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Atomic Schrodinger cat states
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We consider a physical process that leads to the generation of atomidBgj@ocat states for a system of
two level atoms. The effective interaction between atoms in a dispersive cavity leads to the superposition of
atomic coherent states. We study in detail the quasidistributions for these states and demonstrate how the
Schralinger cat states can lead to interesting interferences over the surface of a sphere.
[S1050-294{@7)02109-4

PACS numbeg(s): 42.50.Dv, 42.50.Lc, 42.50.Hz

I. INTRODUCTION The organization of the paper is as follows. In Sec. Il we
introduce the model of interacting atom-cavity system and
The concept of superposition of macroscopically distinctderive the expression for the effective atomic Hamiltonian
guantum states, i.e., the ScHiager cat states, plays an im- by adiabatically eliminating the field variables. In Sec. Ill,
portant role in understanding the conceptual foundations ofve study the evolution of an initial atomic coherent state
guantum mechanics. The methods for generation of such swnder the action of that effective Hamiltonian and we show
perposition states are, therefore, of fundamental interest. #e emergence of cat states at particular times. In Sec. IV we
lot of attention has been paid to the problem of generatiorshow polar and contour plots for the quasidistributions for
and properties of Schdinger cat states of a harmonic oscil- Schfdinger cat states. These plots elucidate the properties of
lator or the electromagnetic fieldl—4]. The macroscopic the Schrdinger cat states.
states in that case are the harmonic oscillator or electromag-
netic field coherent states with large number of photons. A Il. THE DYNAMICS OF ATOMS
field coherent state evolving under the influence of a Hamil- IN A DISPERSIVE CAVITY
tonian linear in the field quadratu@ and a’ and number
operatora’a evolves to another field coherent state. A non- ] i - - :
linear interaction can generate a Safinger cat state from a réqueéncy oo interacting collectively with a single mode
coherent staté3—5]. Brune et al. [6] have realized Schiro electromagnetic fleld_ln a cavity whose characteristic _fre-
dinger cat states of the radiation field in cavity QED. A non-dUeNcy nearest tay is .. We show that under certain
linearity of particular interest for generating a field cat stateconditions the dynamics of atoms is described by an effec-
is of Kerr type[2—4]. The Kerr nonlinearity corresponds to a tive Hamiltonian[Eq. (12) below] in atomic variables. The
Hamiltonian that is quadratic in the field number operator. A€ffective Hamiltonian is reminescent of the effective Hamil-
number of state reduction techniqui&8] can also yield tonian for rad|a_t|on field in a Kerr medium. If the gystgm of
superposition of such states. Recently the mesoscopic Schrtoms is described by the sp8. STZ and the cavity field
dinger cat states for vibrational motion of ions in traps havenode by the bosonic operatora,&’) then the atom-field
been discussed and realizEaj10]. interaction is governed by the Hamiltonian
In this paper we discuss the issue of generating Schro
dinger cat states of a system of spins or equivalently a sys-

tem of N two-level atoms. The macroscopic states in thisyhereg is the atom-field coupling constant. It may be noted
case are, in analogy with the case of the electromagnetigyat microcavities could be ideal candidates for studying
field, the spin or atomic coherent stal@eCS) |6,¢). Asin such collective interactions. In addition to the reversible in-
the case of the electromagnetic field, we search for a nonlingraction with the atoms, the field suffers irreversible losses

ear interaction that can generate a superposition of the ACgn account of leakage out of the cavity described by the
as from an initial atomic coherent state. Here we show thafjoyvillian

the interactiomonlinear in the operator for atomic popula-

Consider a system df identical two-level atoms each of

Hy=%woS,+hwa'a+rg(S,a+a’s.), 1)

tion inversion can generate a superposition of ACS, i.e., an Aip=k(n+1)(2apa’—atap—pata)
atomic Schrdinger cat state. This nonlinear interaction is o
shown to berealizablein the experiments on two-level at- +kn(2a'pa—aa'p—paa’), 2

