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Dynamics of high-angular-momentum velocity-selective coherent population trapping
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We give a systematic analysis of the extension of the one-dimensional velocity-selective coherent population
trapping cooling mechanism to atoms with integer angular momentaF.1 using additional light shifts to
compensate for the kinetic energy mismatch between the various Zeeman sublevels contributing to the inter-
nally decoupled~i.e., dark! state of the atom. Different configurations to achieve the proper light shifts to
obtain a very long lifetime of the velocity-selective dark states are discussed and compared. In addition we
show that the maximum occupation probability of the resulting quasidark state and its filling time scale
strongly depend on the proper choice of detunings to exploit extra precooling mechanisms involving the
Zeeman sublevels not contributing to the dark state. We show that additional cooling can also be implemented
on the hyperfine repumping transition. This result should prove important for other schemes involving gray
states such as, e.g., dark optical lattices and superlattices as well. As a concrete example we consider cesium
including all relevant hyperfine levels.@S1050-2947~97!02809-6#

PACS number~s!: 32.80.Pj, 42.50.Vk
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I. INTRODUCTION

Light induced cooling of neutral atoms has seen a d
matic decrease in the achievable final temperature during
last decade. Extremely low temperatures~kinetic energies!
have been achieved using either velocity-selective cohe
population trapping~VSCPT! in He or Rb @1–5# or using
Raman induced cooling@6,7# and velocity-selective optica
pumping@8#. The VSCPT method is based on optical pum
ing of atoms into atomic states decoupled from the lig
fields, which possess a well defined external momentum
tribution. Besides yielding very low temperatures this a
proach has the additional advantage of reducing the at
atom interaction through photon emission and reabsorp
which should prove important in obtaining high phase sp
densities@9#. So far most of the theoretical and experimen
work in this respect has been devoted toF51 to F51 tran-
sitions as one can find in metastable He or Rb. In this c
the existence of an exactly decoupled velocity-selec
atomic state is automatically guaranteed for any nontriv
monochromatic field coupled to this transition@10#.

For higher ground-state angular momentaF.1 the situ-
ation is more complex and no global dark state exists in
general case. However, by introducing suitablem-dependent
shifts of the Zeeman sublevels the existence of a veloc
dependent dark state can be achieved@11,12#. In this work
we study how such shifts can be realized by the help
additional laser fields on other hyperfine transitions prov
ing for the existence of an approximate dark state. We inv
tigate how, in the case of one-dimensional~1D! VSCPT with
s1-s2 counterpropagating beams, by a proper choice of
light field configuration and frequencies the effective da
ness of this state can be optimized and its filling rate
hanced.

After defining our model and giving a short review on t
principles of VSCPT in Sec. II, we investigate various fie
configurations for which such an approximate dark state
ists for angular momentum statesF.1.
561050-2947/97/56~3!/2123~9!/$10.00
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One of the crucial problems of the VSCPT mechanism
its cooling rate and efficiency, which being based on rand
momentum diffusion strongly decreases in higher dim
sions@13#. Hence efficient cooling requires an additional pr
cooling or confinement mechanism@3,14#. One such mecha
nism by introducing duty cycles between VSCPT a
Sisyphus cooling on anF51 to F51 transition was dis-
cussed recently by Marte and co-workers@15#. The situation
is somewhat changed for higherF→F transitions. In this
case the system contains a VSCPT-type subsystem~L or M
type! as well as aW-type subsystem. Hence, dark-state co
ing and polarization gradient cooling can simultaneously
cur by a proper choice of the parameters. We investigate
relative cooling efficiency for various detunings and pola
izations of the light fields in Sec. III.

As the alkali-metal atoms possess two different hyperfi
ground states, it is necessary to introduce some hyper
repumping. The influence of optical jumps between the
two hyperfine levels is often neglected in theoretical tre
ments of laser cooling. Experimentally this repumping is
cilitated by proper sidebands on the cooling lasers or even
extra repumping laser. We show that a proper inclusion
this repumping can lead to important changes in the ato
cooling dynamics. In Sec. IV the effect of various choices
this repumping mechanism on the time scale and efficie
of the dark-state cooling is discussed and compared for v
ous possible repumping schemes.

