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Tunnel ionization of H2 in a low-frequency laser field: A wave-packet approach
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The dynamics of multielectron dissociative ionization~MEDI! of H2 in an intense IR laser pulse are inves-
tigated using a wave-packet propagation scheme. The electron tunneling processes corresponding to the suc-
cessive ionizations of H2 are expressed in terms of field-free Born-Oppenheimer~BO! potential energy surfaces
~PES! by transforming the tunnel shape resonance picture into a Feshbach resonance problem. This transfor-
mation is achieved by defining a new, time-dependent electronic basis in which the bound electrons are still
described by field-free BO electronic states while the ionized ones are described by Airy functions. In the
adiabatic, quasistatic approximation, these functions describe free electrons under the influence of the instan-
taneous electric field of the laser and such an ionized electron can have a negative total energy. As a conse-
quence, when dressed by the continuous ejected electron energy, the BO PES of an ionic channel can be
brought into resonance with states of the parent species. This construction gives a picture in which wave
packets are to be propagated on a continuum of coupled electronic manifolds. A reduction of the wave-packet
propagation scheme to an effective five-channel problem has been obtained for the description of the first
dissociative ionization process in H2 by using Fano’s formalism@U. Fano, Phys. Rev.124, 1866 ~1961!# to
analytically diagonalize the infinite, continuous interaction potential matrix and by using the properties of
Fano’s solutions. With this algorithm, the effect that continuous ionization of H2 has on the dissociation
dynamics of the H2

1 ion has been investigated. In comparison with results that would be obtained if the first
ionization of H2 was impulsive, the wave-packet dynamics of the H2

1 ion prepared continuously by tunnel
ionization are markedly nonadiabatic. The continuous ionization appears to give rise to a population in the
dissociative continuum that is localized at small internuclear distances throughout the action of the laser pulse,
and is released only when the laser pulse is over, yielding a complex fragment kinetic energy spectrum.
Comparison with available experimental data is made.@S1050-2947~97!04409-0#

PACS number~s!: 42.50.Vk, 42.50.Hz, 33.80.Ps, 33.80.Gj
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I. INTRODUCTION

The dynamics of multielectron dissociative ionizatio
~MEDI! of laser-driven molecules have recently been
great interest in intense-field molecular physics@1–5#. One
of the many issues yet to be elucidated in this context is
precise interplay between the multiple laser-induced ion
tion and dissociation pathways of the driven molecule. E
periments performed on N2 @2# indicate that the successiv
ionizations occur at certain critical internuclear distanc
larger than the ground-state equilibrium bond length, s
gesting a sequence of events in which vertical ionizati
alternate with large-amplitude nuclear motions. More rec
experiments on Cl2 @4# and I2 @5# suggest rather that th
successive multiple ionization steps occur at a fixed, crit
internuclear distance close to the neutral ground-state’s e
librium bond length. A tendency for the molecule und
study to be stabilized with respect to dissociation as it und
goes this sequence of events in the course of its Coulo
explosion has been proposed to explain these observat
This hypothesis is further supported by pump-probe stud
of MEDI on the same systems@6#. That multiple ionizations
occur preferentially at a critical internuclear distance has a
been rationalized in terms of an ionization enhancement
fect reflecting rather a nonadiabatic electron localization p
cess. This has been established by two recent indepen
561050-2947/97/56~3!/2142~26!/$10.00
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theoretical investigations of the dependence of the ioniza
rate of simple one-electron molecules on the nuclear ge
etry @7–10#. An experimental demonstration of the enhanc
ionization effect has also been reported@11#. These works
give indications that a tunnel mechanism for the ionizat
steps holds even in a high-frequency regime.

For the lightest molecular system that can undergo
MEDI process, the two-electron H2 molecule, only two ion-
ization steps are required for its complete explosion. Rec
experimental works using an IR laser field suggest that
same type of sequential mechanism as that proposed fo
heavier molecules governs the Coulomb explosion of H2 @12#
and D2 @13#. This sequential mechanism is illustrated in F
1. To interpret the experimentally observed monoenerg
proton kinetic energy spectra, it was proposed that th
fragments originate from the Coulomb explosion occurri
at a large internuclear distance~step 3 in Fig. 1!. This dis-
tance is thought to be reached after nuclear motions of la
amplitude of the laser-driven H2

1 ion, ~step 2 in Fig. 1!.
These motions would nevertheless carry insufficient mom
tum to be extended to the dissociative limit so that the f
mation of the same fragments by a laser-induced dissocia
of the singly ionized species H2

1 does not occur. As for the
preparation of the H2

1 ion, step 1 in Fig. 1, and the secon
ionization, step 3 in this figure, a tunnel mechanism w
suggested because multiphoton ionizations would req
2142 © 1997 The American Physical Society
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56 2143TUNNEL IONIZATION OF H2 IN A LOW-FREQUENCY . . .
over a hundred photons of the IR incident laser field in e
case. From an adaptation of a popular theory for tunnel i
ization, due to Ammosov, Delone, and Krainov~ADK
theory! @14#, to a molecular system, it is also inferred that t
second ionization step most probably occurs at a large in
nuclear distance rather than in the neighborhood of the e
librium position. This is consistent with the recent theoreti
predictions of enhanced tunnel ionization at large inter
clear distances@7–10#.

It has been suggested@12# that the proposed large
amplitude nuclear motions of the singly ionized species,
step 2 in Fig. 1, result from classical chaotic dissociat
dynamics@15,16#. To obtain the precise details of this tra
sient nuclear dynamics, a wave-packet simulation of ste
alone has been performed in a preliminary investigation
the Coulomb explosion mechanism. While the salient f
tures of this study will be described in some detail in Sec.
a more complete account of this work will be reported el
where @17#. In this study, an initial wave packet arbitraril
prepared by vertical promotion of thev50 vibrational
ground state of the neutral molecule onto the2Sg

1 ground-
state manifold of the H2

1 ion was propagated on the couple
charge exchange states,2Sg

1 and 2Su
1 , of the ion. Vibra-

tional excitation above and beyond that contained in the
tial nonstationary wave packet was found@17#. Since this
homonuclear system possesses no permanent dipole mo
the observed vibrational excitation is an effective con
quence of nonresonant electronic excitation of the ion in
IR field. The vibrational excitation is accompanied by
quenching of the dissociation probability, the extent of wh
depends critically on the initial conditions. This last obs
vation will be illustrated in Sec. V. It demonstrates the im
portance of a more complete description, which would pr

FIG. 1. Sequential mechanism for the complete Coulomb ex
sion of H2. Arrow ~1! corresponds to the tunnel ionization of th
neutral molecule, arrow~2! corresponds to the laser-induced diss
ciation of the molecular ion H2

1, and arrow~3! corresponds to the
second tunnel ionization that brings the system on the repul
curve of the doubly ionized species.
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erly include the first ionization process as a continuo
source of initial wave packets for step 2.

In attempting to include this continuous first tunnel io
ization step, an interesting theoretical and conceptual pr
lem arises: the tunnel mechanism refers to the electronic p
etration of the barrier, which is created by superimposin
linear potential denoting the interaction between the elect
and the laser field on the Coulomb potential@1#. Because of
this deformation of the Coulomb potential, a set of sha
resonances replaces the field-free Born-Oppenheimer~BO!
states and their nuclear-configuration-dependent complex
ergies define new potential energy surfaces~PES!. In other
words, the concept of tunnel ionization is obscured within
interpretation such as depicted in Fig. 1, which employs
field-free BO PES’s. It is clear that to obtain a representat
of the electron tunneling processes in terms of field-free
PES’s, a projection of the aforementioned new tim
dependent adiabatic electronic states onto the field-free s
is needed. This is difficult because, in principle, each of
new adiabatic electronic states associated with the tun
shape-resonance problem projects onto an infinite numbe
field-free states. Moreover,a priori, these shape resonanc
states are as yet unknown.

Given the difficulties outlined above, the projection of th
tunnel dynamical picture onto the field-free BO picture
clearly a nontrivial problem. The present paper propose
scheme to treat this problem. Recognizing that electrons
ized during the action of the laser pulse are not free,
continue to feel the driving force of the field, a time
dependent electronic basis is constructed. In this basis,
bound states of both the neutral and ionic species are
described by field-free BO electronic states while the ioniz
electrons are described by scattering wave functions tha
ymptotically behave as Airy functions, i.e., as eigenfunctio
of an electron driven linearly by a quasistatic field. An io
ized electron can thus have negative total energy as opp
to the field-free situation where its energy is purely of
kinetic nature and is always positive. As a consequen
when dressed by the continuous ejected electron energy
BO PES’s of the ionic channels can be brought into re
nance with the ground state of the parent species, yieldin
Feshbach resonance picture of the tunnel ionization proc
In this way, the wave-packet dynamics of tunnel ionizati
can be described using the field-free BO PES’s. The c
struction of the new electronic basis introduces an asym
try in the treatment of bound and free electrons. A simi
asymmetry was found in previous calculations of the tun
ionization rates of atoms using a scattering matrix formali
@18–20#: while the initial bound electron was described b
field-free eigenstates, its final state was described by Vol
states or by Coulomb-Volkov states, which denote the s
tering of a laser-driven electron by a Coulomb center@21#. In
the present treatment, Airy functions correspond to Volk
states in a quasistatic picture, and Coulomb-Airy functio
i.e., Coulomb scattering functions with an Airy-functio
asymptotic behavior, correspond to Coulomb-Volkov stat
Note that in any wave-packet propagation technique, suc
the celebrated third-order split-operator algorithm@22# ap-
plied to a time-dependent Hamiltonian, a quasistatic pict
is implicitly invoked. Thus, in the present molecular wav
packet study of the dissociative ionization of H2, this implicit

-

-
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2144 56T.-T. NGUYEN-DANG et al.
quasistatic picture imposes the use of these approxim
time-dependent, adiabatic states as replacements of the
Volkov or Coulomb-Volkov states. They ensure a consist
treatment of the time evolution of the system, electrons
nuclei taken altogether.

This formulation of the wave-packet dynamics of tunn
ionization, which yields a picture in which wave packets a
propagated on a continuum of coupled electronic manifo
gives rise to a new technical challenge. In a minimal ba
needed for the proper description of the step 1 and step
Fig. 1, where a single state, viz., the ground state, of
neutral molecule, is kept along with the two charge excha
states of the singly ionized species, the formalism gives
continua of ionized channels, obtained by dressing the
field-free PES’s of the H2

1 ion with the single free electron’s
energy. In their present forms, wave-packet propaga
techniques are suitable only for problems involving a fin
number of channels@23–25,22#. An adaptation of these tech
niques to the situations involving a continuum of channel
thus required. In the present work, the third-order sp
operator algorithm@22# is adapted, and the diagonalization
the potential matrix describing the bound-free channel c
plings is achieved analytically by using Fano’s formalis
@26#. Insofar as the bound-free couplings are not too stron
energy dependent, this analytical solution turns out to
quite useful as it reduces the problem to an effective fi
channel problem. This reduction denotes the well-known
calization of bound-free population exchanges to ‘‘on-th
energy-shell’’ transitions in the neighborhood of th
associated Feshbach resonances. It is interesting to note
the Fano formalism has previously been used only in
context of a time-independent stationary state. The pre
paper represents an attempt to adapt it for a time-depen
wave-packet description. The resulting algorithm is used
assess the effects that continuous tunnel ionization can
on the laser-induced wave-packet dynamics in H2

1. One ef-
fect that this continuous ionization appears to have is a sl
enhancement of the stabilization of the molecular ion tow
its dissociation, as compared to the situation already pre
in the dynamics of step 2 alone. This effect denotes a str
coupling between ionization and dissociation, which are
duced by the laser field in this light molecular system.

II. TUNNEL IONIZATION AS A FESHBACH
RESONANCE PROBLEM

To fully describe the events occurring during the Co
lomb explosion of H2, the time-dependent Schro¨dinger equa-
tion

i\] tuC,t&5Ĥ tot~ t !uC,t& ~1!

must be solved. Here

Ĥ tot~ t ![T̂N1Ĥel~ t !, ~2!

Ĥel~ t !5T̂e1VCoul~rW1 ,rW2uRW !2eEW~ t !•~rW11rW2!, ~3!
te,
act
t
d
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whereEW(t) is the laser field,T̂N ,T̂e denote the kinetic energy
operators for the nuclear and electronic motions, resp
tively, andVCoul is the sum of all Coulomb interactions be
tween the charges

VCoul~rW1 ,rW2uRW ![2(
i 51

2 S e2

urW i2RW /2u
1

e2

urW i1RW /2u D 1
e2

urW12u

1
e2

uRW u
. ~4!

Note that the long-wavelength approximation~LWA ! was
used within the so-called electric-field~EF! gauge~or length
gauge! @27# where radiative interactions are given by the la
term of Eq.~3!. In addition, Jacobi coordinates for the fou
body problem were used and the center-of-mass motion
been implicitly factored out. Thus, the time-dependent p
of the HamiltonianĤ tot denotes the interaction between th
laser field and the relative electronic motions only since
relative nuclear motions do not interact with the laser fie
due to the inversion symmetry of this homonuclear syste

For a slowly varyingEW(t), such as a low-frequency field
an adiabaticelectronicbasis@28# incorporating the interac-
tion term of Eq.~3! may be used to replace the tradition
field-free BO basis. The addition of the radiative interacti
term to the attractive Coulomb field gives rise to a barri
and the electronic motion across this barrier corresponds
tunnel ionization process@1#. The challenge is to obtain a
representation of the same dynamical processes in term
field-free BO PES’s. This amounts to translating the sha
resonance problem associated with the tunnel picture in
Feshbach-resonance problem involving interactions betw
field-free BO states. To achieve this, it is useful to constr
a new basis in the following manner: the bound electro
states of both the neutral and singly ionized species
continue to be represented by the associated field-free w

functions, denoted byc I
H2 andcJ

H2
1

, while the ionized elec-
tron~s! will be represented by a wave functionAE denoting a
free particle scattered by a Coulomb potential in a quasist
electric field. Thus, in the simplest approximation, ignori
the Coulomb field, these would simply be the Airy functio
defined by

H p̂e
2

2me
2eEW•rWJ Ai ~rW,tuE!5E Ai ~rW,tuE!. ~5!

