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Lorentz-Lorenz shift in a Bose-Einstein condensate
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We study the quantum field theory of light-matter interactions for quantum degenerate atomic gases at low
light intensity. We argue that the contact interactions between atoms emerging in the dipole gauge may be
ignored. Specifically, they are canceled by concurrent infinite level shifts of the atoms. Our development yields
the classic Lorentz-Lorenz local-field shift of the atomic resonance.@S1050-2947~97!03209-5#

PACS number~s!: 03.75.Fi, 42.50.Vk ,05.30.Jp
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The understanding of the interactions of light with mat
in quantum degenerate systems has become especially
cal after the first evidence for a Bose-Einstein condens
~BEC! of an atomic gas has appeared@1#. Recently, Andrews
et al. @2# have also reported on nondestructive optical det
tion of a Bose-Einstein condensate.

In the limit of large detuning of the driving light from
atomic resonance, the dynamics of the light and matter fie
may be decoupled. It then turns out that the spectrum of
scattered light conveys direct signatures of atom statis
@3,4# and that under various conditions even the phase of
macroscopic wave function may be observed optically@5#.
On the other hand, for a dense enough sample and s
enough atom-field detuning, the analysis of the respons
matter requires a concurrent treatment of light with its o
dynamics. The result is that nearby atoms alter the opt
response of each other. A large body of work in this dire
tion @6–12# seems to have brought about the general no
that atom statistics should have only a minor effect on
sorption, dispersion, or diffraction of light@3,13#. Nonethe-
less, even for the Maxwell-Boltzmann gas and for the s
plest optical properties such as refractive index, there still
no proven solutions for microscopic theories regarding
dense, near-resonance sample.

In this paper we continue our rigorous quantum fie
theoretical analysis of light-matter interactions@3,12#. We
argue that the contact interaction terms between differen
oms that arise in thelengthgauge do not have any effect o
light-matter dynamics. As a result, for a model BEC we fi
precisely the Lorentz-Lorenz~LL ! shift familiar from classi-
cal electrodynamics@14–16#.

In the many-particle formalism of light-matter intera
tions, the Hamiltonian is often transformed into the leng
gauge using the Power-Zienau-Woolley transformation@17#.
The electric displacement is then the basic dynamical de
of freedom, instead of the electric field, and the Hamilton
picks up a polarization self-energy term

HP5
1

2e0
E d3rP~r !•P~r !5

1

2e0
(
iÞ j

di•djd~r i2r j !, ~1!

whereP(r )5( idid(r i2r ) is the electric polarization in the
dipole approximation anddi and r i are the dipole operato
and the center-of-mass~c.m.! position operator for thei th
atom. On the right-hand side of Eq.~1! we have ignored the
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divergent self-energies withi 5 j . Polarization self-energy
describes a contact interaction between polarized atoms.
might argue that for a quantum degenerate Bose gas
term is important, as the de Broglie wavelengths of the ato
are of the order of the interatomic distances and the w
functions of different atoms overlap strongly. The polariz
tion energy has been duly included in many theoretical
proaches to light-atom interactions in the quantum dege
ate regime@9,11,12,18#.

In our previous paper@12# we have derived a hierarchy o
equations of motion for correlation functions that conta
one excited-atom field and one, three, five, etc., ground-s
atom fields, for the limit of low light intensity. All contac
interactions, such as those produced by the polarization s
energy~1!, were included. For the total electric fieldE1 we
found the following monochromatic expression in the pre
ence of scattering by atomic dipole moments:

e0E1~r !5DF
1~r !1

1

ikE d3r 8G~r2r 8!P1~r 8!, ~2!

whereDF
1 is the positive-frequency component of the drivin

electric displacement, the scalar constantk is defined in
terms of the reduced dipole momentD as k5D2/\e0, and
the positive-frequency part of the polarization operatorP1 is
given in second quantization by

P1~r !5dgecg
†~r !ce~r !. ~3!

Here cg and ce are the ground-state and the excited-st
field operators in the Heisenberg picture anddge is the dipole
matrix element for the transitiong→e. In our notation the
same level index appearing twice in a product indicate
summation over the magnetic substates of the level.
monochromatic version of the 333 tensor propagatorG(r )
is

Gi j ~r !5 ikH F ]

]r i

]

]r j
2d i j“

2G eikr

4pr
2d i j d~r !J . ~4!