II. APPROXIMATE DARK STATES FOR ATOMS
WITH ANGULAR MOMENTA F>1

It is well known that in aL-type interaction scheme in
volving two long-lived atomic ground states simultaneou
coupled to a single upper state by two different laser fiel
one can find certain superpositions of the atomic grou
states, which decouple from the light fields and experie
no light shift. If the difference in the two laser frequenci
just corresponds to the energy separation of the two gro
2123 © 1997 The American Physical Society
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2124 56MENOTTI, HORAK, RITSCH, MÜLLER, AND ARIMONDO
states, this dark state is an eigenstate of the internal ato
dynamics. As this state has no contribution from the up
atomic level it shows no fluorescence, which is why it
called a dark state. As has been shown in Refs.@2,10# such a
state can also be an eigenstate of the external atomic de
of freedom if one considers the case of anF51 to F51
transition coupled to light fields with different wave vecto
but equal frequencies. This is related to the fact that bes
being internally decoupled from the light fields the extern
wave functions of all the involved Zeeman sublevelsu61&
are given by plane wave states with a momentum equal
single photon momentum. Hence they are eigenstates o
kinetic energy Hamiltonian with the same eigenval
Ekin5(\k)2/(2M ). Unfortunately this is no longer true if a
analogous state including Zeeman sublevels withm.1 is
constructed. In this case the involved plane wave com
nents connected to the different Zeeman sublevelsum& in-
volve multiples of the photon momentum\k. Obviously no
global dark state persists if one includes the external ato
motion as the internally decoupled atomic state is no lon
an eigenstate of the kinetic part of the Hamiltonian. In t
following we will show how this situation can be remedied
one allows for additional light fields, which compensate
this kinetic energy mismatch.

In our one-dimensional model the Hamiltonian in the
pole and rotating wave approximation reads

H5 p̂2/2M2\ (
j 51,2

d j Pej

1
\

2 (
j 51,2

(
s

V j@as
j ~ x̂!Âs

j †1H.c.#, ~1!

where we consider an atom with a ground state of ang
momentumFg and two excited statesFej

. Pej
denotes the

projector onto the atomic excited stateuej&, d j5v laser
j 2vgej

the detuning of the laser frequency relative to the cor
sponding atomic transition frequency, andV j the Rabi fre-
quency corresponding to thej th atomic transition.x̂ and p̂
stand for the position and momentum operator, respectiv
in the x direction, which is defined by the direction of th
incident laser beams. The spatial dependence of the var
laser fields is given by the functionsas

j ( x̂) ~for the laser
angular momentas521,0,1! and finally the atomic transi
tion operators including the Clebsch-Gordan coefficients
defined as

Âs
j 5 (

mg ,me

uFg ,mg&^Fej
,meu^Fg ,mg ;1suFej

,me&. ~2!

Let us now briefly review the case ofF51. Specializing
the Hamiltonian to the case of a singleF51 to F51 tran-
sition with counterpropagatings1 and s2 fields, it can be
easily seen that the state ucNC&51/A2(uFg ,mg
521,p52\k&1uFg ,mg51,p5\k&) decouples internally
from the laser fields, i.e.,VoptucNC&50 where Vopt is the
potential part of the Hamiltonian~1!. Fortunately it is simul-
taneously an eigenstate ofHkin5 p̂2/2M . Hence we get an
~improper! eigenstate of the total system, which is com
pletely decoupled from the light fields.
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Following a similar procedure for the same light fie
configuration but anF52 to F52 transition, we can also
find a noncoupled state which fulfills the first conditio
VoptucNC&50,

ucNC&5A3/8umg522,22\k&11/2umg50,0\k&

1A3/8umg52,2\k&. ~3!

However, this state involves plane wave components w
different kinetic energy, so that it is no eigenstate ofHkin .
Under the free time evolution given byHkin this state then
periodically evolves into the maximally coupled state a
back to a noncoupled state. This prevents an accumulatio
atoms in this state by conventional dark-state cooling as d
ing the bright periods the atom is optically pumped out
this state. As has been shown recently theoretically by
et al. @16# and also experimentally by Sanderet al. @17#, us-
ing a correlated periodic duty cycle for the VSCPT bea
one is able to partly avoid this problem and filter out th
state. However, as the cooling can only be effective dur
the short periods in time, where the state is almost n
coupled, the time scale of this process is fairly slow. In a
dition other superposition states shifted by even multiples
the photon recoil are also stable against this filtering, so
one does not obtain a pure state at the end.

Here we will use a different approach and try to gener
an approximate stationary noncoupled state by compensa
of the kinetic energy mismatch between sublevels with d
ferentm by some extra external potentialsVshift . Hence we
are looking for a potentialVshift so that the internal state
satisfyingVoptucNC&50, is also an eigenstate of the remai
ing Hamiltonian, i.e., we need

~Hkin1Vshift!ucNC&5ENCucNC&. ~4!

One possible choice is to use additional far detuned li
fields @11,12#. In this case one has to find a transition wi
the proper Clebsch-Gordan coefficients to ensure the r
magnitude and direction of the induced shifts. Moreov
spontaneous emission on this transition, which would
stroy the darkness of the prepared state, has to be avo
Hence one has to use very large detunings on one hand
on the other hand one has to avoid additional unwanted s
induced on other transitions. Fortunately the rich angu
momentum structure~fine structure and hyperfine structur!
of the alkali metal provides several possibilities to achie
this.

