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We give a systematic analysis of the extension of the one-dimensional velocity-selective coherent population
trapping cooling mechanism to atoms with integer angular momEntd using additional light shifts to
compensate for the kinetic energy mismatch between the various Zeeman sublevels contributing to the inter-
nally decoupled(i.e., dark state of the atom. Different configurations to achieve the proper light shifts to
obtain a very long lifetime of the velocity-selective dark states are discussed and compared. In addition we
show that the maximum occupation probability of the resulting quasidark state and its filling time scale
strongly depend on the proper choice of detunings to exploit extra precooling mechanisms involving the
Zeeman sublevels not contributing to the dark state. We show that additional cooling can also be implemented
on the hyperfine repumping transition. This result should prove important for other schemes involving gray
states such as, e.g., dark optical lattices and superlattices as well. As a concrete example we consider cesium
including all relevant hyperfine levelgS1050-29477)02809-§

PACS numbsds): 32.80.Pj, 42.50.Vk

[. INTRODUCTION One of the crucial problems of the VSCPT mechanism is
its cooling rate and efficiency, which being based on random
Light induced cooling of neutral atoms has seen a dramomentum diffusion strongly decreases in higher dimen-
matic decrease in the achievable final temperature during trgions[13]. Hence efficient cooling requires an additional pre-
last decade. Extremely low temperatur@&netic energies  cooling or confinement mechanisi,14]. One such mecha-
have been achieved using either velocity-selective cohererfiiSm by introducing duty cycles between VSCPT and
population trappingVSCPT) in He or Rb[1-5] or using  Sisyphus cooling on afr=1 to F=1 transition was dis-
Raman induced coolinf6,7] and velocity-selective optical cussed recently by Marte and co-workgts]. The situation
pumping[8]. The VSCPT method is based on optical pump-is somewhat changed for highér—F transitions. In this
ing of atoms into atomic states decoupled from the lightcase the system contains a VSCPT-type subsystemr M
fields, which possess a well defined external momentum digype) as well as aV-type subsystem. Hence, dark-state cool-
tribution. Besides yielding very low temperatures this ap-ing and polarization gradient cooling can simultaneously oc-
proach has the additional advantage of reducing the atongur by a proper choice of the parameters. We investigate this
atom interaction through photon emission and reabsorptiorelative cooling efficiency for various detunings and polar-
which should prove important in obtaining high phase spacdzations of the light fields in Sec. Ill.
densitied9]. So far most of the theoretical and experimental ~ As the alkali-metal atoms possess two different hyperfine
work in this respect has been devotedte 1 to F=1 tran-  ground states, it is necessary to introduce some hyperfine
sitions as one can find in metastable He or Rb. In this casgepumping. The influence of optical jumps between these
the existence of an exactly decoupled velocity-selectivéwo hyperfine levels is often neglected in theoretical treat-
atomic state is automatically guaranteed for any nontriviaments of laser cooling. Experimentally this repumping is fa-
monochromatic field coupled to this transitipt0]. cilitated by proper sidebands on the cooling lasers or even an
For higher ground-state angular momeRta 1 the situ-  extra repumping laser. We show that a proper inclusion of
ation is more complex and no global dark state exists in théhis repumping can lead to important changes in the atomic
general case. However, by introducing suitailelependent  cooling dynamics. In Sec. IV the effect of various choices for
shifts of the Zeeman sublevels the existence of a velocitythis repumping mechanism on the time scale and efficiency
dependent dark state can be achief&t],12. In this work  of the dark-state cooling is discussed and compared for vari-
we study how such shifts can be realized by the help oPus possible repumping schemes.
additional laser fields on other hyperfine transitions provid-
ing for the existence of an approximate dark state. We inves-
tigate how, in the case of one-dimensiofHD) VSCPT with
o, -0 _ counterpropagating beams, by a proper choice of the
light field configuration and frequencies the effective dark- It is well known that in aA-type interaction scheme in-
ness of this state can be optimized and its filling rate envolving two long-lived atomic ground states simultaneously
hanced. coupled to a single upper state by two different laser fields,
After defining our model and giving a short review on the one can find certain superpositions of the atomic ground
principles of VSCPT in Sec. Il, we investigate various field states, which decouple from the light fields and experience
configurations for which such an approximate dark state exno light shift. If the difference in the two laser frequencies
ists for angular momentum states>1. just corresponds to the energy separation of the two ground

