj, tor ond pump. However, the_ most probable value of this second
the PDM, 4, for the CFM, and 8, for the GAM. In the ~PUMP frequency i%w) giving a signal frequency
case where all the three input laser fields are correlated, the —2(w)+ A (55)
integrated signal magnitude is equalltpfor the PDM, 6, WsT AW/ TR

for the CFM, and 1§, for the GAM. Itis easy to verify that |, the correlated pump case the second pump frequency is

the value of the integrated signal magnitude, in term&yof  constrained to be the same as the first and must therefore be
is equal to half the sum of the coefficients Dfin the ex-  §etuned also by w. Thus

pression of the signal line shape as given by relatid@s—
(5D). ws=2(w)+2Aw. (56)

IV. DISCUSSION The frequency excursions of the sum frequency in the corre-
) lated case are thus twice that in the uncorrelated case. Hence
The results of the calculations presented here show clearlye pandwidth of the sum frequency of correlated pumps is
the influence of the field statistics on the line shape of nonyyice that of uncorrelated pumps, i.ebgrather than 2,

resonant four-wave mixing. It is more difficult to get a clear gng we obtain the result of Eq54), which validates Eq.
picture of the physical origins of the effects in each case o 40).

correlated fields and each type of fluctuating field. However,
some insight may be gained by considering the case of the
phase-diffusion model. The electric field in the PDM may be
considered to be a single frequency with an instantaneous We have considered the effect of field statistics on the
value w(t) that varies in time around an average valuespectral line shape of nonresonant FWM induced by broad
(w(t)). Now let us consider for simplicity a FWM process bandwidth lasers that have a Lorentzian spectrum. Using a
where the input waves have the same average frequenggerturbation approach, the line shape has been calculated for
(wi(t))=(wj(1)), i,j=1,2,3. However, the instantaneous fields whose statistics belong to one of the three Markovian
frequenciesw;(t) and w;(t) are equal only when thé,j  stochastic models considered: the phase-diffusion model, the
fields are correlated. The instantaneous signal frequency ischaotic field model, and the Gaussian-amplitude model. Pro-
vided that the nonresonant condition is satisfied for all fre-
@4(1) = 01(1) + (1) — w5(1). (52) guencies within the input laser bandwidth, the signal is found
. . I to be unaffected by atomic motion and hence by Doppler
\éms\? t:; :E;e; |?lz:thgﬁgj;i;“b;nngrrilgtidg Izirffesyartlo broadening. This contrasts with th_e result for resonant deg_en-
9 1552753 Y erate FWM where the line shape involves a convolution with

frequency within the band of one field can couple equallythe square of the Doppler profife3]

= correlaod wih ither o both of the other input feld thery e speciral ine shapes of the FWW signal were calu:
P lated in the limit where the laser coherence lengthex-

the range of possible signal frequencies is constrained. Con-

. ; ceeds the interaction length For uncorrelated input fields
sider the case of the probe correlated with the forward PUMBy < line shape of the signal wave is found to be independent
i.e., w1(t)=wz(t). Then clearlyw,(t) = w4(t) and the range

of the values of the signal is the same as that of the backwar%f the precise form of the statistics. In this case the result is

; o . ; simply a Lorentzian centered on the signal frequergy
pump, i.e.,b,. This is the result given in Eq43). _ = . ;
Similarly, when the backward pump and probe are corre-b w(lj+ '((ujzh w?’ hW't.h a bfgnlgmdth equal ;EO the SLIJm 3f.the
lated w,(t) = ws(t) andws(t) = w,(t) and we obtain the re- andwidths of the input fields. However, for correlated input

. . - X fields the signal line shape is found to depend on the statis-
sult gﬂ/en |n_Eq.(46). When all 'nEUt fields are cor_related tics and to be sensitive to the type of correlations between
w1(t) = w,(t) = w3(t) and sow,(t)=w,(t) and again the

. . 7 - : the input laser fields.
signal bandwidtib,=b,, which is the result in Eq49). The rather trivial result obtained in the case of uncorre-
The case of correlated pumps and an uncorrelated proﬁ&

