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Cavity quantum electrodynamics for a cylinder: Inside a hollow dielectric
and near a solid dielectric cylinder
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We calculate the atomic energy-level shift and the modified dipolar radiation rate inside a hollow dielectric
cylinder and outside a solid cylinder using a quantum-mechanical linear-response formalism in the dipole
approximation. We first derive the electromagnetic fields scattered by the cylindrical surface for an oscillating
dipole inside and outside the cylinder. When an atom is located on the axis of the cylindrical hollow, we obtain
analytic expressions of the atomic level shifts in two limiting cases: whémdius of hollow is very small,
the level shift is proportional tb~2 which is associated with the kinetic-energy change of the atomic electron,
whereas whem is very large, the shift is proportional fo~* which is identified as the retarddé@asimir-

Polde) interaction energy. Moreover, we calculate the atomic potentials as a function of the position of atoms
in the hollow region, which is important for the atom-guiding experiment. We also calculate the decay rates
and find enhanced rates inside and outside the cylinder. In particular, we compare the radiative properties of an
atom inside the hollow cylinder with those between two plates, and those near a cylinder with near a single
surface [S1050-294{@7)03608-1

PACS numbdps): 42.50.Ct, 32.70.Jz, 12.20.Ds

I. INTRODUCTION effects for the cylindrical geometry in detaifWe should
especially know the attractive potential by the cylindrical
There has been much interest and activity devoted to theurface for the analysis of the experiments related to guiding
study of cavity quantum electrodynami¢savity QED [1]  inside the fibep. Note that the results of Refl16] are not
for various cavity geometries. For example, there are numerappropriate since they only deal with the classical electronic
ous theoretical or experimental studies of atomic energymotion inside a perfectly conducting cavity. We therefore
level shifts and modified radiative decay rates near a singlaeed a more general quantum-mechanical treatment, includ
surface[2,3], between parallel surfac¢4—6], and inside or ing the effects of dielectric material as well as polarizations
outside of a spherical cavify’,8]. Recently, the cavity QED of the atomic dipole.
effects inside a hollow dielectric cylinder or near a solid Although a general approach to the problem may be the
dielectric cylinder have also become interesting and attracperturbation theory with quantized cavity fields, it is not use-
tive, in particular, in the fields of atom optics and atomic ful since it becomes very complicated and almost impossible
spectroscopy in a microcavity. for problems other than the perfect-conductor case of simple
For instance, an atomic waveguide with blue-detuned evageometries. In this paper, on the other hand, we will use the
nescent waves in an hollow optical fiber was suggested blnear-response formalisif¥] which has been successfully
Marksteineret al. [9] and it has been recently realized by applied to other geometri¢8,7]. We will calculate the dis-
Rennet al. [10] and by Itoet al. [11]. In particular, isotope persive and dissipative cavity-QED effects inside as well as
separation as well as the observation of cavity QED effectsutside a dielectric cylinder. In Sec. Il, we solve the scatter-
was achieved in Refl11]. Atoms were also guided by a ing problem inside and outside the cylinder to obtain the
red-detuned Gaussian laser in the hollow regid®]. A  electric fields reflected by the cylindrical surfaces. We then
similar, small hollow fiber may be used to study the quantunobtain the field susceptibilities and calculate the level shifts,
statistical properties of atoms in one dimensj@8] or even as well as the modified decay rates, inside a hollow dielec-
to realize atomic quantum wirgl4]. It has been also sug- trtic cylinder in Sec. lll and the decay rates outside a con-
gested that a stable, helical motion of an atom around a soliducting cylinder in Sec. IV, where the results are compared
optical fiber may be possible by using evanescent waves déo those for other geometries. In Sec. V we obtain the level
veloped near the cylindrical surfaf®4]. Moreover, a quan- shifts as a function of atomic position inside the hollow di-
tum nondemolition measurement of the photon number inelectric and outside the cylindrical dielectric. Conclusions
side an optical fiber was performed using the Comptorand comments are made in Sec. VI.
scattering of the electrons due to the evanescent waves pro-
duced near the fibdn5].
Despite its increasing interest and importance, no theoret- Il. RADIATION FIELDS SCATTERED
ical work has been done for a cylindrical caviinside or BY CYLINDRICAL SURFACES
outsideg, except for a classical study of the damping-rate
change and frequency shift of the cyclotron motion of a free
electron inside a cylindrical microwave cavit§6]. There- In this subsection, we calculate the scattered fields due to
fore, it seems urgently necessary to study the cavity-QEDRhe cylindrical surface when the atomic dipole is located in-

