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Critical temperature of a trapped Bose gas: Mean-field theory and fluctuations
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We investigate the possibilities of distinguishing the mean-field and fluctuation effects on the critical tem-
perature of a trapped Bose gas with repulsive interatomic interactions. Since in a direct measurement of the
critical temperature as a function of the number of trapped atoms these effects are small compared to the ideal
gas results, we propose to observe Bose-Einstein condensation by adiabatically ramping down the trapping
frequency. Moreover, analyzing this adiabatic cooling scheme, we show that fluctuation effects can lead to the
formation of a Bose-Einstein condensate at frequencies which are much larger than those predicted by the
mean-field theory.@S1050-2947~97!00509-X#

PACS number~s!: 03.75.Fi, 67.40.2w, 32.80.Pj, 42.50.Vk
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I. INTRODUCTION

The experimental observation of Bose-Einstein conden
tion in atomic gases of87Rb @1#, 23Na @2#, and 7Li @3# con-
fined in a magnetic trap has enormously boosted the theo
ical and experimental research of such quantum gases. A
studying the elementary excitations of the condensate@4,5#,
experiments have also started to determine more accur
the critical temperature of the gas as a function of the nu
ber of atoms in the trap, and in particular the deviation of t
temperature from the ideal case@6#. Measuring these devia
tions will give important information on the effect of inte
actions on the thermodynamic properties of the gas and
also signal a breakdown of the Bogoliubov theory that h
been so successful in explaining the collective excitat
spectrum@7–10#. It is therefore of considerable theoretic
interest.

For a noninteracting gas in an isotropic external harmo
potentialV(r )5mv2r2/2, it is well known that if the number
of particlesN@100, Bose-Einstein condensation occurs a
temperature

T05S N

z~3! D
1/3\v

kB
. ~1!

Indeed, the dominant correction to this temperature due
the finite number of particles in the gas is given
(Tc2T0)/T0.20.73N21/3, and vanishes for largeN
@11,12#. It is interesting to note that this result can be und
stood physically from the fact that the local-density appro
mation, which by assuming that the gas behaves locally
mogeneously leads to Eq.~1!, breaks down when the
correlation lengthj becomes of the same order of magnitu
as the extent of the harmonic oscillator ground st
l 5A\/mv. Since for the ideal Bose gas j
5O„L thAT0 /(T2T0)…, with L th5A2p\2/mkBT the ther-
mal de Broglie wavelength of the atoms, this implies that
local-density approximation breaks down only in a sm
temperature intervalT2T05O(\v/kB)5O(T0 /N1/3) above
561050-2947/97/56~3!/2041~5!/$10.00
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T0 and thus that finite-size corrections to the critical te
perature are of this order at most@13#.

More important, therefore, is the influence of the inte
atomic interaction on the critical temperature of the alka
metal gases of interest, since the resulting shift survives e
in the largeN limit. Roughly speaking there are two effec
to consider. First, the inhomogeneity of the gas leads~above
the transition! to a spatially varying mean-field potential o
2n(r )T2B, where n(r ) is the local density of the gas
T2B54pa\2/m is the two-body transition matrix at zero en
ergy and momenta, anda is the s-wave scattering length
Depending on the sign of the scattering length the atoms
therefore either repelled from (a.0) or attracted to (a,0)
the center of the trap and it requires more or fewer ato
respectively, to acquire the necessary central density
Bose-Einstein condensation. Using a local-density appro
mation this effect was recently studied by Giorgini, Pita
vskii, and Stringari@14#. They obtained a mean-field shift i
the critical temperature of

Tc2T0

T0
.21.33

a

l
N1/6. ~2!

Secondly, Bijlsma and Stoof have found by means o
renormalization group calculation that for gases with a po
tive scattering length the necessary central density for Bo
Einstein condensation is reduced considerably due to fluc
tion effects@15#. This means that the degeneracy parame
n(0)L th

