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Lorentz-Lorenz shift in a Bose-Einstein condensate

Janne Ruostekoskand Juha Javanainen
!Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand
2Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046
(Received 14 January 1997; revised manuscript received 8 April)1997

We study the quantum field theory of light-matter interactions for quantum degenerate atomic gases at low
light intensity. We argue that the contact interactions between atoms emerging in the dipole gauge may be
ignored. Specifically, they are canceled by concurrent infinite level shifts of the atoms. Our development yields
the classic Lorentz-Lorenz local-field shift of the atomic resonal&®050-294®7)03209-5

PACS numbg(s): 03.75.Fi, 42.50.Vk ,05.30.Jp

The understanding of the interactions of light with matterdivergent self-energies with=j. Polarization self-energy
in quantum degenerate systems has become especially topiescribes a contact interaction between polarized atoms. One
cal after the first evidence for a Bose-Einstein condensatemight argue that for a quantum degenerate Bose gas this
(BEC) of an atomic gas has appeaifédd. Recently, Andrews term is important, as the de Broglie wavelengths of the atoms
et al. [2] have also reported on nondestructive optical detecare of the order of the interatomic distances and the wave
tion of a Bose-Einstein condensate. functions of different atoms overlap strongly. The polariza-

In the limit of large detuning of the driving light from tion energy has been duly included in many theoretical ap-
atomic resonance, the dynamics of the light and matter fieldproaches to light-atom interactions in the quantum degener-
may be decoupled. It then turns out that the spectrum of thate regimg9,11,12,18.
scattered light conveys direct signatures of atom statistics In our previous papdrl2] we have derived a hierarchy of
[3,4] and that under various conditions even the phase of thequations of motion for correlation functions that contain
macroscopic wave function may be observed opticE#lly  one excited-atom field and one, three, five, etc., ground-state
On the other hand, for a dense enough sample and smaltom fields, for the limit of low light intensity. All contact
enough atom-field detuning, the analysis of the response dfiteractions, such as those produced by the polarization self-
matter requires a concurrent treatment of light with its ownenergy(1), were included. For the total electric fielkl” we
dynamics. The result is that nearby atoms alter the opticalound the following monochromatic expression in the pres-
response of each other. A large body of work in this direc-ence of scattering by atomic dipole moments:
tion [6—12] seems to have brought about the general notion
that atom statistics should have only a minor effect on ab-
sorption, dispersion, or diffraction of ligh,13]. Nonethe-
less, even for the Maxwell-Boltzmann gas and for the sim-
plest optical properties such as refractive index, there still arghereD; is the positive-frequency component of the driving
no proven solutions for microscopic theories regarding alectric displacement, the scalar constants defined in
dense, near-resonance sample. terms of the reduced dipole momeRtas x=D?/% ¢,, and

In this paper we continue our rigorous quantum field-the positive-frequency part of the polarization oper&toris
theoretical analysis of light-matter interactiof,12. We  given in second quantization by

argue that the contact interaction terms between different at-
oms that arise in thiengthgauge do not have any effect on P+(r)=dge¢g(r)¢e(r), (3
light-matter dynamics. As a result, for a model BEC we find
precisely the Lorentz-Lorend L) shift familiar from classi-  Here ¢4 and . are the ground-state and the excited-state
cal electrodynamicfl4—-1§. field operators in the Heisenberg picture alydis the dipole

In the many-particle formalism of light-matter interac- matrix element for the transitiog—e. In our notation the
tions, the Hamiltonian is often transformed into the lengthsame level index appearing twice in a product indicates a
gauge using the Power-Zienau-Woolley transformafibr]. ~ summation over the magnetic substates of the level. The
The electric displacement is then the basic dynamical degre@onochromatic version of the>33 tensor propagatd®(r)
of freedom, instead of the electric field, and the Hamiltonianis
picks up a polarization self-energy term

. 1
eOE+(r)=DF(r)+mf d3r'G(r—r"HP*(r"), (2

ikr
_5”V2}m_5”5(r)] (4)

3 Gij(r):iK{ Ra_r
Hp=>_ JdrPr) P(r)——Zd -d;8(ri—rp), (D) i O
The expressionG(r—r’)D is equal to the positive-
whereP(r)=2,d;8(r;—r) is the electric polarization in the frequency component of the electric field from a monochro-
dipole approximation and; andr; are the dipole operator matic dipole with the complex amplitud®, given that the
and the center-of-masg.m, position operator for théth  dipole resides at’ and the field is observed at[16]. The
atom. On the right-hand side of E(L) we have ignored the explicit expression is
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ikr

