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Atomic Schrödinger cat states
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We consider a physical process that leads to the generation of atomic Schro¨dinger cat states for a system of
two level atoms. The effective interaction between atoms in a dispersive cavity leads to the superposition of
atomic coherent states. We study in detail the quasidistributions for these states and demonstrate how the
Schrödinger cat states can lead to interesting interferences over the surface of a sphere.
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PACS number~s!: 42.50.Dv, 42.50.Lc, 42.50.Hz
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I. INTRODUCTION

The concept of superposition of macroscopically disti
quantum states, i.e., the Schro¨dinger cat states, plays an im
portant role in understanding the conceptual foundations
quantum mechanics. The methods for generation of such
perposition states are, therefore, of fundamental interes
lot of attention has been paid to the problem of genera
and properties of Schro¨dinger cat states of a harmonic osc
lator or the electromagnetic field@1–4#. The macroscopic
states in that case are the harmonic oscillator or electrom
netic field coherent states with large number of photons
field coherent state evolving under the influence of a Ham
tonian linear in the field quadraturea and a† and number
operatora†a evolves to another field coherent state. A no
linear interaction can generate a Schro¨dinger cat state from a
coherent state@3–5#. Brune et al. @6# have realized Schro¨-
dinger cat states of the radiation field in cavity QED. A no
linearity of particular interest for generating a field cat st
is of Kerr type@2–4#. The Kerr nonlinearity corresponds to
Hamiltonian that is quadratic in the field number operator
number of state reduction techniques@7,8# can also yield
superposition of such states. Recently the mesoscopic Sc¨-
dinger cat states for vibrational motion of ions in traps ha
been discussed and realized@9,10#.

In this paper we discuss the issue of generating Sc¨-
dinger cat states of a system of spins or equivalently a
tem of N two-level atoms. The macroscopic states in t
case are, in analogy with the case of the electromagn
field, the spin or atomic coherent states~ACS! uu,w&. As in
the case of the electromagnetic field, we search for a non
ear interaction that can generate a superposition of the A
as from an initial atomic coherent state. Here we show t
the interactionnonlinear in the operator for atomic popula
tion inversion can generate a superposition of ACS, i.e.,
atomic Schro¨dinger cat state. This nonlinear interaction
shown to berealizable in the experiments on two-level a
oms in a low-Q cavity highly detuned from the atomic tran
sition frequency. Here the light shift due to the vacuum fie
induces an effective interaction which is nonlinear.

*Also at Jawaharlal Nehru Center for Advanced Scientific R
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The organization of the paper is as follows. In Sec. II w
introduce the model of interacting atom-cavity system a
derive the expression for the effective atomic Hamiltoni
by adiabatically eliminating the field variables. In Sec. I
we study the evolution of an initial atomic coherent sta
under the action of that effective Hamiltonian and we sh
the emergence of cat states at particular times. In Sec. IV
show polar and contour plots for the quasidistributions
Schrödinger cat states. These plots elucidate the propertie
the Schro¨dinger cat states.

II. THE DYNAMICS OF ATOMS
IN A DISPERSIVE CAVITY

Consider a system ofN identical two-level atoms each o
frequencyv0 interacting collectively with a single mod
electromagnetic field in a cavity whose characteristic f
quency nearest tov0 is vc . We show that under certain
conditions the dynamics of atoms is described by an eff
tive Hamiltonian@Eq. ~12! below# in atomic variables. The
effective Hamiltonian is reminescent of the effective Ham
tonian for radiation field in a Kerr medium. If the system
atoms is described by the spinS6 ,Sz and the cavity field
mode by the bosonic operators (a,a†) then the atom-field
interaction is governed by the Hamiltonian

Haf5\v0Sz1\vca
†a1\g~S1a1a†S2!, ~1!

whereg is the atom-field coupling constant. It may be not
that microcavities could be ideal candidates for study
such collective interactions. In addition to the reversible
teraction with the atoms, the field suffers irreversible los
on account of leakage out of the cavity described by
Liouvillian

L fr5k~ n̄11!~2ara†2a†ar2ra†a!

