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Critical temperature of a trapped Bose gas: Mean-field theory and fluctuations
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We investigate the possibilities of distinguishing the mean-field and fluctuation effects on the critical tem-
perature of a trapped Bose gas with repulsive interatomic interactions. Since in a direct measurement of the
critical temperature as a function of the number of trapped atoms these effects are small compared to the ideal
gas results, we propose to observe Bose-Einstein condensation by adiabatically ramping down the trapping
frequency. Moreover, analyzing this adiabatic cooling scheme, we show that fluctuation effects can lead to the
formation of a Bose-Einstein condensate at frequencies which are much larger than those predicted by the
mean-field theory] S1050-294{®7)00509-X]

PACS numbsg(s): 03.75.Fi, 67.40-w, 32.80.Pj, 42.50.Vk

I. INTRODUCTION Ty and thus that finite-size corrections to the critical tem-
perature are of this order at md4i3].

The experimental observation of Bose-Einstein condensa- More important, therefore, is the influence of the inter-
tion in atomic gases of’Rb[1], ?°Na[2], and “Li [3] con-  atomic interaction on the critical temperature of the alkali-
fined in a magnetic trap has enormously boosted the theoretaetal gases of interest, since the resulting shift survives even
ical and experimental research of such quantum gases. Aftén the largeN limit. Roughly speaking there are two effects
studying the elementary excitations of the condenpéts, to consider. First, the inhomogeneity of the gas le@imve
experiments have also started to determine more accuratellge transition to a spatially varying mean-field potential of
the critical temperature of the gas as a function of the num2n(r)T?8, where n(r) is the local density of the gas,
ber of atoms in the trap, and in particular the deviation of thisT?®=47a#?/m is the two-body transition matrix at zero en-
temperature from the ideal cap&. Measuring these devia- ergy and momenta, ana is the s-wave scattering length.
tions will give important information on the effect of inter- Depending on the sign of the scattering length the atoms are
actions on the thermodynamic properties of the gas and magerefore either repelled froma>0) or attracted to <0)
also signal a breakdown of the Bogoliubov theory that haghe center of the trap and it requires more or fewer atoms,
been so successful in explaining the collective excitatiorrespectively, to acquire the necessary central density for
spectrum[7-10]. It is therefore of considerable theoretical Bose-Einstein condensation. Using a local-density approxi-
interest. mation this effect was recently studied by Giorgini, Pitae-

For a noninteracting gas in an isotropic external harmoniaskii, and Stringar{14]. They obtained a mean-field shift in
potentialV(r) =mw?r?/2, it is well known that if the number the critical temperature of
of particlesN>100, Bose-Einstein condensation occurs at a
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{(3)) kg Secondly, Bijlsma and Stoof have found by means of a

renormalization group calculation that for gases with a posi-

Indeed, the dominant correction to this temperature due ttive scattering length the necessary central density for Bose-
the finite number of particles in the gas is given by Einstein condensation is reduced considerably due to fluctua-
(Te—To)/To=—0.7N"3 and vanishes for largeN tion effects[15]. This means that the degeneracy parameter
[11,12. It is interesting to note that this result can be under-n(o)Af’h at the critical temperature is n¢(3/2)=2.612, as
stood physically from the fact that the local-density approxi-assumed by the mean-field theory, but instead a monotoni-
mation, which by assuming that the gas behaves locally hocally decreasing function of the quantum paramatey, . It
mogeneously leads to EqJl), breaks down when the s therefore always smaller than the ideal gas val(/2).
correlation lengtht becomes of the same order of magnitudeThe reason for this reduction in the critical density is that in
as the extent of the harmonic oscillator ground statehe renormalization group calculation the “running” chemi-
I=yh/mw. Since for the ideal Bose gasé cal potential renormalizes from positive value at short
=0(ApTo/(T—Ty)), with Ay=+27A%/mkT the ther- length scales to exactly zero at large length scales, whereas
mal de Broglie wavelength of the atoms, this implies that than a mean-field calculation it would always be equal to zero.
local-density approximation breaks down only in a smallAs a result it requires more energy to create particles, which
temperature interval — To=O(% w/kg) = O(T,/N?) above  reduces the critical density.
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Although the effect of fluctuations thus increases the criti- 0.00
cal temperature, it is at present unclear to what amount this
increase cancels the mean-field shift in the critical tempera-
ture. To investigate this issue, we need quantitative informa- 002 ¢ AN
tion on the density profile of a trapped Bose gas with repul- N
sive interactions, which we obtain by performing numerical
calculations in the local-density approximation. As men-
tioned previously, the system is considered to be locally ho- N
mogeneous in this approximation, and the inhomogeneity in- -0.06 | .
duced by the trapping potentidf(r) and the mean-field ~
interaction 2(r)T?B is determined self-consistently by the ~
spatially dependent effective chemical potental(r)= 008 %o 0.02 004 0.06
w—V(r)—2n(r)T?B, wherepu is the actual chemical poten- @DN"
tial of the gas. The precise way in which this is accomplished
for the thermodynamic quantities of interest to us is briefly FIG. 1. Relative change in the critical temperature due to inter-
summarized in Sec. Il. In Sec. lll we then determine theactions in a gas trapped in a harmonic oscillator potential. Curve 1
mean-field and fluctuation corrections to the critical temperagives the mean-field result and curve 2 includes also the effect of
ture and in Sec. IV we analyze an adiabatic cooling scheméuctuations. The dashed line represents @g.
with which one can directly study the interaction effects on