A. Inside a hollow dielectric
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(b)

FIG. 1. (a) Geometry for the scattering problem when the dipole
is inside a hollow dielectric cylinder radilsand(b) when the atom
is outside a solid cylinder. The cylinder radiushisand the dielec-
tric constant ise.

side a cylindrical cavity made up of a long, hollow dielectric
[see Fig. 1a)]. In free space, the dipole fields are obtained
from the vector potentiah

. eik\r—ro\
A=—ikp——r:,
|F— ol
B=V XA,
I
E= VB, 2.1
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whereB (E) is the magneticelectrig field, w(=ck) is the
oscillation frequency, and, is the dipole location.

By the eigenfuction expansiofrefer to Appendix A for
its derivation, we find

eklr=rol j e . ‘
—_ 2 dk/elm(d>—z;b’)e|k’(z—z’)
7= m==o J=e
XIm(VK2 =K 2p)H (VK3 —K?p-),

(2.2

where p_ (p~) is the smaller(largep of p and p, and
Jn(x) [HM(x)] is the Bessel functiofiHankel functiorj of
the first kind.

Then, from Eqgs(2.1) and(2.2), we obtain the free fields
in terms of the cylindrical eigenfunctions. When the dipole is
located inside a hollow cylinder surrounded by the dielectric
surface(dielectric constant), the scattered fields along the
axis (i.e., z componentsare found as

o
©

EiC: dk,‘]m( alp)eim(beikrzamk/ ) 2.3
m=—oo —

H*= > dK'J(ayp)e™e %y, (2.4
m=—o — 00

and the transmitted fields are obtained as

E;= X | dK'Hn(azp)e™eZen,, (2.5
m= —ox© — 0

Hy= > dK' Hpm(azp)e™e 2, (2.6
m=—w — 00

where a;=k?—k’? and a,=\ek?—k’2. [For simplicity,
we write H{Y(x) as Hy(x).] Moreover, p and ¢ compo-
nents of the fields can be calculated from theomponents
by Maxwell’s equations. Therefore, we only have to deter-
mine the coefficient®,, by, Cmk,» anddy using the
standard boundary conditions.

From the continuities of the andz components oE and
H fields, we obtain

€70+ Im(@1b)anme =Hm( @2b)cpi,

hZ i+ Im(@1b) b =Hin( @zb) diie,

m ZTONS . ai P
F‘]m(alb)amk’ - W‘Jm(al)bmk’ —I Wemk’