The introduction of these wave functions amounts to rec
nizing that after its ejection, the ionized electron still fee
the influence of the laser field. It can be easily recogniz
that the wave functions Ai(rW,tuE) defined in Eq.~5! corre-
spond to the Volkov states in the quasistatic limit. Includi
the nuclear Coulomb attraction in the single-electron Ham
tonian appearing on the left-hand side of Eq.~5! defines what
will be referred to as Airy-Coulomb wave functions. Fo
mally, these are states describing the scattering of an elec
by a multicenter Coulomb potential in the presence o
static electric fieldE. In the quasistatic limit, these corre
spond to the Volkov-Coulomb states introduced recently
Reiss and Krainov@21#. Henceforth, the notationAE will be
used to denote these scattering states, keeping in mind
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asymptotic behavior described by Eq.~5!. Having defined
these wave functions for the ionized electrons, a nonortho
nal electronic basis is obtained:

B[$c I
H2~1,2!%ø$uc I

H2
1

~1!ĀE~2!u%ø$uAE~1!ĀE~2!u%,
~6!
u
-

s

i-
n
si
ro

cu

th
o-
where 1 and 2 are abbreviations for the coordinate and
of the two electrons, and standard quantum-chemical n
tions are used:ufh̄u denotes the antisymmetrized produ
@f(1)h̄(2)2h̄(1)f(2)#/& and the bar aboveh indicates
an electron spin componentms521/2. Expanding the tota
time-dependent wave functionC tot(1,2,R,t) in this basis
C tot5(
I

x I
H2~R,t !c I

H2~1,2!1(
J
E dExJE

H2
1

~R,t !uc I
H2

1

~1!ĀE~2!u1E dEE dE8x
EE8

H2
11

~R,t !uAE~1!ĀE8 ~2!u ~7!

the following set of coupled equations for the nuclear amplitudesx I
H2 , xJE

H2
1

, andx
EE8

H2
11

is obtained from Eq.~1!

i\ẋ I
H25~ T̂N1« I !x I

H21 (
I 8ÞI

^c I
H2u2eEW ~ t !•~rW11rW2!uc

I 8

H2&x I 8

H21(
J
E dE$~ T̂NxJE

H2
1

2 i\ẋJE
H2

1

!^c I
H2ucJ

H2
1

ĀE&

1^c I
H2uĤel~ t !ucJ

H2
1

ĀE&xJE
H2

1

%1E dEE dE8$~ T̂Nx
EE8

H2
11

2 i\ẋ
EE8

H2
11

!^c I
H2uAEĀE8&1^c I

H2uĤel~ t !uAEĀE8&xEE8

H2
11

%,

~8a!

i\ẋJE
H2

1

5~ T̂N1«J1E!xJE
H2

1

1 (
J8ÞJ

^cJ
H2

1

u2eEW ~ t !•rW1uc
J8

H2
1

&xJ8E

H2
1

1(
J8

E dE8^JEuVeeuJ8E8&xJ8E8

H2
1

1(
I

$~ T̂Nx I
H22 i\ẋ I

H2!

3^cJ
H2

1

ĀEuc I
H2&1^cJ

H2
1

ĀEuĤel~ t !uc I
H2&x I

H2%1E dEE dE8$~ T̂Nx
EE8

H2
11

2 i\ẋ
EE8

H2
11

!^cJ
H2

1

ĀEuAEĀE8&

1^cJ
H2

1

ĀEuĤel~ t !uAEĀE8&xEE8

H2
11

%, ~8b!

i\ẋ
EE8

H2
11

5~ T̂N1E1E81Vnn!xEE8

H2
11

1E dE9E dE-^EE8uVeeuE9E-&xE9E-
H2

11

1(
I

$~ T̂Nx I
H22 i\ẋ I

H2!^AEĀE8uc I
H2&

1^AEĀE8uĤel~ t !uc I
H2&x I

H2%1(
J
E dE9$~ T̂Nx

JE9

H2
1

2 i\ẋ
JE9

H2
1

!^AEĀE8ucJ
H2

1

ĀE9&1^AEĀE8uĤel~ t !ucJ
H2

1

ĀE9&xJE9

H2
1

%.

~8c!
s
or-

e

als
In these equations,^JEuVeeuJ8E8& or ^EE8uVeeuE9E-& rep-
resents a matrix element of the two-electron Coulomb rep
sion operatorVee(1,2)[e2/r 12, between a pair of singly ion

ized statesucJ
H2

1

ĀE9& or a pair of doubly ionized state

uAEĀE8&, respectively. In the spirit of the adiabatic approx
mation, which is justified by the low-frequency conditio
considered presently, the nonadiabatic coupling terms ari
from the time dependence of the continuum single-elect
wave functions,AE , have been neglected@29#. Also, nonra-
diative couplings associated with the possible breakdown
the Born-Oppenheimer approximation are neglected to fo
on the radiative interactions.

The first observation that can be made at this point is
existence of coupling terms of the form

~ T̂NxJE
H2

1

2 i\ẋJE
H2

1

!^c I
H2ucJ

H2
1

ĀE&,

~ T̂Nx
JE9

H2
1

2 i\ẋ
JE9

H2
1

!^AEĀE8ucJ
H2

1

ĀE9&, etc.
l-

ng
n

of
s

e

These arise from the nonorthogonal nature of the basiB
@30#, and are irrelevant. To see this, it is convenient to f
mally rewrite the set of coupled equations~8a!–~8c! in ma-
trix form. DefiningXI to be the infinite vector containing th

amplitudesx I
H2 , xJE

H2
1

, etc.,S= the matrix of overlap integrals
between the vectors of the basisB andH= el, the matrix rep-
resentation ofĤel(t) in this basis, Eqs.~8a!–~8c! can be
written as

i\S= ] tXI 5S= ~ T̂NXI !1H= elXI . ~9!

Multiplying this by S=21 gives

i\] tXI 5~ T̂NI=1S=21H= el!XI , ~10!

whereby the coupling terms involving the overlap integr

^AEĀE8ucJ
H2

1

ĀE9& or ^c I
H2ucJ

H2
1

ĀE&, etc., are completely
removed.

The second observation to be made about Eqs.~8a!, ~8b!,
and ~8c! is the dressing of the PES’s,«J , of H2

1 by the
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FIG. 2. Dressing of the PES’s,e j , j 51,2, of
H2

1 by the energyE of the first ionized electron,
and of the PESVnn(R) of H2

21 by the energies
E,E8 of the two ionized electrons.E5D1 , E8
5D3 , where2D1 and2D3 are the first and sec
ond ionization potentials of H2.
’s

.
e

ep
fre
nn
c

us
so

tri

e

the

ed.

on-

ra-

he

e

energyE of the first electron to be ionized, while the PES
of H2

21, the pure nuclear Coulomb potentialVnn(R), is
dressed by the energiesE,E8 of the two ionized electrons
This dressing is illustrated in Fig. 2 for the particular valu
E5D1 , E85D3 , where 2D1 and 2D3 are the first and
second ionization potentials of H2. As seen in this figure, the
dressing causes the PES’s of the ionic channels to be r
sitioned in such a manner as to offer resonant bound-
interactions. This is the Feshbach representation of the tu
ionization process alluded to above. For a low-frequen
field, such as IR laser source, the resonant transitions ca
by these interactions will be favored over the highly nonre
nant bound-bound transitions.

Within the description using the nonorthogonal basisB of
Eq. ~6!, the bound-free couplings are contained in the ma
S=21H= el . They are governed by the matrix elements

^c I
H2uĤel~ t !ucJ

H2
1

ĀE&5e I
H2^c I

H2ucJ
H2

1

ĀE&

2eEW~ t !•^c I
H2u~rW11rW2!ucJ

H2
1

ĀE&

~11!

for the first ionization step and

^cJ
H2

1

ĀEuĤel~ t !uAE8ĀE9&

5$~eJ
H2

1

1E!~cJ
H2

1

uAE8!2eEW~ t !•^cJ
H2

1

urW1uAE8&%

3d~E2E9! ~12!

for the second ionization step.
Thus with I 50, corresponding to the ground state of H2,

c0
H25u1sg

H21sg
H2u and J50 and 1 corresponding to th

ground state, 1sg
H2

1

, and first excited state, 1su
H2

1

, respec-
tively, of H2

1, the Condon-Slater rules@31# give
s

o-
e
el
y
ed
-

x

^c0
H2uĤel~ t !uc0

H2
1

ĀE&

5e0
H2^1sg

H2uAE&^1sg
H2u1sg

H2
1

&2eEW~ t !•~^1sg
H2urW1uAE&

3^1sg
H2u1sg

H2
1

&1^1sg
H2uAE&^1sg

H2urW1u1sg
H2

1

&!, ~13a!

^c0
H2uĤel~ t !uc1

H2
1

ĀE&

5e0
H2^1sg

H2uAE&^1sg
H2u1su

H2
1

&2eEW~ t !•~^1sg
H2urW1uAE&

3^1sg
H2u1su

H2
1

&1^1sg
H2uAE&^1sg

H2urW1u1su
H2

1

&!, ~13b!

^c0
H2

1

ĀEuĤel~ t !uAE8ĀE9&

5$~e0
H2

1

1E!^1sg
H2

1

uAE8&2eEW~ t !•^1sg
H2

1

urW1uAE8&%

3d~E2E9!. ~13c!

It is clear that these matrix elements are governed by
degree of overlap between the Coulomb-Airy functionAE
and the molecular orbital from which the electron is eject
For R5Req, the equilibrium geometry of H2 in its ground
state and within the approximationAE.Ai( E), Fig. 3 shows
the disposition of the relevant basis functions atE5D1 ,
E85D3 , i.e., at electron energies ensuring a resonance c
dition for the first and second ionization steps of H2. It is
seen that the overlap between the Airy function Ai(E5D1)
and the 1sg orbital of H2, while small @O(1025 a.u.)#, is
much more pronounced than that between Ai(E5D3) and
the 1sg orbital of H2

1 @O(10224 a.u.)#. This implies that the
first ionization step, operative at smallR, can be considered
separately from the second ionization step, which is ope
tive only at some relatively large value ofR. The same con-
sideration also gives a justification for the neglect of t
two-electron integralŝJEuVeeuJ8E8& whenJ, J850 and 1.
In the following, attention will be given exclusively to th
first ionization step in the Coulomb explosion of H2 and the
minimal basis:
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B8[$c0
H2~1,2!,u1sg

H2
1

~1!ĀE~2!u,u1su
H2

1

~1!ĀE~2!u%
~14!

will be used. As indicated, a single electronic state,
ground state of the neutral species, H2, is kept in this basis,

while the two charge-resonant states, 1sg
H2

1

and 1su
H2

1

, of
H2

1 define the ionization continua, i.e., the final states of
first ionization process. These states interact with each o

only via the transition dipole moment^1sg
H2

1

urWu1su
H2

1

&, and
interactions that are generated within the ionized continua
the electron repulsion potential are completely neglected
virtue of the above observation.

III. TIME EVOLUTION AND FANO REPRESENTATION

A. Split-operator formula

The solution of Eq.~9! or Eq. ~10! can be obtained nu
merically by using any of the existing wave-packet propa
tion techniques such as the third-order split operator form
@22#. In the present context, the split operator formula giv

XI ~ t01dt !5expH 2
i

\
T̂NI=

dt

2 J expH 2
i

\
S=21H= eldtJ

3expH 2
i

\
T̂NI=

dt

2 J XI ~ t0!1O~dt3! ~15!

as a short-time approximation to the solution of Eq.~10!
evolving from an initial condition described byXI (t0). Cur-
rent applications of this third-order split operator formula a
restricted to problems involving a finite number of chann
@8,32,33#. An extension to an infinite matrix case is found
the Floquet treatments of laser-driven multichannel mole

FIG. 3. Disposition of the Airy function Ai(E) ~dashed line! and

the molecular orbitalssg
H2 andsg

H2
1

~solid line! involved in the first
~a! and second~b! ionization steps of H2, for which E5D1 , E
5D3 , respectively. Note that the wave functions themselves
shown here, not their square moduli. The overlap matrix integra
evaluated to be 2.6331025 a.u. in ~a! and 8.15310225 a.u. in ~b!.
e

e
er

y
y

-
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lar systems@34#. However, formally, the potential matrix in
volved in such problems is of infinite dimension but discre
whereas, here,S=21H= el is formally a matrix of infinite dimen-
sion, which is continuous, denoting two continua
R-parametrized electronic states interacting with a bou
state. Its diagonalization requires a special analytical tre
ment. LetV= be the matrix that achieves this diagonalizatio
i.e.,

V= 21S=21H= elV= [E= ~16!

so that Eq.~15! can be rewritten as

XI ~ t01dt !5expH 2
i

\
T̂NI=

dt

2 J V= expH 2
i

\
E= dtJ V= 21

3expH 2
i

\
T̂NI=

dt

2 J XI ~ t0!1O~dt3!. ~17!

In the form given by Eq.~16!, the construction ofV= is dif-
ficult, as the inversion ofS= is rather cumbersome, due to th
infinite, continuous character of the basisB. To avoid this
inversion, it is preferable to recast Eq.~16! into the canonical
form of eigenvalue equation associated with a nonorthogo
basis

~H= el2EiS= !VI i50, ~18!

whereVI i is the i th column, associated with eigenvalueEi ,
of the matrix V= . To solve Eq.~18!, the general approach
developed by Fano@26# for eigenvalue problems involving
continua can be exploited. Fano’s formulation also allows
the successive action of the infinite continuous matricesV= †

andV= in Eq. ~17! to be evaluated analytically. However, it
to be noted that Fano’s original formulation was expresse
terms of an orthogonal basis. Thus, an extension of this
malism to the present context is needed to account for
nonorthogonal character of the basisB8.