K| 5 o . € same whether we use the field propag&ar G’ in Eq. (7).
G(ND=4_1 k(NXD)xXn —— To demonstrate this contention, we consider the steady-state
solutions of Egs.(7). For eachl we have a system of
A 1 k) | ik coupled equations forP/(...;ry), P(...;r2), ...,
+[3n(n-D)—~D]| 5~z |~ 3DAr), P(...:r;). The coupling arises from the collective line

shifts and linewidths, thos& terms in Eq.(7) that appear
(5)  outside the integral. The idea is that if we solve this system
. of equations for a fixedl, in P/(...;r;) and indeed
with n=r/r andk=Q/c, Q being the dominant frequency of even in the seemingly more divergent expression
the incident light field. The volume integral overi/n Eq. G(re—rPP,(...;r)) with k#! the § functions of the form
(5) is not absolutely convergent in the neighborhood of thes(r;—r) (j#s) cancel. Thes functions are inconsequential
origin. Expression5) should be understood in such a way in integrals of the typg d®r,_,G(r,_y—r,)P,(...;r)), and
that the integral of the term inside the curly brackets over amence in the solution of the hierarcly) for P;.
infinitesimal volume enclosing the origin vanishg$2]. We begin the detailed discussion by noting that in the
Equation(5) is precisely the classical expression of the di-derivation of Egs(2) and(7) in Ref.[12] we used a cutoff in
polar field, including the peculiar delta function divergencethe wave numberg of the photons. Here we again invoke

at the origin[16]. the high-frequency cutoff. Thé function is then regarded an
With the definitions ordinary function, albeit one that is sharply peaked over a
small distance scalex. Seemingly unorthodox operations
Pire, . .on-airn) such as divisions by & function are therefore well defined.
oy + . After the calculations we set—0.
=(g(r0) - Pg(r-)P (1) ghg(r1-1) - - hg(ra)), (68 The steady-state solutions By( . ..;ry), k=1,... |, of

N ‘ Eq. (7) are obtained from a system of linear equations
pi(ra, oo M) =(Pg(ra) - g(r) g(ry) - - dhg(ra)) Ax=b, where thd x| matrix A and thel X 1 vectorsx andb
(6D are defined by

and considering 3;=0—J.=1 transition for simplicity, we a
were able to cast the hierarchy of equations for atomic cor- Akg= Skq— (1= k) e G(re=rg),  X=Pi(...5r0),
relations functions into the forifil2]

: by=ap(ry, - -,1)Dg (1)
Pire, .. Fi1im) i

. o
=(io— ’}/)P|(r1, . ,r|_l;r|) + Jj d3r|+1G(rk—r|+1)P|+1(r1, R ;r|+1).
-1
+ E G =T OPI(T1y + e ke 1s Tty - 15T Herea= fK/(5+|y) is the polarizability of a single atom.
k=1 The solution for this linear system may be expressed using

Cramer's rule [19]. In particular, x=P/(...;r)
=defAD]/det(r), where AQ=A,,, for g#I, and
+J 41 G(r =12 ) Pra g (T . @ Al)=b,. For any two indiceg #s, the matrixA contains
R AL R S two entriesG(r;—r), one on the rowj and columns and
the other on rows, columnj. The determinant ded() there-
The quantityP| reflects correlations between the dlpole mo-fore is a quadratic po|ynomia| of the propaga@(frj —rs)_
ment of one atom and the positionslef 1 other atoms and  The coefficient ofG(r;—rs)? is a function of the position
pi is simply the density correlation function férground-  variables{r;} and may technically be zero for some sets of
state atoms. coordinategr;}. In our argument we assume that such acci-
In Eq. (7) the atoms are regarded as point dipoles. As Wejental zeros, if any, are inconsequential in the physics. We
have emphasized already in REf2], this assumption must thys posit that def) contains a term proportional to
fail at short distances. Real atomic interaction potentials arg(r;—rg)? and hence is a proper quadratic polynomial of
thought to have a hard. core, which prevents the atoms frong(rj_rs)_ By the same token, 407 is a second-order
overlapping. Mathematically, one expects that all atomic Cor'polynomial ofS(ri—ry) for j#s, j#1, s#| and afirst-order
relation functions such aB, andp, vanish if any two posi- olynomial ina(rj-—rs) P £l ’ '
tion arguments are the same. Evidently, the contact interag— Let us first colnsidle'r the.casecN whereN is the total
tion should be omitted as inconsequential in Ef). In view number of atoms. All the expectr’;\tion values in H6)
of Eq. (5), this is done by removing th&-function contribu- ish for |>N .Thus P =0 and b.— DZ (1)
tions from the field propagatoG by the substitution ~o =" ' N+l )i ¥PNEE L
for j=1,...N. By the preceding argument,