1k n̄~2a†ra2aa†r2raa†!, ~2!

where 2k is the rate of the loss of photons andn̄ is the
average number of thermal photons in the cavity. We assu
that the dissipation due to atomic spontaneous emissio
negligibly small on the time scale of interaction. That is co
sistent with the conditions in the experiments on atoms
dergoing transitions between Rydberg levels in a cavity. T

-
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2250 56G. S. AGARWAL, R. R. PURI, AND R. P. SINGH
evolution of the system in aframe rotating withv0 is then
described by the master equation

dr

dt
5Lafr1L fr ~3!

for the density matrixr where

Lafr52 ig@S1a1a†S2 ,r#,

~4!

L fr52 idc@a†a,r#1L fr, dc5vc2v0 .

We now derive an equation for the density matrixra of the
atoms alone. A systematic approach for obtaining the ma
equation for a subsystem from that for the complete sys
is offered by the projection operator technique. However,
the sake of simplicity and in order to highlight the physi
aspects, we follow a method that is essentially the same i
content but not in rigor as the method of projection ope
tors. The results so obtained are the same as those arriv
by more rigorous approaches.

To that end, we write the formal solution of Eq.~3! in the
form

r~ t !5exp~L ft !r~0!1E
0

t

dt exp@L f~ t2t!#Lafr~0!

1E
0

t

dtE
0

t

dt1exp@L f~ t2t!#La f

3exp@L f~t2t1!#La fr~t1!. ~5!

The Liouvillian Laf determines the rate of exchange of e
ergy between the field and the atoms. For largeN, that rate is
known to be of the order ofgAN. On the other hand, the rat
of the process described by the LiouvillianL f is clearly of
the order of u idc1ku. Hence, if u idc1ku@gAN then the
evolution of the field is dominated byL f and it is reasonable
to assume that the field remains for all times adiabatically
the state determined byL f . Furthermore, if the time scale o
observation is much longer thanu idc1ku then that state is
the steady stater f

ss of L f , which is the state of thermal equ
librium given by

r f
ss5exp~2ba†a!/Tr@exp~2ba†a!#, exp~2b!5

n̄

n̄11
.

~6!

We, therefore, write the density matrixr(t) in Eq. ~5! as
the outer product of the time-dependent density ma
ra(t) of the atoms and the steady-state density matrixr f

ss for
the field; take the trace of the two sides over the field
arrive at the following equation forra(t):

dra

dt
5E

0

t

dtTrf$Lafexp@L f~ t2t!#Laf~t!ra~t!r f
ss%, ~7!
er
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whereLaf(t) is the Liouville operatorLaf in the interaction
picture. Next, we evaluate the integral in Eq.~7! by using the
results

exp~L ft !ar5exp~ idct !@$~ n̄11!exp~kt !2 n̄ exp~2kt !%ar

2n̄$exp~kt !2 exp~2kt !%ra;

exp~L ft !ra5exp~ idct !@~ n̄11!$exp~kt !2exp~2kt !%ar

2$ n̄ exp~kt !2~ n̄11!exp~2kt !%ra#, ~8!

along with their Hermitian conjugates and obtain

dra

dt
5

g2

k21dc
2 †2 idc$@S1S2 ,ra#12 n̄ @Sz ,ra#%

1k$~ n̄11!~2S2raS12S1S2ra2raS1S2!

1 n̄~2S1raS22S2S1ra2raS2S1!%‡. ~9!

We of course have also assumed that the atomic density
trix ra(t) evolves slowly on the scale 1/v0. Now, if dc@k
then the contribution due to damping in Eq.~9! is negligibly
small and it reduces to

dra

dt
52 ih@S1S212 n̄Sz ,ra#, ~10!

where

h5
g2dc

k21dc
2 , ~11!

and Ng2!k21dc
2 . For a given value ofANg and k, the

adiabatic condition can be satisfied by increasing the de
ing uv02vcu. Equation~10! shows that in a cavity, highly
detuned from the atomic transition frequency, the evolut
of the atomic system is approximately unitary and is go
erned by the effective Hamiltonian, which essentially aris
from the effect of vacuum light shifts,

Heff5\h@S1S212 n̄Sz#

[\hFN

2 S N

2
11D2Sz

21~2 n̄11!SzG . ~12!