II. APPROXIMATE DARK STATES FOR ATOMS
WITH ANGULAR MOMENTA F>1
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states, this dark state is an eigenstate of the internal atomic Following a similar procedure for the same light field
dynamics. As this state has no contribution from the uppeconfiguration but arF=2 to F=2 transition, we can also
atomic level it shows no fluorescence, which is why it isfind a noncoupled state which fulfills the first condition
called a dark state. As has been shown in R&40 sucha  V|¢ne) =0,

state can also be an eigenstate of the external atomic degrees

of freedom if one considers the case of G 1 to F=1 | nc) = \3/8 my= —2,— 2Ak) + 1/2/my= 0,0k k)
transition coupled to light fields with different wave vectors J3Em, =
but equal frequencies. This is related to the fact that besides +3/8mg=2,2%ik). ©)

\?Vi:cg ]:Eirt?srlg gfe(;(ljlutﬁleeoilnf\:glr\r)e?ezggrr:;welgjbtlze eXt;emalHowever, this state involves plane wave components with
viedsl different kinetic energy, so that it is no eigenstateHy, .

are given by plane wave states with a momentum equal to Bnder the free time evolution given Wy, this state then

S!”g'.e photon momen.tum.. Hencg they are e|gens'tates of thpeeriodically evolves into the maximally coupled state and
kinetic energy Hamiltonian with the same eigenvalue

- 2 o . back to a noncoupled state. This prevents an accumulation of
E"‘”I_ (72k) /(tZ',t/l)'. Ulrlfgrtun;tely this is EIO Ior;gmi 'T an atoms in this state by conventional dark-state cooling as dur-
ana (:gm:sds ? eﬂ;f.’c u mgth ee_marll sg ?Ve N IS ing the bright periods the atom is optically pumped out of
constructed. In this case e INVOved plane wave COmMPOg,q state As has been shown recently theoretically by Wu
nents connected to the different Zeeman subl_e*ml)s 'N"  etal.[16] and also experimentally by Sandetral. [17], us-
volve multiples of the _pho;on mo_mentuhrk. Obviausly no ing a correlated periodic duty cycle for the VSCPT beams
global dark state persists if one includes the external atomi

. . : ; bne is able to partly avoid this problem and filter out this
motion as the internally decoupled atomic state is no Iongegtate. However, as the cooling can only be effective during

an eigenstate of the kinetic part of the Hamiltonian. In thethe short periods in time, where the state is almost non-
following we will show how this situation can be remedied if coupled, the time scale of, this process is fairly slow. In ad-

one allows for additional light fields, which compensate fordition other superposition states shifted by even multiples of

th'sl‘ kinetic eng_rgy m|_sma|tch. del the Hamiltonian in the di the photon recoil are also stable against this filtering, so that
n our one-dimensional model the Hamiitonian In e di- ;a6 qoes not obtain a pure state at the end.

pole and rotating wave approximation reads Here we will use a different approach and try to generate
an approximate stationary noncoupled state by compensation

H=pZ2M —# >, 8P, of the kinetic energy mismatch between sublevels with dif-
j=12 ! ferentm by some extra external potentials,;. Hence we
% A are looking for a potentiaVy, so that the internal state,
- > > Qj[al;r(f()AJ;+ H.c], (1)  satisfyingVqp¢ne) =0, is also an eigenstate of the remain-
25127 ing Hamiltonian, i.e., we need

where we consider an atom with a ground state of angular (HyinF Vsnit) | ¥ne) = Encl ¥ne) - (4)
momentumF4 and two excited stateEej. Pej denotes the o ble choice is ¢ dditional far detuned liaht
; ; ; SN ne possible choice is to use additional far detuned lig

projector Qnto the atomic excited stqé), 5’__w'aser “9¢  fields[11,12. In this case one has to find a transition with
the de_tunmg O.f the Ia_ls_er frequency relative to th_e COMethe proper Clebsch-Gordan coefficients to ensure the right
sponding atomic transition frequency, aflj the Rabi fre- o ohitde and direction of the induced shifts. Moreover,
quency corresponding to thjéh atomic transitionx andp  gngntaneous emission on this transition, which would de-
stand for the position and momentum operator, respectlvelys,)troy the darkness of the prepared state, has to be avoided.
?n t.hex direction, which is defined by the direction of thg Hence one has to use very large detunings on one hand, but
incident laser beams. The spatial dependence of the varioy, the other hand one has to avoid additional unwanted shifts
laser fields is given by the functiors,(x) (for the laser ihquced on other transitions. Fortunately the rich angular
angular momentar=—1,0,1) and finally the atomic transi- momentum structuréfine structure and hyperfine structure
tion operators including the Clebsch-Gordan coefficients argf the alkali metal provides several possibilities to achieve
defined as this.
Before presenting possible solutions for this problem let

N . us introduce a further simplification of our treatment. Let us

A= 2> . IFq amg><Fejame|<Fg Mg ’1G|Fej'me>' @ assume that the field strengths and detunings are chosen in
such a way that the excited states are only weakly populated