2/

aifim a0

—a—g FHm(azb)cmk’_WHm(azb)dmk’ ,
. 2
im o a1,
FJm( ab)bp + WJm( ap)amp —i Whmk’
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ai i ca0 replacel_<= w/c by k(1+i€) and lthen set—0, (this pro-
= 572 FHm(QZb)dmk’+ TCHm(Olzb)ka’ , cedure is also related to causality
(2.7 B. Outside a solid dielectric
where In Sec. Il A, we have solved the scattering problem when
the dipole is inside a hollow dielectric cylinder. On the other
L hand, the above results can be simply applied to the case
€k = 35| @1Im(@1p0)Hm(@1D)P3 where the dipole is outside a solid dielectric cylinder. In this
_ casep- (p-) becomed (py) at the boundary=>b and we
K ayd. o VM (ab) Ip1+ P2 need to exchangé,(x) andH(x) in all the equations of
%1 m-11¢1P0)Mml *1 2 Sec. Il in order for the scattered and transmitted fields not to
) diverge.
IP1—P2
+k' a;J H b ,
@12 @1po)Hn(a2b) == } ll. ATOMIC DECAY RATE AND LEVEL SHIFT
INSIDE A HOLLOW DIELECTRIC CYLINDER
I !
ez’qk,=§[ - T‘]m(alpO)Hm(alb)p3+ Jm—1(a1po) In this section, using the results of the preceding section
and the linear-response thedi3], we first obtain the field
Mo, ip;+p, susceptibilities as
X szm—l(alb)_THm(a’lb) > o R
Gap=CaptGap. 3.1
+‘]m+1(a1p0)( k?H . 1(a1b) WhereGgﬁ is the free-space susceptibility in the absence of
the cavity andsiﬁ is the susceptibility for the field reflected
ma; —ipy+ps by the cylindrical surfacef5]. We then calculate the modi-
- THm(alb) — | fied decay rate and the energy-level shift of an atom by
ik F—Q=1+—20 PuPIMGE,(To.T0sw0), (3.2
M= = 7 @1Hm(@1b)[In-1(@1p0) (P1=ip2) Ly = ALg erpTes
. and
+ I+ 1(@1po) (P21 +ip2) ],
h ©
ik[ P1—ip, 5E=——f dZ GRg(fo.Foiidaapil), (3.3
hrﬁk’: ?[k Jmfl(alPO)Hmfl(alb)T 2mJo

respectively. Here,n.)gi is the @ component of the matrix ele-
ment of the atomic dipole operatgr between two atomic

statedi) and|f), Zw, is the corresponding energy-level dif-
ference,F?i is the free-space decay rate, afagls(w) is the

) p1t+ip;
+K' Im1(@1po)Hms1(a1b) - >

+iadm(ape)Hip(ab)psl. (2.8  atomic susceptibility(refer to Ref.[5] for details.
Here p;, p,, and p; representp,, py, and p,, respec- A. o-polarization case
tively, and J;, and H, stand for the derivatives af,, and Let us first consider ther-polarization case where the

Hn,. For convenience, we have assumed without loss of gerradiative dipole is polarized along the cylinder affisat is,

erality that the dipole position is such thag=2z,=0. Using  p,=p,=0). Therefore, we only neel:° at the atom posi-
Egs. (2.6) and (2.7), we now can calculate the coefficients tion. From Eq.(2.3), we find

Amk to dmk"
For instance, when the dipole is inside a perfectly con- R = - L
ducting cylinder g— o), szm;m Lodk Im(arp’)ag (3.9
Z
A= Cmi wherep’ is the distance between the atom and the cylinder
Mk g (aqb)’ axis anda,’ ., = an /ps sincep;=p,=0.
) Then, using Eqs(3.2)—(3.4), we can obtain the modified
o k’ m, a1, radiative decay rate and the ground-state energy-level shift.
Bk =~ kayd' (agb) B Emie T Cmie | In particular, when the atom is on the afibat is,p’ =0 in
Fig. 1(@], only m=0 term survives so that we find, in case
Coe =0y =0. (2.9  of o polarization,
. . . - r, 3 ® Ho(az€)
Note that in dealing with the coefficients, we need careful o _° Ref dx aza2 (3.5
treatments so that the scattered fields do not diverge: we first Iy 2 0 2 30(a18)
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FIG. 3. Energy-level shift of the ground-state atGmlog scalg

FIG. 2. Modified decay rate normalized to the free-space valumormalized toAT' as a function okb=2sb/\, when the atom is
as a function okb=2wb/\, when the atom is on the axis of the on the axis of a conducting cylinder, f@® o and(b) 7 polariza-

hollow cylinder, for o polarization with(a) e=2.25,(b) e=9, (c)
e=25, and for(d) 7 polarization inside a conducting cylinder.

> IRE o o 2,3
=53 [ o0 [ ey Lo
(3.6
where
A(e,ay,a5,8)
_ Ji(a1&)Ho(a18) —Jo(a1E)H (a1 €) 3.7
adi(a1€)Ho(aré) —eardo( @1 &)H (azé)’ '
B(e,a,B,X,Y,2)
_€aKy(By2)Ko(ayz)— BKi(ay2)Ko(BY2) 39

 eaKy(ByD)lo(ayz)+ Bli(ayz)Ko(By2)

and
a1=V1-x%,  a,=\e—x?, ¢=kb=2mbI\,
a=\1+x?, B=Ve+tx?, z=wyblc.