The Hamiltonian~12! is quadratic@11# in the population in-
version operatorSz . It is, therefore, analogous to the Hami
tonian quadratic in the number operator of the single mo
field propagating through a Kerr medium like an optical
bre. In the next section we show that the Hamiltonian~12!
leads to the generation of atomic Schro¨dinger cat states from
an initial atomic coherent state. Note that the temperatu
dependent term corresponds to a simple rotation and th
fore we drop it in our further considerations, i.e., we s
n̄50

III. ATOMIC SCHRO¨ DINGER CAT STATES PRODUCED
BY DISPERSIVE INTERACTION IN A CAVITY

In this section we show that the unitary evolution gen
ated by the Hamiltonian~12! transforms an atomic coheren
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FIG. 1. Spherical polar plots of the quasidistributionQ(a,b) for ~a! t50, ~b! t5p/2, ~c! t5p/3, and~d! t5p/4; Number of atoms:
N510. x→Q(a,b)sina cosb, y→Q(a,b)sina sinb, z→Q(a,b)cosa.
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state into a superposition of distinct atomic coherent sta
The superposition of atomic coherent states is an ato
Schrödinger cat state in the same sense as the superpos
of electromagnetic field coherent states is a Schro¨dinger cat
state.

Consider an atomic system prepared in the atomic co
ent state@12#

uc~0!&[uu,f&5 (
k50

N A N!

~N2k!!k!
exp~ ikf!

3sinN2kS u

2D coskS u

2D UN2 2kL . ~13!

The state~13! is an eigenstate of the component of the a
gular momentum in the (u,f) direction with eigenvalue
s.
ic
ion

r-

-

N/2. The atoms in the state~13! are uncorrelated as~13! can
be written as a product state for individual atoms. In partic
lar, one will have

^Si
1Sj

2&[^Si
1&^Sj

2&, iÞ j . ~14!

An atomic coherent state, like a harmonic oscillator coher
state, is most classical in the sense that it is a minim
uncertainty state of a pair of operators for two mutually o
thogonal spin components orthogonal to the average di
tion of spin in the atomic coherent state. An evolution ge
erated by a linear combination of the atomic operat
transforms an atomic coherent state to another one—th
equivalent to motion on a Bloch sphere. The atomic coher
state~13!, under the action of the nonlinear unitary evolutio
generated by Eq.~12!, transforms to
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FIG. 2. Contour plots ofQ(x,y) for t50 andt5p/2.
on

left-

rted
uc~ t !&[ exp@2 iHt #uu,f&5 (
k50

N A N!

~N2k!!k!

3exp~ ikf!sinN2kS u

2D coskS u

2D
3exp@2 i t$N1~N21!k2k2%#UN2 2kL ,

t[ht. ~15!

From now on we consider Eq.~15! at special times
t5p/m, wherem is an integer,

uc~ t !&5expF2
ipN

m G (
k50

N HA N!

~N2k!!k!

3exp~ ikf8!sinN2kS u

2D coskS u

2D
3expF i

p

m
k~k11!GUN2 2kL J , ~16!

where

f85f2
p

m
N. ~17!
Now use the expansion@2#

expF ip

m
k~k11!G5 (

q50

m21

f q
~o!expF2p iq

m
kG ,

expF ip

m
k2G5 (

q50

m21

f q
~e!expF2p iq

m
kG ~18!

for m odd and even, respectively along with the inversi
relations

f q
~o!5

1

m(
k50

m21

expF2
2p iq

m
kGexpF ip

m
k~k11!G ,

~19!

f q
~e!5

1

m(
k50

m21

expF2
2p iq

m
kGexpF ip

m
k2G .

These expansions are based on the periodicity of the
hand side of Eq.~18!. The importance of Eq.~18! lies in the
fact that an exponentially quadratic form has been conve
into sums of exponentials linear ink. On combining Eqs.
~15! and ~18! we obtain
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56 2253ATOMIC SCHRÖDINGER CAT STATES
exp@2 iHt #uu,f&5expF2
ipN

m G (
q50

m21

f q
~o!

3Uu,f1p
2q2N

m L , t5
p

mh
~20!

for m odd and

exp@2 iHt #uu,f&5expF2
ipN

m G (
q50

m21

f q
~e!