Before presenting possible solutions for this problem
us introduce a further simplification of our treatment. Let
assume that the field strengths and detunings are chose
such a way that the excited states are only weakly popula
and can be adiabatically eliminated@18#. Although this as-
sumption might not be strictly fulfilled in some possib
VSCPT setups, we do not expect major changes in the
tained results. On the other hand, especially for the cas
high F the calculational effort is substantially reduced in th
limit. The total Hamiltonian including the compensatin
light shift fields then reads

Had5 p̂2/2M1\ (
j 51,2

U jVj~ x̂!, ~5!
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TABLE I. Optimal values for the light shift of the compensation lasers for different transitions
polarizations.U2 is given in units ofvR .

F→F21 F→F F→F11

p light U25F(2F11) U252F(F11) U25(2F11)(F11)
s1 -s2 light U252F(2F11)/2 U25F(F11)/2 U252(2F11)(F11)/2
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U j5sj

d j

2
~6!

is called the optical potential depth and

Vj~ x̂!5S (
s

as
j ~ x̂!†Âs

j D S (
s

as
j ~ x̂!Âs

j †D ~7!

is the spatial modulation of the optical potential. Furth
more, we can define the optical pumping rate

g j5sj

G

2
. ~8!

We have introduced the saturation parametersj on the j th
transition, defined as

sj5
1

2

V j
2

d j
21G2/4

. ~9!

Here by the indexj 51 we always mean a VSCPT-typ
configuration of counterpropagatings1- and s2-polarized
light fields, and byj 52 an additional ‘‘compensation’’ lase
field which will be specified in the following. Note that th
compensation fields are assumed to be tuned to a diffe
atomic transition than the VSCPT field, and thus no interf
ence terms between these fields appear in the Hamilto
~5!.

Due to thecoherenttime evolution as described by th
kinetic term and the first term of the sum in Eq.~5! the set of
magnetic sublevels of the ground state breaks into the de
pled families of statesF1(q) consisting of the state
umg ,p5q1mg\k& with mg52Fg ,2Fg12, . . . ,Fg and
analogousF2(q) with mg52Fg11,2Fg13, . . . ,Fg21.
For an arbitraryF to F21 transition there exists one intern
noncoupled state in each of the familiesF1(q) andF2(q),
whereas in anF to F transition only the noncoupled state
F1(q) exists. Thus in the families corresponding to fam
momentumq50 each of the ground-state sublevels buildi
up the noncoupled state has a kinetic energy ofmg

2\vR de-
pending on the magnetic quantum number, wherevR is the
recoil frequency. Hence, in order to obtain a noncoup
state ofV1 which simultaneously is an eigenstate of the f
Hamiltonian~5! we have to apply a potentialV2 which com-
pensates this kinetic energy mismatch of the different s
levels which form the internal noncoupled state.

Fortunately, due to the properties of the Clebsch-Gor
coefficients used in Eq.~2! the compensation can b
achieved in various ways. Because the dark state is de
pled from the VSCPT field, linear in any point of space,
order to produce a light shift the compensating electric fi
-
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should also be linearly polarized in a direction orthogonal
that of the VSCPT one. We found two different kinds
possible compensation fields.

~i! A light field which is p polarized along the quantiza
tion axis. In this case every magnetic sublevelum& is shifted
independently by an amount which is, apart from an offs
proportional tom2 due to the properties of the appropria
Clebsch-Gordan coefficients@19#.

~ii ! A second pair ofs1 and s2 light beams counter-
propagating along the VSCPT axis, with thes1 beam in
phase with thes1 VSCPT one and thes2 beam shifted by
a phase ofp with respect to thes2 VSCPT one@20#. As an
example let us consider VSCPT on anF52→2 transition.
The dark state fulfillingV1ucNC&50 is given by Eq.~3!. It
can be worked out from Eqs.~2! and~7! that as1-s2 com-
pensation field as described here will act on this state as

V2ucNC&5
1

A6
u2,2\k&1u0,0\k&1

1

A6
u22,22\k&,

~10!

while the kinetic energy operator applied to this state yie

p̂2

2M
ucNC&54\vRA3

8
~ u2,2\k&1u22,22\k&). ~11!

Thus if we chooseU253vR , we find that HaducNC&
56\vRucNC&, i.e., ucNC& is an eigenstate of the full Hamil
tonian.