Herel'y simply denotesl“,?i andK (x),I n(x) are the modi-

fied Bessel functions.

tion.

case of an atom at the midpoint of the parallel dielectric
plates[5], whereas the oscillatory trend is more pronounced
in the cylinder case even in the lar§eegion: the approach

of the normalized decay rate to unitpr, the free-space
value is slower than that for the two plate case. The cavity
effects are, therefore, rather significant even for a large ra-
dius of the cylinder. From Fig. 2, we can also find how the
decay rate changes with For example, in the case of large
dielectric constant, strong inhibition of spontaneous emission
is expected whe# is not very close tog, .

Next, let us consider the level shift. Using E¢§3.6) and
(3.8), one can evaluate the energy shifts numerically. On the
other hand, one can also easily obtain the analytical expres-
sions of the shifts in the short-range and long-range limits,
that is, forb—0 andb— oo, respectively.

For smallz= w,gb/c (or short-range limjt we obtain

2 17, ® he?ly.
EG=~ 2 pr (T”°)|p2”|2=— 7. (39

n

where

|({€:f f dx dy a?y
0 Jo

In Fig. 2, we plot the decay rates as a function of the
normalized distancé=2wb/\N whereb is the radius of the
cylinder and\ is the transition wavelength. Figuregap-

2(c) present the modified decay rates when the atom is on the
cylinder axis fore=2.25,9,25, respectively. As shown in the (3.10
figures, we observe that whené¢ is near

Xon=2.41,5.52,8.65, etc., wherg,, is the nth root of  with a=\1+x% and 8= Je+x2. In the derivation of Eq.
Jn(Xmn) =0, the decay rate is larger than the free-spacd3.9), we have used the Thomas-Reiche-Kuhn sum rule and
value and the enhancement factor increases as the dielecthif, is a numerical constant depending on the dielectric con-
constante increases(Note that new propagating TM modes stante.

appear att=xg,). The general behavior of the decay rate As can be seen in Ed3.9), the level shift in the short-
with respect to the cylinder radius is similar to that of therange limit shows ™2 dependencéalso refer to Fig. Bbut

eaK1(BY)Ko(ay) — BK1(ay)Ko(BY)
eaK (BY)lo(ay)+ Bl (ay)Ko(BY) '
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the usual van der Waals interaction ¢) is not observed for a detailed evaluation, only the numerical constaffis
when the atom is on the cylinder axis. This result is differentand| . for each value ofe. For example, where=2.25,
from that of the two plate case but very similar to that of a;¢ ~4O 37, and §~0.95.
spherical cavity: when the atom is at the center of a spherlcal
cavity, the short-range interaction also shows® behavior
with a different coefficien{7]. Equations(3.9) and (3.10
also indicate that the short-range shift has no dependence on When the atomic dipole is polarized perpendicular to the
the atomic internal states. The physical implication of thiscylinder axis @r polarization such thap;=0), we can pro-
interaction energy is discussed in the following paragraphsceed by the same method as in thepolarization case. In

In the Coulomb gauge, the interaction Hamiltonian can b&-ig. 2(d), we have plotted the normalized decay rate when

B. ar-polarization case

written as the atom is on the axis of a perfectly conducting hollow
cylinder. In this case, the behavior is very similar to that for

e . . ez the parallel-plate cag&]. Moreover, the behavior in case of
H= AT 2m02A2’ (8.1)  adielectric cavity is also similar to that of the conductor case

except the fact that the decay rate is finiteéatkb=0.