B. Diagonalization of the coupling potential matrix:
Fano representation

To simplify the notations, lete0(R), e1(R), ande2(R) be
the Born-Oppenheimer energy of the electronic states in
minimal basis of Eq.~14!, VE8 the interaction between th
ground channele0 and the continuume11E8, WE8 that be-
tweene0 and the continuume21E8, andV12 the radiative
interaction between the two charge resonance states
H2

1. To manipulate symbolically the matrices in Eq.~15!, a
convention is needed for the ordering of the elements in
basisB8. The following convention will henceforth be use

systematically. The bound statec0
H25u1sg

H21sg
H2u will al-

ways be the first element of the basis, followed successiv

by the infinite blocksu1sg
H2

1

AE8u and u1su
H2

1

AE8u, the ion-
ized electron’s energyE8 ranging continuously from2` to
1`, in principle. Although this energy, which labels th
continuum basis states, varies continuously, all infinite m
trices to be found in the following are written in a discre
infinite form, for ease of representation; no discretizations
the continua are implied by this convention. Let the eleme
in a column of V= ~labeled by E! be denoteda(E),

re
is
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bE8(E), gE8(E). Then, according to Eq.~18!, they are solu-
tions of the following system of equations:

e0a~E!1E dE8@~VE8
* 2ES1E8

* !bE8~E!

1~WE8
* 2ES1E8

* !gE8~E!#5Ea~E!, ~19a!

~VE82ES1E8!a~E!1~e11E8!bE8~E!1V12gE8~E!

5EbE8~E!, ~19b!

~WE82ES1E8!a~E!1V12* bE8~E!1~e21E8!gE8~E!

5EbE8~E!, ~19c!

satisfying the orthonormalization condition

a* ~E!a~E9!1E dE8@bE8
* ~E!bE8~E9!1gE8

* ~E!gE8~E9!

1a* ~E!bE8~E9!S1E81a~E9!bE8
* ~E!S1E8

*

1a* ~E!gE8~E9!S2E81a~E9!gE8
* ~E!S2E8

* #

5d~E92E!. ~20!

To be more precise, anticipating two classes of soluti
distinguished by a subscriptj 51,2, this orthonormalization
condition reads

ai* ~E!aj~E9!1E dE8@b iE8
* ~E!b jE8~E9!

1g iE8
* ~E!g jE8~E9!1ai* ~E!b jE8~E9!S1E8

1aj~E9!b iE8
* ~E!S1E8

* 1ai* ~E!g jE8~E9!S2E8

1aj~E9!g iE8
* ~E!S2E8

* #5d~E92E!d i j . ~21!

Since Fano’s formulation assumes uncoupled continua
prediagonalization of the interactionV12 between the two
continua in the above model is required. This is achieved
defining two new variables associated with the continua

bE8~E![cosubE8~E!2sinugE8~E!, ~22a!

cE8~E![sin bE8~E!1cosugE8~E!, ~22b!

whereu is defined by

S cosu
sinu

2sinu
cosu D S e1

V21

V12

e2
D S cosu

2sinu
sinu
cosu D5S e2

0
0

e1
D .

~23!

In terms of these variables, Eqs.~19a!, ~19b!, and~19c! can
be written as
s

a

y

e0a~E!1E dE8@~vE8
* 2ES2E8

* !bE8~E!

1~wE8
* 2ES1E8

* !cE8~E!] 5Ea~E!, ~24a!

~vE82ES2E8!a~E!1~e21E8!bE8~E!5EbE8~E!,
~24b!

~wE82ES1E8!a~E!1~e11E8!cE8~E!5EcE8~E!,
~24c!

where

vE8[cosuVE82sinuWE8 , wE8[cosuWE81sinuVE8 ,

S2E8[cosuS1E82sinuS2E8 ,

S1E8[cosuS2E81sinuS1E8 . ~25!

The normalization condition of Eq.~20! also becomes

ai* ~E!aj~E9!1E dE8@biE8
* ~E!bjE8~E9!1ciE8

* ~E!cjE8~E9!

1ai* ~E!bjE8~E9!S2E81aj~E9!biE8
* ~E!S2E8

*

1ai* ~E!cjE8~E9!S1E81aj~E9!ciE8
* ~E!S1E8

* #

5d~E92E!d i j . ~26!

It is convenient to define

b̃E81e2
[bE8 , c̃E81e1

[cE8 ,

ṽE81e2
[vE8 , w̃E81e1

[wE8 , ~27!

S̃1,E81e1
[S1E8 , S̃2,E81e2

[S2E8 ,

so that the system of equations~24a!, ~24b!, and ~24c! as-
sumes the form

e0a~E!1E dE8@~ ṽE8
* 2ES̃2E8

* !b̃E8~E!1~w̃E8
* 2ES̃1E8

* !

3 c̃E8~E!] 5Ea~E!, ~28a!

~ ṽE82ES̃2E8!a~E!1E8b̃E8~E!5Eb̃E8~E!, ~28b!

~w̃E82ES̃1E8!a~E!1E8c̃E8~E!5Ec̃E8~E!. ~28c!

This is the canonical form considered by Fano, in which
bound-free couplings are corrected by a term2ES= , due to
the nonorthogonality of the basis. As shown by Fano, t
system of equations admits two classes of solutions, wh
are given by the following: the first class is

a1~E!Þ0, ~29a!

b̃1E8~E!5~ ṽE82ES̃2E8!H P
E2E8

1Z~E!d~E2E8!J a1~E!,

~29b!
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c̃1E8~E!5~w̃E82ES̃1E8!H P
E2E8

1Z~E!d~E2E8!J a1~E!,

~29c!

where

Z~E!5
E2e02G~E!

uṽE2ES̃2Eu21uw̃E2ES̃1Eu2
, ~30!

G~E![PE dE8
uṽE82ES̃2E8u

21uw̃E82ES̃1E8u
2

E2E8
.

~31!

P in this last expression indicates the principal value of
integral that follows. In Eqs.~29b! and~29c!, its appearance
indicates formally that any integral involving (E2E8)21 is
to be understood in the sense of a principal value.

The second class is

a2~E!50, ~32a!
e

b̃2E8~E!5
~w̃E8

* 2ES̃1E8
* !

~ uṽE82ES̃2E8u
21uw̃E82ES̃1E8u

2!1/2
d~E2E8!,

~32b!

c̃2E8~E!5
2~ ṽE8

* 2ES̃2E8
* !

~ uṽE82ES̃2E8u
21uw̃E82ES̃1E8u

2!1/2
d~E2E8!.

~32c!

The orthonormalization of the solutions within the first cla
according to Eq.~26! gives

a1~E!5
sin j

p~ uṽE2ES̃2Eu21uw̃E2ES̃1Eu2!1/2
, ~33!

with

j~E!52arctanFp~ uṽE2ES̃2Eu21uw̃E2ES̃1Eu2!

E2e02G~E!
G ,

~34!

so that
pagated

no’s
a
of the
ua1~E!u25
~ uṽE2ES̃2Eu21uw̃E2ES̃1Eu2!

@E2e02G~E!#21p2~ uṽE2ES̃2Eu21uw̃E2ES̃1Eu2!2
. ~35!

This relation will be used in the following derivations of the explicit expressions of the wave packets as they are pro
in time. Within the second class, due to the fact thata250 uniformly, the orthonormalization condition of Eq.~26! is
automatically ensured. The two classes of solutions are mutually orthogonal: indeed, withi 51 and j 52, the left-hand side of
Eq. ~26! gives

2a1* ~E!Z~E!~E2E9!
S̃2E~w̃E2ES̃1E!* 2S̃1E~ ṽE2ES̃2E!*

~ uṽE2ES̃2Eu21uw̃E2ES̃1Eu2!1/2
d~E2E9!,

which equals zero for all values ofE andE9. It is to be noted that exactly the same form of solutions are found as in Fa
original derivations, when the orthonormalization conditions of Eq.~21! or of Eq. ~26! are imposed, as appropriate for
nonorthogonal basis. The only important modification to Fano’s solutions for this type of problem is the correction
bound-free couplings by the elements of the matrix2ES= .

In summary, the above construction gives the following final expression for the matrixV= of Eqs.~16! and ~18!:

V= 5C= D= , ~36!

where

C= 51
1 0 0 ••• 0 0 0 ••• 0

0 cosu 0 sinu 0

0 cosu sinu

A � �

0 0 cosu 0 sinu

0 2sinu 0 cosu 0

0 2sinu cosu

A � �

0 0 2sinu 0 u

2 , ~37!
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symbolically represents the prediagonalization of the couplingsV12 between the two continua associated with the two cha

exchange states 1sg
H2

1

, 1su
H2

1

. The matrixD= has the following form:

D= 51
••• ak~E!

bkE1
~E!

bkE2
~E!

A
bkE8~E!

A
ckE1

~E!

A
ckE8~E!

A

•••
a1~Ē!

b1E1
~Ē!

b1E2
~Ē!

A
b1E8~Ē!

A
c1E1

~Ē!

A
c1E8~Ē!

A

a2~Ē!

b2E1
~Ē!

b2E2
~Ē!

A
b2E8~Ē!

A
c2E1

~Ē!

A
c2E8~Ē!

A

•••

2 , ~38!

with the elementsak(E), bkE8(E), andckE8(E) given by Eqs.~29a!–~29c! and~32a!–~32c! along with the definitions of Eq.
~27!.

IV. WAVE-PACKET PREPARATION AND PROPAGATION

A. General structure

To implement the wave-packet propagation scheme using the split operator formula, Eq.~17!, the total evolution time is
divided intoN small time slices@ tn ,tn11#, n51,. . .,N21, with t150 defining the initial moment. Consider an arbitrary tim
slice at the beginning of which~denoted byt5t0! all channels are populated, i.e., the initial wave packetsx0(R,t0),
x1E8(R,t0), andx2E8(R,t0) are all nonzero. Then, at the end of the slice,t5t01dt, Eq.~17! together with Eqs.~36!, ~37!, and
~38! give

x0~R,t01dt !5e2~ i /\!T̂Ndt/2H I aae
2~ i /\!T̂Ndt/2x0~R,t0!1E dE9I ab~E9!@cosue2~ i /\!T̂Ndt/2x1E9~R,t0!

2sinue2~ i /\!T̂Ndt/2x2E9~R,t0!#1E dE9I ac~E9!@sinue2~ i /\!T̂Ndt/2x1E9~R,t0!1cosue2~ i /\!T̂Ndt/2x2E9~R,t0!#J ,

~39a!

x1E8~R,t01dt !5e2~ i /\!T̂Ndt/2H cosuF I ba~E8!e2~ i /\!T̂Ndt/2x0~R,t0!1(
k
E dE9I bb

~k!~E8,E9!„cosue2~ i /\!T̂Ndt/2x1E9~R,t0!

2sinue2~ i /\!T̂Ndt/2x2E9~R,t0!…1(
k
E dE9I bc

~k!~E8,E9!„sinue2~ i /\!T̂Ndt/2x1E9~R,t0!

1cosue2~ i /\!T̂Ndt/2x2E9~R,t0!…G1sinuF I ca~E8!e2~ i /\!T̂Ndt/2x0~R,t0!1(
k
E dE9I cb

~k!~E8,E9!

3„cosue2~ i /\!T̂Ndt/2x1E9~R,t0!2sinue2~ i /\!T̂Ndt/2x2E9~R,t0!…1(
k
E dE9I cc

~k!~E8,E9!

3„sinue2~ i /\!T̂Ndt/2x1E9~R,t0!1cosue2~ i /\!T̂Ndt/2x2E9~R,t0!…G J , ~39b!
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x2E8(R,t01dt)5e2~ i /\!T̂Ndt/2H 2sinuF I ba(E8)e2~ i /\!T̂Ndt/2x0(R,t0)1(
k
E dE9I bb

~k!(E8,E9)

3„cosue2~ i /\!T̂Ndt/2x1E9(R,t0)2sinue2~ i /\!T̂Ndt/2x2E9(R,t0)…1(
k
E dE9I bc

~k!(E8,E9)

3„sinue2~ i /\!T̂Ndt/2x1E9(R,t0)1cosue2~ i /\!T̂Ndt/2x2E9(R,t0)…G1cosuF I ca(E8)e2~ i /\!T̂Ndt/2x0(R,t0)

1(
k
E dE9I cb

~k!(E9,E8)„cosue2~ i /\!T̂Ndt/2x1E9(R,t0)2sinue2~ i /\!T̂Ndt/2x2E9(R,t0)…

1(
k
E dE9I cc

~k!(E8,E9)„sinue2~ i /\!T̂Ndt/2x1E9~R,t0!1cosue2~ i /\!T̂Ndt/2x2E9~R,t0!…G J , ~39c!
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where

I aa~dt !5E dEua1~E!u2e2~ i /\!Edt, ~40a!