The expressionG(r2r 8)D is equal to the positive-
frequency component of the electric field from a monoch
matic dipole with the complex amplitudeD, given that the
dipole resides atr 8 and the field is observed atr @16#. The
explicit expression is
2056 © 1997 The American Physical Society
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G~r !D5
ik

4pH k2~ n̂3D!3n̂
eikr

r

1@3n̂~ n̂•D!2D#S 1

r 3 2
ik

r 2Deikr J 2
ik

3
Dd~r !,

~5!

with n̂5r /r andk5V/c, V being the dominant frequency o
the incident light field. The volume integral over 1/r 3 in Eq.
~5! is not absolutely convergent in the neighborhood of
origin. Expression~5! should be understood in such a wa
that the integral of the term inside the curly brackets over
infinitesimal volume enclosing the origin vanishes@12#.
Equation~5! is precisely the classical expression of the
polar field, including the peculiar delta function divergen
at the origin@16#.

With the definitions

Pl~r1 , . . . ,r l 21 ;r l !

[^cg
†~r1!•••cg

†~r l 21!P1~r l !cg~r l 21!•••cg~r1!&, ~6a!

r l~r1 , . . . ,r l ![^cg
†~r1!•••cg

†~r l !cg~r l !•••cg~r1!&
~6b!

and considering aJg50→Je51 transition for simplicity, we
were able to cast the hierarchy of equations for atomic c
relations functions into the form@12#

Ṗl~r1 , . . . ,r l 21 ;r l !

5~ id2g!Pl~r1 , . . . ,r l 21 ;r l !

1 (
k51

l 21

G~r l2r k!Pl~r1 , . . . ,r k21 ,r k11 , . . . ,r l ;r k!

1 ikr l~r1 , . . . ,r l !DF
1~r l !

1E d3r l 11G~r l2r l 11!Pl 11~r1 , . . . ,r l ;r l 11!. ~7!

The quantityPl reflects correlations between the dipole m
ment of one atom and the positions ofl 21 other atoms and
r l is simply the density correlation function forl ground-
state atoms.

In Eq. ~7! the atoms are regarded as point dipoles. As
have emphasized already in Ref.@12#, this assumption mus
fail at short distances. Real atomic interaction potentials
thought to have a hard core, which prevents the atoms f
overlapping. Mathematically, one expects that all atomic c
relation functions such asPl andr l vanish if any two posi-
tion arguments are the same. Evidently, the contact inte
tion should be omitted as inconsequential in Eq.~7!. In view
of Eq. ~5!, this is done by removing thed-function contribu-
tions from the field propagatorG by the substitution
Gi j→Gi j8 , with

Gi j8 ~r !5Gi j ~r !1 ikd i j d~r !/3 . ~8!

The key mathematical insight of this paper is that t
same substitution applies even for point dipoles. In ot
words, the resulting light-matter dynamics is exactly t
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same whether we use the field propagatorG or G8 in Eq. ~7!.
To demonstrate this contention, we consider the steady-s
solutions of Eqs.~7!. For eachl we have a system ofl
coupled equations for Pl( . . . ;r1), Pl( . . . ;r2), . . . ,
Pl( . . . ;r l). The coupling arises from the collective lin
shifts and linewidths, thoseG terms in Eq.~7! that appear
outside the integral. The idea is that if we solve this syst
of equations for a fixedl , in Pl( . . . ;r l) and indeed
even in the seemingly more divergent express
G(r k2r l)Pl( . . . ;r l) with kÞ l the d functions of the form
d(r j2r s) ( j Þs) cancel. Thed functions are inconsequentia
in integrals of the type*d3r l 21G(r l 212r l)Pl( . . . ;r l), and
hence in the solution of the hierarchy~7! for P1.

We begin the detailed discussion by noting that in t
derivation of Eqs.~2! and~7! in Ref. @12# we used a cutoff in
the wave numbersq of the photons. Here we again invok
the high-frequency cutoff. Thed function is then regarded a
ordinary function, albeit one that is sharply peaked ove
small distance scalea. Seemingly unorthodox operation
such as divisions by ad function are therefore well defined
After the calculations we seta→0.

The steady-state solutions forPl( . . . ;r k), k51, . . . ,l , of
Eq. ~7! are obtained from a system of linear equatio
Ax5b, where thel 3 l matrix A and thel 31 vectorsx andb
are defined by

Akq5dkq2~12dkq!
a

ik
G~r k2rq!, xk5Pl~ . . . ;r k!,

bk5ar l~r1 ,•••,r l !DF
1~r k!

