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Theoretical investigation of barium-helium collisions. II. The excitation transfer cross sections
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~Received 20 December 1996!

We develop a theoretical description of collisions between an excited barium atom in the 6s6p 3PJ ,
6s5d 1D2 , or 6s5d 3DJ state and a helium atom in the ground state. Using the adiabatic potential curves
presented in the preceding paper, state-to-state cross sections are obtained from a fully quantum-mechanical
close-coupling calculation using the generalized log-derivative approach. Our theoretical results are compared
to recent experimental data.@S1050-2947~97!09709-6#

PACS number~s!: 34.20.2b, 34.50.Pi
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I. INTRODUCTION

Collisions between excited alkaline-earth metals a
ground-state noble-gas atoms~NG! have generated extensiv
experimental and theoretical interest, since they consti
relatively simple test cases for atomic collision proces
that include electronic excitations. Theoretical investigatio
have largely been restricted to the lighter alkaline-earth m
als Mg @1–3# and Ca@1,4–6#, although many interesting ex
perimental results have been obtained for Sr-NG and Ba-
collisions @7–15#.

The first calculation of Ba-NG potential curves was p
formed by Czuchajet al. @16,17# in order to explain the qua
sistatic line profile@18# and collisional redistribution of the
Ba resonance line in the presence of noble-gas perturb
The authors focused on the interaction of Ba atoms exc
to the 6s6p 1P1 state; for this reason they omitted the sp
orbit interaction of an electron in the field of the Ba21 core
from their calculation. Inclusion of the spin-orbit interactio
is crucial, however, to explain the prominent excitati
transfer processes between singlet and triplet states@4–6#. In
the second paper Czuchajet al. @17# included the spin-orbit
interaction for the 6s6p 1,3PJ states and found the avoide
crossing responsible for the1P1-3P2 transfer measured b
Breckenridge and Merrow@9#. To date, however, these re
sults have not been able to explain the singlet-triplet
change collisions and the fine-structure transfer betw
low-lying states of the Ba atom, which have been studied
recent experiments@12–15#. These reactions are of particula
interest, since many experiments use diode laser pumpin
the 3P1 state; in a buffer gas atmosphere this always lead
radiative and collisional quenching into the3DJ states.
These processes can result in a very strong buildup of m
stable population~up to 80%! and in a corresponding deple
tion of the ground state. These effects have been use
produce a strongly excited Ba vapor for studies of ener
pooling collisions@19#.

Despite the need for theoretical elucidation of these p
cesses and confirmation of the experimental results, little
fort has been made to calculate collisional cross sections
ing the existing potential curves. In the present paper
report a calculation of the cross sections for the rece
561050-2947/97/56~3!/2013~7!/$10.00
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measured excitation tranfer processes among the 6s6p 3PJ ,
6s5d 1D2 , and 6s5d 3DJ states. The preceding paper@20#
presents adiabatic potential curves of the Ba-He system
were calculated, with the Ba21-e spin-orbit interaction in-
cluded through a model potential. Here we report a fu
quantum-mechanical close-coupling calculation of the cr
sections, based on the Born-Oppenheimer potential cu
and coupling terms derived from Ref.@20#.

II. DESCRIPTION OF THE COLLISION DYNAMICS

In this section we develop the expressions used to ca
late the cross sections. The derivation follows one of M
@21# adapted to the present case of an excited two-elec
atom that interacts with a noble-gas atom in its ground st
The collisional system is described by the Schro¨dinger equa-
tion

S 2
1

2m

]2

]R2 2
1

mR

]

]R
1

L̂2

2mR2 1ĤBO~RW ,rW ! DC~RW ,rW !

5EC~RW ,rW !, ~1!

whereR is the interatomic distance,L̂ is the relative angular-
momentum operator of the atoms,m is the reduced mass, an
E is the total energy of the collision complex.ĤBO is the the
electronic Hamiltonian operator which depends on the in
atomic distanceR parametrically. Equation~1! must be
solved subject to scattering boundary conditions in the la
ratory frame,

C~RW ,rW !→exp~ ikW J•RW !^rWug,J,mJ&1 (
g8,J8,mJ8

exp~ ikJ8R!