I ba~E9,dt !5E dEb1E9~E!a1* ~E!e2~ i /\!Edt5I ab* ~E9,2dt !,

~40b!

I ca~E9,dt !5E dEc1E9~E!a1* ~E!e2~ i /\!Edt5I ac* ~E9,2dt !,

~40c!

and, fork51,2

I bc
~k!~E8,E9,dt !5E dEbkE8~E!ckE9

* ~E!e2~ i /\!Edt

5I cb
~k!* ~E9,E8,2dt !, ~41a!

I bb
~k!~E8,E9!5E dEbkE8~E!bkE9

* ~E!e2~ i /\!Edt, ~41b!

I cc
~k!~E8,E9!5E dEckE8~E!ckE9

* ~E!e2~ i /\!Edt. ~41c!

Only the energy dependence of these integrals was indic
in Eqs.~39a!–~39c! as this is more relevant than their par
metric dependence ondt, which is exhibited in Eqs.~40a!–
~41c! only to help highlight the symmetry of the integra
with respect to pairwise permutations of the indicesa,b
5a, b, or c. The evaluation of these various integrals usi
ed

Eqs. ~29a!–~29c!, ~32a!–~32c!, and ~27! is simplified if the
bound-free coupling matrix elements depend weakly onE,
E8:

]~ ṽE82ES̃2,E8!

]E
.0.

]~ ṽE82ES̃2,E8!

]E8
, ~42!

]~w̃E82ES̃1,E8!

]E
.0.

]~w̃E82ES̃1,E8!

]E8
. ~43!

These assumptions are justified for the first ionization p
cess in consideration, for which the overlap integralsS6,E8
and the matrix elementsvE8 ,wE8 are small@35#, in the rel-
evant range of internuclear distancesR, and for all values of
E8 lying within a neighborhood ofe0

res2e6 of width G,
where

e0
res.e01G~e0!2 iG ~44!

and

G[p~ uvE2e2
2ES2,E2e2

u2

1uwE2e1
2ES1,E2e1

u2!uE5e01G~e0! ~45!

characterize the single pole exhibited by the functi
ua1(E)u2, Eq. ~35!, in the lower complex half plane. Th
detailed evaluations of the above integrals under the co
tions defined by Eqs.~42! and ~43! and using contour inte-
gration techniques can be found in Appendix A. Using E
~A5!, ~A12!, and~A14!, the above expression for the neutr
molecule, ground-state channel amplitude, Eq.~39a!, reduces
to
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x0~R,t01dt !5e2~ i /\!T̂Ndt/2e2~ i /\!e0
resdte2~ i /\!T̂Ndt/2x0~R,t0!1E dE9e2~ i /\!T̂Ndt/2@vE92~E91e2!S2E9#*

3F* ~2dtue0 ,E91e2!@cosue2~ i /\!T̂Ndt/2x1E9~R,t0!2sinue2~ i /\!T̂Ndt/2x2E9~R,t0!#

1E dE9e2~ i /\!T̂N dt/2@wE92~E91e1!S1E9#* F* ~2dtue0 ,E91e1!@sinue2~ i /\!T̂Ndt/2x1E9~R,t0!

1cosue2~ i /\!T̂Ndt/2x2E9~R,t0!#. ~46a!

As to the nuclear amplitudesxkE8 associated with the ionic channels, it is shown in Appendix B that they reduce to

x1E8~R,t01dt !5h1E8~R,t01dt !1e2~ i /\!E8dte2~ i /\!T̂Ndt/2$cosue2~ i /\!e2dt@cosue2~ i /\!T̂Ndt/2x1E8~R,t0!

2sinue2~ i /\!T̂Ndt/2x2E8~R,t0!#%1e2~ i /\!E8dte2~ i /\!T̂Ndt/2$sinue2~ i /\!e1dt@sinue2~ i /\!T̂Ndt/2x1E8~R,t0!

1cosue2~ i /\!T̂Ndt/2x2E8~R,t0!#% ~46b!

for the ion’ssg state associated with an electron energyE8 and

x2E8~R,t01dt !5h2E8~R,t01dt !1e2~ i /\!E8dte2~ i /\!T̂Ndt/2$2sinue2~ i /\!e2dt@cosue2~ i /\!T̂Ndt/2x1E8~R,t0!

2sinue2~ i /\!T̂Ndt/2x2E8~R,t0!#%1e2~ i /\!E8dte2~ i /\!T̂Ndt/2$cosue2~ i /\!e1dt@sinue2~ i /\!T̂Ndt/2x1E8~R,t0!

1cosue2~ i /\!T̂Ndt/2x2E81~R,t0!#% ~46c!

for the ion’ssu state associated with an electron energyE8.
In Eq. ~46a!,

F~dtue0 ,E81e6![
exp$2~ i /\!e0

resdt%2exp$2~ i /\!~E81e6!dt%

e0
res2~E81e6!

~47!

and, in the expressions ofxkE8 , k51,2 @Eqs.~46b! and ~46c!#, the functionshkE8 are given by

h1E8~R,t01dt !5e2~ i /\!T̂Ndt/2$cosu@vE82~E81e2!S2E8#F~dtue0 ,E81e2!1sinu@wE82~E81e1!S1E8#

3F~dtue0 ,E81e1!%e2~ i /\!T̂Ndt/2x0~R,t0!, ~48a!

h2E8~R,t01dt !5e2~ i /\!T̂Ndt/2$2sinu@vE82~E81e2!S2E8#F~dtue0 ,E81e2!1cosu@wE82~E81e1!S1E8#

3F~dtue0 ,E81e1!%e2~ i /\!T̂Ndt/2x0~R,t0!. ~48b!
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Note that only the wave packetx0(R,t) associated with the
ground state of H2 at the previous timet0 is involved in the
composition of these functions. Thus, these functions re
sent the portions ofxkE8 , k51,2, that, betweent0 and t0
1dt, are newly promoted from the ground state, and for t
reason will be called source terms. In addition to the
source terms,xkE8 , k51,2 also contain terms representin
the motions of previously promoted wave-packet portions
the couplede1 and e2 surfaces. Likewise the wave pack
associated with the ground channel at timet1dt consists of

a term involvinge2( i /\)e0
resdt, which, with e0

res5e01G(e0)
2 iG, denotes the continuous depopulation of the grou
state, and a set of terms representing the back transfe
population from the continuum of ionized channels to t
state.
e-

s
e

n

d
of

B. Localization of continuum wave packets:
Effective five-channel scheme

A close examination of Eq.~47! shows that, due to the
presence of the factor@e0

res2(E81e j )#21, whose amplitude
is a Lorentzian-shape function ofE8 localized in a neighbor-
hood of E85e01G(e0)2e j of width G, the function
F(dtue0 ,E81e j ) is also localized in this region. As a con
sequence, for a given internuclear distanceR, the amplitudes
h1E8 and h2E8 acquire appreciable values in the neighbo
hood of two resonance energies only, namely,E85D2 and
E85D1 , where

D2~R!5e01G~e0!2e2 , ~49a!

D1~R!5e01G~e0!2e1 . ~49b!
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FIG. 4. Dressing of the adiabatic PES’s,e2

ande1 , of H2
1 by two different energiesE8 of

the first ionized electron,E85e0
e2e2

e 5D2
e and

E85e0
e2e1

e 5D1
e . Dashed arrows indicate

bound-free couplings. Dotted arrows indica
population exchanges between the two ionic co
tinua.
le
n

as
-
c
t

a

ra
h
th
e

ad

de

of
s

These are the energies at which the interactions of the e
tronic ground state of the neutral molecule with the two io
ization continua are resonant. Due to the interactionV12 be-
tween the two continua, an interaction that w
prediagonalized by the matrixC= , a resonant transfer of popu
lation from the ground manifold to one of the continua ne
essarily populates the other continuum so that each of
continuum amplitudes,h1E8 and h2E8 , is localized at both
resonant energy positions. This effect is illustrated schem
cally in Fig. 4. AsR is made to vary within the spreadD0 of
x0 , the initial vibrational state of the ground-state neut
molecule, these resonant energy positions, and the widtG,
also vary. Therefore, it is more appropriate to describe
distribution of the continuum amplitudes as being localiz
about resonant energy positions,D j

e5e0
e1G(e0

e)2e j
e , j 5

1,2, defined at a fixed nuclear configuration,R5Re , say,
with an effective widthGeff that encompasses the spre
dD j of the resonant energiesD j5e01G(e0)2e j with vary-
ing R, and can be defined by

Geff5max
j 56

dD j1G, ~50!
c-
-

-
he

ti-

l

e
d

with

dD j5 max
RPD0

uD j~R!u2 min
RPD0

uD j~R!u. ~51!

Since this spread is typically of the same order of magnitu
as a ground-state vibrational energy difference,Geff is ex-
pected to be much smaller thane1

e 2e2
e ; i.e., the two reso-

nances can be considered well isolated from each other.
Due to their localized character, a simpler expression

the source terms,h1E8 andh2E8 , can be obtained, for value
of the ionized electron energyE8 lying within the intervals
@D j

e2Geff ,Dj
e1Geff# by noting that for

dt!~\/G! ~52!

it is convenient to rewrite the functionF(dtue0 ,E81e j ) in
the following way:
F~dtue0 ,E81e j !5
1

2 H e2~ i /\!e0
resdt~12e2~ i /\!~E81e j 2e0

res
!dt!

e0
res2~E81e j !

2
~12e~ i /\!~E81e j 2e0

res
!dt!e2~ i /\!~E81e j !dt

e0
res2~E81e j !

J
5

1

2 H e2~ i /\!e0
resdt@~ i /\!~E81e j2e0

res!dt#

e0
res2~E81e j !

1
@~ i /\!~E81e j2e0

res!dt#e2~ i /\!~E81e j !dt

e0
res2~E81e j !

1e2~ i /\!e0
resdtF ~2 i /\!~E81e j2e0

res!2dt2

e0
res2~E81e j !

2
~ i /\!~E81e j2e0

res!2dt2

e0
res2~E81e j !

e2~ i /\!~E81e j 2e0
res

!dtG J 1O~dt3!,
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ielding

F~dtue0 ,E81e j !52
i

\
dt~e2~ i /\!e0

resdt1e2~ i /\!$E81e j %dt!

1O~dt3! ~53!

for all E8P@e01G(e0)2e j2G,e01G(e0)2e j1G#, while
F is virtually zero outside this interval. Introducing

U~xua![ H1,
0,

xP@2a,a#
x¹@2a,a#

~54!

the functionF(dtue0 ,E81e j ) can thus be rewritten in the
form
F~dtue0 ,E81e j !.2
i

\
dt~e2~ i /\!e0

resdt1e2~ i /\!$E81e j %dt!

3U~E82D j uG!, ~55!

given that the time scale over which the split-operator f
mula, Eq.~15!, is convergent certainly satisfies Eq.~52!. In
the light of the above discussion concerning the variation
the Feschbach resonances’ positions and widths withR, the
above expression of the functionF, Eq. ~55!, can be modi-
fied by replacingD j (R) by D j

e and theR-dependent widthG
by Geff . Then, Eqs.~48a! and ~48b! can be written as
e
t
d

lds at

or
h1E8~R,t01dt !52 i
dt

2\
e2~ i /\!T̂Ndt/2$@vE82~E81e2!S2E8#cosu@e2~ i /\!e0

resdt1e2~ i /\!~E81e2!dt#U~E82D2
e uGeff!

1@wE82~E81e1!S1E8#sinu@e2~ i /\!e0
resdt1e2~ i /\!~E81e1!dt#U~E82D1

e uGeff!%e
2~ i /\!T̂Ndt/2x0~R,t0!

1O~dt3!, ~56a!

h2E8~R,t01dt !52 i
dt

2\
e2~ i /\!T̂Ndt/2$2@vE82~E81e2!S2E8#sinu@e2~ i /\!e0

resdt1e2~ i /\!~E81e2!dt#U~E82D2
e uGeff!

1@wE82~E81e1!S1E8#cosu@e2~ i /\!e0
resdt1e2~ i /\!~E81e1!dt#U~E82D1

e uGeff!%e
2~ i /\!T̂Ndt/2x0~R,t0!

1O~dt3!. ~56b!

Given the localization of these source terms, as described by theU factor, the variableE8 in @vE82(E81e2)S2E8# and
@wE82(E81e1)S1E8# in Eqs. ~56a! and ~56b! may be replaced byD j

e , j 52 or 1, and e0
res5e01G(e0)2 iG in the

exp$2(i/\)e0
resdt% factor may be replaced byE81e j2 iG. This gives, up to orderdt3,

h1E8~R,t01dt !.e2~ i /\!E8dt$U~E82D2
e uGeff!h1

2~R,t01dt !1U~E82D1
e uGeff!h1

1~R,t01dt !%, ~57a!

h2E8~R,t01dt !.e2~ i /\!E8dt$U~E82D2
e uGeff!h2

2~R,t01dt !1U~E82D1
e uGeff!h2

1~R,t01dt !%, ~57b!

with

h1~2!
2 ~R,t01dt !5 i

dt

2\
e2~ i /\!T̂Ndt/2@vE82~E81e2!S2E8#uE85D

2
e S cosu

2sinu D ~e2~G/\!dt11!e2~ i /\!e2dte2~ i /\!T̂Ndt/2x0~R,t0!,

~58a!

h1~2!
1 ~R,t01dt !5 i

dt

2\
e2~ i /\!T̂Ndt/2@wE82~E81e1!S1E8#uE85D

1
e S sinu

cos D ~e2G/\dt11!e2~ i /\!e1dte2~ i /\!T̂Ndt/2x0~R,t0!.