V. CONCLUSION

requires careful consideration. For uncorrelated pumps a ted laser fields is maintained only in the CFM and only in
q . - pump e case of correlated pump beams that are uncorrelated with
an uncorelated probg.e., all fields uncorrelatgdhe result

mav be written the probe beam. In this specific correlation case the signal

ay be en as wave bandwidth is larger in the PDM and in the GAM the
by=2b,+bs. (53) line sha_lpe is no longer a Lo_rentzian but th_e sum of two
Lorentzians of different bandwidths and magnitudes. Results

The signal bandwidth is the result of adding the probe bandfor the other possible correlations between the pump and

width bs to the sum frequency bandwidttb. In the corre-  probe fields have been derived.
lated pumps case the result is The most important conclusion of this paper, expressed

by the results in relation@0)—(51), is that nonresonant four-
b,=4b;,+bg, (540  wave mixing allows distinctions to be made between differ-
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ent kinds of fluctuation statistics in the light field if corre- his study at the Clarendon Laboratory, Oxford. P.E. is
lated input fields are used. In practice it should be possible tgrateful to the Royal Academy of Engineering and British
detect these effects by measuring the signal line shape ar@as plc for financial support.
controlling the degree of correlation between pump and
probe fields by time delays or polarization state. Methods to
distinguish between different field statistics have been pro-
posed that mostly use resonant single-photon or multiphoton Considering relation2), the complex amplitude of the
interactiong 19,20. We note that the method proposed herefield in the PDM can be written as
involves a fully nonresonant interaction and so the results are
potentially less complicated by the dynamics of stationary
atomic or molecular states. It is also worth pointing out that,
in principle, the statistics of a pulsed laser field could be ) N ) . ]
determined by measurements on a single laser pulse. TH¥here k is a positive real quantity that can easily be iden-
experimental requirement would be that the spectrum of théified with Eq from relation (3). The marginal probability
FWM signal be resolved on a given pulse and this could bélensity is given by
achieved, for example, by use of a charge coupled device
camera to record an interferogram produced by a high- f(d,'t):eﬂ/ﬁ/zbt/m (A2)
resolution Fabry-Pet interferometer. Experiments to dem-
;)Orlit'rate this possibility are currently planned in our Iaboraand the conditional probability density is given by

It has been proposed recently that correlations between
longitudinal modes of laser fields may be probed by time- f(d1,t1]h2,10)
delayed FWM experiments that measure the pulse autocor- 5
relation function 34]. Finally, we note that the mathematical =ex;{ _ (¢1~ ¢2) } / J2mb(t—t,)
procedure we have used in this paper could be used to derive 2b(t;—ty) voen
the signal line shapes of other nonresonant, nonlinear optical

processes. t>t,. (A3)

APPENDIX A

E(x,t)=Egex —i p(t—x/c)], (A1)

ACKNOWLEDGMENTS .
The average(EN(x,t;)E*N(x,t,)), where N is a natural

R.B. is grateful to the Soros Foundation and to the Fornumber, can be calculated using the marginal probability
eign and Commonwealth Office for financial support duringdensity and the conditional probability density[24]

. . b
(EN(X,t) E*N(x,tp)) = f_oc d¢2f(¢2:t2)f_w d¢1f(¢1,t1|¢2,t2)EN(x,t1)E*N(x,t2)=ESNex;{—NZ > |(t1_t2)|}
(A4)

In relation (A4) we have assumed that the average is calculated=a =x,. If x; andx, are different then formally we
have to replace, in relatiofd4), t; by t;—x;/c andt, by t,—x,/c. Then relation(A4) will become