R

3^rWug8,J8,mJ8& f g,J8,mJ8 ;g,J,mJ
~ k̂J8 ,k̂J! ~2!

HerekJ is the atomic wave vector,J is the total electronic
angular momentum of the Ba atom, andmJ is the corre-
sponding magnetic quantum number.g denotes the remain
ing electronic quantum numbers of the asymptotic electro
state. Primed variables denote the quantum state of the
tem after the collision. In practice, configuration space
2013 © 1997 The American Physical Society
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2014 56J. BRUST AND CHRIS H. GREENE
divided into an interaction volume withR<R0 and an
asymptotic region withR.R0 . For the purposes of the dis
cussion below, the wave functions in the asymptotic reg
will be denoted by barred symbols.

The electronic wave functions, which asymptotically co
relate with two-electron eigenfunctions for the barium ato
have been calculated in a body-fixed coordinate system
the z axis oriented along the interatomic axis. It is thus a
vantageous to express the space-fixed wave funct
^rWug,J,mJ& in terms of these body-fixed wave function
^r ugJV&. Furthermore, it is convenient to make use of t

conservation of the total angular momentumNW 5LW 1JW and
the total energyE by expandingC̄ in terms of eigenfunc-
tions of N, M , andE,

C̄g,L,J
N,M ,E~RW ,rW !5 (

N,M
F̄ g8,L8,J8;g,L,J

N,M ,E
~R!C̄gLJ~R̂,rW !, ~3!

whereC̄gLJ is the coupled wave function

C̄gLJ~R̂,rW !5~21!L1J~2L11!1/2(
V

~21!V

3S L J N

0 V 2V
DVMV

N* ~fR ,uR!^rWugJV&,

~4!
d

v
s

s

he
n

-
,
th
-
ns

with VMV
N* (f,u) the normalized wave function of a symme

ric top

VMV
N* ~f,u!5S 2N11

4p D 1/2

DMV
N* ~f,u,0!. ~5!

An analogous expansion can be used for the molecular w
function Cg,L,J

N,M ,E within the interaction volume where th
atomic basis states are mixed by the interatomic interact
In this case the atomic wave function^rWugJV& has to be
replaced by theR-dependent Born-Oppenheimer wave fun
tion ^rWuR;gJV&. Within the interaction volume the radia
wave function is denoted byF g8,L8,J8;g,L,J

N,M ,E (R).
An expression for the state-to-state inelastic scatter

cross section can be obtained expandingF̄ g8L8J8;gLJ
NME in terms

of spherical Bessel and Hankel functionsj l ,hl
(2) using the

T-matrix representation

F̄ g8L8J8;gLJ
NME

~R!5 j L~kJR!dgg8dLL8dJJ8

2Tg8,L8,J8;g,L,J
N hL8

~2!
~kJ8R!. ~6!

One finds for the collision amplitude@21,22#
f g8,J8,mJ8 ;g,J,mJ
~ k̂J ,k̂J8!5

2p i

kJ
(

LL8M

YLM2mJ
* ~ k̂J!YL8M2mJ8

~ k̂J8!(
N

~21!L82J81M~21!L2J1M~2N11!

3S L8 J8 N

M2mJ8 mJ8 M D S L J N

M2mJ mJ M DTg8,L8,J8;g,L,J
N , ~7!
Eq.

for
whereTg8,L8,J8;g,L,J
N is the transition matrix in the couple

representation.
Integration over all scattering angles and averaging o

all directions of the incident wave vectors yields the cro
section for the processgJ→g8J8 as @21#

sgJ,g8J85
p

kJ
2 (

N
PgJ,g8J8

N , ~8!

where the partial weighted opacityPgJ,g8J8
N is given by

PgJ,g8J8
N

5
2N11

2J11 (
LL8

uTI g8L8J8,gLJ
N u2. ~9!

