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Stark effect in hydrogen: Reconstruction of the complex ground-state energy
from the coefficients of an asymptotic perturbation expansion

I. A. Ivanov
Institute of Spectroscopy, Academy of Sciences of Russia, Troitsk, Moscow Region 142092, Russia

~Received 17 May 1996; revised manuscript received 13 February 1997!

We consider the Stark effect for the ground state of hydrogen. Using the Borel summability of the Rayleigh-
Schrödinger perturbation expansion we sum it about the pure imaginary field strengthE5 iF, F is real. As a
result we obtain the series converging for small values ofF. We give arguments that this series converges for
all positive finite values ofF. The series obtained can be continued analytically back to the real field strength
region. This method allows one to obtain accurate results for the hydrogenic Stark resonances with slight
computational effort.@S1050-2947~97!07307-1#

PACS number~s!: 03.65.Db
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I. INTRODUCTION

The Stark effect in hydrogen is one of the oldest quantu
mechanical problems. In the presence of the uniform elec
static field the discrete energy levels of hydrogen shift a
broaden, becoming Stark effect resonances. These r
nances can be associated with complex energy eigenva
@1–3#. The real part of such an eigenvalue is interpreted
the energy of a metastable state, the imaginary part is rel
to the ionization rate. The appearance of resonances ca
pictured as the motion of the bound states’ energy eigen
ues of hydrogen from the real axis into the lower half co
plex plane, with every bound state giving rise to a resona
@4#.

The spectrum of the resonance energies and eigenf
tions of atomic hydrogen was investigated in a number
works. In@3# the positions and widths of the resonances w
obtained by means of Breit-Wigner analysis of the co
tinuum wave function. Popov et al. @5,6# used
1/n-expansion method. In@7–12# the resonance eigenvalue
and eigenfunctions were computed by means of complex
ordinate variational methods. Alvarez, Damburg, and Silv
stone@12# applied the concept of resonances for the calcu
tion of the photoionization cross section of atomic hydrog
and reproduced the results of experiments@13,14#. In @15#
the method of calculation of the resonance energies base
the rational approximation of the logarithmic derivative
the eigenfunction~Riccati-Pade´ method! was developed. The
positions and widths of the resonances were also comp
by means of direct numerical integration of the second-or
differential equations@16# and power series expansions@17#.

The methods mentioned above can be considered as
nonperturbative ones. Another group of methods of the
culation of the resonance energies makes use of
Rayleigh-Schro¨dinger perturbation expansion.

It is known @18# that consideration of the Stark effect b
means of the Rayleigh-Schro¨dinger perturbation theory, th
operator of the interaction of an atom with the electrosta
field being considered as the perturbing operator, yield
divergent asymptotic series in powers of the field strengthE.
Despite its divergency the perturbation expansion provi
information about the complex level energies of hydrogen
561050-2947/97/56~1!/202~6!/$10.00
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the presence of the uniform electrostatic field. In@19–21# the
complex Stark eigenvalues have been computed via ana
continuation of the perturbation series into the comp
plane and back to the real axis, summation of the se
being achieved by an application of Pade´ approximants. In
@22# the perturbation series was continued analytically
shifting the origin of the real series into the complex plan
the resulting divergent series was summed by Pade app
mants.

A powerful tool for the summation of divergent series
the Borel summation method. That the Stark problem in
drogen is Borel summable in a suitable sense was show
@4,23#. In these works it was shown that the perturbati
series in powers of the field strengthE is Borel summable if
the field strengthE assumes complex values and its sum c
be afterwards continued analytically back to the real fi
strength region. Borel summability of the perturbation ser
implemented by the Borel-Pade´ method was used in@20# to
obtain the perturbed energy and ionization rate in the p
ence of the uniform electrostatic field.

In @24# the concept of the distributional Borel summab
ity was introduced. It was shown@25# that the Stark effect
perturbation series possesses the property of the distr
tional Borel summability, and that the positions and widt
of the resonances are uniquely determined from the per
bation expansion by means of the distributional Borel su
mation.

In the present paper we shall use the above-mentio
Borel summability~in the ordinary sense! of the Stark effect
perturbation expansion for the complex values of the fi
strengthE. We propose a procedure allowing one to calcul
effectively the Borel sum of the Stark effect perturbati
series for the ground state of hydrogen for the pure ima
nary field strengthE. As a result we obtain an expression th
can be analytically continued back to the real field stren
region and that can be used for the effective computation
the ground-state resonance eigenvalue.