~58b!

A noteworthy feature of the final expression, Eqs.~57a! and ~57b! of the source termshkE8 , k51,2, is the separation of th
E8 andR variables. Within each energy band centered at a resonance energyD6

e , the varioushkE8 , corresponding to differen
values ofE8, depend onE8 only through a separate phase factor exp$2(i/\)E8dt%, and share the sameR dependence describe
by the functionhk

6(R,t). It turns out that this type of factorization characterizes the wave packetsxkE8 at all times if the initial
conditions correspond to the experimental situation, i.e., ifxkE8(R,0)50, for all E8 and k51,2, while x0(R,0)5cv

0(R), a
vibrational eigenstate of the neutral molecule ground state. To see this, note first that this factorization certainly hot
5dt, i.e., at the end of the first time slice since with the above initial conditionxkE85hkE8 at this time. It suffices then to show
that if this factorization holds att5t0 , then it also holds att5t01dt. Indeed substituting the form assumed f
xkE8(R,t0),

x1~2!E8~R,t0!5e2~ i /\!E8t0$U~E82D2
e uGeff!x1~2!

2 ~R,t0!1U~E2D1
e uGeff!x1~2!

1 ~R,t0!%, ~59!
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into Eqs.~46a!, ~46b!, and~46c!, and carrying out the prescribed integrations overE9 within the same approximations as
Eqs.~42! and ~43!, the following final expressions are obtained:

x0~R,t01dt !5e2~ i /\!T̂Ndt/2e2~ i /\!@e01G~e0!2 iG#dte2~ i /\!T̂Ndt/2x0~R,t0!, ~60a!

x1~2!E8~R,t01dt !5e2~ i /\!E8~ t01dt !$U~E82D2
e uGeff!x1~2!

2 ~R,t01dt !1U~E82D1
e uGeff!x1~2!

1 ~R,t01dt !%, ~60b!

where thexk
6(R,t01dt)’s are

S x1
6~R,t01dt !

x2
6~R,t01dt ! D 5eiD6

e t0 /\S h1
6~R,t01dt !

h2
6~R,t01dt ! D 1expH 2

i

\
T̂N

dt

2 J S cosu
2sinu

sinu
cosu D S e2~ i /\!e2dt

0
0

e2~ i /\!e1dt D
3S cosu 2sinu

sinu cosu D expH 2
i

\
T̂N

dt

2 J S x1
6~R,t0!

x2
6~R,t0! D , ~61!
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with initial conditions given byxk
6(R,0)50, k51,2.

Equation ~60b! confirms that the factorized structure
the ionized continuum amplitudes is preserved at all times
that the original problem, which involves an infinite numb
of coupled channels, is reduced to an effective five-chan
problem: only five functionsx0 , x1

6 , andx2
6 defined recur-

sively by Eqs.~60a!–~61! need be calculated to obtain th
full wave-packet description of the system during any sta
of the ionization process. Within each ionized-electron
ergy band, the spatial factorxk

6 of xkE8 given by Eq.~61!
consists of two terms: the source termh6 analyzed above
and a term denoting the further propagation of the previou
promoted part of the continuum wave packets on the ioni
state PES’s. Note that the final expression forx0 no longer
contains a set of terms denoting the back transfer of pop
tion from the ionized continuum to the neutral ground sta
in the approximations made here, Eqs.~42! and ~43!, the
ground-state population is transfered irreversibly to the i
ized continuum. In the context of this wave-packet propa
tion scheme for the nuclear dynamics accompanying a tu
ionization process, the reduction of the problem to an eff
tive five-channel problem reflects the well-known on-th
energy shell transition hypothesis originally introduced
Fano, which rests upon the same kind of approximati
made here, Eqs.~42! and ~43!. Insofar as the bound-fre
coupling matrix elements are weak as is the case for the
ionization of H2 in the neighborhood of the neutral groun
state equilibrium geometry@35#, this hypothesis of on-the
energy shell transition is well justified and the wave-pac
dynamics are accurately represented by the above recurr
formulas, Eqs.~60a!, ~60b!, and~61!.

V. NUMERICAL CALCULATIONS

A. Algorithm

With the above results, the wave-packet description of
tunnel ionization of H2 has become completely tractabl
Eqs.~60a! and~60b! used recursively together with Eqs.~61!
and Eqs.~58a! and~58b! give an algorithm for the numerica
wave-packet preparation and propagation during the cont
ous tunnel ionization of H2. As mentioned previously, the
total duration of the laser pulse is divided into short tim
slices @ tn ,tn11# with tn5(n21)dt so that t150 corre-
o
r
el

e
-

ly
d

a-
;

-
-
el
-

-

s

st

t
nce

e

u-

sponds to the beginning of the laser pulse. At this init
moment, only the neutral molecule ground state, i.e.,e0 , is
populated andx0(R,0) is the vibrational eigenfunctionv
50 of H2, while xkE8(R,0) are identically zero. Eqs.~60a!,
~60b!, ~61!, ~58a!, and ~58b! evaluated witht05t150 then
give the wave packet att5dt5t2 , i.e., at the beginning of
the second time slice. These are used in the next cycl
give x0 , xk

6 , hencexkE8 , at t5t3 . This is repeated until the
laser pulse is over.

Results reported below pertaining to the study of ste
alone in Fig. 1 are obtained by wave-packet propagation
the two coupled manifolds of the ionic species only. In th
case, the initial wave packet is thev50 vibrational state of
the ground-state neutral species, considered to be vertic
promoted on the2Sg

1 ground manifold of H2
1 at time t

50. This simpler wave-packet propagation study emplo
the usual implementation of the split-operator formula
two coupled channels.

At all stages of any wave-packet propagation procedu
the actions of the exponential operators involving the nucl
kinetic energy are evaluated in the momentum representa
while those of the operators that depend only on the poten
matrix elements are evaluated in the coordinate represe
tion. Passage from the coordinate representation to the
mentum representation is achieved using a fast Fourier tr
form procedure.

When the wave-packet propagation is carried out ove
time that is long as compared to the typical time scale
large amplitude nuclear motions in the coupled channels
the ionized species, wave-packet extension over a large
gion of space may require an unpractically large spatial g
To avoid this, a procedure is employed to split the exci
manifold’s wave functionsxk

6 ~or xk simply, in the study of
step 2 alone!, k51,2, into two parts: an outer part define
over the asymptotic region of the ionized state PES’se1 and
e2 , where the contributions of the source termshk

6 are zero,
and an inner part associated with the region of space wh
the Hellmann-Feynman forces derived from the PES’s
nonzero and where the wave packetsxk

6 are numerically
composed and propagated by actually using Eqs.~61!. In the
outer region, the asymptotic laser-driven dynamics of
wave packetsxk

6 can be related to an equivalent laser-driv
free-particle dynamics problem and can be described ana
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TABLE I. Molecular parameters used for the evaluation of potential-energy surfaces and transition moment in H2 and H2
1.

Potential D0 ~eV! b (a0
21) Re (a0) t A ~eV!

e0(R) 4.7484 1.03 1.4 1.0 13.606
e1(R) 2.7925 0.72 2.0 1.0 0
e2(R) 2.7925 0.72 2.0 21.11 0

Transition moment m(ea0) m8(e) y

V12(R) 1.07 0.396 20.055
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cally. This splitting procedure that permits the analytic
propagation of asymptotic wave packets was originally
veloped by Heather and Metiu@36# and later adapted by
Keller @37# to the case of H2

1, where the asymptotic wav
packets are coupled together by a linear transition dip
moment. It is used here to circumvent the need to use
impractical, large spatial grid that would otherwise be
quired to represent the large-amplitude wave-packet mot
and also to obtain the kinetic energy distribution of disso
ated fragments. To this end, a relative momentum distri
tion is extracted from the Fourier transforms of t
asymptotic parts of the wave packets and is then converte
an equivalent normalized distribution for the kinetic ener
of a single H1 fragment viewed in the center-of-mass fram

B. Computational details

1. Model parameters

The one-dimensional potential-energy surfaces for the
tationless neutral moleculeX1Sg

1 ground state and the ion
ized molecule2Sg

1 , 2Su
1 states are modeled by Morse fun

tions @38#

e i~R!5D0i
$exp@22b i~R2Rei

!#22t iexp@2b i~R2Rei
!#%

2Ai ~ i 50, 1, or 2! ~62!

and the transition dipole moment between the two state
H2

1 is modeled by

m12~R!5H m1~m8/by!$12exp@2by~R2Re!#%
for R<12 a.u.

R/2 for R.12 a.u.
~63!

The laser fieldEW(t) yields an interaction between the tw
states that is given by

V125mW 12•EW~ t !. ~64!

The relevant parameters defininge0 ,e1 ,e2 according to Eq.
~62! andm12 according to Eq.~63! are given in Table I. The
laser electric fieldEW(t) is polarized along the internuclea
axis and its amplitude is given by

E~ t !5 f ~ t !cos~vt1d!, ~65!

wherev52p/TL , TL535.65 fs, corresponding to a carrie
wavelength of 10.6mm. In the full calculations including the
first ionization step, the phase shiftd in this expression is
zero, and the envelope functionf (t) is given by
l
-

le
n

-
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f ~ t !5H E0e2~ t2trise!
2

for t<t rise

E0 for t rise,t<20TL

E0e2~ t220TL2trise!
2

for 20TL,t<t1200 fs,
~66!

with t rise57 fs. In the study of step 2 alone where the wav
packet propagation is restricted to the two electronic ma
folds of H2

1, f (t) is considered constant,f (t)5E0 for all
t, and various values of the phase shiftd correspond to dif-
ferent delays in time between the moment the initial wa
packet is prepared on the2Sg

1 surface, and the onset of th
field. For example, withd50, the initial wave-packet prepa
ration occurs at peak intensity, whereas withd5p/2, it oc-
curs when the field is zero. This procedure was initially us
to demonstrate the sensitivity of the wave-packet dynam
during step 2 with respect to the initial conditions. A fixe
value for the amplitudeE0 is used in all the calculations
reported below and corresponds to a fixed value of the fi
intensity, I 5531013 W/cm2. The matrix elementsvE8
2(E81e2)S2E8 and wE82(E81e1)S1E8 defining the
bound-free coupling in the present Feshbach model for
tunnel ionization of H2 are evaluated on the correspondin
energy shell. ThusE85D2

e for vE82(E81e2)S2E8 , while
E85D1

e for wE82(E81e1)S1E8 , and vE8 and wE8 are
given by Eqs.~25!. The determination of these matrix ele
ments requires the calculation of matrix elements of
single electron dipole moment operatorrW between the 1sg

H2

orbital of H2 and the ionized electron wave functionAE or

the 1sg
H2

1

of H2
1; see Eqs.~13a! and~13b!. Using the well-

known minimal basis expression of the orbitals and the A
approximation to the time-dependent wave functionAE ,
these matrix elements, as well as the overlap integ
^1sg

H2uAE&, are calculated by numerical integration; the i
tegrals are restricted to the electronic dimension paralle
the field polarization. Because of the restriction of these
tegrals to this single dimension and the use of the sim
Airy function to representAE , which, more correctly, should
be constructed as Airy-Coulomb waves, the amplitude of
bound-free coupling matrix elements is underestimat
yielding ionization rates that are lower than predicted by
standard ADK expression for vertical static tunnel ionizati
@14,39#. Figure 5 compares the vertical ionization rateWion

associated with the present formalism with the rateWion
ADK

predicted by ADK theory as a function of the field intensit
Within the present formalism, this rate is estimated by

Wion~ I !5
1

TL
S 12expH 2E

0

TL
dt8 Ge~ t8!J D ,
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whereGe(t8) is the instantaneous width defined by Eq.~45!
at R5Re . It is seen that a correct intensity dependence
obtained butWion andWion

ADK differ by an order of magnitude
This reflects the approximations made in the evaluation
the bound-free coupling matrix elements as detailed abo
However, the phases of the wave packets continuously
moted on the excited channels by tunnel ionization are
pected to be weakly affected by these approximations as
be seen by analyzing the structures of the recurrence for
las of Eqs.~60a!, ~60b!, and~61!. Insofar as the main objec
of our study is the effect that the continuous tunnel ioni
tion can have on the wave-packet dynamics, the errors m
in estimating the amplitude of the bound-free matrix e
ments are inconsequential. In principle, asAE varies with
time andR, the bound-free coupling matrix elements mu
be recalculated at each time step. These calculations
constitute the time-consuming part of the entire wave-pac
propagation scheme.

2. Temporal and spatial grids

The time stepdt onto which the total evolution time mus
be divided is governed by the smallest of the two natu
time scales of the problem: the typical vibrational period
H2

1 and the period of the field. The latter is important sin
a quasistatic picture is implicit in the construction of t
basisB of Eq. ~6!. Thusdt must be such that the amplitud
of the laser electric field varies little on this time scale. W
dt50.05 fs, this condition is well satisfied and the las
pulsewidth encompasses more than 20 000 time steps.