Let us now briefly review the case &f=1. Specializing and can be adiabatically eliminat¢di8]. Although this as-

the Hamiltonian to the case of a sindfe=1 to F=1 tran-  sumption might not be strictly fulfiled in some possible
sition with counterpropagating, ando _ fields, it can be VSCPT setups, we do not expect major changes in the ob-
easily seen that the State|¢NC>:1/\/§(|ngmg tained results. On the other hand, especially for the case of
=—1p= —hk>+|Fg ,mg=1,p="k)) decouples internally hig_h F the calculationgl eﬁfort i_s subs_tantially reduced in Fhis
from the laser fields, i.e.\/opJ Une) =0 where V, is the limit. The total Hamiltonian including the compensating

mg,m

potential part of the Hamiltoniafl). Fortunately it is simul-  light shift fields then reads
taneously an eigenstate bf,,=p%/2M. Hence we get an
(imprope) eigenstate of the total system, which is com- Ho=pY2M + 1 2 UjVj(i) (5)

pletely decoupled from the light fields. j=12



56 DYNAMICS OF HIGH-ANGULAR-MOMENTUM VELOCITY-. .. 2125

TABLE |. Optimal values for the light shift of the compensation lasers for different transitions and
polarizationsU, is given in units ofwg.

F-F-1 F—F F—F+1
 light U,=F(2F+1) U,=—F(F+1) U,=(2F+1)(F+1)
o, -o_ light U,=—F(2F+1)/2 U,=F(F+1)/2 U,=—(2F+1)(F+1)/2
where should also be linearly polarized in a direction orthogonal to

that of the VSCPT one. We found two different kinds of
©6) possible compensation fields.
(i) A light field which is 7 polarized along the quantiza-
. ] ) tion axis. In this case every magnetic subleje) is shifted
is called the optical potential depth and independently by an amount which is, apart from an offset,
proportional tom? due to the properties of the appropriate
> a{,(?)TAL) ( > aL(i)A{:) (7)  Clebsch-Gordan coefficienf49].
a o (i) A second pair ofc, and o_ light beams counter-
propagating along the VSCPT axis, with tlee beam in
phase with ther, VSCPT one and the_ beam shifted by

S
Uj:Sj ?

is the spatial modulation of the optical potential. Further-

more, we can define the optical pumping rate a phase ofr with respect to ther_ VSCPT ond 20]. As an
I example let us consider VSCPT on Br=2—2 transition.
V=S 5 (8)  The dark state fulfillingV,|#nc)=0 is given by Eq.(3). It

can be worked out from Eq&2) and(7) that ac,-o_ com-

We have introduced the saturation parameseon the jth pensation field as described here will act on this state as

transition, defined as 1 1
02 V| ihne) = % |2,25k)+0,0h k) + — | —2,— 2%k),

_ V6

1
L
372 2T © (10

Here by the index =1 we always mean a VSCPT-type while the kinetic energy operator applied to this state yields
configuration of counterpropagating, - and o _-polarized N 3
light fields, and byj =2 an additional “compensation” laser p _
figld which will bg specified in the foIIowirﬁ)g. Note that the 2M |‘”NC>_4ﬁ“’R\[§ (|22 +| =2~ 2hk)). (11)
compensation fields are assumed to be tuned to a different
atomic transition than the VSCPT field, and thus no interfer-Thus if we chooseU,=3wg, we find that H.{#nc)
ence terms between these fields appear in the Hamiltonias 674 wg| ), i.€.,|¥nc) is an eigenstate of the full Hamil-
(5). tonian.

Due to thecoherenttime evolution as described by the It can be shown that both schemes work for compensation
kinetic term and the first term of the sum in E§) the set of  transitions ofF to F—1, F, andF+ 1. For all these cases,
magnetic sublevels of the ground state breaks into the decothe value of the optical potential strength, required for
pled families of statesF;(q) consisting of the states compensating exactly the kinetic energy difference is given
Img,.p=q+mghk) with mg=—-Fy,—F,+2,... Fy and in Table I. Note that in the case of compensationshy and

analogous 7,(q) with my=—-Fy+1—-F,+3,... Fg—1.  o_ light the difference in the laser frequency between the
For an arbitraryF to F — 1 transition there exists one internal VSCPT and the compensation transition may introduce su-
noncoupled state in each of the famili€3(q) and F,(q),  perlattice effects, as has been recently discussed fér=ah

whereas in arfr to F transition only the noncoupled state in to F=1 transition[14,21]. However, in the present work we
F1(q) exists. Thus in the families corresponding to family will suppose that we are dealing with two hyperfine transi-
momentumg=0 each of the ground-state sublevels buildingtions very close in wavelength and the difference in the wave
up the noncoupled state has a kinetic energynéﬁwR de- number will be neglected. Let us emphasize again that the
pending on the magnetic quantum number, whegeis the  compensated dark states dmight with respect to the com-
recoil frequency. Hence, in order to obtain a noncoupledbensation field, which will thus introduce coherent couplings
state ofV; which simultaneously is an eigenstate of the full to the excited states. Hence in order to avoid significant op-
Hamiltonian(5) we have to apply a potenti®l, which com-  tical pumping out of the dark state, the compensation field
pensates this kinetic energy mismatch of the different submust be far off resonance. The item of optical pumping will
levels which form the internal noncoupled state. be addressed in the next section.