II. THEORY

The coefficients of the perturbation expansion

E~E!;2
1

2 (
n50

`

EnS E4D
2n

~1!
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were calculated in a number of works@26–28#. In the present
work we use the data from@27# where first thirtyEn were
calculated for the ground state of hydrogen. AllEn are inte-
ger numbers; the first few of them areE051, E1572, and
E2528 440. The large-order perturbation coefficientsEn are
known to have the following asymptotic behavior@29#:

En;
12

p
36nG~2n11!S 12

107

36nD , n→` . ~2!

Factorial growth ofEn is related to the Borel summability o
the series~1!.

Let us represent the coefficientsEn as follows:

En5
12

p
36nG~2n11! f n , n50,1,..., ~3!

where we introduced the coefficientsf n . Some of f n are
presented in the second column of the Table I. Largn
asymptotic behavior off n can easily be found by comparin
the formulas~2! and ~3!: f n;12107/36n. Such asymptotic
behavior off n implies that the series

f ~z!5 (
n50

`

f nz
n ~4!

converges ifuzu,1. Moreover, since allf n are positive, one
can conclude according to the theorem by Pringsheim
f (z) has a singularity at the pointz51.
It was shown in@4,23# that the series~1! is Borel sum-

mable if the field strengthE assumes complex values. Th
sum of the series for the physical values of the field stren
can be found with the help of analytical continuation to t
real values ofE. In the next section we shall find the Bor
sum of the series~1! for the pure imaginaryE.

A. Borel sum of the series„1… for the pure
imaginary values of E

Let us suppose that the field strengthE assumes pure
imaginary valueE5 iF, whereF is real. Using the Borel
summability of the series~1! for the imaginary values ofE
and applying the Borel summation procedure to the series~1!
one can obtain forE(E) the following expression:

E~E!52
6

p E
0

`

e2yf ~by2!dy, ~5!

TABLE I. Coefficientsf n , f̃ n , gn and ratiosr n .

n fn f̃ n r n gn

0 0.261799 0.261799 0.26179
5 0.486759 0.061287 21.325313 0.019246
10 0.725566 20.041542 21.014924 20.011575
15 0.813032 0.032057 21.064684 0.005397
20 0.857903 20.026476 21.020426 20.004035
25 0.885360 0.024762 21.015347 0.003974
30 0.903912 20.022055 21.027540 20.002774
at

th

whereb59E2/4529F2/4. For the case considered of th
pure imaginaryE the parameterb is negative.

One recovers the asymptotic expansion~1! from the for-
mula ~5! if one substitutes for the functionf (z) its power
series expansion~4! and performs formally term-by-term in
tegration.

We shall use the recipe of the transformation of
asymptotic series into a convergent one proposed by Loe
@30#. It was shown in@30# that asymptotic divergent serie
can be transformed into a convergent one with the help o
suitable conformal mapping of a neighborhood of the po
tive real axis onto the unit disk, the positive real axis bei
mapped onto the interval@0,1#.

Let us consider the following transformation

by25
x

11x
, ~6a!

x5
by2

12by2
. ~6b!

This mapping maps the interval of integrationyP@0,̀ )
in Eq. ~5! onto the intervalxP(21,0#. Knowing the coeffi-
cientsf n of the series~4! one can find the coefficients of th
expansion off (by2) in powers ofx about the pointx50:

f ~by2!5 f̃ ~x!5 (
n50

`

f̃ nx
n. ~7!

We computedf̃ n using the exact rational arithmetic o
MATHEMATICA . As the coefficientsf n divided byp are ra-
tional numbers we were able to compute first thirtyf̃ n ex-
actly. Some of them are presented in the third column of
Table I. ~We present them as decimals to save space.!

The radius of convergence of the series~7! is determined
by the nearest to thex50 singular point off̃ (x). As we have
seen, the functionf (z) has a singular point atz51. The
mapping~6! maps this point onto the pointx5` of the x
complex plane. Therefore, the radius of convergence of
series~7! is determined by some other singular point of t
function f̃ (x). To find the position of this singular point w
performed a ratio test, that is, we computed the sequenc
the following ratiosr n5 f̃ n21 / f̃ n . Somer n are presented in
the fourth column of Table I. It is well known that the lim
of this sequence is equal toR—the radius of convergence o
the series~7!. The data from Table I indicate thatR'1. We
make an assumption thatR51 exactly. This assumption is
justified by the correctness of the result for the energy
shall obtain below. As the series~7! is a sign-alternating one
the singular pointxs determiningR is on the negative rea
axis ~we used the theorem by Pringsheim!. Therefore,f̃ (x)
has a singular point atx521. According to the formulas~6!
this implies thatf (z) has a singular point atz5`. The na-
ture of this singular point was difficult to study numericall
as we had a relatively small number of the coefficientsf n at
our disposal.