oms in a low@ cavity highly detuned from the atomic tran- o
sition frequency. Here the light shift due to the vacuum fieldwhere 2 is the rate of the loss of photons amdis the
induces an effective interaction which is nonlinear. average number of thermal photons in the cavity. We assume
that the dissipation due to atomic spontaneous emission is
negligibly small on the time scale of interaction. That is con-
*Also at Jawaharlal Nehru Center for Advanced Scientific Re-sistent with the conditions in the experiments on atoms un-
search, Bangalore. Electronic address: gsa@prl.ernet.in dergoing transitions between Rydberg levels in a cavity. The
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evolution of the system in &ame rotating withw is then ~ WhereL (7) is the Liouville operatolL ¢ in the interaction

described by the master equation picture. Next, we evaluate the integral in Ed) by using the
results
d_[t):Lafp+pr 3 exp(Lt)ap=exp(iot)[{(n+1)exp «kt)— n exp(— «t)}ap

—n{exp kt)— exp(— kt)}pa;
for the density matriyp where _
exp(L¢t) pa=exp(i o:t)[(n+1){exp «t) —exp — «t)}ap

- t — —
Lap=—ig[S;a+a’'S_,p], —{n exp(xt)— (n+1)exp — kt)}pal, (8)
4 . . . . .
along with their Hermitian conjugates and obtain
Lip=—is[a'a,p]l+Atp, 8c=we—wy. dpa 9 : —
_ _ _ . dt - 2 52l 10c[S+S- pal +2N[S; pal}
We now derive an equation for the density maipix of the K c
atoms alone. A systematic approach for obtaining the master — _ B
equation for a subsystem from that for the complete system F{(N+1)(25-paS: =S S-pa=paS:S-)
is offered by the projection operator technique. However, for +1(2S.0.S —S.S.p.—p.S.S 9
the sake of simplicity and in order to highlight the physics (254PaS-=S-Sipa=paS-Si)H ©
aspects, we follow a method that is essentially the same in itg/e of course have also assumed that the atomic density ma-

content but not in rigor as the method of projection operatrix p,(t) evolves slowly on the scale d@¢. Now, if §.>«
tors. The results so obtained are the same as those arrivedtgen the contribution due to damping in E§) is negligibly

by more rigorous approaches. small and it reduces to
To that end, we write the formal solution of E®) in the
form dp . —
d—:=—|n[s+s_+2nsz,pa], (10)
t
p(t)=exp(Lft)p(0)+f dr expg L¢(t—17)]Lap(0) where
0
9°dc
t T = , 11
+f drf drexgL(t—7)]Lag 7T (1)
o Jo

and Ng?<«?+ 62. For a given value ofyNg and «, the
adiabatic condition can be satisfied by increasing the detun-
ing |wo— w¢|. Equation(10) shows that in a cavity, highly
detuned from the atomic transition frequency, the evolution
of the atomic system is approximately unitary and is gov-
erned by the effective Hamiltonian, which essentially arises
from the effect of vacuum light shifts,

XexgLi(7—71)ILatp(71). &)

The Liouvillian L, determines the rate of exchange of en-
ergy between the field and the atoms. For laxg¢hat rate is
known to be of the order af/N. On the other hand, the rate
of the process described by the Liouvillidn is clearly of
the order ofli s+ «|. Hence, if|i 8;+ x|>g\N then the
evolution of the field is dominated Hy; and it is reasonable Her=%7[S:S_+2nS,]
to assume that the field remains for all times adiabatically in

the state determined Hy; . Furthermore, if the time scale of _ N 9 =

observation is much longer thdnd.+ | then that state is zf”{E §+1 ST (2n+1)S,). (12)
the steady statp;®of L, which is the state of thermal equi-

librium given by The Hamiltonian(12) is quadratid 11] in the population in-

version operato§, . It is, therefore, analogous to the Hamil-
_ tonian quadratic in the number operator of the single mode
ss_ . n field propagating through a Kerr medium like an optical fi-
pi*=exp(—pa’a)/Texy—pa'a)l,  exi—p)= h+1  bre I?\ trrw)e(‘:jnextgsectiorsJ we show that the Hamiltor?(aﬂ)
(6) leads to the generation of atomic Satlirger cat states from
an initial atomic coherent state. Note that the temperature-
We, therefore, write the density matrixt) in Eq.(5) as  dependent term corresponds to a simple rotation and there-
the outer product of the time-dependent density matrifore we drop it in our further considerations, i.e., we set
pa(t) of the atoms and the steady-state density matfifor —n=0
the field; take the trace of the two sides over the field to