The wave packetx0 and the internal parts of the compo
nentsx1

6 , x2
6 are discretized on a spatial grid containin

1024 points covering the interval@0,Rmax# with Rmax
530 Å; thus the spatial grid size isdR52.9331022 Å and
that of the corresponding grid in the reciprocal moment

FIG. 5. Ionization rates of H2 as a function of the field intensity
calculated using the present formalism~solid line! and the ADK
theory ~dashed line!. The rates are evaluated at the equilibriu
internuclear distance and the field has a wavelength of 10.6mm.
is
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space isdP/\52.0931021 Å 21. For the numerical calcu-
lation of the one-dimensional electronic integrals needed
forming the bound-free ‘‘on-the-energy-shell’’ matrix ele
ments vE82(E81e2)S2E8 and wE82(E81e1)S1E8 , a
grid containing 800 points and extending fromz5
24.232 Å to z54.232 Å is used. Since the wave functio
x0 is peaked at the equilibrium internuclear distance of
neutral molecule,R50.79 Å, and since its spatial range r
mains smaller than 1 Å at all times, the matrix elements
vE82(E81e2)S2E8 and wE82(E81e1)S1E8 were not
evaluated forR larger than 6.348 Å.

C. Results

To discuss the results of the wave-packet propagati
using the present algorithm, which allows for the comple
inclusion of the tunnel ionization step, it is useful to sho
these results in parallel with those of the separate, stri
two-state study of the second step of Fig. 1. Figure 6 sho
the wave packets associated with the adiabatic channelse6

of the ionized H2
1 species for a valueE85D2

e of the ionized
electron energy. Wave packets associated with the hig
energy band,E8.D1

e , are found to be of much smaller am
plitudes. The wave packets of Fig. 6 are taken at four typ
phases of the field oscillations within the 19th optical cyc
To facilitate viewing them together with the adiabatic pote
tial changes, these wave packets have been renormalize
the total ionized-state population. Also reproduced in the
sets, to be found in each panel of this figure, are~evaluated at
the same moments of time! the wave packets that were ob
tained in the study of step 2 alone ford50 in Eq. ~65!.
Recall that these evolved from the same initial wave funct
described above, denoting the ground vibrational state of

FIG. 6. Nuclear probability distributions associated with t
wave packetsx2 ~solid line! andx1 ~dashed line! supported by the
adiabatic channelse - and e1 for a valueE85D2

e of the ionized
electron energy. These wave packets are taken at four times w

the 19th optical cycle:~a! t519 1
4 TL , ~b! t519 1

2 TL , ~c! t

519 3
4 TL , ~d! t520TL . The insets show the corresponding resu

obtained in the study of step 2 alone at these times. The initial w
function used in the insets corresponds to thev50 vibrational state
of the electronic ground state of H2. This initial wave function is
instantly promoted on the ground ionic channel when the field is
its peak intensity; this corresponds tod50 in Eq. ~65!.
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neutral parent. However, here, this initial wave packet is c
sidered to be instantly promoted on the ground ionic chan
as the field is at its peak intensity. The results of the f
calculations, where the continuous tunnel ionization is pr
erly included, indicate a pronounced nonadiabatic chara
of the wave-packet dynamics, while these dynamics are a
batic in the study of step 2 alone. Indeed, in this study of s
2 alone, a single wave packet is associated with the lo
adiabatic channel at all times. In fact, this is the case for
other values ofd considered. In contrast, the present co
plete calculations show that the upper channel is occas
ally populated. If the dynamics were adiabatic, then a
wave-packet portion previously promoted on this chan
would stay on this channel forever. The periodic disappe
ance of the wave packet associated with the upper adiab
PES indicates that an appreciable nonadiabatic popula
transfer occurs between the two adiabatic states of the io
is also interesting to note that the centers of the wave pac
exhibit dynamics that are synchronized with the field os
lations in a manner that is opposite to what is observed in
case of the step 2 alone withd50. While the motions of the
wave packets shown in the insets are synchronized such
only small portions of the wave packets can escape from
potential well of the lower adiabatic channel, the wav
packet dynamics observed in the complete calcula
(step 11step 2) appear to offer more favorable conditio
for the dissociation of the ion. Whether this is actually t
case or not will become clear in the further discussion to
found below.

Figure 7 shows, as a function of time, the total populat
associated with the bound vibrational statesuv(H2

1)& of the
ionic species. In panel~a!, this population is shown in abso
lute form and is given by

Pbound
abs ~ t !5(

v
u^v~H2

1!ux1~ t !&u2. ~67!

It is, however, more instructive and meaningful to conside
bound-state populationPboundrenormalized to the total popu
lation of the ionic states. This is shown in the panel~b! of
Fig. 7, and is defined by

Pbound~ t !5
(vu^v~H2

1!ux1~ t !&u2

^x1~ t !ux1~ t !&1^x2~ t !ux2~ t !&
. ~68!

In the above definitions, the wave packetsx1 and x2 are
supported by the two charge-resonant states of the ion a
ciated with a given value of the ionized electron energy, a
the vibrational statesuv(H2

1)& are defined as the boun
eigenstates of the Morse oscillator associated with
ground state of the ion, Eq.~62!. In the study of step 2 alone
there is no distinction betweenPbound andPbound

abs since then,
^x1(t)ux1(t)&1^x2(t)ux2(t)&51. In contrast, in the com
plete study, the total conserved population includes tha
the neutral species’ ground state. Thus, in this case,
complement of the relative bound-state populationPbound
represents the probability that the ion is in a dissociat
continuum whereas the complement ofPbound

abs is dominated
by the neutral ground-state population. For this reason,
more meaningful to analyzePbound than Pbound

abs although the
former is not defined att50 when the ionic state population
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are zero, and may be somewhat misleading as it appea
start from an unphysical value close to unity: in this respe
it is important to keep in mind thatPbound is the probability
that the ion,once formed, stays within the manifold of its
field-free vibrational bound states.

Also shown in Fig. 7~b! ~dashed line! is a localized popu-
lation defined by

Ploc~ t !5
*0

Rendux1~R,t !u2dR

^x1~ t !ux1~ t !&1^x2~ t !ux2~ t !&
, ~69!

whereRend512 a.u. so that the range of the integral in E
~69! encompasses the supports of all the bound vibratio
states. For comparison, a set of correspondingPbound(t) re-
sults obtained in the two-state, study of step 2 alone witd
50, p/4, p/3, andp/2 is shown in the same panel of Fig.
In this case, the graph ofPbound exhibits two distinct decay
regimes: an initial fast decay occurring within a few optic
cycles of the IR laser field, followed by a much slower d
cay, which, for the same pulse duration, leads to a final p
teau in the bound-state population ranging from 16% fo
phase shiftd5p/2 to 65% for a zero phase shift. In the ca
of d50, the synchronization between the field oscillation
which govern the time variation of the adiabatic potenti
e1 ,e2 , and the nuclear motion is such as to give the larg
bound components in the wave packetx1 . This denotes an
important stabilization of the ion with respect to dissociatio
With the tunnel ionization operating continuously, th

FIG. 7. ~a! Absolute total population,Pbound
abs , associated with the

vibrational states of H2
1. ~b! Renormalized total populationPbound

associated with the vibrational states of H2
1 ~solid line! and local-

ized populationPloc ~dashed line!. This results forPbound from the
study of step 2 alone are reproduced for four values of the ph
shift d in Eq. ~65!, d50, p/4, p/3, andp/2.
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bound-state population tends to remain larger at all tim
attaining a final value exceeding 70% at the end of the pu
This appears to be most surprising since the observat
concerning the synchronization of the wave-packet dynam
with respect to the field oscillations, made above, sugges
contrary, i.e., that the ion would be less stabilized. Howev
the observed higher plateau inPboundcan be partially under-
stood by noting that the continuous tunnel ionization tend
create, at the beginning of each time slice, new wave-pa
components that are localized in the internal region ass
ated with the bound states. Note thatPbound exhibits oscilla-
tions that are in-phase with those of the field and that, w
the field attains its peak intensity,Pbound and Ploc are equal
and Pbound is at a local maximum, which agrees with th
above interpretation. The oscillations inPbound are also ob-
served in the case of step 2 alone. However, in the cas
the complete study, including continuous ionization, they
much more pronounced and are characterized by dips
are particularly pronounced during the first optical cycl
These reflect the fast, initial decay regime, which is clea
delineated in the two-state results of step 2 alone and is
quickly compensated for by the continuous population tra
fer from the neutral ground state. The dips come from
repetition of this decay after each population burst~maxima
in Pbound! occurring at peak intensity. On the other hand,
localized population varies more smoothly and the dips
exhibits at short times are much shallower than those of
bound-state population. This indicates that the wave pac
contain a part lying in the dissociative continua of the tw
state ionic species and that is nevertheless localized w
the range of the attractive ground-state potential at all tim
Does this effect occur concomitantly with a larger dissoc
tion probability of the ion as suggested at first sight by
wave-packet dynamics shown in Fig. 6? In this respect,
interesting to note that if one follows closely the wav
packet portions found, in the full calculation, in the vicini
of the potential gap when this is widely opened at tho
moments the field amplitude is at a maximum, then it tu
out that these wave-packet portions tend to be reflected b
towards the inner region at a later time instead of proceed
towards the dissociative limit. This is seen by comparing F
6~b! to Fig. 6~c!. However, it is hazardous to assess in t
manner the dissociative or nondissociative character of
wave packets obtained in the presence of continuous ion
tion as compared to those observed in the study of ste
alone, precisely because the continuous ionization alw
gives a bias towards a much larger nondissociative pop
tion. A reliable, unbiased assessment of the dissociation
in the presence of the continuous ionization can be obta
by measuring the slopes of the dips exhibited inPbound or
Ploc after each maximum reached in Fig. 7~b!, as these slope
furnish upper and lower bounds for the dissociation ra
This can be seen by invoking the followingphenomenologi-
cal rate equations:

dPloc

dt
52vdiss~ t !1v loc~ t !, ~70a!

dPbound

dt
52vdiss~ t !1v loc~ t !1v tr~ t !, ~70b!
s,
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where vdiss(t) is the proper rate of dissociation of H2
1,

v loc(t) represents the rate of change in the localized pop
tion ~normalized to the total ionic population!, a change that
accounts for the continuous ionization of H2, andv tr(t) rep-
resents the rate of population transfer between the bo
states and the dissociative continuum. This last quan
v tr(t), is positive when the transfer is from the continuu
states to the bound states and negative for a transfer in
opposite direction. On the other hand, by definition,vdiss and
v loc are always positive. Hence, Eq.~70a! implies

2
dPloc

dt
<vdiss~ t ! ~71!

for all t. At a time t5 t̄ n lying within the time interval asso-
ciated with one of the dips exhibited both byPbound and
Ploc in Fig. 7~b!, localized population is being transferre
from the bound states to the dissociation continuum, so

v tr<0. ~72!

Furthermore, ift̄ n is chosen such that@40#

v loc~ t̄ n!50 ~73a!

or, less stringently, such that

v loc~ t̄ n!,uv tr~ t̄ n!u ~73b!

then ~70b! gives

2
dPbound

dt U
t̄ n

5vdiss~ t̄ n!2@v tr~ t̄ n!1v loc~ t̄ n!#>vdiss~ t̄ n!.

~74!

Thus, the slopes of the dips exhibited byPloc and Pbound in
Fig. 7~b! provide upper and lower bounds for the dissoc
tion ratevdiss( t̄ n) evaluated right after each burst in the pop
lation of the ionic channels

2
dPloc

dt U
t̄ n

<vdiss~ t̄ n!<2
dPbound

dt U
t̄ n

. ~75!

The dissociation rate estimated in this manner is to be c
pared with the initial dissociation ratevstep 2

diss (0)5
2dPbound/dtu t50 , evaluated att50, i.e., at the beginning o
the propagation, for the calculation of step 2 alone with
phased50. It is found that the values of2dPbound/dtu t̄ n

,

obtained within the dips exhibited byPbound in the results of
the full calculation, are less than the dissociation r
vstep 2

diss (0). In fact, the value ofvstep 2
diss (0) is more than twice

the average value of2dPbound/dtu t̄ n
, as

vstep 2
diss ~0!52.65931024 ~a.u.!21,

K 2
dPbound

dt U
t̄ n
L 51.00531024 ~a.u.!21.

These estimates indicate at least that no increase in the
sociation rate accompanies the wave-packet localization
to the continuous ionization. It is in this sense that, w
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respect to the dissociation of the ion, there seems to b
stabilization above and beyond that observed in the stud
step 2 alone.

A final, noteworthy observation is that the wave-pack
localization effect appears to be correlated with the nona
batic dynamics illustrated in Fig. 6. The wave packet s
ported by the upper adiabatic channele1 at peak intensity
@panels~b! and ~d! of Fig. 6# lies within the dissociative
continua of the ion as viewed in the diabatic, field-free re
resentation. As the field amplitude decreases toward z
this wave packet is transferred back to the lower adiab
potentiale2 before it has time to move toward larger inte
nuclear distances.

In summary, a localized, trapped component of the w
packet is found in the dissociative continua of H2

1 at all
times and reflects the continuous population transfer fr
the neutral ground state to the ionic channels. No enha
ment in the dissociation rate of the ion, which would effe
tively result from this continuous population transfer, is o
served.