One can make some guesses about the nature of a sin
point of f (z) whenz→` using information about the larg
field asymptotic behavior of the Stark resonances@9,31#. The
leading-order large field asymptotic behavior of the comp
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energy eigenvalue is given by the formulauE(E)u
; 1

2@
1
2E ln(E)] 2/3. From Eq.~5! one can see that in order t

reproduce such asymptotic behavior the functionf (z) should
behave asz1/3 ln2/3 z for largez values. This implies that in
the x complex plane, the functionf̃ (x) may be expected to
have a singular point of the type (11x)21/3 ln2/3(11x) at
the pointx521. To single out the leading singular behavi
of f̃ (x), we represent this function as

f̃ ~x!5
g~x!

~11x!1/3
. ~8!

The functiong(x) can be expanded in a power seri
about the pointx50:

g~x!5 (
n50

`

gnx
n. ~9!

All gn are rational numbers and were computed exa
with the help of the exact rational arithmetic ofMATH-
EMATICA. Somegn values are presented in the fifth colum
of Table I. Numerical study ofgn indicates that the function
g(x) is still singular at the pointx521, but has there les
severe singularity thanf̃ (x). This numerical observation cor
responds to the above-presented discussion of the prope
of f̃ (x) from which it follows thatg(x) may be expected to
have a logarithmic singularity at the pointx521.

Using Eqs.~7!–~9! one obtains for the functionf (by2)
from Eq. ~5! the following formula:

f ~by2!5~12by2!1/3(
n50

`

~21!ngnS 2
by2

12by2D
n

. ~10!

We recall that the parameterb in Eq. ~10! is negative for
the pure imaginary values of the field strengthE. Substituting
expansion~10! into the formula~5! and performing term-by-
term integration~the justification of this operation will be
given below! we obtain the following formula forE(E):

E~E!52
6

p S 9F24 D 1/3(
n50

`

~21!ngnI n , ~11!

where for the integralsI n we have@36#
y

ties

I n5E
0

`

e2y
y2n

~y214/9F2!n21/3 dy5GS 53D 1F2S n2
1

3
;
1

6
,

2
1

3
;2

1

9F2D1
1

2 S 2

3FD 5/3BS 2
5

6
,n1

1

2D
31F2S n1

1

2
;
1

2
,
11

6
;2

1

9F2D2
1

2 S 2

3FD 8/3
3BS 2

4

3
,n11D 1F2S n11;

3

2
,
7

3
;2

1

9F2D . ~12!

In this equationB(x,y) is the Euler beta function and th
function 1F2(a;b1 ,b2 ;z) is given by the following hyper-
geometric series converging for allz:

1F2~a;b1 ,b2 ;z!5(
i50

`
~a! i

~b1! i~b2! i

zi

i !
, ~13a!

where (a) i5G(a1 i )/G(a) is the Pochhammer symbol. Th
function 1F2(a;b1 ,b2 ;z) can also be expressed in terms
MeyerG functions@35#:

1F2~a;b1 ,b2 ;z!5
G~b1!G~b2!

G~a!
G1,3
1,1S xU 12a

0, 12b1, 12b2
D .

~13b!

In our calculations we used the power series represe
tion ~13a!. Since the series~13a! converges everywhere in
thez complex plane and all parameters of the hypergeom
ric functions in Eq.~12! are rational numbers one can calc
late the sum of the series~13a! with arbitrarily high accuracy
with the help of the exact rational arithmetic ofMATH-
EMATICA.

We recall that the formulas~11! and ~12! were obtained
for the pure imaginary values of the field strengthE5 iF, F
is real. When deriving Eq.~11! we assumed that the serie
~10! could be integrated term by term. To justify this a
sumption we refer to the known theorem@34# stating that if
the terms of a given series are all positive and continu
functions, the sum of the series is a continuous function t
and if the series of obtained as a result of the formal te
by-term integration converges, then the given series can
602
57
06
04
TABLE II. Partial sums of the series~11! for the pure imaginary values ofE ~in a.u.!.