It can be shown that both schemes work for compensa
transitions ofF to F21, F, andF11. For all these cases
the value of the optical potential strengthU2 required for
compensating exactly the kinetic energy difference is giv
in Table I. Note that in the case of compensation bys1 and
s2 light the difference in the laser frequency between
VSCPT and the compensation transition may introduce
perlattice effects, as has been recently discussed for anF51
to F51 transition@14,21#. However, in the present work w
will suppose that we are dealing with two hyperfine tran
tions very close in wavelength and the difference in the wa
number will be neglected. Let us emphasize again that
compensated dark states arebright with respect to the com-
pensation field, which will thus introduce coherent couplin
to the excited states. Hence in order to avoid significant
tical pumping out of the dark state, the compensation fi
must be far off resonance. The item of optical pumping w
be addressed in the next section.

As an example of the role of the compensating potent
we plot the momentum distribution of the compensated n
coupled~dark! state of anF52 to F51 or F52 transition
in Fig. 1. For the 2→1 transition two distinct dark state
exist, which in steady state will both be significantly pop
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2126 56MENOTTI, HORAK, RITSCH, MÜLLER, AND ARIMONDO
lated. The momentum distribution of these states shows
peaks, the higher one forp50 and the lower ones corre
sponding top562\k. On the other hand, for the 2→2
transition only one dark state exists: the momentum distri
tion shows only three peaks distant 2\k one from the other
and favors the larger momenta62\k.

If the exact compensating potential is applied,ucNC& as
defined in Eq.~3! is an eigenstate of the full Hamiltonian~5!
and can be denoted a dark state. On the other hand, i
compensation is not exact, the coefficients of the most lo
lived eigenstate of the Hamiltonian will be slightly differe
from those ofucNC& and this state will be called a quasida
state,ucQD&.

To demonstrate the effect of the compensation sche
Fig. 2 shows the decay rate of the quasidark state, du
optical pumping cycles on the VSCPT transition. If the o
tical pumping rate on this transition isg1 @Eq. ~8!#, this rate
is given byGQD5g1^cQDuV1ucQD&. Only for exact compen-
sation, i.e., for the dark state, no decay on the VSCPT tr
sition occurs. With increasing laser power of the VSC
lasers the quasidark state becomes less sensitive to the
pensation field, since then the potential part in the Ham
tonian dominates over the kinetic term and the quasid
state approximates more closely the exact internal dark s
of V1 .

III. DYNAMICS OF VSCPT COOLING

In this section we will discuss the incoherent dynamics
our system by including spontaneous emission. As m

FIG. 1. Momentum distributions for the compensated dark s
of ~a! a 2→2 transition and~b!, ~c! for the two dark states of a
2→1 transition.

FIG. 2. Decay rateGQD of the quasidark state for anF52 to
F52 transition as a function of the compensation strengthU2 . The
compensation is achieved by either using~a! p or ~b! s6-polarized
light.
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tioned above, this implies a redistribution of the atom
among various momentum states.

When spontaneous emission is included, after the a
batic elimination of the excited states, we obtain a no
Hermitian part in the effective Hamiltonian, which describ
the decay of the ground states. The effective Hamilton
can be written in the following way:

heff5 p̂2/2M1\ (
j 51,2

S U j2
i

2
g j DVj~ x̂!. ~12!

The time evolution of the ground-state density operator
cluding all the internal and external dynamics is then d
scribed by the master equation given in the Appendix,
~A14!. We calculate the atomic steady state as well as
time evolution using a rate equation approach@22#.

To this end we numerically diagonalize the Hermitian p
of heff @see Eq.~5!# on a spatial grid extending over one o
few optical wavelengths. The eigenvectors obtained are
noted asun&, n50, 1, etc. Note that these are eigenstates
the completeinternal plus externalcoherent dynamics.

In the secular approximation we calculate the transi
and the steady-state populationsPn of the eigenstatesun&
neglecting the coherences between them. This approxima
is allowed if the spacing between any two different levels
much larger than the width of the eigenstates. This usu
corresponds to the situation in whichU j@g j . However, for
any value ofU j and g j the fulfillment of this condition
should be checked.

The rate equations for the eigenstate populations are

dPn

dt
52GnPn1(

m
gn←mPm , ~13!

whereGn and gn←m are, respectively, the total and parti
decay rates and they both contain the optical pumping r
of the different transitions~see the Appendix!. For the sta-
tionary solution only the ratio between the optical pumpi
rates of the different transitions is important. A change in
value of the optical pumping rates keeping their ratios c
stant is equivalent only to a change in the time scale of
temporal evolution.

Because of the symmetryx→x1l we restrict the calcu-
lation to a box in position space,xP@2L,L#, whose length
is an integer multiple of the wavelength with periodic boun
ary conditions. Naturally this limits our momentum spa
resolution and the accuracy of the predictions for a final te
perature. Nevertheless we can get good estimates for
relative time scales and efficiency of the involved cooli
mechanisms and the effect of the compensating light fie
This should provide vital information for possible expe
mental realizations.