Fortunately, due to the properties of the Clebsch-Gordan As an example of the role of the compensating potential,
coefficients used in Eq(2) the compensation can be we plot the momentum distribution of the compensated non-
achieved in various ways. Because the dark state is decogeupled(dark) state of anF=2 to F=1 or F=2 transition
pled from the VSCPT field, linear in any point of space, inin Fig. 1. For the 2-1 transition two distinct dark states
order to produce a light shift the compensating electric fieldexist, which in steady state will both be significantly popu-
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0.8 tioned above, this implies a redistribution of the atoms
(©) among various momentum states.
0.6 When spontaneous emission is included, after the adia-
: (b) batic elimination of the excited states, we obtain a non-
a (a) § Hermitian part in the effective Hamiltonian, which describes
& 04 \ the decay of the ground states. The effective Hamiltonian
§ can be written in the following way:
0.2 §
N her=Pp2/2M +# >, (u-—i— r)v‘(%) (12)
/%30 1 2 eff—P Ho\ T2 M
p/hk

The time evolution of the ground-state density operator in-

FIG. 1. Momentum distributions for the compensated dark stateluding all the internal and external dynamics is then de-
of (@ a 2—2 transition andb), (c) for the two dark states of a scribed by the master equation given in the Appendix, Eq.
2—1 transition. (A14). We calculate the atomic steady state as well as the

lated. The momentum distribution of these states shows fivgme evqlutlon using a rate equation a_ppro@’%ﬂ]. .
peaks, the higher one fgr=0 and the lower ones corre- To this end we numerically diagonalize the Hermitian part

sponding top=+2/k. On the other hand, for the-22 of heg [§ee Eq.5)] on a spatial grid extending over one or
transition only one dark state exists: the momentum distribuf®W optical wavelengths. The eigenvectors obtained are de-
tion shows only three peaks distari 2 one from the other noted asgn), n=0, 1, etc. Note that these are eigenstates of
and favors the larger momenta27ik. the completdnternal pIus_extgrnaboherent dynamics. '
If the exact compensating potential is appliégyc) as In the secular approximation we calculgte the transient
defined in Eq(3) is an eigenstate of the full Hamiltonigh) ~ and the steady-state populatiofis, of the eigenstatefn)
and can be denoted a dark state. On the other hand, if tHeeglecting the coherences between them. This approximation
compensation is not exact, the coefficients of the most longis allowed if the spacing between any two different levels is
lived eigenstate of the Hamiltonian will be slightly different much larger than the width of the eigenstates. This usually
from those off ¢sy¢) and this state will be called a quasidark corresponds to the situation in whith>y;. However, for
state,|/op) - any value ofU; and vy; the fulfillment of this condition
To demonstrate the effect of the compensation schemsghould be checked.
Fig. 2 shows the decay rate of the quasidark state, due to The rate equations for the eigenstate populations are
optical pumping cycles on the VSCPT transition. If the op-
tical pumping rate on this transition ig, [Eqg. (8)], this rate dIn
is given byl op=y1{#qp| V1| ¥qp). Only for exact compen- dtn =T I0,+2> vy, (13
sation, i.e., for the dark state, no decay on the VSCPT tran- m
sition occurs. With increasing laser power of the VSCPT
lasers the quasidark state becomes less sensitive to the cowhereI', and y,_, are, respectively, the total and partial
pensation field, since then the potential part in the Hamil-decay rates and they both contain the optical pumping rates
tonian dominates over the kinetic term and the quasidarkf the different transitiongsee the Appendjx For the sta-
state approximates more closely the exact internal dark staténary solution only the ratio between the optical pumping
of V,. rates of the different transitions is important. A change in the
value of the optical pumping rates keeping their ratios con-
. DYNAMICS OF VSCPT COOLING stant is equivalent only to a change in the time scale of the

In this section we will discuss the incoherent dynamics Oftemporal evolution.
. : ent dy Because of the symmetmy— X+ \ we restrict the calcu-
our system by including spontaneous emission. As men;

lation to a box in position spac&e[—L,L], whose length
is an integer multiple of the wavelength with periodic bound-