. (A5)

b
<EN(X11t1)E*N(Xz,tz»zEgNeXF{ —N? S [(t=x1/¢) = (t2= Xz /C)|

APPENDIX B

The marginal probability density and the conditional probability density can be expressed in terms of the fluctuating
modulus of the complex amplitude and fluctuating field phase as defined by reltiarhe marginal probability density is
given by

f(E,$)=Ee E/E0/(7E2) (B1)

and the conditional probability density is given by

E?+r2E2—2rE,E -
Elexp(— e Ezr(ll_i:wl ¢2)”/[WE§(1—r2)], (B2)
0

f(E1,¢1,t1|Ex, b2 1) =




56 SPECTRAL LINE SHAPE OF NONRESONANT FOUR-WAY . . . 2277
wherer =exd —b/2(t;—t,) ] is the correlation coefficient,&s the modulus of the complex amplitude at titge and & is the
modulus of the complex amplitude at timie ¢, and ¢, are the instantaneous values of the fluctuating phase at tineesl
t,, respectively. In order to perform the average of the tB¥(x,t;)E*N(x,t,)), whereN is a natural number, we note that
the conditional probability density is related to the associated Laguerre polynomia4d]as

27 o0 Ei
IR R =
0 0 B

whereL {(x) is the associated Laguerre polynomidlandm are natural numbers. Considering the form of these polynomials
[33,34] and settingN=0, Eqg.(B3) becomes

2
Eflexp—imgy)] f(Ely¢1,t1|E2,¢2't2):{exq_(2N+m)b(tl_tz)/Z]}{Lm(_z)}Erzn

X exp(—ime,), (B3)

27 ]
. d¢1J’0 dEEfTexp(—ime )] f(Eq,¢1,t1]|Ep, é2,t) ={exd —mb(t;—t,)/2]}ES'exp(—ime,). (B4)
The averagéEN(x,t;)E*N(x,t,)) is performed in a similar manner to EG4) and taking into account E§B4) we obtain

o 20 0 2
<EN(x,t1)E*N(x,t2)>=f dEzf dd’z‘f(Ez,d’z)f dElf depy f(Epby,t1|Ep 2, t) EN(X, 1) E¥N(x,t,)
0 0 0 0

oo 27
~{exi ~Nb(,~t)/21} | o, | 0, F(Ep ) BN NIER (e~ Nb(t,—1,)/2]).  (BS)

1

H(ﬁ)

={exd —Nb(t;—t2)/2]}

If t,=t, we obtain a well-known relation for the CF\24], Jw
dE;

which is f(Ept1|Epty)

(EN(x,t) E*N(x,t5) ) = NI(E(X, ) E* (x, 1)),
. (C3

E,
H(T)
and so Eq(B5) is verified. =
In relation(B5) we have assumed that the average is cal-
culated ak=x;=X,. If x; andx, are different then we have Considering the form of Hermite polynomial83,34 and
to replace, in relationB5), t; by t;—x;/c andt, by t,  settingN=1 in Eq.(C3), we obtain
—X,/c. Then relation(B5) will become

<EN(X1 ,tl) E* N(Xz ,t2)> =N! ESNeXp[— N b[(tl_ X1/C) f_wdEl El f(El,t1| E2 ,tz) = EzeX[[ - b(tl_tz)/2]
—(ta—x2/)]/2}. (B6) (C4)
APPENDIX C So, as in the derivation of EgA4), the correlation function

(E(x,t1)E* (x,1,)) will be given by
The marginal probability density is given by
, (E(X,t)E*(X,t3))

f(E)=Ee~E725%/ \[2nE2 (C1) ) )
ZJ dE; E, f(Ez)J dE; E; f(Ept4|Enty)
and the conditional probability density is given by o o
ErrEy? —exi bt —t)2) | dE, B ((E)
f(Epty|Epty) = exp( - —) }/ V27Ey(1—r?), -

201 _ 2
2E)(1-12) 2 =EZexi] — b(t,—t,)/2], (€9

where B is the real amplitude at timé, and E the real where for the second equality in EGE5) we have used Eq.
amplitude at timet,. In order to perform the average of the (C4).

type (EN(x,t;)E*N(x,t,)), whereN is a natural number, we Now in evaluating the averageE?(x,t,)E*?(x,t,)) we
use the fact that the conditional probability density is relatecshall start with relation(C3), where we shall consideN
to Hermite polynomials ag24] =2. Then we obtain
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E
j dEl 2 Ez f(El,t1|E2,t2)

0

[2( ) 2|exd —b(t;— (Co)
O

t)]

or

fichl EZ f(Eyt1|Ept,) =E5+(E5—Edexd —b(t;—t,)],
(Cv)

where in deriving Eq(C7) we have used the fact that

j dE; f(Epty|Exty) =1, (Cy

which can be obtained from EQC3) by settingN=0.
Now, as before, we can calculatE?(x,t;) E*2(x,t,)) in
the same way as for relatid@4), obtaining

(E2(x,t) E*2(x,tp))
-J.
-J.