A more accurate calculation would require a full quantu
Monte Carlo wave function simulation~QMCWFS! @23#,
which is, however, a lot more computer time consuming a
hence not so suited to compare various configurations ov
large range of parameters. Systematic comparisons of
approaches in the case ofF51 to F51 have shown a sur
prisingly strong agreement of the two approaches for a w
range of parameters@23#.
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We have seen in the preceding section how the darkn
of the quasidark state depends on the value of the op
potential relative to the light field which produces the kine
energy compensation. This compensation leads to diffe
values of the steady-state population of this state. We s
this dependence in Fig. 3, for the transition 2→2 and the
same values of the parameters used in Fig. 2. In the ana
of Fig. 3 we have supposed that the out of resonance c
pensating light field, in addition to the light shift compens
tion, introduces an optical pumping rateg2 , small but dif-
ferent from zero,g2 /g151023. Figure 3 shows that even i
the decay rateGQD of the quasidark state is zero for exa
compensation, the stationary population is below unity
cause of the optical pumping rateg2 .

Let us now study how the efficiency of the VSCPT pr
cess depends on the detuning of the VSCPT transition.
the 1→1 transition withs1- and s2-polarized light field
there are minor changes if the light field is red or blue d
tuned. Instead for the 2→2 transition it is possible to ob
serve a cooling force for blue detuning, as has been predi
by semiclassical calculations@24,25#. This can be seen by
comparing the momentum distributions forU1530vR and
U15230vR and interaction timeg1t5100, cf. Fig. 4. For
red detuning the atoms are pushed to higher momentum
ues, while for blue detuning they are pushed to lower m
mentum values. In Fig. 4, this cooling produces higher win
of the momentum distribution for red detuning and less c
trast for the peaks for blue detuning.

Another consequence of this cooling force is observed
the stationary value of the quasidark-state population an

FIG. 3. Dependence of the stationary quasidark-state popula
on U2 for a 2→2 transition using~a! s6- or ~b! p-polarized light
for the kinetic energy compensation. The parameters
U1520vR , g251023g1 ~solid curves!, U1530vR , g251023g1

~dashed curves!, and U1530vR , g250 ~dotted curves!, respec-
tively.
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the filling rate of the quasidark state during the tempo
evolution. In Fig. 5 the time evolution is compared for d
ferent values of the optical potential depth of the VSC
field. The following results are obtained for the exact co
pensation. However, since the main features remain the s
even for the case of nonperfect compensation, we will re
more generally to the quasidark state. As before we find
blue detuning faster and more efficient cooling than for
red one. The comparison between different positive value
U1 evidences a better cooling into the dark state for sm
values, because for largeU1 , i.e., large Rabi frequency, th
internal dark states in the eigenstate familiesF1,2(qÞ0), cf.
Sec. II, have long lifetimes@2,15#.

In Fig. 5 the time evolution of the quasidark-state pop
lation is shown also in the case of some losses of the sys
It is well known that VSCPT does not admit a stationa
solution, and for very large interaction times there is no m
population in the noncoupled state@13#. We will try to ap-
proximately investigate this in the following.

In the systems considered until now, the losses of ato
for high velocity are not present. In fact, during the adiaba
elimination of the excited states the commutator with t
kinetic energy has been neglected, which is tantamoun
neglecting the Doppler shift of the laser frequency@15,26#.
Thus the model validity is limited to atom velocities

on

re

FIG. 4. Transient momentum distribution at timet5100g1
21 for

blue detuning (U1530vR , solid line! and red detuning
(U15230vR , dashed line! on a 2→2 transition. The compensa
tion of the dark state was achieved byp light with U2526vR and
g250. The initial distribution~dotted! was chosen as a Gaussia
corresponding to a temperature ofkBT515vR .

FIG. 5. Temporal evolution of the quasidark-state populat
with ~lower curves! and without losses~upper curves! for
U1530vR ~solid!, 230vR ~dashed!, and 15vR ~dotted!. The com-
pensation is produced by ap-polarized light field withU256vR

andg251023g1 .
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v,vD5A\G/M . ~14!

Hence only situations with initialand final temperatures be
low the Doppler temperature are described appropriat
However, even in cases violating this condition the relat
populations of the lowest few states should be obtained
rectly with our model.

The second limitation of our model is due to the fin
number of states in the numerical treatment, which int
duces a finite maximum velocity for the atom. In an expe
ment losses out of this group of states, preferentially fr
fast states, occur as well as feedback from outside into
group. This part of the dynamics cannot be treated in
model.