3 at the critical temperature is notz(3/2).2.612, as
assumed by the mean-field theory, but instead a monot
cally decreasing function of the quantum parametera/L th . It
is therefore always smaller than the ideal gas valuez(3/2).
The reason for this reduction in the critical density is that
the renormalization group calculation the ‘‘running’’ chem
cal potential renormalizes from apositive value at short
length scales to exactly zero at large length scales, whe
in a mean-field calculation it would always be equal to ze
As a result it requires more energy to create particles, wh
reduces the critical density.
2041 © 1997 The American Physical Society
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Although the effect of fluctuations thus increases the cr
cal temperature, it is at present unclear to what amount
increase cancels the mean-field shift in the critical tempe
ture. To investigate this issue, we need quantitative inform
tion on the density profile of a trapped Bose gas with rep
sive interactions, which we obtain by performing numeric
calculations in the local-density approximation. As me
tioned previously, the system is considered to be locally
mogeneous in this approximation, and the inhomogeneity
duced by the trapping potentialV(r ) and the mean-field
interaction 2n(r )T2B is determined self-consistently by th
spatially dependent effective chemical potentialm8(r )5
m2V(r )22n(r )T2B, wherem is the actual chemical poten
tial of the gas. The precise way in which this is accomplish
for the thermodynamic quantities of interest to us is brie
summarized in Sec. II. In Sec. III we then determine t
mean-field and fluctuation corrections to the critical tempe
ture and in Sec. IV we analyze an adiabatic cooling sche
with which one can directly study the interaction effects
the critical temperature experimentally. We end in Sec
with some conclusions.

II. LOCAL-DENSITY APPROXIMATION

For our purposes, which will become clear shortly, w
also need to calculate the total number of particlesN in the
gas, together with the entropyS. According to statistical
physics, these quantities can be calculated from the gra
canonical potentialV of the system, i.e., from

N52
]V

]mU
T,V

and

S52
]V

]TU
m,V

.

Above the critical temperature the~mean-field! grand-
canonical potential of an interacting Bose gas is given b

V5kBT(
j

ln$12exp@2b~e j2m!#%2E dr n2~r !T2B,

~3!

wheree j denote the one-particle energy levels in the eff
tive potentialV(r )12n(r )T2B @16#. Implementing the local-
density approximation by settinge j5\2k2/2m1V(r )
12n(r )T2B and using( j5*dr*dk/(2p)3, we can perform
the Gaussian integral over the momenta\k to find

2
kBT

L th
3 E dr g5/2@z~r !#

for the first term on the right-hand side of Eq.~3!. Here we
introduced the Bose function

g5/2~z!52
4

Ap
E

0

`

dx x2ln~12zexp@2x2# !

and the local fugacityz(r )5exp@bm8(r )#.
-
is
a-
-

l-
l
-
-
-

d

e
-
e

d-

-

Calculating now the derivative ofV with respect tom, we
obtain for the total number of particles

N5E dr n~r !5
1

L th
3 E dr g3/2@z~r !#, ~4!

where we usedg3/2(z)5z@dg5/2(z)/dz#. Performing a simi-
lar differentiation with respect to the temperature, the e
tropy of the system is found to be

S5kBE dr H 5

2
g5/2@z~r !#2n~r !ln@z~r !#J . ~5!

Note that in both differentiations we used the fact thatz(r )
has an implicit dependence on the chemical potential and
temperature through the densityn(r ). The contributions to
the particle number and the entropy from this depende
exactly cancel, however, the contributions coming from
second term in the right-hand side of Eq.~3!.

III. CRITICAL TEMPERATURE

At this point we are ready to discuss the way in which w
numerically determine the critical temperature of the gas a
function of the number of particles in the trap and, in pa
ticular, how we include the fluctuation effects on this critic
temperature. To include these fluctuations in a first appro
mation, we calculate at a given temperature the value of
quantum parametera/L th and extract from the appropriat
value of the critical degeneracy parameter@15# the value of
the central densityn(0) at which Bose-Einstein condensatio
first occurs. Knowing the critical central density we can a
immediately determine the chemical potential at critical
from n(0)L th

3 5g3/2„exp$b@m22n(0)T2B#%…. The correspond-
ing number of particles is then self-consistently calcula
from Eq. ~4!. To compare with the mean-field results, w
also calculate the number of particles in the system fo
central density ofz(3/2)/L th

3 . Both results, together with Eq
~2!, are plotted in Fig. 1.