arrive at the following equation fop,(t): lll. ATOMIC SCHRO DINGER CAT STATES PRODUCED
BY DISPERSIVE INTERACTION IN A CAVITY

dpa [t is secti i - i
d_ta: fodrTrf{Laﬁquf(t— Nl Dpa(DpsS, (1) In this section we show that the unitary evolution gener

ated by the Hamiltoniafl2) transforms an atomic coherent
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(b} (d)
FIG. 1. Spherical polar plots of the quasidistributiQ«,B) for (a) 7=0, (b) 7= /2, (c) 7= /3, and(d) 7= w/4; Number of atoms:
N=10.x— Q(«,B)sina cosB, y—Q(a,B)sina sinB, z—Q(«,B)cosx.

state into a superposition of distinct atomic coherent statedN/2. The atoms in the staté&3) are uncorrelated a4.3) can

The superposition of atomic coherent states is an atomibe written as a product state for individual atoms. In particu-

Schralinger cat state in the same sense as the superpositidar, one will have

of electromagnetic field coherent states is a Sdimger cat

state. , , _ (S'S)=(S'NS),  i#]. (14)
Consider an atomic system prepared in the atomic coher- t v

ent statd12
412] An atomic coherent state, like a harmonic oscillator coherent

state, is most classical in the sense that it is a minimum

N
[(0))=|6,¢)= > N explik &) uncertainty state of a pair of operators for two mutually or-
k=0 Y (N—=Kk)!k! thogonal spin components orthogonal to the average direc-
tion of spin in the atomic coherent state. An evolution gen-
o\|IN ; o :
coé‘(—) ——k>. (13 erated by a Ilnear. combination of the atomic operatprs_
2]|2 transforms an atomic coherent state to another one—this is
equivalent to motion on a Bloch sphere. The atomic coherent
The state(13) is an eigenstate of the component of the an-state(13), under the action of the nonlinear unitary evolution
gular momentum in the §,¢) direction with eigenvalue generated by Eq12), transforms to

xsinN‘k(g
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FIG. 2. Contour plots of3(x,y) for =0 and 7= /2.
NI Now use the expansidr]
[p(1))= exd —iHt]|6,¢)= E N=RTK
pa 2iq
_ f£(0)
X exp(ik ¢)sinN ™ k( )coé‘( ) F{ k(k+1) Z exp{ m k}'
Xexp[—ir{N+(N—1)k—k2}]E—k> m-— qu
q=0

r=qt. (15

From now on we consider Eq(15 at special times
7=a/m, wherem is an integer,

N] [ NI
20{ (N—K)!k!

) =exp

X exp(ik ¢’ )sinN ™ "( )coé‘

T N
X ex |Ek(k+l) E_k , (16)

where

;L aw
¢'=¢- N 7

for m odd and even, respectively along with the inversion
relations

1t 2
=25 of 27,

=0

exp[—k(k+ 1),

ofze]

These expansions are based on the periodicity of the left-
hand side of Eq(18). The importance of Eq18) lies in the

fact that an exponentially quadratic form has been converted
into sums of exponentials linear ik On combining Egs.
(15) and(18) we obtain

(19

1t 2miq
(e>:—§ _
fq m ex;{ m K
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. PNt
exd —iHt][6,¢)=exg — —| >, L
m q=0
y 2q—N _m 20
0,0+ ) t_m_ﬂ (20)
for m odd and
i7mN m-1
i — - (e)
exy —iHt]|6,¢) ex;{ mLZ:o fl
29—-N+1
X|0,p+ 77—, .
S 21
t_m_ﬂ (21)

for m even. The expression49) and (20) show that at the
particular time t=7/m%», an atomic coherent state evolves
to a superposition of the atomic coherent states; i.e., it be
comes an atomic cat state. The states in the superpositic
differ by phaseln particular, form=2 it follows that

exd —iN/2
exd — th]| 0, ¢> = M FIG. 3. Plot ofQ/Qq [Eg. (31)] showing interference structures
\/E for atoms in a Schdinger cat state.
% ex;{ I_Tr) 0,p— WE> state is clearly seen far= 7/2 and#/3. For 7= 7/4 there is
4 2 too much overlap between different components of the state

i and that is why splittings are not clearly seen.

a . .