Gjj—Gij , with e~ : . .
Py=def AW ]/det(A) is a rational expression whose
Gi’j(f)ZGij(f)inK5ij5(r)/3- (8) denominator is a quadratic polynomial in eaéfr;—ry),
j#s, whereas the numerator is a quadratic expression
The key mathematical insight of this paper is that theof &(rj—rs) with j#s, j#N, s#N and a first-order
same substitution applies even for point dipoles. In othepolynomial in &(rj—ry), j#N. In the expression
words, the resulting light-matter dynamics is exactly theG(ry—rn_1)Pn(r1, ... rny_1;ryN) all the 8-function diver-

+ikp(ry, ... r)DE(r)
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gences in the numerator are therefore canceled by équal \ is the wavelength of lighf20]. What the exact limit of

highen powers of the samé functions in the denominator. validity is and what types of corrections emerge at high den-
Next consider the cade=N—1. Because the expression sities is at the moment largely unknown.

G(ry—rn-1)Pn( ... ;ry) does not contain uncanceledl We consider the steady-state solution of E@) with
functions, its integral overry needed to calculate I=1,.... The initial free field is written D{(r)
the (N—1)X1 vector b for |=N—1 does not con- —p_ eexpiks). The following set of damped plane waves

tain any -function divergences either. With similar argu- solves Eq/(7):
ments to before we then conclude that also

G(rny—2—TIn-1)Pn-1( - . .;rn=1) is free from uncanceled Pp'~teek's, z,...,2=0
functions. By repeating the procedure for bllve confirm P(ry, ...5r)= i (10
that the expressior@(r,_,—r)P,( ... r,), for anyl, do not 0 otherwise,

contain é functions that could affect the integrations.
Because our derivation is very technical, we give a simpl

example for the case of two atoms. ThePs=0. The

ground-state density and the polarizationratandr, are

coupled by the collective linewidths and line shifts leading tof d3r.e* -G/ (r;—r,)-e elk'z2

the resonant dipole-dipole interactiofl?]. For 1=2, ;>0

Apn=Axp=1, Ap=An=—aG(ri—ry)lix, and Py(ry;ry)

ith k" [Im(k’)>0] and P being the variable parameters.
his may be seen by evaluating the integral Zgr-0,

may be expressed using Cramer’s rule. In particular, 2k2+k'?2 s k’? k| (11
=ik sk ——elkal (11
3(k'“—k%) 2k(k—k")

f d3r,G(r1—r)Py(ry;r,)
The integrals on the right-hand side of E@) produce sums

5 of two exponentials, the vacuum component proportional to

:J d°raG(ri—ro)apa(ry,ra) e'kz which should cancel the free-field terms, and a remain-

ing e'*'Z term, which pairs up with the correlation functions

o Df (ry)+aG(ry—r)DE (ry)/i P,. Equation(7) then reduces to the two conditions

1_[(1G(rl_r2]/iK)2

9
ipk(2k?+Kk'?) B

With r,#r,, the § functions in G(r,—r,) vanish, and at o=yt 3(k'2—k?) =0, (123
r,=r, we may cancdl5(r;—r,)]%. Thes functions do not

affect the integral because the highest powed(@f,—r,) is k’2

2, in both the denominator and the numerator. Thus the con- De+ WPIO , (12b)

tact interactions do not affect the polarizatiBg(r ), which
is obtained by inserting expressi@®) into Eq. (7).