Tg8,L8,J8;g,L,J
N is determined by matching

F g8,L8,J8;g,L,J
NME (R) to the asymptotic radial wave function

F̄ g8,L8,J8;g,L,J
NME (R) at R5R0 . F g8,L8,J8;g,L,J

NME (R) is determined
numerically inside the interaction volume by solving t
er
s

close-coupling equations; these are derived by inserting
~3! into the Schro¨dinger equation~1!

(
L8J8

^R;g8L8J8uĤ2EuR;gLJ&F g8L8,J8;gL,J
N,M ,E

~R!50,

~10!

with

^R;g8L8J8uĤ2EuR;gLJ&5E d3rW1d3rW2dV̂RCg,L,J* ~R̂,rW !

3~Ĥ2E!Cg8,L8,J8~R̂,rW !.
~11!

HereĤ is the Hamiltonian from Eq.~1!. Expansion of these
matrix elements leads to the following set of equations
theF g8,L8,J8;g,L,J

N,M ,E :
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(
LJ

S ]2

]R2 12Pg8,L8,J8;gL,J

]

]R
1Qg8,L8,J8;gL,J

2
Cg8,L8,J8;g,L,J

R2 DF g8,L8,J8;g,L,J
N,M ,E

~R!

12m~E2Eg8,L8,J8;g,L,J!F g8,L8,J8;g,L,J
N,M ,E

~R!50.

~12!

The coupling matricesPI , QI , CI , and EI have the following
matrix elements:

Pg8,L8,J8;g,L,J5 K R;g8L8J8U ]

]RUR;gLJL ,

Qg8,L8,J8;g,L,J5 K R;g8L8J8U ]2

]R2 UR;gLJL ,
~13!

Cg8,L8,J8;g,L,J5^R;g8L8J8uL̂R
2 uR;gLJ&,

Eg8,L8,J8;g,L,J5^R;g8L8J8uHBOuR;gLJ&.

In most of the earlier applications of the close-coupli
approach with diabatic basis sets to calculate atomic c
sion cross sections, the matricesPI andQI could be assumed
to be negligible@21,4#. The coupling between the diabat
basis states was introduced through the addition of an in
action operator, e.g., the spin-orbit operator, to the Ham
tonian of the systemafter the diabatic potential curves an
eigenstates had been calculated. Since in our approach
spin-orbit coupling is directly included in thee2-Ba21

model potential the basis set becomes inherently adiab
and the first and second derivative couplings cannot be
glected. This causes a significant complication of the num
cal treatment of the close-coupling equations that will
discussed below. First, however, we develop explicit expr
sions for some of the matrix elements in Eq.~13!.

III. CALCULATION OF THE COUPLING MATRICES

Insertion of expression~4! into Eq.~11! and evaluation of
the angular integral gives the following form for the matr
elementsPg8,L8,J8;g,L,J :

(
V

S L8 J8 N8

0 V 2V
D S L J N

0 V 2V
D

3 K R;g8J8VU ]

]RUR;gJV L ~14!

The electronic Born-Oppenheimer statesuR;gJV& were cal-
culated by using the basis set expansion described in
preceding paper:

uR;gJV&5 (
g8J8

cg8J8V;gJV~R!ug8J8V&. ~15!

This formula, in conjunction with the orthogonality of th
atomic basis statesug8J8V&, yields the final expression fo
the radial coupling matrix element:
i-

r-
l-

the

tic
e-
i-
e
s-

he

@~2L811!~2L11!#1/2(
V

S L8 J8 N8

0 V 2V
D

3S L J N

0 V 2V
D (

g9J9
cg8J8V;g9J9V~R!

]

]R
cg9J9V;gJV~R!,

~16!

where the derivative operator acts on the expansion co
cients. The second derivative coupling matrix eleme
Qg8,L8,J8;g,L,J are given by an analogous expression.

Figures 1 and 2 show avoided crossings between
0(3P1) and 0(1D2) and 1(1D2) and 1(3D3) potential
curves, along with the radial coupling matrix eleme
^R;g8J8Vu ]/]R uR;gJV& which were calculated by nu
merical differentiation of the expansion coefficients. T
coupling matrix elements exhibit the expected Lorentzian
havior at avoided crossings; this would be consistent with
use of a Landau-Zener approximation, though we do not
that approximation here.