3Uu,f1p
2q2N11

m L ,

t5
p

mh
~21!

for m even. The expressions~19! and ~20! show that at the
particular time t5p/mh, an atomic coherent state evolve
to a superposition of the atomic coherent states; i.e., it
comes an atomic cat state. The states in the superpos
differ by phase. In particular, form52 it follows that

exp@2 iHt #uu,f&5
exp@2 iNp/2#

A2

3FexpS ip

4 D Uu,f2p
N21

2 L
1expS 2 ip

4 D Uu,f2p
N23

2 L G .
~22!

One can similarly obtain expressions for the Schro¨dinger cat
states for other values ofm.

IV. QUASIDISTRIBUTIONS FOR ATOMIC
SCHRÖDRINGER CAT STATES

Next we present the form for the quasidistributio
Q(a,b) for Schrödinger cat states defined by

Q~a,b![^a,bur~ t !ua,b&. ~23!

Consider the state~15! with an initial stateuu,f&[up/2,0&.
Then theQ(a,b) function is

Q~a,b,t![S 1

2D N

(
k50

N

(
k850

N S N!

~N2k!!k! D
3S N!

~N2k8!!k8!
D sin2N2k2k8S a

2 D
3cosk1k8S a

2 Dexp@2 i ~k2k8!b#

3exp@2 i ~k2k8!~N2k2k821!t#. ~24!

We show in Figs. 1~a!–1~d! the spherical polar plots@13# of
the quasidistribution for a system of 10 atoms and fort50,
p/2, p/3, and p/4. The Schro¨dinger cat character of th
e-
ion

state is clearly seen fort5p/2 andp/3. Fort5p/4 there is
too much overlap between different components of the stat
and that is why splittings are not clearly seen.

The contour plots of these states are also interesting. Fo
countour plotswe map from polar coordinates(a,b) to pla-
nar coordinates(x,y) via

x1 iy5F tanS a

2 D Geib, a→2tan21Ax21y2,

b→tan21
y

x
. ~25!

Thus Q(x,y) becomes a function ofx and y. The contour
plots correspond toQ(x,y) 5 const. These are shown in Fig.
2. For the stateup/2,0& the contour plots are circles—this is
similar to harmonic oscillator coherent states. However, th
center of the circle moves. This can be seen from the explic
formula for theQ function for the stateup/2,0&:

Q~x,y![S 1

2D NF11x21y212x

11x21y2 GN

, ~26!

which can be written as

x21y2111
2x

12a
50, a52Q1/N. ~27!

Note thatQ.0 anda is real. The expression~27! represents
a system of circles, where thecenter of the circle moves with
a. Clearly the center will move according to the value of
Q. The contour plots of Schro¨dinger cat state~22! for p/2

FIG. 3. Plot ofQ/Q0 @Eq. ~31!# showing interference structures
for atoms in a Schro¨dinger cat state.
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are quite suggestive. These clearly correspond to two co
ent states shifted in phase byp. In fact Q(x,y) for the state
at t5p/2 is found to be

Q~x,y!5S 1

2D N11F S 11x21y212y

11x21y2 D N

1S 11x21y222y

11x21y2 D N

1S i S x21y22122ix

11x21y2 D N

1c.c.D G , ~28!

which shows the existence of a pair of circles in contour p
The Schro¨dinger cat states are correlated and are quantum
nature.

The Schro¨dinger cat states for harmonic oscillator sy
tems are known to exhibit interesting quantum interferen
@1,14#. We now investigate the question of quantum interf
ences for atomic Schro¨dinger cat states. For this purpose w
write theQ function as

Q5^a,buc&^cua,b&, ~29!

whereuc& represents Eq.~22!, which we rewrite as

uc&5
~ uc1&1uc2&)

A2
. ~30!
,

t.

et

.

N
.

r-

t.
in

s
-

Note that for~22!, ^c1uc2&50. ThusQ function will become

Q5Q01Q1, ~31!

Q0[ 1
2 ~ u^a,buc1&u21u^a,buc2&u2!, ~32!

Q1[ 1
2 ~^a,buc1&^c2ua,b&1c.c.!. ~33!