o . For the level shift, we obtain in the short-range limit
whereP is the atomic momentum operator. When we calcu-

late the energy shift to ordee® in the perturbation theory, 210 (@0} on he?l ],
the second term of E@3.11) produces the state-independent oEp=— 2 b2 C py"*=— mecno?’
shift. Moreover, thisA? interaction describes the kinetic en- " (3.15
ergy associated with the vibration of the atomic electron in '
the fluctuating electromagnetic fief[d7—20Q. Therefore we and in the long-range limit
can observe that Eq3.10 represents the renormalized ki-
netic energy of the electron wobbled by vacuum fluctuation o ficlj a, (0)
inside a hollow cylindrical cavity. 72 b“E |PL |?=— 220
For largez (or the long-range limjt on the other hand, (3.16
we obtain ’
where
" 2 15, c on(2 ficlg.a,(0)
S6E —?FEH:(%)W |__W’ f fd gy exy) n(e,x,y) (3.17
(3.12 Yd(exy)’
where n(e,x,y)
dx dy 3.1
i), eorygly e
— 2,,3
_fo fo dx dy e’y and
eaK(BY)Ko(ay)— BKi(ay)Kq(BY) 2\2 2 aK;
1(BY)Ko(ay) — BKq(ay)Ko( By (3.13 d(ex,y)=12 1_a_2 +QZY_2|£_ 1 .
eaKy(BY)lo(ay)+Bli(ay)Ko(BY) B BK1
and a,(0) is the static atomic polarizability given by |7 6aK1|
bOUBK )
||oz”|2 ) s , ,
a,(0)= 2 (3.14) (exy) ya(al, K1I>K, 2K(|' 1 )
n(e,Xx,y)= —li—— -yia -
y ﬂ ﬂ 1 K 1 0 y ol "1 ,BK 1

Equation(3.12 is the well-known Casimir-Polder retarda-
tion energy having~* dependencésee also Fig. 3 Note +y3a?K}
that both short-range and long-range interaction energy,

which is proportional to#, are associated with pure o2 2

guantum-mechanical effects. X|1— —) l4 —ya( 1 —2) [1(yKo+ aKy)
To obtain the full-range behavior, we assume an oscillator B B

atom, that is, we consider onty=1 term which corresponds (3.19

to a strongly coupled, first-excited state. In Figa)3 the

level shift, normalized taiT',, is shown as a function of Note that in Eq(3.19, the argument of the modified Bessel
kb=2mb/N when the atom is on the axis of a perfectly functionsl,, K, and their derivatives; , Kg, is ay, whereas
conducting hollow cylindefi.e., e—©). As is clear, one can that ofK; andKj is By.

explicitly distinguish the short-range and the long-range The physical implications of the interaction energy in the
limit. For a dielectric cavity, on the other hand, the generalshort-range and the long-range limit are identical to those of
behaviors are similar to those of the conductor case, but onlthe o-polarization case. In Fig.(B), we present the numeri-
the absolute values are different. We therefore need to knowgal result and we find that the long-range level shifts are
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3.5 that the enhancement effect is more significant when the
) atom is near a cylindrical surface rather than near a plane
3.0- surface.
£ =7 kb=1
= 5. /.(C) V. LEVEL SHIFT AS A FUNCTION
§~ : OF ATOMIC POSITION
O 20 In this section, we present the level shifts of the ground
© @) state as a function of the radial position for fixed radius
'8 inside the hollow fiber and outside the solid dielectric fiber.
N 1.51 [ (b) They are very useful for experiments such as atom guidance,
© 1 for which one should know the atomic potential in addition
& 1.0 ———— to the optical potential. When the atom is inside the hollow
5 region and at an off-axis position, we have three different
Z o5 polarizations, as in the case outside the fifiec. \). For
’ o, polarization, the shift is
0.0 T T T T T o nO|pzn|2
0 1 2 3 4 5 6 oE, Z———E § 2 g2 G Ar,r,i§), (5.
@no
k(p-b) where
FIG. 4. Modified decay rate as a function of the normalized .
distancek(p—b), when the atom is outside a conducting cylinder _ '_ f r 2 2
andkb=1, for (a) o,, (b) o, and(c) = polarization. AN 0) > dk’ a3 Jm(e1r)]
i ati ] PU,+QV.
nearly the same for two polarizations, however, the short X H, (a;b) 2T QV; (5.2