. : ; Calculating now the derivative & with respect tqu, we
th_e critical temperature experimentally. We end in Sec. Vobtain for the total number of particles
with some conclusions.

(T-T )T,
=3
=
e
/
/
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Il. LOCAL-DENSITY APPROXIMATION NZI dr r1(r)=A—3f dr gzdz(r)], 4
th

For our purposes, which will become clear shortly, we
also need to calculate the total number of partitlei the
gas, together with the entrop$. According to statistical
physics, these quantities can be calculated from the gran
canonical potential) of the system, i.e., from

where we used)z(z) =2 dgs(2)/dZz]. Performing a simi-
lar differentiation with respect to the temperature, the en-
ér_opy of the system is found to be

5
sko ot | Sosdetr-nmzon|. @

Q)
T om v Note that in both differentiations we used the fact th{r)
’ has an implicit dependence on the chemical potential and the
and temperature through the densityr). The contributions to
the particle number and the entropy from this dependence
__ @ exactly cancel, however, the contributions coming from the
aT ;L,V. second term in the right-hand side of E).

Above the critical temperature thémean-field grand- IIl. CRITICAL TEMPERATURE

canonical potential of an interacting Bose gas is given by At this point we are ready to discuss the way in which we
numerically determine the critical temperature of the gas as a
_ _ _ o _ 2 2B function of the number of particles in the trap and, in par-
@ kBT; In{1-exd = Ale— i f dr n*(NT, ticular, how we include theﬁ‘)luctuation effects gn this crit?cal
(3) temperature. To include these fluctuations in a first approxi-
mation, we calculate at a given temperature the value of the
where € denote the one-particle energy levels in the effeC-quantum parametea/ A, and extract from the appropriate
tive potentialV(r) +2n(r) T8 [16]. Implementing the local- value of the critical degeneracy parameeb] the value of
density approximation by settingej=ﬁ2k2/2m+ V(r) the central densitp(0) at which Bose-Einstein condensation
+2n(r)T?8 and usingS; = [dr [dk/(27)3, we can perform first occurs. Knowing the critical central density we can also
the Gaussian integral over the momeftato find immediately determine the chemical potential at criticality
from n(0) A= ggx(exp{B u—2n(0) T?2]}). The correspond-
kgT ing number of particles is then self-consistently calculated
- _3f dr gsz(r)] from Eq. (4). To compare with the mean-field results, we
A also calculate the number of particles in the system for a
central density 05(3/2)/At3h. Both results, together with Eq.
(2), are plotted in Fig. 1.
For different values of the scattering lengthand the
4 trapping frequency, we determined the critical temperature
__ " _ 2 as a function of the number of particles and found that for
Osi(2) \/Efo dx XIn(1-zexd ~x) both calculations the relative shift in the critical temperature
caused by interactions, is a universal functionaf JN/6 as
and the local fugacitg(r) =exd Bu'(r)]. indicated in Fig. 1. From this figure we see that E2).gives