Note thatQ0 will correspond to a situation when there are
interferences andQ1 gives the interference contribution
Thus a plot of (Q/Q0) will exhibit interference structures
i.e., maxima and minima. We show this behavior in Fig. 3
there were no interferences then the polar plot will be
sphere. However, we find well defined maxima and mini
on the surface of the sphere. We have thus interferences
sphere. It is also clear from Eq.~22! that it could not be
expressed as a product of states of individual spins. T
atom-atom correlations are important in the Schro¨dinger cat
state.

In conclusion, we have shown how the Schro¨dinger cat
states for a system of atoms can be generated using the
persive interactions in a cavity. We show the existence
interesting interferences by studying the quasidistributio
The present work can be generalized to construct more g
eral superposition states as well to construct t Schro¨dinger
cat states for multilevel systems. Finally we note that one
also use state reduction methods@15,16# for generating
atomic Schro¨dinger cat states.
tt.

,

l to

ys.

ts
ed

. S.

cat
to

-

@1# W. Schleich, M. Pernigo, and Fam Le Kien, Phys. Rev. A44,
2172 ~1991!; V. V. Dodonov, I. A. Malkin, and V. I. Manko,
Physica~Amsterdam! 72, 579 ~1974!; M. Hillery, Phys. Rev.
A 36, 3796 ~1987!; V. Buzek, H. Moya-Cessa, P. L. Knight
and S. J. D. Phoenix,ibid. 45, 8190~1992!; G. C. Gerry, Opt.
Commun.63, 278 ~1987!; R. Lynch ibid., 67, 67 ~1988!.

@2# K. Tara, G. S. Agarwal, and S. Chaturvedi, Phys. Rev. A47,
5024 ~1993!; G. V. Varada and G. S. Agarwal,ibid. 48, 4062
~1993!.

@3# B. Yurke and D. Stoler, Phys. Rev. Lett.57, 13 ~1986!.
@4# R. Tanás, Ts. Gantsog, A. Miranowicz, and S. Kielich, J. Op

Soc. Am. B8, 1576~1991!.
@5# M. Wolinsky and H. J. Carmichael, Phys. Rev. Lett.60, 1836

~1988!; M. D. Reid and L. Krippner, Phys. Rev. A47, 552
~1993!; G. S. Agarwal~unpublished!.

@6# M. Brune, E. Hagley, J. Dreyer, X. Maıˆtre, A. Maali, C.
Wunderlich, J. M. Raimond, and S. Haroche, Phys. Rev. L
77, 4887~1996!.

@7# M. Graf, G. S. Agarwal, M. Orsag, M. O. Scully, and H
Walther, Phys. Rev. A49, 4077~1994!.

@8# M. Brune, S. Haroche, J. M. Raimond, L. Davidovich, and
Zagury, Phys. Rev. A45, 5193 ~1992!; B. Sherman and G
Kurizki, ibid. 45, R7674~1992!.

@9# J. J. Slosser, P. Meystre, and E. M. Wright, Opt. Lett.15, 233
t.

.

~1990!; R. L. Dematos Filho and W. Vogel, Phys. Rev. Le
76, 608 ~1996!.

@10# C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland
Science272, 1131~1996!; D. M. Meekhof, C. Monroe, B. E.
King, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett.76,
1796 ~1996!; D. Leibfried, D. M. Meekhof, B. E. King, C.
Monroe, W. M. Itano, and D. J. Wineland,ibid. 77, 4281
~1996!.

@11# M. Kitagawa and M. Ueda@Phys. Rev. A47, 5138 ~1993!#
considered spin squeezing by a Hamiltonian proportiona
Sz

2 .
@12# F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Ph

Rev. A 6, 2211~1972!.
@13# J. P. Dowling, G. S. Agarwal, and W. P. Schleich@Phys. Rev.

A 49, 4101~1994!# present a detailed study of the polar plo
for the Wigner functions of atomic coherent and squeez
states.

@14# For some interferometric aspects of atomic cat states see G
Agarwal and R. P. Singh, Phys. Lett. A217, 215 ~1996!.

@15# C.C. Gerry and R. Grobe~unpublished!.
@16# The issues connected with the decoherence of the atomic

states will be considered separately though we know how
modify dynamical equation~10! to include decoherence ef
fects.