In order to mimic this situation we introduce an~artificial!
cutoff, dividing the numerically obtained states into ‘‘slow
and ‘‘fast’’ ones, and allow for jumps from ‘‘slow’’ to
‘‘fast’’ states but not the opposite. Due to this neglect of t
return of atoms to slow states we overestimate the los
Thus the real curve will be in between the ‘‘no loss’’ and t
‘‘no return’’ results.

The main difference between the ‘‘no loss’’ and the ‘‘n
return’’ situations is the following: in the first case th
trapped atomic population is always increasing towards
steady-state value; in the second case, it always tends to
for very large interaction times. It is only in the overidealiz
situation where the quasidark state is exactly compens
and the optical pumping rate vanishes that the trapped p
lation does not decrease to zero.

However, it should be emphasized that for a large eno
cutoff parameter the curves get close to each other for s
interaction times. On the other hand, for a reasonable m
we must respect the condition~14!. Hence if the change o
the curve due to the increase of the cutoff is small and
cutoff velocity still obeys Eq.~14!, we should be close to th
experimental case.

Numerically the ‘‘no return’’ model corresponds to sol
ing the rate equation only for the slow states, keeping
same value for the total decay rateGn as in Eq.~13!, but
summing the decay from the other eigenstates only o
those states belonging to the subset of slow states. Thu
neglect the contribution of decays from fast to slow state

dPn

dt
52GnPn1 (

mslow

gn←mPm . ~15!

As a consequence of the modification in Eq.~15! the
quasidark-state population increases until a certain qu
equilibrium is reached, but then starts to fall off due to t
nonexact darkness of this state and the loss of atoms
large velocities~Fig. 5!. Asymptotically the quasidark-stat
population tends to zero.

IV. PRECOOLING VIA REPUMPING
FROM THE SECOND HYPERFINE LEVEL

An important point, left out so far, as in most previo
treatments of VSCPT cooling, is related to the hyperfi
splitting of the alkali-metal ground states. Most of the optic
transitions starting from one hyperfine ground state are
closed and the atoms are optically pumped into the o
y.
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hyperfine state. This applies to theF to F transitions for
which the branching ratio to the ground states with differe
F values has a comparable order of magnitude. In effect
the cooling experiments in alkali-metal atoms require
presence of a repumping laser bringing the atoms bac
interaction with the cooling laser. Although being definite
experimentally relevant, this loss-repumping process is o
left out or just accounted for by a simple global repumpi
rate. We have investigated this repumping process in de
We have found that a suitable choice of the repumping fie
not only minimizes the loss effects but also introduces
additional precooling mechanism which enhances the e
ciency of the VSCPT process itself. Such an operation of
repumping as an additional precooling process has been
plied for the VSCPT experiment in Rb by Esslingeret al.
@3#.

As an example we discuss the level scheme of cesium,
Fig. 6, with two ground-state (62S1/2) levels withF53 and
F54 hyperfine quantum numbers. As excited levels th
are two different hyperfine multiplets (62P1/2 and 62P3/2).
Due to the very large splitting between theF53 and the
F54 levels in the 62P1/2 multiplet this transition offers the
possibility of large laser detunings without significant simu
taneous excitation of more than one hyperfine level. Henc
laser at this line is best suited for the compensation of
kinetic energy mismatch of the noncoupled state as discu
in the previous sections. Note, however, that for a deta
comparison of the theory with an experiment it is often n
possible to neglect the excitation of the second hyper
level. But since such an off-resonant coupling does not
troduce new physical phenomena this coupling will be n
glected here.

In the following, we report the results obtained with
light-shift compensation by p-polarized light on a
F53→F53 transition, VSCPT performed on the seco
F53→F53 transition, and repumping onF54→F54.
The light fields for the VSCPT are counterpropagatings1-
ands2-polarized laser beams, while for the repumping la
it is possible to choose other configurations. The optical
tentials~optical pumping rates! on the various transitions ar
denoted byU j (g j ), j 51, . . . ,3,where j 51 refers to the
VSCPT transition,j 52 to the compensation transition, an
j 53 to the repumping transition.