To calculate the coriolis coupling matrix eleme
Cg8,L8,J8;g,L,J , it is advantageous to express the molecu

angular-momentum operatorLW in terms of the conserved to

tal (NW ) and electronic (JW ) angular-momentum operators,

FIG. 1. Adiabatic potential curves 0(3P1) and 0(1D2) corre-
lated to the3P1 and 1D2 states. Also given is the radial couplin
matrix element̂ g8J8V8u]/]RugJV& ~ ! in arbitrary units.

FIG. 2. Adiabatic potential curves 1(1D2) and 1(3D3) corre-
lated to the1D2 and 3D3 states. Also given is radial coupling ma
trix element^g8J8V8u]/]RugJV& ~ ! in arbitrary units.
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2016 56J. BRUST AND CHRIS H. GREENE
LW 5NW 2JW . ~17!

Using the appropriate operator identities one finds forL̂2

@21,23#

LW 25N̂21 Ĵ1Ĵ22N̂1Ĵ22N̂2Ĵ12 Ĵz~ Ĵz11!. ~18!

The determination of these matrix elements proceeds a
lines similar to our derivation of the radial couplings. As
example we give the explicit expression f
^R;g8L8J8uN̂1Ĵ2uR;gLJ&:

(
VV8

S L8 J8 N8

0 V8 2V8
D S L J N

0 V 2V
D ^VMV8

N* uN̂1uVMV
N* &

3^R;g8J8V8uĴ2uR;gJV&. ~19!

Using again the expansion of the electronic wave functi
in terms of the Ba states one finds for the product of ma
elements

^VMV8
N* uN̂1uVMV

N* &^R;g8J8V8uĴ2uR;gLJ&

5dV8V21@N~N11!2V~V21!#1/2

3 (
g9J9

cg8J8V8;g9J9V8~R!cg9J9V;gJV~R!

3@J~J11!2V~V21!#1/2 ~20!

The superscript notation implies thatN̂ acts in the molecule-
fixed space, where the commutation relations are reve
@21#:

N6VMV
N 5@~N6V!~N7V11!#1/2VMV71

N . ~21!

IV. NUMERICAL DETAILS

Cross sections were calculated for all transfer proces
involving the 63PJ , 5 1D2 , 5 3DJ , and 61S0 states. At least
one closed channel was included also, leading to syst
with up to 31 coupled equations that had to be solved. Du
parity conservation in the collision process, this set of eq
tions could be separated into two sets of half the size.

The propagation of the solution started atR53a0 with
the starting conditionF50. It was propagated out to
R0516a0 . The coupling matrices were calculated on a line
radial mesh with 400 points in this region after the values
the expansion coefficients were determined by eight-p
Bessel interpolation from its values on the 139-point squa
root mesh used in the calculation of the potential curves@20#.
During the propagation, an additional interpolation was p
formed in order to increase the resolution of the propagat

A match of the resulting numerical solution atR5R0 to
energy-normalized spherical Bessel functions determines
reaction matrixKI which in turn determines the transitio
matrix TN, and finally the state-to-state cross section throu
Eqs.~8! and~9!. The relation between the reaction and tra
sition matrices is given by

TI 5 iKI ~11 iKI !21. ~22!
ng
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Since, as described above, the spin-orbit interaction was
cluded in the Ba21-e2 interaction explicitly, the close-
coupling equations contain non-negligible first-order~and
second-order! derivative couplings, which makes them u
suitable for integration using standard~e.g., log-derivative
@24,4#! algorithms. Therefore, we used the generalized l
derivative method@24,25#, which is able to treat both the
first- and second-derivative coupling terms while retaini
the numerical stability characteristic of the log-derivative a
proach. The major drawback of this technique, however
its numerical complexity which requires a significant numb
of matrix inversions during propagation. Depending on t
number of equations solved, the method required up t
cpu-min. per angular-momentum valueN. Depending on the
collision energy chosen the close-coupling equations ha
be solved up to a maximum value ofN5120. Owing to the
limited cpu time available, we restricted the calculations
special cases without calculating the full temperature dep
dence of all possible cross sections. The results of our ca
lations are presented in the next section.