0.05} — U,=20 w, ary conditions. Naturally this limits our momentum space
----- U,=30 resolution and the accuracy of the predictions for a final tem-
_ 0.04 perature. Nevertheless we can get good estimates for the
3; 0.03 (b) relative time scales and efficiency of the involved cooling
i mechanisms and the effect of the compensating light fields.
0.02 This should provide vital information for possible experi-
0.01} (@ mental realizations.
A more accurate calculation would require a full quantum
0 10 5 0 Monte Carlo wave function simulatiolQMCWFS [23],

U,/ which is, however, a lot more computer time consuming and
hence not so suited to compare various configurations over a
FIG. 2. Decay ratd op of the quasidark state for ah=2 to large range of parameters. Systematic comparisons of both
F =2 transition as a function of the compensation stretigh The ~ approaches in the case B=1 to F=1 have shown a sur-
compensation is achieved by either usiap or (b) o.-polarized  prisingly strong agreement of the two approaches for a wide
light. range of parametef23].
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-15 -10 -5 0 5 10 15
p/hk

1 “ FIG. 4. Transient momentum distribution at tinve 100y * for

‘ blue detuning {U;=30wg, solid lineg and red detuning
(U;=—30wg, dashed linpon a 2—2 transition. The compensa-
tion of the dark state was achieved Bylight with U,= —6wg and
v,=0. The initial distribution(dotted was chosen as a Gaussian
corresponding to a temperature lgfT= 15wg .

0.8

g 0.6
=
0.4

the filling rate of the quasidark state during the temporal

0.2 evolution. In Fig. 5 the time evolution is compared for dif-

0 ferent values of the optical potential depth of the VSCPT

-12 -10 -8 6 4 -2 0 field. The following results are obtained for the exact com-
U, /o, pensation. However, since the main features remain the same

even for the case of nonperfect compensation, we will refer
FIG. 3. Dependence of the stationary quasidark-state populatiomore generally to the quasidark state. As before we find for
on U, for a 2—2 transition usinga) o.- or (b) m-polarized light  blue detuning faster and more efficient cooling than for the
for the kinetic energy compensation. The parameters arged one. The comparison between different positive values of
U;=20wg, y,=10"3y, (solid curvey, U;=30wg, y,=10"3y, U, evidences a better cooling into the dark state for small
(dashed curves and U;=30wg, y,=0 (dotted curvel respec-  values, because for larde,, i.e., large Rabi frequency, the
tively. internal dark states in the eigenstate familfgs(q#0), cf.

. . . Sec. Il, have long lifetimeg2,15].
We have seen in the preceding section how the darkness |, Fig. 5 the time evolution of the quasidark-state popu-

of the quasidark state depends on the value of the opticghion is shown also in the case of some losses of the system.
potential relative to the light field which produces the kinetic |1 is well known that VSCPT does not admit a stationary
energy compensation. This compensation leads to differents| ion, and for very large interaction times there is no more

vglues of the stea.dy-s-tate population of _this state. We ShOWopuIation in the noncoupled stat&3]. We will try to ap-
this dependence in Fig. 3, for the transition-2 and the proximately investigate this in the following.

same values of the parameters used in Fig. 2. In the analysis |, the systems considered until now, the losses of atoms
of Fig. 3 we have supposed that the out of resonance comgy high velocity are not present. In fact, during the adiabatic
pensating light field, in addition to the light shift compensa-g|imination of the excited states the commutator with the
tion, introduces an optical pumping raje, small but dif-  yinetic energy has been neglected, which is tantamount to
ferent from zero,y,/v,=10 3, Figure 3 shows that even if neglecting the Doppler shift of the laser frequerit,26).

the decay ratd’op of the quasidark state is zero for exact Thys the model validity is limited to atom velocities
compensation, the stationary population is below unity be-

cause of the optical pumping rate .

Let us now study how the efficiency of the VSCPT pro-
cess depends on the detuning of the VSCPT transition. For
the 1-1 transition witho, - and o_-polarized light field
there are minor changes if the light field is red or blue de-
tuned. Instead for the -22 transition it is possible to ob-
serve a cooling force for blue detuning, as has been predicted
by semiclassical calculation®4,25. This can be seen by
comparing the momentum distributions for; =30wg and
U,=—30wg and interaction timey,;t=100, cf. Fig. 4. For 0 1000 2000
red detuning the atoms are pushed to higher momentum val- time t7,
ues, while for blue detuning they are pushed to lower mo-
mentum values. In Fig. 4, this cooling produces higher wings FIG. 5. Temporal evolution of the quasidark-state population
of the momentum distribution for red detuning and less conwith (lower curvey and without losses(upper curves for
trast for the peaks for blue detuning. U;=30wg (solid), —30wg (dashey, and 1%g (dotted. The com-

Another consequence of this cooling force is observed irpensation is produced by a-polarized light field withU,=6wg
the stationary value of the quasidark-state population and iand y,=10"3y,.
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v<vp=VAHT/M. (14) 6P, /o