For the results reported in Fig. 7 the repumping cons

FIG. 6. Level scheme of Cs. The configuration discussed in S
IV as an example consists of a VSCPT light field on theF53 to 3
transition of theD2 line, a compensatingp-polarized light field on
3→3 of the D1 line, and a repumping light field on 4→4 of the
D2 line.
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of two counterpropagating light fields of perpendicular line
polarization (lin'lin). In the presence of a perfect light-shi
compensation, the time evolution of the dark-state popu
tion is compared for different repumping parameters@curves
~b!–~e!# and also for the case where the decay towards
second ground-state level is artificially suppressed@curve
~a!#. As expected, the final occupation probability of the da
state is lower when the presence of the second hype
level is correctly taken into account. However, by a clev
choice for the parameters of the repumping laser, it is p
sible to achieve a very large filling rate of the dark state
least for the initial times. So for a finite cooling time th
existence of the second hyperfine level can even lead to
improved cooling. On the other hand, an improper choice
the repumping parameters can strongly diminish the coo
efficiency. The comparison between curves~b! and ~c! in
Fig. 7 shows that for a blue detuned repumping laser
cooling efficiency is larger than for a resonant setup, wh
no cooling by the repumping laser is present. In effect
analysis of the preceding section has shown that for a b
detuning there exists a cooling force on anF→F transition.
We have found that for red detuning the force pushes
atoms to higher momentum values and thus decreases
efficiency.

The comparison between curves~c!, ~d!, and ~e! evi-
dences the role of different optical pumping ratesg3 for the
case of a repumping transition without light shift (U350).
The cooling efficiency increases for growing optical pum
ing rates on the repumping transition. This is due to
faster repumping of the atom into the VSCPT subsystem
thus a shorter storage time in the second hyperfine grou
state level.

V. CONCLUSIONS

We have demonstrated that by help of extra light fie
continuous 1D VSCPT cooling withs1-s2 polarized coun-
terpropagating beams can be extended to transitions with
teger total angular momentum larger than one, so that it
also be used for alkali-metal atoms with nuclear spinI .3/2.

FIG. 7. Dark-state population vs interaction time for VSCPT
the F53→F53 transition for Cs atoms. For all curves we ha
chosenU15100vR , g251023g1 , and a Gaussian initial momen
tum distribution of kBT515vR . Curve ~a! includes only the
VSCPT and the light-shift compensation fields, i.e., a model w
out second ground-state level. The other curves hold for the
model with repumping parameters~b! U3560vR , g3510g1 , ~c!
U350, g3510g1 , ~d! U350, g35g1 , ~e! U350, g350.1g1 .
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In contrast to the case of anF51 to F51 transition the
detunings and intensities of the involved fields have to
chosen more carefully in order to get a short enough coo
time. This is especially true to avoid unwanted off-reson
couplings by additional hyperfine levels and heating due
optical pumping between the two ground-state hyperfine l
els. Let us mention here that a 2D or 3D generalization
this scheme is not obvious, as the polarization of the co
pensation wave vector has to be orthogonal to the coo
light field at any spatial point. Even if one could find such
geometry, an experimental realization seems rather ted
in higher dimensions. On the other hand, a 1D VSCPT co
ing could be a very useful source for an atomic interfero
eter setup, generating most occupation in the extreme s
with largest momentum, whence creating coherent bea
with two mean component waves with a splitting of seve
photon momenta~e.g., 8\k for F54!. This scheme, eventu
ally coupled to coherent adiabatic passage into a single
mentum state, generates a source with a very large bri
ness.
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APPENDIX A: FORMULAS FOR GENERAL
ATOM-FIELD CONFIGURATIONS

We will show in this appendix the outlines of the calc
lations which lead to the master equation for the redu
atomic density operator, obtained after the adiabatic elimi
tion of the excited states. In the following we consider t
general case of more than one ground hyperfine level
laser field with only one restriction: two different laser field
cannot couple two different hyperfine levels with the sa
excited level, in order to avoid the creation of coherenc
between different ground hyperfine levels.

Let us give first the definitions we used for the elect
field and hence for the interaction Hamiltonian. For ea
laser field the positive frequency part of the electric field
defined as

EW ~1 !5
1

2 (
s

eWsE, ~A1!

whereeWs include the spatial dependence of the laser field

eWs5as~ x̂!sW , ~A2!

with

sW 657
«W y6 i«W z

A2
,

sW p5«W x . ~A3!
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For each transitionj , which couples the ground state
with total angular momentum quantum numberFg to the
excited one with total angular momentumFe , we write the
atom-laser interaction Hamiltonian in the dipole approxim
tion as

ĤAL
~ j ! ~ x̂!5

E
2 (

s
(

mg ,me

as
~ j !~ x̂!

3^Fe ,meudW •sW uFg ,mg&uFe ,me&^Fg ,mgu.

~A4!

Considering all the quantum numbers for each atomic s
un,@ I ,(S,Lg),Jg#,Fg ,mg&, we can write the dipole matrix
element as~see, e.g.,@27#!

^n,@ I ,~S,Le!,Je#,Fe ,meudW •sW un,@ I ,~S,Lg!,Jg#,Fg ,mg&

5^n,LeidW •sW in,Lg&
1

A2Fe11
^Fg ,mg ;1,suFe ,me&

3R~SLgJg ,SLeJe!R~ IJgFg ,IJeFe! ~A5!

where the factorsR are defined in terms of the 6j symbols
as

R~ IJgFg ,IJeFe!5A~2Fg11!~2Fe11!H I F e Je

1 Jg Fg
J .

~A6!