1
a

ikE d3r l 11G~r k2r l 11!Pl 11~r1 , . . . ,r l ;r l 11!.

Herea52k/(d1 ig) is the polarizability of a single atom
The solution for this linear system may be expressed us
Cramer’s rule @19#. In particular, xl5Pl( . . . ;r l)
5det@ Ā( l )#/det(A), where Ākq

( l )5Akq , for qÞ l , and

Ākl
( l )5bl . For any two indicesj Þs, the matrixA contains

two entriesG(r j2r s), one on the rowj and columns and
the other on rows, column j . The determinant det(A) there-
fore is a quadratic polynomial of the propagatorG(r j2r s).
The coefficient ofG(r j2r s)

2 is a function of the position
variables$r i% and may technically be zero for some sets
coordinates$r i%. In our argument we assume that such ac
dental zeros, if any, are inconsequential in the physics.
thus posit that det(A) contains a term proportional to
G(r j2r s)

2 and hence is a proper quadratic polynomial
d(r j2r s). By the same token, det@ Ā( l )# is a second-order
polynomial ofd(r j2r s) for j Þs, j Þ l , sÞ l and afirst-order
polynomial ind(r j2r l), j Þ l .

Let us first consider the casel 5N, whereN is the total
number of atoms. All the expectation values in Eq.~6!
vanish for l .N. Thus PN1150 and bj5arNDF

1(r j )
for j 51, . . . ,N. By the preceding argumen
PN5det@ Ā(N)#/det(A) is a rational expression whos
denominator is a quadratic polynomial in eachd(r j2r s),
j Þs, whereas the numerator is a quadratic express
of d(r j2r s) with j Þs, j ÞN, sÞN and a first-order
polynomial in d(r j2rN), j ÞN. In the expression
G(rN2rN21)PN(r1 , . . . ,rN21 ;rN) all the d-function diver-
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gences in the numerator are therefore canceled by equa~or
higher! powers of the samed functions in the denominator

Next consider the casel 5N21. Because the expressio
G(rN2rN21)PN( . . . ;rN) does not contain uncanceledd
functions, its integral over rN needed to calculate
the (N21)31 vector b for l 5N21 does not con-
tain any d-function divergences either. With similar argu
ments to before we then conclude that a
G(rN222rN21)PN21( . . . ;rN21) is free from uncanceledd
functions. By repeating the procedure for alll we confirm
that the expressionsG(r l 212r l)Pl( . . . ;r l), for anyl , do not
containd functions that could affect the integrations.

Because our derivation is very technical, we give a sim
example for the case of two atoms. Then,P350. The
ground-state density and the polarization atr1 and r2 are
coupled by the collective linewidths and line shifts leading
the resonant dipole-dipole interaction@12#. For l 52,
A115A2251, A125A2152aG(r12r2)/ ik, and P2(r1 ;r2)
may be expressed using Cramer’s rule. In particular,

E d3r 2G~r12r2!P2~r1 ;r2!

5E d3r 2G~r12r2!ar2~r1 ,r2!

3
DF

1~r2!1aG~r12r2!DF
1~r1!/ ik

12@aG~r12r2#/ ik!2
. ~9!

With r2Þr1, the d functions in G(r12r2) vanish, and at
r25r1 we may cancel@d(r12r2)#2. Thed functions do not
affect the integral because the highest power ofd(r12r2) is
2, in both the denominator and the numerator. Thus the c
tact interactions do not affect the polarizationP1(r1), which
is obtained by inserting expression~9! into Eq. ~7!.

We have shown that alld functions contained inG cancel
in Eq. ~7!. A corollary of the derivation is that the polariza
tion self-energy term~1! does not have any effect on th
light-matter dynamics for point dipoles and may be ignor

There is a concurring physical explanation for our res
A comparison of Eqs.~5! and ~7! shows that thed function
lumps with the detuningd and gives a divergent frequenc
shift. As the dipole atr k draws closer to the dipole atrq and
the electric fields of the dipoles on each other grow strong
at the same time the dipoles are also shifted further and
ther away from resonance with one another. From
present viewpoint it is the level shift due to resonant dipo
dipole interactions that dynamically curbs the interaction
ergy between the dipoles.