For different values of the scattering lengtha and the
trapping frequencyv, we determined the critical temperatu
as a function of the number of particles and found that
both calculations the relative shift in the critical temperatu
caused by interactions, is a universal function of (a/ l )N1/6 as
indicated in Fig. 1. From this figure we see that Eq.~2! gives

FIG. 1. Relative change in the critical temperature due to in
actions in a gas trapped in a harmonic oscillator potential. Curv
gives the mean-field result and curve 2 includes also the effec
fluctuations. The dashed line represents Eq.~2!.
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the correct lowest order mean-field shift of the temperatu
but also that higher order corrections become important r
tively soon. Moreover, the fluctuation effects are rough
speaking of the same order of magnitude under the exp
mental conditions of interest, although they are clearly
able to overcome the decrease of the critical temperature
to the mean-field potential. However, at this point we have
remind ourselves that the present calculation underestim
the influence of fluctuations because it does not incorpo
the effect that fluctuations have on the density profile in
trap. In principle, this could also be included by performi
what one might call a ‘‘local renormalization group’’ calcu
lation, i.e., apply the renormalization group theory of R
@15# at each point in space.

IV. ADIABATIC COOLING

Since the critical temperature of an interacting Bose
in an absolute sense does not deviate much from the i
gas value, we now propose a possible experiment that c
make the effects of the interatomic interactions visible wi
out having to deal with a large ideal gas ‘‘background
Suppose we have a gas ofN particles in an isotropic trap
with frequencyv and at a temperatureT above the critical
temperature. The gas also has a certain entropy given by
~5!. We now ask ourselves what would happen if the syst
is cooled adiabatically to a lower temperature by slowly lo
ering the trapping frequency to a valuev8. Since during this
adiabatic process the entropy and the number of particle
the gas remain constant, we know the answer to this ques
if we determine the final chemical potential and temperat
combination (m8,T8) such thatN(m8,T8,v8)5N(m,T,v)
andS(m8,T8,v8)5S(m,T,v).

The reason why we propose to adiabatically cool the
in this manner is that for the ideal Bose gas, the only way
keep both the entropy and the particle number constant
ing the changev→v8 in the trapping frequency is to chang
the temperature fromT to (v8/v)T and the chemical poten
tial from m to (v8/v)m. This leaves all the occupation num
bers of the harmonic oscillator states unchanged. More
portantly, it leaves the fugacity and therefore the degener
parametern(0)L th

3 in the center of the trap unchanged. S
for the ideal gas, adiabatic cooling does not bring us close
criticality. Evidently, finite-size effects do not influence th
conclusion. Therefore, if we can reach Bose-Einstein c
densation in an interacting gas in this way, it can only be d
to the effect of interactions.

In Fig. 2, the value of the degeneracy parameter in
center of the trap is plotted for five different adiabatic pr
cesses~solid lines 1–5! during an adiabatic ramp down o
the trap frequency from a starting frequency of 373 Hz.
five adiabatic curves correspond to a gas contain
N520 000 87Rb particles with ans-wave scattering length
of 109a0 @17#. The initial temperature of the gas increas
from the upper to the lower curves and consequently
chemical potential increases from the lower to the up
curve, since the total number of particles is the same. Ph
cally, for a nonideal gas the extra term 2n(r )T2B/kBT in the
exponent ofz(r ) causes a deviation from a horizontal lin
because the density does not scale linearly withT but ap-
proximately withT3/2. Thus keepingN andS constant when
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v is varied, we now have to change the local fugacity and
a result the degeneracy parameter in the center of the
also changes. Furthermore, to achieve Bose-Einstein con
sation in a gas with a positive scattering length, it is cle
that the frequency must be ramped down because this low
the density of the gas and reduces the effect of the repul
interaction 2n(r )T2B. As a result, the density in the center
the trap reduces less than in the ideal gas case and the
generacy parametern(0)L th

3 increases.
In Fig. 2 we also plotted the value of the critical dege

eracy parameter following from the renormalization gro
theory of Ref.@15# and corresponding to the instantaneo
temperature during the adiabatic cooling of the gas. It sho
be noted that in principle this curve is different for ea
adiabatic trajectory. However, for the five trajectories p
sented here the differences cannot be distinguished on
scale. Another aspect that can be seen from Fig. 2 is
only the upper three curves reach the conditions for Bo
Einstein condensation, whereas curves 4 and 5 remain
condensed all the way down tov50, which is equivalent to
T50. Indeed, a detailed analysis of the chemical poten
and the central density as a function of the instantane
temperatureT shows that for curves 1–3m}Ta and n(0)
}Tb for the completev interval considered. Moreover, th
powers obeya,b,3/2, which implies that although ini-
tially the gas is not condensed andm,2n(0)T2B, there al-
ways will be some lower and nonzero temperature such
m52n(0)T2B and the gas fulfills the mean-field critical con
ditions. Consequently, it will have already achieved the cr
cal conditions including fluctuation effects at a higher te
perature.