The existence of a trapped continuum component in
wave packets is further corroborated by the spectra in Fig
which show how the distribution of the kinetic energy of t
dissociation products evolve in time. In panel~a!, a stable
structure of this spectrum starts to emerge after 17 opt
cycles, and this structure, consisting notably of a set of hi
energy lines in the region 0.6–1.2 eV~per fragment! is pre-
served thereafter during the action of the laser field, pan
~b!–~d!. Especially noticeable in panels~c! and ~d! is a

FIG. 8. Kinetic energy spectra of the dissociated fragments
H2

1 in the center-of-mass frame for~a! t517TL , ~b! t518TL , ~c!
t519TL , ~d! t520TL , ~e! t5t f51200 fs. In panel~e!, the arrows
indicate the range of the experimentally observed kinetic ener
of the H1 fragments.
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single, prominent, narrow peak centered at approxima
0.9 eV~per fragment!, which may be associated with the fa
dissociative component of the wave packets newly promo
onto the ionic channels each time the field attains its ma
mum amplitude. In addition, a set of well-defined peaks
found at low energies in all these spectra and may be du
leakage of a portion of the wave packet trapped in the wel
the lower adiabatic potential. Once the pulse is over, pa
~e!, a large number of new lines emerge. These lines
only come from a relaxation of those parts of the wave pa
ets that belong to the dissociation continuum and that w
trapped, i.e., localized in the internal region, by the fluctu
ing electric field. This interpretation is consistent with th
fact that, in the two-state study of step 2 alone, the kine
energy spectrum of the fragments retains its form after
pulse is over while the bound-state and localized populati
defined above are indistinguishable at all times.

Previous experiments on the dissociative ionization
H2 under a 10.6-mm laser pulse gave a typical spectrum th
within the resolution then attainable, was interpreted a
wide distribution of the proton kinetic energy about a sing
nominal value. The range of this peak value, as obser
over 100 laser shots atI 5531013 W/cm2 @12#, is indicated
by the pair of arrows in panel~e! of Fig. 8. The typical
experimental fragment kinetic energy spectrum, thus con
ered monoenergetic, was rationalized in terms of the co
plete Coulomb explosion of H2. In comparison, the calcu
lated spectrum covers a larger range of fragment kin
energies and is characterized by a complex line struct
New experimental developments have been brought to
attention@41#, in which refined experimental methodologie
allowed higher-resolution proton kinetic energy spectra to
obtained. Preliminary results@41# of this new experimenta
work reveal structured spectra that cover the entire rang
kinetic energies illustrated in Fig. 8. Meanwhile, the analy
of the structures observed in the experimental and theore
spectra is being made and an interpretation of these st
tures in terms of a Floquet picture is being examined. T
work is planned for future publication. The present resu
obtained from calculations that include only step 1 and ste
of Fig. 1, show that the dissociation of H2

1 can produce
H1 fragments with kinetic energies in the experimental ran
without the further ionization of H2

1. However, since step 3
has not been included in the calculation, its relevance in
interpretation of the experimental spectra, as suggested
the complete Coulomb explosion picture of Fig. 1, has ye
be established.

VI. SUMMARY AND CONCLUSIONS

Electron tunneling processes corresponding to the suc
sive ionizations of H2 induced by an intense low-frequenc
field have been expressed in terms of field-free BO PES
To achieve this goal, a projection of the new time-depend
adiabatic electronic states associated with the distorted C
lomb potential, the electron-nuclei potential, plus the inst
taneous radiative interaction potential onto the field-fr
states is needed. This is done by using the time-depen
electronic basis defined by Eq.~6!. Essentially, the construc
tion of this basis amounts to recognizing that electrons i
ized during the action of the laser pulse are not free

f
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continue to feel the driving force of the field. By treating th
ionized electrons in this manner while the bound ones
still described by field-free BO electronic states, an asymm
try is introduced in the theory. This asymmetry is precis
what is needed to allow for a discussion of the tunnel io
ization processes in terms of field-free electronic states.
to its interaction with the radiation field, an ionized electr
described in this basis can have negative total energy. A
consequence, when dressed by the continuous ejected
tron energy, the BO PES’s of the ionic channels can
brought into resonance with the ground state of the pa
species. In this way, the tunnel ionization process, a sha
resonance problem, has been transformed into a Fesh
resonance problem.

Even when the parent molecule and the bound ionic s
cies are each described by a single electronic state, this p
lem originally involves the interaction between an electro
manifold ~PES! of the parent molecule and at least one co
tinuous series of PES’s associated with the ionic spec
which is accompanied by an ionized electron of energyE.
This requires a technique for wave-packet propagation o
continuum of coupled electronic manifolds. A reduction
the wave-packet propagation scheme to an effective fi
channel problem has been obtained for the description of
first dissociative ionization process in H2 by using Fano’s
formalism to analytically diagonalize the infinite, continuo
interaction potential matrix and by using the properties
Fano’s solutions. More precisely, the property of Fano’s
lutions that permits such a reduction is the well-known
calization of bound-free population exchanges to ‘‘on-th
energy-shell’’ transitions in the neighborhood of Feshba
resonances. This localization demands that the bound-
couplings do not vary too rapidly with respect to the contin
ous energy variable, and that they are not so strong tha
Feshbach resonances do not overlap appreciably. These
ditions are well met in the case of the first ionization of H2,
which occurs mainly in the neighborhood of the neutral eq
librium geometry, where the ground-state population initia
resides. In contrast, the second ionization, i.e., the ioniza
of H2

1, is expected to occur at larger internuclear distanc
as found in recent investigations of an ionizatio
enhancement effect@7,9#. In this case, both conditions wil
not be met, and a reduction of the wave-packet propaga
scheme to an effective problem involving a finite number
channels will not be obtained. It is in this respect that
inclusion of the second ionization of H2, i.e., of step 3 in Fig.
1, constitutes the main challenge for future work, while
finements such as the generation and use of more acc
bound-free matrix elements or the inclusion of rotations
the wave-packet dynamics will, in comparison, be mu
more straightforward. This is not to say that these refi
ments are not important and can be neglected. Another p
that would require particular attention when the present w
is generalized to much higher field intensities and to a hig
frequency regime is the participation of excited states of
parent molecule to the dynamics of the dissociative ioni
tion process. These aspects, in particular the adaptatio
the present wave-packet formulation to the second ioniza
of H2, are being considered in ongoing research.

Presently, only the first dissociative ionization step in t
complete sequence of events leading to the Coulomb ex
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sion of H2 has been studied. The dynamics of the ion un
the influence of the continuous ionization process are
adiabatic than those observed in the case of sudden ion
tion, step 2 alone. In addition, continuous ionization appe
to temporarily give a trapped, i.e., a spatially localized wa
packet component belonging to the dissociative continuu
enhancing the stabilization of the ion with respect to dis
ciation. Although this enhancement is not very large,
presence, together with the more pronounced nonadiabat
in the wave-packet dynamics, indicates that interference
tween portions of the wave packets that are promoted on
ionic ground-state at different times during continuous io
ization plays an important role, and denotes a strong c
pling between the ionization and dissociation events, wh
are both induced by the laser field.
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APPENDIX A

To proceed further from Eqs.~39a!–~39c!, analytical ex-
pressions for the integrals defined in Eqs.~40a!–~40c! and
Eqs. ~41a!–~41c! are needed. The present Appendix giv
the details of the evaluations of these integrals using con
integrations. For convenience, in the following,z(E) will
denote the function

z~E!5~ uṽE2ES̃2,Eu21uw̃E2ES̃1,Eu2!. ~A1!

Evaluation of I aa

For I aa , substitution of Eq.~35! for ua1(E)u2 into Eq.
~40a! gives

I aa~dt !5E dE
z~E!e2 iEdt/\

@E2e02G~E!#21p2z~E!2 . ~A2!

If ṽE82ES̃2,E8 and w̃E82ES̃1,E8 are slowly varying with
respect toE andE8, viewed as complex variables, Eqs.~42!
and ~43!, then the integrand in the above has only a sin
pole in each half plane of the complex plane. In the low
half plane, this pole is approximately at

E5e0
res5e01G~e0!2 iG, ~A3!

where
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G5pz~e0!. ~A4!

The integralI aa can then be evaluated using the residue th
rem and the contour of Fig. 9~a!. The result is
hi
,

ol
-

I aa~dt !5e2 i e0
resdt/\. ~A5!

Integrals I ba and I ca

Substituting Eqs.~27! and~29b! into the definition ofI ba ,
Eq. ~40b! first yields
I ba~E8,dt !5I 1~E8,dt !1
@E81e22e02G~E81e2!#@ ṽE81e2

2~E81e2!S̃2E81e2
#

z~E81e2!
ua1~E81e2!u2e2 i ~E81e2!dt/\,

~A6!
nc-

r

where the second term arises from theZ(E)d(E2E82e2)
factor in Eq.~29b!, after substitution of Eq.~30! for Z(E),
while

I 15PE dE
~ ṽE81e2

2ES̃2E81e2
!ua1~E!u2e2 iEdt/\

E2~E81e2!
.

~A7!

Within the approximation made above, the integrand in t
has a single pole, that ofua1(E)u2, on the lower half plane
so that using the contour of Fig. 9~b!, it is found that

FIG. 9. Integration contours used in evaluation of~a! I aa(dt)
and ~b! integrals involvingP/(E2E8) in I ba(E8,dt), I ca(E8,dt),
I ab(E8,E9,dt), a,b5b or c. The single pole ofua1(E)u2 found in
the lower complex half plane is indicated in both panels symb
cally by ^.
s

I 15
~ ṽE81e2

2e0
resS̃2E81e2

!e2 i e0
resdt/\

e0
res2~E81e2!

2 ipua1~E81e2!u2

3@ ṽE81e2
2~E81e2!S̃2E81e2

#e2 i ~E81e2!dt/\. ~A8!

Substituting this back into Eq.~A6! yields

I ba5
~ ṽE81e2

2e0
resS̃2E81e2

!e2 i e0
resdt/\

e0
res2~E81e2!

1ua1~E81e2!u2

3@ ṽE81e2
2~E81e2!S̃2E81e2

#

3e2 i ~E81e2!dt/\S E81e22e02G~E81e2!

z~E81e2!
2 ip D .

~A9!

Substituting Eq.~35! for ua1(E)u2 into the second term on
the right-hand side of the above gives

I ba5
~ ṽE81e2

2e0
resS̃2E81e2

!e2 i e0
resdt/\

e0
res2~E81e2!

1
@ ṽE81e2

2~E81e2!S̃2E81e2
#e2 i ~E81e2!dt/\

~E81e2!2@e01G~E81e2!2 ipz~E81e2!#
.

~A10!

Due to the localized character of the Lorentzian-shaped fu
tions @e0

res2(E81e2)#21, @e02(E81e2)1G(E81e2)
2 ipz(E81e2)] 21, which appear in Eq.~A10!, and the as-
sumed weak dependence of the bound-free couplings onE,
Eqs.~42! and~43!, it is possible to rewrite the above in eithe
of the following final forms:

I ba~E8,dt !5~ ṽE81e2
2e0

resS̃2E81e2
!F~dtue0 ,E81e2!,

~A11!
i-
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I ba~E8,dt !5@ ṽE81e2
2~E81e2!S̃2E81e2

#

3F~dtue0 ,E81e2!, ~A12!

where

F~dtue0 ,E81e6![
e2 i e0

resdt/\2e2 i ~E81e6!dt/\

e0
res2~E81e6!

.

~A13!

Similarly, the integralI ca is found to reduce simply to
I ca~E8,dt !5@w̃E81e1
2~E81e1!S̃1E81e1

#

3F~dtue0 ,E81e1!. ~A14!

Integrals I ab
„k… , a,b5b,c, k51,2

The evaluations of the integralsI bb
(k) , I bc

(k) , and I cc
(k) are

somewhat more tedious. The details are given here for
evaluations ofI bb

(k) only.
Substituting Eqs.~27! and ~29b! into the definition of

I bb
(1) , Eq. ~41a!, we have
contour
I bb
~1!5PE dE

~ ṽE81e2
2ES̃2,E81e2

!~ ṽE91e2
2ES̃2,E91e2

!*

~E2E82e2!~E2E92e2!
ua1~E!u2e2 iEdt/\1PE dE~ ṽE81e2

2ES̃2,E81e2
!

3~ ṽE91e2
2ES̃2,E91e2

!* ua1~E!u2e2 iEdt/\H Z~E!

E2E92e2
d~E2E82e2!1

Z~E!

E2E82e2
d~E2E92e2!J

1E dE~ ṽE81e2
2ES̃2,E81e2

!~ ṽE91e2
2ES̃2,E91e2

!* Z2~E!d~E2E82e2!d~E2E92e2!ua1~E!u2e2 iEdt/\.

~A15!

In the first integral on the right-hand side, we use

P
~E81e22E!~E91e22E!

5
P

E82E9 H P
~E91e22E!

2
P

~E81e22E!J
1p2d~E82E9!d~E2 1

2 @E81E912e2# ! ~A16!

to obtain

I bb
~1!5

P
E82E9

FPE dE
~ ṽE81e2

2ES̃2,E81e2
!~ ṽE91e2

2ES̃2,E91e2
!* z~E!

~E91e22E!uE2e02G~E!2 ipz~E!u2
e2 iEdt/\

2PE dE
~ ṽE81e2

2ES̃2,E81e2
!~ ṽE81e2

2ES̃2,E91e2
!* z~E!

~E81e22E!uE2e02G~E!2 ipz~E!u2 e2 iEdt/\G
1p2d~E82E9!uṽE81e2

2~E81e2!S̃2,E81e2
u2ua1~E81e2!u2e2 i ~E81e2!dt/\1P@ ṽE81e2

2~E81e2!S̃2,E81e2
#

3@ ṽE91e2
2~E81e2!S̃2,E91e2

#* ua1~E81e2!u2H Z~E81e2!

E82E9 J e2 i ~E81e2!dt/\2P@ ṽE81e2
2~E91e2!S̃2,E81e2

#

3@ ṽE91e2
2~E91e2!S̃2,E91e2

#* ua1~E91e2!u2H Z~E91e2!

E82E9 J e2 i ~E91e2!dt/\1uṽE81e2
2~E81e2!S̃2,E81e2

u2

3Z2~E81e2!ua1~E81e2!u2e2 i ~E81e2!dt/\d~E82E9!. ~A17!