range shift forsr polarization is slightly larger than that for P2+ QR
o polarization. One can also consider other interesting prob- _ o
lems, such as the level shifts as a function of the atom’sindr is the atomic distance from the centér<{w/c). [For

position for a given hollow radius. We will discuss this issuethe expressions @, Q, R, U;, andV;(i=p,#,z) which

in Sec. V. depend orb, m, k, k', ande, see Appendix B.
For o, and 7 polarization, on the other hand, the shifts
IV. DECAY RATE NEAR A SOLID CYLINDER are
In this section, for simplicity, we present the modified wno|PP"|? _
decay rate when an atom is outside a conducting cylinder. 0Eo=— —2 f dé———7 LAy Gii(r,r,i§), (5.3
n

With simple modifications, as mentiond in Sec. Il B, the
equations become very similar to those derived in Sec. I\
and consequently we just plot the numerical results withou
presenting the formulas here. When the atom is near a solid

¥vhere| p,¢ and

cylinder, three different atomic polarizations are possible Gpp(r,r,w)zizmj dk’ 7( alJr'n(alr)w
[see Fig. 1)]: a dipole parallel to the cylinder axiso @1 P*+QR
polarization, perpendicular to the axis but tangential to the imk PV —RU

surface ¢, polarization), and perpendicular to the axis but +TJm(alr)PZP+—QR)’ (5.9

normal to the surfaces polarization).

In Fig. 4, we have presented the decay rates for the three
polarizations as a function of the normalized distance from Gyy(r 1 @) =13, f dk _( mJ (aqf) PU,+QVy
the surfacek(p—b)=2m(p—b)/\ for a givenb such that SN 2 Y PZHQR
kb=2wb/N=1, wherep is the atom-axis separation. The
variations of theo, polarization and ther, polarization are _ alk I (et PVy— RU¢
nearly the same with each other. Moreover, we find that the kM P2 QR
general behaviors for the three cases are similar to that for a
single plane-surface case. In the case of the single plate, Using the above results, we can calculate the atomic level
however, the decay rate for a dipole normal to the surface ishifts for various atomic positions. For example, in Fig. 5,
enhanced by a factor of 2 when the dipole-surface separatione present the level shift of a two-level atorr,(polariza-
approaches zero. As can be seen from Fig. 4, on the oth&ion) normalized toiI" when the atom is inside the hollow
hand, the enhancement factor is more than 3 wkies 1. dielectric (¢ = 2.25 with kb=2=b/\ =5 with the normal-
This larger enhancement can be attributed to the finite radiuged distancer/b<1. We observe the short-range van der
of the curvature of the cylindrical surface and we haveWaals type potential near the surface. Moreover, this range
checked that the plane-surface result can be recovered whéecomes even smaller &b increases. When the atom is
the radius becomes very large. We consequently concludeutside the cylindrical dielctric, on the other hand, we only

(5.5
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and the Korean Atomic Energy Research Institute for finan-
0.04 o — e cial support.
& N
Ko APPENDIX A: DERIVATION OF EQ. (2.2
» -0.2-
o) First, we note thaG(F,r’)=e ™ "l/(4=|F—F']) is the
q>) 0.4- * radially outgoing solution of the equation
8 ] kb=5 212 1
V+ G»'—>1=_5—’,—>/=__5 !
N gl =0 95 ( JB(FIF )= =8(FF)==dp=p")
= .
g X8(p—p')6(z—2"). (A1)
(Z) -0.84 Since
-1.0 &¢_¢g:iL S gim(¢—a')
27Tm:—oc '

00 02 04 06 08 1.0
n=r/b

and

1 (=
= ik’ (z—2")

FIG. 5. Energy-level shift of the ground-state atom normalized o(z=2) 27Tf7we ' (A2)
to Al'y is presented as a function of=r/b, when the
o -polarized atom is inside the dielectric hollow region. we can writeG(f,F’) as
have to exchangé,,(x) with H,(x) (and vice versain all . 1 = % (o'
the equations. Note thatb>1 in this case. G(r,r")= mm;w fﬁ dk'e™m @~