En(E)
n E50.03i E50.05i E50.1i E50.5i

5 20.49801684719911782 20.4946656671696 20.4808687192 20.2868989877
10 20.49801684699494024 20.4946656417809 20.4808634930 20.2795301817
20 20.49801684699471971 20.4946656415334 20.4808631466 20.2759808948
30 20.49801684699471969 20.4946656415331 20.4808631405 20.2751851178

E53i E55i E510i E5100i

5 0.5834859836 1.0194151787 1.8322678062 9.1275822
10 0.7618152373 1.3177935785 2.3678127667 11.8317780
20 0.9263495187 1.6123476904 2.9248180317 14.7627496
30 1.0081384659 1.7714866727 3.2461563264 16.5480495
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TABLE III. Partial sums of the series~11! for the real and imaginary parts ofE(E) ~in a.u.! for different
values of the field strength, compared with other results.

E ~a.u.! n ReEn(E) ReE(E)other Im En(E) Im E(E)other

0.025 10 20.50142929183356 20.12827031029

20 20.50142929181825 20.16645231029

28 20.5014292918183620.50142929180a 20.16591831029

30 20.5014292918184020.501429291818b 20.16594031029 20.16564531029b

0.03 10 20.50207427299798 20.11854931027

20 20.5020742726164020.50207427260c 20.11174431027

28 20.5020742726081120.502074272604b 20.11189131027 20.11188031027c

30 20.5020742726080620.5020742726071d 20.11187631027 20.11187646231027c

0.05 10 20.5061058109 20.3878731024

20 20.5061054390 20.50610542535c 20.3861331024

28 20.5061054239 20.5061054253626d 20.3858831024 20.385920831024c

30 20.5061054230 20.5061054243b 20.3859131024 20.38601331024b

0.1 10 20.5275107 20.0072826
20 20.5274024 20.0072726
28 20.5274207 20.52741817509c 20.0072727 20.00726905676c

30 20.5274212 20.5274213b 20.0072705 20.00726637b

0.5 10 20.64230 20.31986
20 20.64598 20.28036
28 20.63460 20.6230680256e 20.27059 20.279744825e

30 20.63228 20.620997b 20.26984 20.279793b

1 10 20.47016 20.74026
20 20.58482 20.75414
28 20.63129 20.62433650736c 20.73186 20.64682090008c

30 20.63825 20.626236b 20.72618 20.635644b

10 10 1.18210 22.41180
20 1.43623 23.04093
28 1.54820 0.6082717056e 23.37793 25.578015929e

30 1.56737 0.60827170547c 23.44168 25.5780159282c

1000 10 27.5274 247.6828
20 34.3646 259.5275
28 37.8847 265.6264
30 38.5406 81.848982715c 266.7628 2189.25530177c

aReference@33#.
bReference@23#.
cReference@9#.
dReference@32#.
eReference@15#.
-
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are fulfilled in our case. To fulfill the requirement of positiv
ity the seriesSgn must be a sign-alternating one. The fa
that the functiong(x) has a singularity atx521 and nu-
merical evidence~the data are presented in the fifth colum
of the Table I! support the hypothesis that(gn is a sign-
alternating series. Consider the last condition of the theo
we cited above. The large-n asymptotic of the integralsI n in
Eq. ~11! can be obtained with the help of the saddle-po
method. One obtains

I n;S 89D
8/9S 3p

4 D 1/2 n7/18F7/9 expF2S 3F2D
1/3

n1/3G . ~14!

For n→` I n decay exponentially. If the coefficientsgn
slowly decrease in magnitude whenn→` ~or at least if their
growth is slower than exponential! the series on the right
hand side of the Eq.~11! converges for any positive rea
t

m

t

value ofF. We have reason to believe that the coefficie
gn do decay slowly whenn→`. Our arguments are base
on the properties of the functiong(x) we have discussed
above. Indeed, if, as we supposed, the functiong(x) has a
mild ~logarithmic! singularity atx521 then the coefficients
gn form a sequence slowly decreasing in magnitude.
were unable to prove this hypothesis rigorously. Numeri
evidence strongly supports its validity. Below, we shall a
sume that this hypothesis is true. Then, all the conditions
the theorem we cited above are fulfilled and the expans
~10! can be integrated term by term. Asymptotic~14! of I n
and supposed slow decrease ofgn allow one to conclude tha
the series~11! converges for any positive finiteF. Moreover
convergence is uniform for any compactFP@a,b#, a,b be-
ing positive finite numbers. In the intervalFP(0,̀ ) the con-
vergence is nonuniform. This observation helps to resolv
seeming contradiction between true asymptotic behavio
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E(F) for F→` „the leading term of asymptotic behavior