In the first two terms of this long expression, i.e., in the two integrals that remain to be evaluated, the expression forua1Eu2,
Eq. ~35!, has been used to exhibit the analytical properties of the integrands. These integrals can be evaluated by
integration using the contour of Fig. 9~b!, and yield
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PE dE
~ ṽE81e2

2ES̃2,E81e2
!~ ṽE91e0

2ES̃2,E91e2
!* z~E!

~Ē1e22E!uE2e02G~E!2 ipz~E!u2
e2 iEdt/\

5
~ ṽE81e2

2e0
resS̃2,E81e2

!~ ṽE91e2
2e0

resS̃2,E91e2
!*

~Ē1e22e0
res!

e2 i e0
resdt/\2 ip@ ṽE81e2

2~Ē1e2!S̃2,E81e2
#

3@ ṽE91e2
2~Ē1e2!S̃2,E91e2

#* ua1~Ē1e2!u2e2 i ~ Ē1e2!dt/\, ~A18!

whereĒ5E8 or E9. Substituting these results into Eq.~A17! and using Eqs.~35! and ~30! for ua1(E)u2 andZ(E), respec-
tively, we finally obtain, after some lengthy but straightforward algebraic rearrangements,

I bb
~1!~E8,E9!5

P
E82E9

~ ṽE81e2
2e0

resS̃2,E81e2
!~ ṽE91e2

2e0
resS̃2,E91e2

!* $F~dtue0 ,E81e2!2F~dtue0 ,E91e2!%

1d~E82E9!
uṽE81e2

2~E81e2!S̃2,E81e2
u2e2 i ~E81e2!dt/\

z~E81e2!
. ~A19!

Again, due to the localized character of the functionF(dtue0 ,E81e2), and the weakE dependence of the bound-fre
couplings, Eqs.~42! and ~43!, we can rewrite this in the following simpler, final form:

I bb
~1!~E8,E9!5P

uṽE81e2
2e0

resS̃2,E81e2
u2

E82E9
$F~dtue0 ,E81e2!2F~dtue0 ,E91e2!%1d~E82E9!

3
uṽE81e2

2~E81e2!S̃2,E81e2
u2e2 i ~E81e2!dt/\

z~E81e2!
. ~A20!

Adding to this result the integralI bb
(2) , which, according to Eqs.~27! and ~32b! is simply

I bb
~2!~E8,E9!5d~E82E9!

uw̃E81e2
2~E81e2!S̃1,E81e2

u2e2 i ~E81e2!dt/\

z~E81e2!
~A21!

we have

(
k

I bb
~k!~E8,E9!5P

uṽE81e2
2e0

resS̃2,E81e2
u2

E82E9
$F~dtue0 ,E81e2!2F~dtue0 ,E91e2!%1d~E82E9!e2 i ~E81e2!dt/\.

~A22!

Similarly, it is found that

(
k

I cc
~k!~E8,E9!5P

uw̃E81e1
2e0

resS̃1,E81e1
u2

E82E9
$F~dtue0 ,E81e1!2F~dtue0 ,E91e1!%1d~E82E9!e2 i ~E81e1!dt/\

~A23!

and

(
k

I bc
~k!~E8,E9!5P

~ ṽE81e2
2e0

resS̃2,E81e2
!~w̃E91e1

2e0
resS̃1,E91e1

!*

E82E91e22e1
$F~dtue0 ,E81e2!2F~dtue0 ,E91e1!%.

~A24!

APPENDIX B

Appendix A gives the final expressions for the various integrals appearing in Eqs.~39a!–~39c!. These results were obtaine
within the approximation that the bound-free matrix elements are slowly varying with respect to the energy of the
electron, Eqs.~42! and~43!. The present Appendix deals with the use of these expressions to obtain the results reported
~46a!–~46c!. While Eq. ~46a! follows straightforwardly from Eq.~39a! using the results of Eqs.~A5!, ~A12!, and~A14!, the
substitutions of Eqs.~A22!, ~A23!, ~A24!, and~A12! into Eqs.~39b! and~39c! do not yield Eqs.~46b! and~46c! directly. For
example, consider the wave packetx1E8 belonging to the continuum associated with the ground state of the H2

1 ion. We first
obtain, within the same approximation as in Eq.~42!:
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x1E8~R,t01dt !5h1E8~R,t01dt !1e2~ i /\!E8dte2~ i /\!T̂Ndt/2$cosue2~ i /\!e2dt@cosue2~ i /\!T̂Ndt/2x1E8~R,t0!

2sinue2~ i /\!T̂Ndt/2x2E8~R,t0!#%1e2~ i /\!E8dte2~ i /\!T̂Ndt/2$sinue2~ i /\!e1dt@sinue2~ i /\!T̂Ndt/2x1E8~R,t0!

1cosue2~ i /\!T̂Ndt/2x2E8~R,t0!#%1e~2 i /\!T̂Ndt/2H cos uṽe0
2e0S̃2,e0

u2

3PE dE9
F~dtue0 ,E81e2!2F~dtue0 ,E91e2!

E82E9
@cosue2~ i /\!T̂Ndt/2x1E8~R,t0!

2sinue2~ i /\!T̂Ndt/2x2E9~R,t0!#1cosu~ ṽe0
2e0S̃2,e0

!~w̃e0
2e0S̃1,e0

!*

3PE dE9
F~dtue0 ,E81e2!2F~dtue0 ,E91e1!

E82E91e22e1
@sinue2~ i /\!T̂Ndt/2x1E9~R,t0!

1cosue2~ i /\!T̂Ndt/2x2E9~R,t0!#1sin u~ ṽe0
2e0S̃2,e0

!* ~w̃e0
2e0S̃1,e0

!

3PE dE9
F~dtue0 ,E81e2!2F~dtue0 ,E91e1!

E82E91e22e1
@cosue2~ i /\!T̂Ndt/2x1E9~R,t0!

2sinue2~ i /\!T̂Ndt/2x2E9~R,t0!#1sinuuw̃e0
2e0S̃1,e0

u2

3PE dE9
F~dtue0 ,E81e1!2F~dtue0 ,E91e1!

E82E9
@sinue2~ i /\!T̂Ndt/2x1E9~R,t0!

1cosue2~ i /\!T̂Ndt/2x2E9~R,t0!#J , ~B1!

where

h1E8~R,t01dt !5e2~ i /\!T̂Ndt/2$cosu@vE82~E81e2!S2E8#F~dtue0 ,E81e2!1sinu@wE82~E81e1!S1E8#

3F~dtue0 ,E81e1!%e2~ i /\!T̂Ndt/2x0~R,t0!. ~B2!
n
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The first part of the above lengthy expression, Eq.~B1!, rep-
resents what would be obtained if the integralsI bb

(1) , I cc
(1) , and

I bc
(1) did not contain the nonlocal terms involving the functio

F in Eqs. ~A22! and ~A23!. It turns out that these nonloca
terms have a vanishing net effect on the propagation sche
To see this, consider first what happens at the end of the
two time slices. Witht050, and the physical condition tha
only the neutral species ground state is populated at
initial moment, i.e., x0(R,t0)Þ0, while x1E(t50)50
5x2E(t50), the above Eq.~B1! gives

x1E8~R,dt !5h1E8~R,dt ! ~B3!

simply, so thatx1E8 ~and x2E8! are simple linear combina
tions of the functionsF(dtue0 ,E81e6). Now, these con-
tinuum wave functions are part of the initial conditions f
the propagation over the second time slice, i.e., fr
t05dt to t52dt. Substituting these expressions into E
~B1! gives, in conjunction with the nonlocal terms ofI bb

(1) and
I cc

(1) , integrals of the form

PE dE9
F~dtue0 ,E81e j !2F~dtue0 ,E91e j !

E82E9
e.
rst

is

.

3F~dtue0 ,E91e l !, ~B4!

wherej , l 56 and, in conjunction with the nonlocal terms o
I bc

(1) , integrals of the form

PE dE9
F~dtue0 ,E81e2!2F~dtue0 ,E91e1!

E82E91e22e1

3F~dtue0 ,E91e l !. ~B5!

Due to the localized character of the functionsF(dtue0 ,E8
1e6), viewed as a function ofE8, Eq. ~B4! is nonzero only
when e l5e j , assuming thatG, Eq. ~A4!, is small, i.e., that
the bound-free couplings are small with respect to the ene
separationue22e1u. Note that while this would warrant the
satisfaction of the conditions of Eqs.~42! and ~43!, it is not
required, or implied by these conditions. Also, in writin
Eqs.~B4! and ~B5!, a commutator between exp(2iT̂Ndt/2\)
andF(dtue0 ,E81e l) has been neglected. By referring to th
expression ofF(dtue0 ,E81e l) given in Eq.~53!, this com-
mutator is found to be of orderdt3, i.e., the same order o
magnitude as error terms associated with the split-oper
formula itself, and can be consistently neglected. Using



d

e
,

e
d-

up
in

l.

m-

rgy
tive
t

trary
cal
.

2166 56T.-T. NGUYEN-DANG et al.
explicit expressions ofF(dtue0 ,E81e6), Eq.~A13!, and the
following straightforward relations

PE dE9
e2 i ~E91e j !dt/\

E82E9
5 ipe2 i ~E81e j !dt/\, ~B6!

E dE9
e2 i ~E91e j !dt/\

e0
res2~E91e j !

52ipe2 i e0
resdt/\, ~B7!

E dE9
1

e0
res2~E91e j !

5 ip, ~B8!

it is found that

PE dE9
F~dtue0 ,E81e j !F~dtue0 ,E91e j !

E82E9

5
F~dtue0 ,E81e j !

e0
res2~E81e j !

E dE9F P
E82E9

2
1

e0
res2~E91e j !

G
3~e2 i e0

resdt/\2e2 i ~E91e j !dt/\!5 ip@F~dtue0 ,E81e j !#
2

~B9!

and

PE dE9
@F~dtue0 ,E91e j !#

2

E82E9

5
1

@e0
res2~E81e j !#

2 E dE9F P
E82E9

2
1

e0
res2~E91e j !

G
3~e22i e0

resdt/\1e22i ~E91e j !dt/\2e2 i ~e0
res

1E91e j !dt/\!

2
1

e0
res2~E81e j !

E dE9
~e2 i e0

resdt/\2e2 i ~E91e j !dt/\!2

@e0
res2~E91e j !#

2

5 ip@F~dtue0 ,E81e j !#
2. ~B10!

Thus, the integral defined in Eq.~B4! vanishes exactly. As to
Eq. ~B5!, considere l5e2 for example. Then the secon
term in Eq.~B5! is zero due to the vanishing overlap of th
two functionsF centered ate1 ande2 . On the other hand
the first term is

F~dtue0 ,E81e2!PE dE9
F~dtue0 ,E91e2!

E82E91e22e1

5 ipF~dtue0 ,E81e2!F~dtue0 ,E912e22e1!50.

~B11!

To obtain this result, it suffices to replaceE8 in all the terms
1/(E82E9) appearing in Eq.~B9! by E81de, where de
5e22e1 . Since the twoF functions on the right-hand sid
of Eq. ~B11! are centered at very distant energy, their pro
uct is virtually zero. Similarly, withe l5e1 , the second term
of Eq. ~B5! is

PE dE9
@F~dtue0 ,E91e1!#2

E82E91de

5 ip@F~dtue0 ,E81e11de!#2

5 ip@F~dtue0 ,E81e2!#2, ~B12!

while the first term gives

F~dtue0 ,E81e2!PE dE9
F~dtue0 ,E91e1!

E82E91de

5 ipF~dtue0 ,E81e2!F~dtue0 ,E81e11de!

5 ip@F~dtue0 ,E81e2!#2 ~B13!

and the two terms cancel each other exactly.
Summarizing, with respect to wave packets propagated

to the end of the second time slice, the nonlocal terms
I bb

(1) , I cc
(1) , andI bc

(1) give a net effect that is vanishingly smal
The demonstration of this result rests on the fact thatx1E8
andx2E8 at the beginning of the second slice are linear co
binations of the functionsF, which give a localization of
these wave packets in two narrow intervals of the ene
scale. It can easily be seen by recursion that this qualita
trait of x1E8 andx2E8 will be preserved at all times, so tha
the analysis made above can be generalized to an arbi
time slice, yielding the general conclusion that the nonlo
terms of I bb

(1) , I cc
(1) , and I bc

(1) remain ineffective at all times
Thus Eq.~B1! reduces to
d

x1E8~R,t01dt !5h1E8~R,t01dt !1e2~ i /\!E8dte2~ i /\!T̂Ndt/2

3$cosue2~ i /\!e2dt

3@cosue2~ i /\!T̂Ndt/2x1E8~R,t0!2sinue2~ i /\!T̂Ndt/2x2E8~R,t0!#%

1e2~ i /\!E8dte2~ i /\!T̂Ndt/2$sinue2~ i /\!e1dt@sinue2~ i /\!T̂Ndt/2x1E8~R,t0!

1cosue2~ i /\!T̂Ndt/2x2E8~R,t0!#%, ~B14!

which is the result reported in Eq.~46b!. A similar treatment of the detailed expression ofx2E8 gives the reduced form reporte
in Eq. ~46c!.
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andvdiss( t̄ n) can be identified with2(dPloc /dt)u t̄ n

. However,
any inaccuracy int̄ n would give an underestimated dissoci
tion rate if vdiss is calculated as2(dPloc /dt)u t̄ n

. On the other
hand, a small deviation oft̄ n from a true zero ofv loc will not
modify Eq. ~74! provided that Eq.~73b! remains true.
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