It is possible to define an atomic raising operator, wh
includes the line strength for different transitions in order
use it in the Hamiltonian,

Âs
†~FeFg!

5 (
me ,mg

^Fe ,meu1,s;Fg ,mg&A2Je11A2Fg11

3H I F e Je

1 Jg Fg
J uFe ,me&^Fg ,mgu. ~A7!

For the transition from the stat
un,@ I ,(S,Le),Je#,Fe ,me& to the state
un,@ I ,(S,Lg),Jg#,Fg ,mg& the branching ratio in respect t
the decay over all the ground-state levels is

~2Je11!~2Fg11!^Fe ,meu1,s;Fg ,mg&
2H I F e Je

1 Jg Fg
J 2

,

with the normalization condition

(
Fg

(
mg

~2Je11!~2Fg11!^Fe ,meu1,s;Fg ,mg&
2

3H I F e Je

1 Jg Fg
J 2

51. ~A8!

We can define the Rabi frequency in a way that it on
depends on the quantum numbersn,S,L,J and not on the
quantum numbersF and m: this is possible since the lin
-

te

h

strength and the Clebsch-Gordan coefficients are include
the definition of the raising operators,

Vs
~ j !~ x̂!52

E
\

^n,LeidW •sW in,Lg&R~SLgJg ,SLeJe!

A2Je11
as

~ j !~ x̂!

5V jas
~ j !~ x̂!. ~A9!

Using the atomic raising operators and the Rabi freque
as defined before, the atom-laser Hamiltonian can be rew
ten as

ĤAL
~ j ! ~ x̂!5ĤAL

~1 !~ j !~ x̂!1H.c., ~A10!

where ĤAL
(1)(n)( x̂) is the positive frequency part which in

cludes the Rabi frequency and the raising operator,

ĤAL
~1 !~ j !~ x̂!5

1

2 (
s

\Vs
~ j !~ x̂!Âs

†~FeFg! . ~A11!

Summing over the ground-state levels, we can const
another raising operator which only depends on the exc
level

Âs
†~Fe!

5(
Fg

Âs
†~FeFg! . ~A12!

The operator is important because the projection oper
onto the excited states with total angular momentum qu
tum numberFe has the following form:

PFe
5(

s
Âs

†~Fe!Âs
~Fe! .

We define the jump operator which describes the en
possible process consisting of a coherent transitionFg→Fe
~the j th atomic transition! followed by a spontaneous emis
sion decay into any of the hyperfine ground states.

B̂s
~ j !~ x̂!5

2

\
Âs

~Fe!ĤAL
~1 !~ j !~ x̂!. ~A13!

Performing the adiabatic elimination of the excited sta
in the equation for the total density matrix, we obtain t
master equation for the reduced atomic density operator

ṙgg5
1

i\
@heffrgg2rggheff

† #

1\(
j

g j (
s50,61

E
2k

1k du

k
NsS u

kD
3@e2 iux̂B̂s

~ j !#rgg@B̂s
~ j !†eiux̂#, ~A14!

whereNs(q) defines the angular distribution of the spont
neously emitted photons,Ns(q)53(11q2)/8 for circular
and Ns(q)53(12q2)/4 for linear polarization. The effec
tive Hamiltonianheff is
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heff5Ĥkin1\(
j

S U j2
i

2
g j D(

s
B̂s

~ j !†~ x̂!B̂s
~ j !~ x̂!

5Ĥkin1\(
j

S U j2
i

2
g j DV~ j !~ x̂!, ~A15!

with the optical potentials defined as

V~ j !5 (
s50,61

B̂s
~ j !†~ x̂!B̂s

~ j !~ x̂!, ~A16!

which is equivalent to Eq.~7! and where the other quantitie
are defined in the text@see Eqs.~6!, ~8!, ~9!#.

Neglecting the coherences between the eigenstates o
Hermitian part ofheff , Eq. ~13! is derived from Eq.~A14!.
C
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C
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.

the

The explicit expression for the partial decay rates fro
the mth to thenth eigenstate is

gn←m5(
j

g jE
2k

1k du

k (
s5061

NsS u

kD z^nue2 iux̂B̂s
~ j !~ x̂!um& z2,

~A17!

and a similar definition forgm←n .
The total decay rate of thenth eigenstate can be obtaine

by summing the partial decay rates to all the eigenstates

Gn5(
m

gm←n5(
j

g j^nuVj un&, ~A18!

where the second equality is verified applying the definit
of Eq. ~A17!.
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