Hence only situations with initighnd final temperatures be-
low the Doppler temperature are described appropriately.
However, even in cases violating this condition the relative
populations of the lowest few states should be obtained cor-
rectly with our model.
The second limitation of our model is due to the finite
number of states in the numerical treatment, which intro- — T4
duces a finite maximum velocity for the atom. In an experi- -65_<‘—F=3
ment losses out of this group of states, preferentially from "”
fast states, occur as well as feedback from outside into this FIG. 6. Level scheme of Cs. The configuration discussed in Sec.
group. This part of the dynamics cannot be treated in ourv as an example consists of a VSCPT light field on Fte3 to 3
model. transition of theD,, line, a compensating-polarized light field on
In order to mimic this situation we introduce éartificial) 3—3 of theD, line, and a repumping light field on-44 of the
cutoff, dividing the numerically obtained states into “slow” D, line.
and “fast” ones, and allow for jumps from “slow” to
“fast” states but not the opposite. Due to this neglect of thehyperfine state. This applies to tie to F transitions for
return of atoms to slow states we overestimate the lossewthich the branching ratio to the ground states with different
Thus the real curve will be in between the “no loss” and the F values has a comparable order of magnitude. In effect all
“no return” results. the cooling experiments in alkali-metal atoms require the
The main difference between the “no loss” and the “no presence of a repumping laser bringing the atoms back in
return” situations is the following: in the first case the interaction with the cooling laser. Although being definitely
trapped atomic population is always increasing towards thexperimentally relevant, this loss-repumping process is often
steady-state value; in the second case, it always tends to zdegdt out or just accounted for by a simple global repumping
for very large interaction times. It is only in the overidealized rate. We have investigated this repumping process in detalil.
situation where the quasidark state is exactly compensatét/e have found that a suitable choice of the repumping fields
and the optical pumping rate vanishes that the trapped popunrot only minimizes the loss effects but also introduces an
lation does not decrease to zero. additional precooling mechanism which enhances the effi-
However, it should be emphasized that for a large enougbiency of the VSCPT process itself. Such an operation of the
cutoff parameter the curves get close to each other for shorepumping as an additional precooling process has been ap-
interaction times. On the other hand, for a reasonable modgllied for the VSCPT experiment in Rb by Esslingetral.
we must respect the conditiqd4). Hence if the change of [3].
the curve due to the increase of the cutoff is small and the As an example we discuss the level scheme of cesium, see
cutoff velocity still obeys Eq(14), we should be close to the Fig. 6, with two ground-state (85,,,) levels withF=3 and
experimental case. F=4 hyperfine quantum numbers. As excited levels there
Numerically the “no return” model corresponds to solv- are two different hyperfine multiplets @,,, and 62P5,).
ing the rate equation only for the slow states, keeping thé®ue to the very large splitting between tfe=3 and the
same value for the total decay rdfg as in Eq.(13), but  F=4 levels in the &P, multiplet this transition offers the
summing the decay from the other eigenstates only ovepossibility of large laser detunings without significant simul-
those states belonging to the subset of slow states. Thus weneous excitation of more than one hyperfine level. Hence a
neglect the contribution of decays from fast to slow states, laser at this line is best suited for the compensation of the
kinetic energy mismatch of the noncoupled state as discussed
dIl, — T+ E Yo T, (15 in the p_revious sections. Nc_)te, howeve_r, that_fqr a detailed
dt s comparison of the theory with an experiment it is often not
possible to neglect the excitation of the second hyperfine

As a consequence of the modification in E@.5 the level. But since such an off-resonant coupling does not in-
quasidark-state population increases until a certain quasftoduce new physical phenomena this coupling will be ne-
equilibrium is reached, but then starts to fall off due to theglected here. _

nonexact darkness of this state and the loss of atoms with In the following, we report the results obtained with a

large velocities(Fig. 5). Asymptotically the quasidark-state light-shift compensation by w-polarized light on a
population tends to zero. F=3—F=3 transition, VSCPT performed on the second

F=3—F=3 transition, and repumping oR=4—F=4.
The light fields for the VSCPT are counterpropagating-
ando_-polarized laser beams, while for the repumping laser
it is possible to choose other configurations. The optical po-
An important point, left out so far, as in most previous tentials(optical pumping ratgson the various transitions are
treatments of VSCPT cooling, is related to the hyperfinedenoted byU; (;), j=1,...,3,wherej=1 refers to the
splitting of the alkali-metal ground states. Most of the opticalVSCPT transitionj =2 to the compensation transition, and
transitions starting from one hyperfine ground state are not=3 to the repumping transition.
closed and the atoms are optically pumped into the other For the results reported in Fig. 7 the repumping consists