After arguing that thed functions may be ignored in Eq
~7!, we now rewrite the example presented in Ref.@12# for
the optical response of a homogeneous condensate with
contact interactions omitted. The condensate is assume
fill the half spacez>0 with the constant densityr; for an
ideal condensate the densityr immediately implies the othe
correlation functions asr l5r l . The optical response i
solved in an approximation that ignores the collective l
shifts and linewidths. Specifically, we replaceG in our ear-
lier argument byG8 and then ignore all tensorsG8 that re-
side outside integrals in Eq.~7!. This approximation is only
guaranteed to be valid for dilute condensatesrl3!1, where
e

n-

.
t.

r,
r-
r
-
-

the
to

l is the wavelength of light@20#. What the exact limit of
validity is and what types of corrections emerge at high d
sities is at the moment largely unknown.

We consider the steady-state solution of Eq.~7! with
l 51, . . . . The initial free field is written DF

1(r )

5DF ê exp(ikz). The following set of damped plane wave
solves Eq.~7!:

Pl~r1 , . . . ;r l !5H Pr l 21ê eik8zl, z1 , . . . ,zl>0

0 otherwise,
~10!

with k8 @Im(k8).0# and P being the variable parameter
This may be seen by evaluating the integral forz1.0,

E
z2>0

d3r 2ê* •G8~r12r2!•ê eik8z2

5 ikF 2k21k82

3~k822k2!
eik8z11

k82

2k~k2k8!
eikz1G . ~11!

The integrals on the right-hand side of Eq.~7! produce sums
of two exponentials, the vacuum component proportiona
eikz, which should cancel the free-field terms, and a rema
ing eik8z term, which pairs up with the correlation function
Pl . Equation~7! then reduces to the two conditions

S id2g1
irk~2k21k82!

3~k822k2! D P50, ~12a!

DF1
k82

2k~k2k8!
P50 , ~12b!

which give the wave numberk8 and the polarization ampli-
tudeP.

On the other hand, Eq.~2! for the electric field refers to a
one-atom quantityP1[P1. There is no evident reason t
drop thed function contribution inG, so we use Eq.~2! as it
is. The total electric field is assumed to be of the fo
E ê eik8z. With the choice~12b!, the vacuum type contribu
tions eikz indeed cancel and the polarization amplitude
related to the amplitude of electric field b
e0E5k2P/(k822k2). With the help of Eq.~12a! we find

n2215
ra

12ra/3
, ~13!

where the refractive indexn is defined in a familiar manne
k85nk. Because we are dealing with a linear theory, t
electric field and the polarization are naturally related
P15e0xE1, but in addition we now find the familiar rela
tion x5n221 between the susceptibility and refractive i
dex.

It should be noted that keeping or ignoring thed function
of G in Eq. ~2! simply makes a difference between two d
ferent definitions of the electric field inside a dielectric m
dium. This is a thorny and often an inconsequential iss
The final measurements are usually carried out outside
dielectric, whereupon thed function does not contribute any
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way. Our choice has the advantage that it aligns with
standard conventions of electrodynamics.

While we earlier@12# obtained the column density resu
n2215x5ra, Eq. ~13! is the classic column density resu
with the added LL local-field correction@14#. As far as our
microscopic argument is concerned, the correction eme
as a result of divergent level shifts of the atoms due
dipole-dipole interactions. Within the present approach
main approximations for the LL shift are two: collective lin
widths and line shifts are ignored and correlation functio
for ground-state atoms as appropriate for a BEC are
sumed. Atom-atom correlation functions, though trivial, a
formally taken into account to infinite order. In compariso
Ref. @11# strives at taking into account collective linewidth
and line shifts, but in exchange makes approximations c
cerning atomic correlation functions.

Apart from heralding the physics insights that origina
lead to the Lorentz-Lorenz formula, our results should ha
practical consequences in the ongoing studies of the con
sates. The LL shift could, and possibly should, be studied
the first correction to the column density arguments, wh
e

es
o
e

s
s-

,

n-

e
n-
s

h

so far have been the exclusive tool in the analysis of
experimental results. As another example, we conjecture
@12# that the entire linear hierarchy of Eq.~7! for
l 51,2, . . . ,N may be solved by solving numerically th
classical equations for the coupled system of electromagn
fields andN charged harmonic oscillators. The position co
relation functionsr l could be taken into account by repeatin
the solution for a number of initial configurations chos
from the proper stochastic ensemble and averaging the
sults. This type of a Monte Carlo approach would seem d
ficult in the presence ofd functions because they dwell in
set of measure zero in phase space of the positions of
atoms and yet may substantially affect the results. Howe
as the troublingd functions have now proven inconseque
tial, the door is ajar for an essentially exact numerical so
tion of the optical response of a dense, near-resonance B
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