=E3{1+2exd —b(t;—

dE; f(Ep) fﬁ dE; (E1E»)? f(EytyEpty)

dE, f(E,) E3{E3+(E5—Edexd —b(t,—t,)]}

t2) 1}, (C9
where in deriving the second equality in E§9) we have
used relation(C7). The result in Eq(C9) can be verified by
settingt;=t,, which for N=2 vyields the particular form of
the usual relation for the GANR4]:

(EN(X, 1) E*N(x,t5)) =[1X3X -+ X (2N—1)]

X (E(X,t1)E* (X,t5))N.

In relation(C9) we have assumed that the average is cal-

culated ak=x;=X,. If x; andx, are different then formally
we have to replace, in relatige9), t4 by t;— x4 /c andt, by
t,—X,/c. Then relation(C9) will become

= (E2(x1,t) E*?(x2,tp)) = E5(1+2 exp — b[ (t;—x, /C)
—(t2—x2/c)]1}). (C10
APPENDIX D
We start with the nonlinear wave equation
(92 2
VEELO60) — 2 52 Ba() D)= o 52 Pa(X, 1), (D)

where the source polarization ter®(x,t) arises from the
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P4(X,t) = X(s)El(t - X/Cl) Ez(t_ X/Cz) E;(t - X/C3)
Xexp{ —i[ wst— (ki +ky,—kz)x]}+c.c.
(D2)

and E4(x,t) can be written, using the least restrictive form,
as

E4(x,t) =E4(x,t) +c.c=Ex(x, t)exp{ —i[ wst —kyx]} +c.C.,
B (D3)

where byE,(x,t) we denote the fluctuating complex ampli-
tude of E 4(x,t). The optical angular frequency of the FWM
signal is

(D4)

W= w1t wy— w3.

We substitute EqgD3) and(D2) into Eqg.(D1) and perform

the derivatives over space and time. On the right-hand side
of Eq. (D1) we neglect the time derivatives arising from the
product E(t—x/c,)Ex(t—x/c,)E3(t—x/c3) relative to that
arising from the frequency termo(;t) since the rate of
fluctuation-induced change iB,(x,t) is much smaller than
the optical frequency. For the same reason, on the left-hand
side of Eq.(D1) we neglect time derivatives & ,(x,t) with
respect to time derivatives of exp{w,t). After doing these
calculations we multiply both sides of the resulting equation
by expiw,t). Then, using the slowly varying envelope ap-
proximation, we arrive at the final result

J
2ik, X E4(x,t) [exp(ik4x) +c.c.
= — powix(3)Ey(t—x/C1)Ex(t—X/Co) E5(t—X/Cy)
X exfdi(k,+k,—ksz)x]+c.c. (D5)
Hence
d ,U«owz)((3>
5 E4(X!t)_ 2|k4
Ei(t—X/cq)Ex(t—x/cy)E5 (t—X/C3)
exd —i(ky+ky—ksz—ky)x]
(D6)
We denote byC the constant
2.,(3)
_ MowWgsX
="k @7
and the wave-vector mismatch
Ak=k;+k,—kz—k,. (D8)

Substituting Eqs(D7) and (D8) into Eg. (D6) and integrat-
ing along the interaction region, assuming tEa(x,t)=0
for x=0, we finally get the generated signal field in the form

L
E4(L,t)ch dx El(t_X/Cl)Ez(t_X/CZ)Eg(t_X/C:_;)
0

X exp(i AkX), (D9)

third-order nonlinear response of the medium to the three

input fields

which is identical to relatiori21).
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