E(F); 1
2 @ 1

2F ln(F)#2/3 @9,31#… and asymptotic behavio
given by Eq.~11! if one passes formally to the limitF→`
under the summation sign in Eq.~11!. If in Eq. ~12! we put
formally F5`, the series on the right-hand side of Eq.~11!
reduces to the series((21)ngn . Forg(x) having a logarith-
mic singularity atx521, this series is divergent. Therefor
the passage to the limitF→` under the summation sign i
Eq. ~11! is not legitimate.

To illustrate the convergence properties of the series~11!
we present in the Table II the partial sums of the series~11!
for the pure imaginary values of the field strengthE5 iF,
whereF is real. For the small values ofF (F<0.05 a.u.) the
convergence of the series~11! is apparent and very rapid
The convergence of the series~11! for the small values ofF
gives us strong numerical evidence that our hypothesis a
slow decay or at least not very fast growth of the coefficie
gn is true, but then the series~11! converges for any positive
finite value ofF. As one can see from Table II for the larg
values ofF the convergence is rather slow. This circum
stance is in agreement with the asymptotic estimation~14! of
the integralsI n .

To obtain the physical results one should continue ana
cally the sum of the series~11! back to the real field strengt
region.

B. Analytic continuation to the real field strength region

We are going to show that the series~11! can be contin-
ued analytically toE real. ForE real, the parameterF in Eqs.
~11! and~12! is pure imaginaryF52 iE. One can show tha
the asymptotic behavior ofI n for the imaginary values ofF
is given by the same formula~14! as in the case of realF.
Therefore, for any real positive finiteE I n decay for suffi-
ciently largen ase2an1/3 with Re(a).0.

Therefore, if the series~11! converges for pure imaginar
E, it will be converging for realE, and will provide the de-
sired analytical continuation ofE(E). This analytical con-
tinuation is achieved simply by puttingF52 iE in the for-
mulas~11! and ~12!.

In Table III we present the sequence of the partial sum
the series~11! for the real and imaginary parts of energ
calculated for the different values of the field strength. Th
data are compared with other results. One can see tha
convergence for the real part of energy is excellent for
small values of the field strength (E,0.05 a.u.). Account of
the first 30 terms of the series~11! yields about 12 digits of
g,
ut
s

i-

f

e
the
e

the exact result forE(E). As far as the imaginary part o
energy is concerned, convergence is not so good. A r
tively poor convergence for the imaginary part of energy
very small values ofE is not surprising if one takes into
account extremely singular behavior of Im(E) for smallE. In
this limit the behavior of the imaginary part of energy
described by the well-known semiclassical formula Im(E)
;2E21 exp(22/3E). For E,0.05 a.u. the first 30 terms o
the series~11! give about four digits of the exact result fo
the imaginary part of energy.

For the larger values ofE (E.0.5 a.u.), the series~11!
converges more slowly as our results from Table III indica
However, using the same arguments we used above w
discussing the convergence properties of the series~11! for
the pure imaginary field strength, we can assert that the
ries ~11! converges for all positive finite values ofE. Indeed,
as we saw, convergence properties of the series~11! are re-
lated to the large-n asymptotic of the coefficientsgn . Since
the integralsI n decay exponentially for any positive finit
value ofE, one can deduce that if the series~11! converges
for the small values of the field strengthE it will be converg-
ing for all positive finiteE.

III. REMARKS AND PROSPECTS

The key assumption that was made in the present pa
was an assumption about slow decrease~or at least not very
fast growth! of the absolute value of the coefficientsgn . We
were unable to prove this hypothesis rigorously. Howev
numerical results show that it is almost certainly true. R
orous proof of this hypothesis would be highly desirable.

As far as the questions of the computational character
concerned, the present procedure requires only a slight c
putational effort. For the small values of the field streng
(E,0.03 a.u.) an account of the first 30 terms of the ser
~11! yields about 12 digits of the exact result for an energ

For the larger values ofE a naive direct summation of th
first 30 terms of the series~11! cannot yield accurate result
and one should compute more coefficients of the series~11!
or employ some suitable method of the acceleration of c
vergence.
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