+ex;{ —) ‘ 60, p— 7-;—H The contour plots of these states are also interesting. For
4 countour plotsve map from polar coordinatesy, 8) to pla-

(22 nar coordinategx,y) via

One can similarly obtain expressions for the Sclimger cat all
states for other values of. X+iy= tar(E el a—2tan 1Yx2+y?,
IV. QUASIDISTRIBUTIONS FOR ATOMIC y
SCHRODRINGER CAT STATES ,Bﬂta”_lg- (25)

Next we present the form for the quasidistribution

Q(a,p) for Schralinger cat states defined by Thus Q(x,y) becomes a function of andy. The contour
B)=(a, t)|a, B). 23 plots correspond tQ(x,y) = const. These are shown in Fig.
Q(a,B)=(e.Blp(t)|a,B) @3 Forthe statér/2,0) the contour plots are circles—this is
Consider the statél5) with an initial state] 8, ¢)=|/2,0). similar to harmonic oscillator coherent states. However, the
Then theQ(«, 8) function is center of the circle moves. This can be seen from the explicit
formula for theQ function for the stat¢w/2,0):

1 N N N N!

1\ N[ 1+ x2+y?+2x N
QxY)=|3 TI2av | (26)
N! : N—k—k’(a> g
>< e — —
(N—K")Ik'! 2 which can be written as
k' @ i L’ 2X
x cos* (E)exq i(k—k")B] XP+yP+14 =0, a=2Q™. 27)

Xexg —i(k—k")(N—k—k'—=1)7]. (29
Note thatQ>0 anda is real. The expressiof27) represents
We show in Figs. (a)—1(d) the spherical polar plofsl3] of  a system of circles, where tloenter of the circle moves with
the quasidistribution for a system of 10 atoms and#e®0, a. Clearly the center will move according to the value of
w12, w/3, and w/4. The Schrdinger cat character of the Q. The contour plots of Schdinger cat staté22) for /2
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are quite suggestive. These clearly correspond to two coheNote that for(22), {¢4|#,)=0. ThusQ function will become
ent states shifted in phase hy In fact Q(x,y) for the state

at 7= /2 is found to be Q=Qo+Qy, (3D
N+1 2,2 N
Qx,y)= E) rxiry+2y Qo=3(I(a. Bly) |+ (. Bl42) ), (32
, 2 1+x2+y?
14x2+y2—2y\N Q:1=z((a,Bly1)(ola,B)+c.C). 33
1+x2+y? Note thatQ, will correspond to a situation when there are no

interferences andl; gives the interference contribution.
1 29) Thus a plot of Q/Qg) will exhibit interference structures,
' i.e., maxima and minima. We show this behavior in Fig. 3. If
there were no interferences then the polar plot will be a
which shows the existence of a pair of circles in contour plotsphere. However, we find well defined maxima and minima
The Schrdinger cat states are correlated and are quantum ian the surface of the sphere. We have thus interferences on a
nature. sphere. It is also clear from E@22) that it could not be
The Schrdinger cat states for harmonic oscillator sys-expressed as a product of states of individual spins. Thus
tems are known to exhibit interesting quantum interferencegtom-atom correlations are important in the Sclimger cat
[1,14]. We now investigate the question of quantum interfer-state.
ences for atomic Schdinger cat states. For this purpose we  In conclusion, we have shown how the Safirger cat

x2+y2—1-2ix|"

1+x2+y?

+11 +cC.C.

write the Q function as states for a system of atoms can be generated using the dis-
persive interactions in a cavity. We show the existence of
Q=(a,Bl¥)(¥la.B), (29 interesting interferences by studying the quasidistributions.

The present work can be generalized to construct more gen-
eral superposition states as well to construct t Sdiliger
cat states for multilevel systems. Finally we note that one can

where| ) represents Eq22), which we rewrite as

|y)= M (30) also use state reduction methofis5,16] for generating
\/E atomic Schrdinger cat states.
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