However, for curves 4 and 5 the chemical potential a
central density exhibit a different behavior. This is due to t
fact that during the cooling process the chemical poten
becomes negative in order to satisfy conservation of both
number of particlesN and the entropyS. Therefore the sys-
tem cannot become Bose condensed unlessm↑0 and
2n(0)T2B↓0 for T→0. Looking again in more detail to the
power behavior ofm and n(0) as a function ofT, we find

FIG. 2. Adiabatic trajectories~solid lines! of a gas of 20 000
87Rb particles when the trapping frequency is ramped down. T
initial temperatures are~1! 442.21 nK,~2! 445.85 nK,~3! 449.43
nK, ~4! 454.72 nK, and~5! 464.16 nK. The dashed line indicates th
value for the central degeneracy parameter at which Bose-Eins
condensation first occurs if fluctuation effects are taken into
count. The dot-dashed line denotes the mean-field critical deg
eracy parameter.
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that n(0)}Tb with b almost equal to 3/2, and thatm}2T
for T→0. So bothm and 2n(0)T2B indeed approach zero
but the limit of the ratiom/kBT will now decide whether or
not the system achieves Bose-Einstein condensation at
temperature and frequency.

Figure 3 shows a plot of the trapping frequencies at wh
Bose-Einstein condensation first occurs if only mean-fi
effects are taken into account~curve 1! and if also the fluc-
tuation effects from Ref.@15# are included~curve 2!. Again
all adiabatic processes are for a gas containing 20 000
ticles and an initial trapping frequency of 373 Hz. The init
temperature of the gas is given by the ordinate. From
figure it is clear that the corrections due to fluctuations h
a large influence on the final frequency at which Bo
Einstein condensation is achieved. For suitable initial con
tions, the final trapping frequency can exceed the mean-fi
prediction by more than a factor of 3. We therefore conclu
that in principle the fluctuation corrections are experime
tally observable by adiabatically cooling the gas.

However, it must be noted that while curves 1 and 2
Fig. 3 can be separated by as much as a factor of 3 in

FIG. 3. Trapping frequency needed to obtain the critical con
tions in the center of the trap, starting from a configuration
20 000 particles in a 373 Hz trap and at a temperature denote
the ordinate. Curve 1 is the mean-field result and curve 2 inclu
also the effect of fluctuations.
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frequency axis, they are separated by only 1% on the t
perature axis. This should be compared with the most rec
attempt of Ensheret al. at absolute thermometry, whic
claimedabsoluteaccuracy no better than 5%@6#. Neverthe-
less, measurements of the condensate fraction near the
cal temperature indicate that the shot-to-shotreproducibility
of the scaled temperature is much better, i.e., on the orde
1% @18#. Moreover, the scaled temperature varies smoot
with final evaporative rf cut, which is a readily adjustab
experimental parameter. We therefore envision an exp
ment in which samples are prepared at temperatures
cisely determined relative to the empirical onset tempera
of Bose-Einstein condensation, and then subjected to a
batic ramps of the trapping frequency.

V. CONCLUSIONS

In summary, we showed that, although fluctuation corr
tions decrease the critical density of a trapped gas of re
sively interacting bosonic atoms, they do not completely c
cel the increase in the critical number of particles obtain
from mean-field theory, in agreement with the Monte Ca
calculations of Krauth@12#. The effect of the interactions
and in particular, of the fluctuation corrections to the mea
field theory, can be observed more directly by adiabatica
cooling the gas to criticality. Here we imply changing adi
batically the frequency of a harmonic trap and not the pow
law of the trapping potential, which has recently been sho
to change already the degeneracy parameter of the ideal
gas @19#. In addition to being more difficult to implemen
experimentally in the degenerate regime, the latter appro
is not so favorable for our purposes because it is less se
tive to the effect of interactions. We hope that this wo
might stimulate an experimental observation of these in
esting phenomena in the near future.
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