for the first term on the right-hand side of E®). Here we
introduced the Bose function
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the correct lowest order mean-field shift of the temperature,
but also that higher order corrections become important rela-
tively soon. Moreover, the fluctuation effects are roughly
speaking of the same order of magnitude under the experi-
mental conditions of interest, although they are clearly un-
able to overcome the decrease of the critical temperature due
to the mean-field potential. However, at this point we have to
remind ourselves that the present calculation underestimates
the influence of fluctuations because it does not incorporate
the effect that fluctuations have on the density profile in the
trap. In principle, this could also be included by performing . . )
what one might call a “local renormalization group” calcu- ~o 100 200 300 400
lation, i.e., apply the renormalization group theory of Ref. Trapping frequency (Hz)

[15] at each point in space.

FIG. 2. Adiabatic trajectorie¢solid lineg of a gas of 20 000
8"Rb particles when the trapping frequency is ramped down. The
IV. ADIABATIC COOLING initial temperatures arél) 442.21 nK,(2) 445.85 nK,(3) 449.43
QK, (4) 454.72 nK, and5) 464.16 nK. The dashed line indicates the

Since the critical temperature of an interacting Bose ga , S
in an absolute sense does not deviate much from the idegﬂalue for the central degeneracy parameter at which Bose-Einstein
ndensation first occurs if fluctuation effects are taken into ac-

gas value, we now propose a p0§S|_bIe exp.erlmerllt.that C.ouggunt. The dot-dashed line denotes the mean-field critical degen-
make the effects of the interatomic interactions visible Wlth-eracy parameter.

out having to deal with a large ideal gas “background.”

Suppose we have a gas Nf particles in an isotropic trap  is varied, we now have to change the local fugacity and as
with frequencyw and at a temperaturé above the critical a result the degeneracy parameter in the center of the trap
temperature. The gas also has a certain entropy given by Eglso changes. Furthermore, to achieve Bose-Einstein conden-
(5). We now ask ourselves what would happen if the systensation in a gas with a positive scattering length, it is clear
is cooled adiabatically to a lower temperature by slowly low-that the frequency must be ramped down because this lowers
ering the trapping frequency to a valué. Since during this the density of the gas and reduces the effect of the repulsive
adiabatic process the entropy and the number of particles imteraction 21(r) T28. As a result, the density in the center of
the gas remain constant, we know the answer to this questiche trap reduces less than in the ideal gas case and the de-
if we determine the final chemical potential and temperaturgyeneracy parameter(0) A 3 increases.

combination ', T") such thatN(x'.T',0")=N(u,T, ) In Fig. 2 we also plotted the value of the critical degen-
andS(u",T",0")=S(u,T,w). eracy parameter following from the renormalization group

The reason why we propose to adiabatically cool the gasheory of Ref.[15] and corresponding to the instantaneous
in this manner is that for the ideal Bose gas, the only way taemperature during the adiabatic cooling of the gas. It should
keep both the entropy and the particle number constant dube noted that in principle this curve is different for each
ing the changev— ' in the trapping frequency is to change adiabatic trajectory. However, for the five trajectories pre-
the temperature fror to (w'/w) T and the chemical poten- sented here the differences cannot be distinguished on this
tial from u to (w'/w) . This leaves all the occupation num- scale. Another aspect that can be seen from Fig. 2 is that
bers of the harmonic oscillator states unchanged. More imenly the upper three curves reach the conditions for Bose-
portantly, it leaves the fugacity and therefore the degeneraciinstein condensation, whereas curves 4 and 5 remain un-
parametem(O)Afh in the center of the trap unchanged. Socondensed all the way down te=0, which is equivalent to
for the ideal gas, adiabatic cooling does not bring us closer td =0. Indeed, a detailed analysis of the chemical potential
criticality. Evidently, finite-size effects do not influence this and the central density as a function of the instantaneous
conclusion. Therefore, if we can reach Bose-Einstein contemperaturel shows that for curves 1-g«T* and n(0)
densation in an interacting gas in this way, it can only be due<T# for the completew interval considered. Moreover, the
to the effect of interactions. powers obeya<B<3/2, which implies that although ini-