IV. PRECOOLING VIA REPUMPING
FROM THE SECOND HYPERFINE LEVEL
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In contrast to the case of dA=1 to F=1 transition the
detunings and intensities of the involved fields have to be
chosen more carefully in order to get a short enough cooling
time. This is especially true to avoid unwanted off-resonant
couplings by additional hyperfine levels and heating due to
optical pumping between the two ground-state hyperfine lev-
els. Let us mention here that a 2D or 3D generalization of
this scheme is not obvious, as the polarization of the com-
pensation wave vector has to be orthogonal to the cooling
0 0 2000 4000 6000 light field at any spatial point. Even if one could find such a
time ty, geometry, an experimental realization seems rather tedious
in higher dimensions. On the other hand, a 1D VSCPT cool-
FIG. 7. Dark-state population vs interaction time for VSCPT oning could be a very useful source for an atomic interferom-
the F=3—F=3 transition for Cs atoms. For all curves we have eter setup, generating most occupation in the extreme states
chosenU;=100wg, y,=103y,, and a Gaussian initial momen- with largest momentum, whence creating coherent beams
tum distribution of kgT=15wg. Curve (a) includes only the with two mean component waves with a splitting of several
VSCPT and the light-shift compensation fields, i.e., a model With-photon momentge.g., ik for F=4). This scheme, eventu-
out second ground-state level. The other curves hold for the fulplly coupled to coherent adiabatic passage into a single mo-

model with repumping parametefs) U;=60wg, ¥3=10y1, ()  mentum state, generates a source with a very large bright-
U3=0, y3=10y;, (d) U3=0, y3=y1, (€) U3=0, y3=0.1y;. ness.

of tW(_) cqunterprqpagating light fields of perpendicylar Iint_aar ACKNOWLEDGMENTS

polarization (lin_lin). In the presence of a perfect light-shift

compensation, the time evolution of the dark-state popula- We thank G. Morigi and H. Stecher for stimulating dis-

tion is compared for different repumping paramefetsrves  cussions and T. Pellizzari for computational support. This

(b)—(e)] and also for the case where the decay towards thwork was supported by the sterreichischer Fonds zur

second ground-state level is artificially suppres$edrve  Forderung der wissenschaftlichen Forschung under Project

(a)]. As expected, the final occupation probability of the darkNo. S6506-PHY and by the European TMR Netw¢BRB

state is lower when the presence of the second hyperfineMRX CT96 0002. J.H.M. gratefully acknowledges the Eu-

level is correctly taken into account. However, by a cleverropean Community for financial support.

choice for the parameters of the repumping laser, it is pos-

sible to achieve a very large filling rate of the dark state, at APPENDIX A: FORMULAS FOR GENERAL

least for the initial times. So for a finite cooling time the ATOM-FIELD CONEIGURATIONS

existence of the second hyperfine level can even lead to an ) o ) .

improved cooling. On the other hand, an improper choice of We will show in this appendix the outlines of the calcu-

the repumping parameters can strongly diminish the coolin@“ons which lead to the master equation for the reduced

efficiency. The comparison between curv@s and (c) in atomic density operator, obtained after the adiabatic elimina-

Fig. 7 shows that for a blue detuned repumping laser thdion of the excited states. In the following we consider the

cooling efficiency is larger than for a resonant setup, wher&eneral case of more than one ground hyperfine level and

no cooling by the repumping laser is present. In effect thdaser field with only one restriction: two dlfferent_ laser fields

analysis of the preceding section has shown that for a blugannot couple two different hyperfine levels with the same

detuning there exists a cooling force onBa-F transition. ~ €xcited level, in order to avoid the creation of coherences

We have found that for red detuning the force pushes th&etween different ground hyperfine levels.

atoms to higher momentum values and thus decreases the Let us give first the definitions we used for the electric

efficiency. field and hence for the interaction Hamiltonian. For each
The comparison between curvés), (d), and (e) evi- Iager field the positive frequency part of the electric field is

dences the role of different optical pumping ratesfor the ~ defined as

case of a repumping transition without light shifi {=0).

The cooling efficiency increases for growing optical pump- éu):} E cE (A1)

ing rates on the repumping transition. This is due to the 25 7

faster repumping of the atom into the VSCPT subsystem and

thus a shorter storage time in the second hyperfine groundvhereé, include the spatial dependence of the laser field

state level.