VI. CONCLUSIONS x ek z=2g (k' p.p'). (A3)

In summary, we have calculated the decay rates and thg, jatermi K' / ; t Eq(A3) into Ea. (Al
level shifts of an atom when it is inside a hollow dielectric determineg(k”,p,p"), we insert Eq(A3) into Eq. (A1)

cylinder, and the decay rate when the atom is ouside a solignd obtain

dielectric cylinder. In particular, we have obtained the ana- [1 4/ d m?2 1

lytical expressions in two limiting cases. When the atom is |- d—(pd—) +(k2—k’2— —2”gm= —=8(p—p").

on the axis of the hollow cylinder, the short-range level shift pap p p p A4

scales a2, whereas the long-range shift goes las®. (A4)

Each energy shift is attributed to the state-independent intefpye to the finiteness at the origin and the radially outgoing

aCtion due to vacuum f|UCtuati0n and the Casimir'POIder rEproperty' we assume the appropriate So|ution as

tarded interaction, respectively. We have also compared the

decay rates inside the hollow cylinder to those between par- gm(k’.p,P')=AJm(kP<)H§nl)(kP>), (A5)

allel plates, and the results outside a solid cylinder to those

near a plane surface. The similarities, as well as the differwherep_(p-) is the smallerlargen of p andp’. The con-

ences, are discussed in detail. Moreover, we obtained thstantA can be determined by the discontinuity in the slope

level shift as a function of atomic radial distance for fixed due to thes function in Eq.(A4)

radius inside the dielectric hollow and outside the cylindrical

dielectric. dgm
The general equations and specific results presented in W

this paper may be useful for some experiments in quantum

optics and atom optics. For example, the results for a hollovg,ce W(Im(x),HM(x))=2i/mx where W denotes the

optical fiber may be applied to a realization of atomic quanyyygnskian, we obtais = i /2. Consequently, we obtain
tum wire[14], laser cooling and trapping in the holldd3],

d
_ﬂ =——. (AB)
. dpf_ p

and cavity-QED effects thereiri1]. The results for a solid ekl =F"l -
optical fiber may be also applied to the atomic helical motion — = E J' dk’ eim<¢—¢'>eik’<z—2’>3m
guided along the fiber's outer surface by a blue-detuned laser |F=r| m=—e J—o
coupled into the fiber cor¢l4]. Experimental studies of - ), T
these possibilities are under investigation. X(VK =K p)Hy (VK =k'p=). (A7)
ACKNOWLEDGMENTS APPENDIX B: FORMULAS IN SEC. VI
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Ji(H;) is a;b (ayb) unless it is explicitly specified. Then , m
the functions are given as 9=~ 5y Im(@ar) Hn(asb), (B7)
P—im ai J B1
“pl 1) B 1= 121l Hua(@1b) ~ In_1(asr) Hoy(@b))
alk , ka% Hr,n 2ma1 ,
QZTJm_WH_‘]mr (B2 +t— Im(e)Hu(ab)| /4, (B8)
m
pocik |, ekaiHpy ©3 97 =1kK' (I 1(@1")Hpy-1(a1b)
- k/ m kr H m:
2t Hm +JIms (@i Hme 1(a1b))/4, (BY)
: 2 2 ’
im ag eatk  akH
Uf‘?( ‘—2)’ il el R
a2 2% m
ffz,Z—mk'alJm(alr)Hm(alb)/r,
And foru,,U,,V,, andV,, we have
o2 ima? ka? H 9%=—kaJp (@) Hy(ab)/2, (B10)
1. 1., Keg Am o, (B5)

T T B T g RO i,
f$:| K Ims1(aaNHpy(ab)+ I 1(air)Hp-1(aqb))

. 2 2 k 2 ’
_lal ® |ma1 7 € al m;y .
Vim0 B 9 ey Ry (700 2y b
(86) —TJm(alr)Hm(al Y| / 4, (B11)
where gﬁzkk'(Jm—l(alr)Hm—l(alb)
f2=—ik’a;Jp(air)Hp(ab), —JIm+1(@ilNHpy1(ab))/4. (B12)
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