We have shown that alf functions contained i cancel
in Eq. (7). A corollary of the derivation is that the polariza- L
inE qseglgenergy ternyil) does not have any effece on the _ On the other hand, Eq2) for the electric field refers to a
light-matter dynamics for point dipoles and may be ignored.om':"""torn quar_ltlty:’ EF_)l' '_I'here is no evident reason to

There is a concurring physical explanation for our resultdrop thed function contribution inG, so we use Eq2) as it
A comparison of Eqs(5) and (7) shows that thes function |s.AThe, total electric field is assumed to be of the form
lumps with the detuningd and gives a divergent frequency E € €' % With the choice(12b), the vacuum type contribu-
shift. As the dipole at, draws closer to the dipole a3 and tions €' indeed cancel and the polarization amplitude is
the electric fields of the dipoles on each other grow strongertelated  to the amplitude of electric field by
at the same time the dipoles are also shifted further and fureoE =k*P/(k’?—k?). With the help of Eq(128 we find
ther away from resonance with one another. From our
present viewpoint it is the level shift due to resonant dipole- n2_ 1= (13)
dipole interactions that dynamically curbs the interaction en- 1-pal3d’
ergy between the dipoles.

After arguing that thes functions may be ignored in Eq. where the refractive inder is defined in a familiar manner
(7), we now rewrite the example presented in Ré&g] for k’=nk. Because we are dealing with a linear theory, the
the optical response of a homogeneous condensate with tidectric field and the polarization are naturally related by
contact interactions omitted. The condensate is assumed B =e,xE™, but in addition we now find the familiar rela-
fill the half spacez=0 with the constant density; for an  tion y=n?—1 between the susceptibility and refractive in-
ideal condensate the densjiyimmediately implies the other dex.
correlation functions asp,=p'. The optical response is It should be noted that keeping or ignoring théunction
solved in an approximation that ignores the collective lineof G in Eq. (2) simply makes a difference between two dif-
shifts and linewidths. Specifically, we replaGein our ear- ferent definitions of the electric field inside a dielectric me-
lier argument byG’ and then ignore all tensos’ that re- dium. This is a thorny and often an inconsequential issue.
side outside integrals in Eq7). This approximation is only The final measurements are usually carried out outside the
guaranteed to be valid for dilute condensaigs<1, where dielectric, whereupon thé function does not contribute any-

which give the wave numbé¢’ and the polarization ampli-
tudeP.
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way. Our choice has the advantage that it aligns with theso far have been the exclusive tool in the analysis of the
standard conventions of electrodynamics. experimental results. As another example, we conjectured in
While we earlier{12] obtained the column density result [12] that the entire linear hierarchy of Eq(7) for
n?—1=x=pa, Eq.(13) is the classic column density result |=1,2, ... N may be solved by solving numerically the
with the added LL local-field correctiofi4]. As far as our  classical equations for the coupled system of electromagnetic
microscopic argument is concerned, the correction emergegelds andN charged harmonic oscillators. The position cor-
as a result of divergent level shifts of the atoms due t9g|ation functionsy, could be taken into account by repeating

dipole-dipole interactions. Within the present approach thgne sojution for a number of initial configurations chosen

main approximations for the LL shift are two: collective Iir_le- from the proper stochastic ensemble and averaging the re-

f d-state at ate f BEC Ssults. This type of a Monte Carlo approach would seem dif-
or ground-state aloms as appropriate for a are Aoyt in the presence o functions because they dwell in a

sumed. Atom-atom correlation functions, though trivial, arégot of measure zero in phase space of the positions of the

Sr:‘nﬁlz] tatlﬁi?/n mt? tai(i:r?u?;tto mﬁmtitordtlalr. It?vcﬁmp\?vﬂiﬂn'atoms and yet may substantially affect the results. However,
el. StrVes at taking Into account collective fine S as the troublingd functions have now proven inconsequen-

and line shifts, but in exchange makes approximations COnﬂal, the door is ajar for an essentially exact numerical solu-

cerning atomic correlation functions. . ;
. A - ion of th ical r n f nse, near-resonance BEC.
Apart from heralding the physics insights that ongmallytO of the optical response of a dense, near-resonance BEC

lead to the Lorentz-Lorenz formula, our results should have We would like to thank Robert Graham and Craig Savage
practical consequences in the ongoing studies of the condefor comments on the manuscript. This work is supported in
sates. The LL shift could, and possibly should, be studied apart by the National Science Foundation, Grant No. PHY-

the first correction to the column density arguments, whict9421116.
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