E,=a, (X)a, (A2)
V. CONCLUSIONS with
We have demonstrated that by help of extra light fields Z+ig
continuous 1D VSCPT cooling witlr . -o_ polarized coun- G.=7 12

terpropagating beams can be extended to transitions with in- V2
teger total angular momentum larger than one, so that it can

also be used for alkali-metal atoms with nuclear dpirB/2. (A3)

Qu
3
Il
™y
x
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For each transitiorj, which couples the ground states strength and the Clebsch-Gordan coefficients are included in
with total angular momentum quantum numbgy to the the definition of the raising operators,
excited one with total angular momentufm, we write the

atom-laser interaction Hamiltonian in the dipole approxima- 5 n.LJld-&ln,L)YR(SL.J,,SLJ '
tion as QP )=~ (n.Leld- gl ng +( ‘o Slele ay (%)
" & . i), a
A= 2 af,”(%) =Qjay>(x). (A9)
o Mg

Using the atomic raising operators and the Rabi frequency
as defined before, the atom-laser Hamiltonian can be rewrit-

(A4) tenas

><(Fe,m9|d~ G|Fg.mg)|Fe,me)(Fg,myl.

Considering all the quantum numbers for each atomic state |:|(j|)_(§<): (D) +H.c., (A10)
|n,[|,(S,Lg),Jg],Fg,mg), we can write the dipole matrix

element agsee, €.9.[27) where H{D™(X) is the positive frequency part which in-

> cludes the Rabi frequency and the raising operator,
(n,[1,(SLe),Jel,Fe,me[d-a[n,[1,(S,Lg),Ig],Fg,mg)

RO | s
HK)U)(X)ZEE rQDA ) (A1)

=<n,Le||a-&||n,L Mg;1,0]Fe,me)

1
- F ,
@ 2Fe+1< g

Summing over the ground-state levels, we can construct

XR(Skgdy,SLede) R(1JgF g, 1JeFe) (AS) another raising operator which only depends on the excited
where the factorgk are defined in terms of thejGymbols level
as
AlFI=3 AlFFy), (A12)
I Fe Je 7 Fg 7
R(1JgFg.1JeFe) = V(2F 4 +1)(2F+1) .
1 3, F . —
9 Q(A ) The operator is important because the projection operator

onto the excited states with total angular momentum quan-

It is possible to define an atomic raising operator, whichtum numberf, has the following form:

includes the line strength for different transitions in order to

use it in the Hamiltonian, P, =E AT(FOA(Fe)
e o o

We define the jump operator which describes the entire
possible process consisting of a coherent transfign: F

AlFfad = 3 (Fo me|10iFy,mg) 23t 1V2F +1
Mg, My

I Fe IF o mo)(Fg,my| (A7) (the jth atomic transitiop followed by a spontaneous emis-
1 Jg Fg) & 909 sion decay into any of the hyperfine ground states.
For the transition from the state i 2 - e>” H))
IN[1,(S,Le) 6], Fe,me) to the state B (%)= 2 A HLU V(). (A13)
|n,[|,(S,Lg),Jg],Fg,mg) the branching ratio in respect to
the decay over all the ground-state levels is Performing the adiabatic elimination of the excited states
| E. 12 in the equation for the total density matrix, we obtain the
(2J+1)(2F g+ 1)<Fe,me|1,tf;|:g ,mg>2 e Ye , master equation for the reduced atomic density operator
1 Jy Fy
. . . .. 0. —— [h _ hT ]
with the normalization condition Pag=i7 [NeftPgg™ Pggher
) +tkdu u
2 2 (2o 1)(2Fg+ 1)(Fe,me| Lo F g mg) +h2 oy > ~ No|
£ T efGr1 )k K k
I Fe Je|? x[e BN p  [BY el Al4
e e 1 (A8) [ P ]ng[ b 1, ( )
1 Jy Fy

whereN,(q) defines the angular distribution of the sponta-
We can define the Rabi frequency in a way that it onlyneously emitted photong\,(q)=3(1+qg?)/8 for circular
depends on the quantum numbers$S,L,J and not on the andN,(q)=3(1—q?)/4 for linear polarization. The effec-
guantum number§& and m: this is possible since the line tive Hamiltonianhg is
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heﬁ:Hkin+ﬁ§j: (UJ_E 7j)2 B T(%)BY) (%)

- i R
:Hkin+ﬁ§j‘, (uj—E yj)v(,-)(x), (A15)
with the optical potentials defined as
Vo= 2 BYT0BY (%), (A16)

which is equivalent to Eq.7) and where the other quantities
are defined in the texXtsee Eqs(6), (8), (9)].
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The explicit expression for the partial decay rates from
the mth to thenth eigenstate is
u
k

')’m—mzz ')’jf
] —k
and a similar definition fory,,_,,.
The total decay rate of thath eigenstate can be obtained
by summing the partial decay rates to all the eigenstates:

+k du

— 2 N |Knle B ) |m),
K »20%1

(A17)

Fn=§ ')’men:; 'yj<n|vj|n>- (A18)

Neglecting the coherences between the eigenstates of thehere the second equality is verified applying the definition

Hermitian part ofthe, Eq. (13) is derived from Eq(A14).

of Eq. (A17).
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