In Fig. 2, the value of the degeneracy parameter in theially the gas is not condensed apd<2n(0)T?8, there al-
center of the trap is plotted for five different adiabatic pro-ways will be some lower and nonzero temperature such that
cessegsolid lines 1-5% during an adiabatic ramp down of x=2n(0)T?B and the gas fulfills the mean-field critical con-
the trap frequency from a starting frequency of 373 Hz. Allditions. Consequently, it will have already achieved the criti-
five adiabatic curves correspond to a gas containingal conditions including fluctuation effects at a higher tem-
N=20 000 8'Rb particles with ars-wave scattering length perature.
of 10%, [17]. The initial temperature of the gas increases However, for curves 4 and 5 the chemical potential and
from the upper to the lower curves and consequently theentral density exhibit a different behavior. This is due to the
chemical potential increases from the lower to the uppefact that during the cooling process the chemical potential
curve, since the total number of particles is the same. Physbecomes negative in order to satisfy conservation of both the
cally, for a nonideal gas the extra term(@)T?8/kgT inthe  number of particles\ and the entropys. Therefore the sys-
exponent ofz(r) causes a deviation from a horizontal line, tem cannot become Bose condensed unlgs®) and
because the density does not scale linearly Witbut ap-  2n(0)T?B|0 for T—0. Looking again in more detail to the
proximately withT¥2 Thus keepind\ andS constant when power behavior ofu andn(0) as a function ofT, we find
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400 : : frequency axis, they are separated by only 1% on the tem-
perature axis. This should be compared with the most recent
attempt of Enshert al. at absolute thermometry, which
claimedabsoluteaccuracy no better than 596]. Neverthe-
less, measurements of the condensate fraction near the criti-
cal temperature indicate that the shot-to-stagroducibility
of the scaled temperature is much better, i.e., on the order of
1% [18]. Moreover, the scaled temperature varies smoothly
with final evaporative rf cut, which is a readily adjustable
experimental parameter. We therefore envision an experi-
ment in which samples are prepared at temperatures pre-
%33 440 s 250 cisely determined relative to the empirical onset temperature
Initial temperature (nK) of Bose-Einstein condensation, and then subjected to adia-
batic ramps of the trapping frequency.

FIG. 3. Trapping frequency needed to obtain the critical condi-
tions in the center of the trap, starting from a configuration of
20 000 particles in a 373 Hz trap and at a temperature denoted by
the ordinate. Curve 1 is t_he mean-field result and curve 2 includes | summary, we showed that, although fluctuation correc-
also the effect of fluctuations. tions decrease the critical density of a trapped gas of repul-

sively interacting bosonic atoms, they do not completely can-
that n(0)<T# with B almost equal to 3/2, and that=—T  cel the increase in the critical number of particles obtained
for T—0. So bothu and (0)T?® indeed approach zero, from mean-field theory, in agreement with the Monte Carlo
but the limit of the ratiou/kgT will now decide whether or calculations of Krautt{12]. The effect of the interactions,
not the system achieves Bose-Einstein condensation at zeéid in particular, of the fluctuation corrections to the mean-
temperature and frequency. field theory, can be observed more directly by adiabatically

Figure 3 shows a plot of the trapping frequencies at whicreooling the gas to criticality. Here we imply changing adia-
Bose-Einstein condensation first occurs if only mean-fieldoatically the frequency of a harmonic trap and not the power
effects are taken into accoufdurve 1) and if also the fluc- law of the trapping potential, which has recently been shown
tuation effects from Refl15] are includedcurve 2. Again  to change already the degeneracy parameter of the ideal Bose
all adiabatic processes are for a gas containing 20 000 pagas[19]. In addition to being more difficult to implement
ticles and an initial trapping frequency of 373 Hz. The initial experimentally in the degenerate regime, the latter approach
temperature of the gas is given by the ordinate. From thiés not so favorable for our purposes because it is less sensi-
figure it is clear that the corrections due to fluctuations havdive to the effect of interactions. We hope that this work
a large influence on the final frequency at which Bose-might stimulate an experimental observation of these inter-
Einstein condensation is achieved. For suitable initial condi€sting phenomena in the near future.
tions, the final trapping frequency can exceed the mean-field
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V. CONCLUSIONS

prediction by more than a factor of 3. We therefore conclude ACKNOWLEDGMENTS
that in principle the fluctuation corrections are experimen-
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