V. RESULTS AND DISCUSSION

Figures 3 and 4 display the calculated opacity functio
for the processes 63P1-5 1D2 and 5 1D2-5 3D3 , plotted
versus the total angular momentum. The data points are
nected by lines, merely to guide the eye. The opacity fu
tion ~or equivalently the partial cross section! for the process
6 3P1-5 1D2 peaks at an angular momentum value of
a.u., which in the classical picture corresponds to an imp
parameter ofR54.6a0 . At smaller values of the angula
momentum the partial cross section oscillates and decre
according to theN dependence ofPN in Eq. ~9!. At angular
momenta larger than 33 the opacity function decreases a
corresponding collision parameter goes beyond the loca
of the avoided crossing and 6.8a0 . The behavior of the
5 1D2-5 3D3 is similar with the exception that at angula
momenta smaller than the peak value at 23a0 no oscillations
are observed.

From the opacity functions, the relevant cross sectio
were calculated from Eq.~8! by performing a sum of the
partial weigthed opacities over all total angular momentaN.

FIG. 3. Partial weighted opacity is shown versus the tot
angular-momentum quantum numberN, for the process3P1-1D2 ,
at a collision energy of 610 cm21. The modulations are sometime
referred to as Stueckelberg oscillations.
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Figure 5 shows the collision energy dependence of cross
tions for the processes 63P1 and 5 3D2-5 3D1 . Differing
behavior is observed for the different cross sections. W
the cross sections for singlet-triplet transfer show a relativ
weak dependence on the collision energy, the fine-struc
transfer cross sections grow strongly with increasing ene
The latter behavior is typical for fine structure transfer in t
adiabatic limit@8# when the collision energy is comparable
the fine-structure splitting and the potential curves involv
exhibit no avoided crossing. A closer inspection of t
singlet-triplet cross sections shows that between collision
ergies of 500 and 1500 cm21, the cross section for the pro
cess 63P1-5 1D2 shows almost no energy dependen
while the cross section for 51D2-5 3D3 transfer increases
with energy. This behavior can be expected since the cr
ing between the 01D2 and 0(3D3) potential curves is more
strongly avoided than the one governing the 63P1-5 1D2
transfer process. The splittings at the crossing points are
and 200 cm21, respectively. Table I compares the calculat
cross sections of the singlet-triplet transfer processes
experimental results from the literature. Good agreemen
found between our results and the measured cross sec
for the singlet-triplet transfer processes3P1-1D2 and
1D2-3D3 reported by Vadlaet al. @14,15#. The theoretical
results fall within the experimental error bars. In view of t
expected monotonic increase of the cross sections with
creasing temperature, and in view of the fact that the exp
mental values were measured at a temperature ofT5760 K,
the agreement should be even better. Slightly worse ag
ment exists between our values and the data reported

FIG. 4. Same as Fig. 3, except for the process1D3-3D3 . Stu-
eckelberg oscillations appear at energies higher than the 610 c21

collision energy at which these results were obtained.
c-

le
ly
re
y.

d

n-

s-

60

th
is
ns

n-
ri-

e-
by

Brust and Gallagher@13#. The Ref.@13# cross section for the
process3P1-1D2 is about 40% smaller and their result fo
1D2-3D3 is about 1.5 times bigger than our calculated cro
section. While there are clear discrepancies between th
and experiment, the agreement is reasonably good overa~It
should be remembered that it is not necessarily adequa
compare the cross section at a definite energyE with an
experiment at a definite temperatureT. Ideally, it would be
better to compare the thermally averaged cross section
rate constants directly.!

The agreement is worse for the fine-structure trans
cross sections, which are presented in Table II. In particu
the theoretical value for the process 53D3-53D2 is about
two orders of magnitude smaller than the datum reported
Brust and Gallagher and 20 times smaller than the resul
Kallenbach and Kock@26# at a temperature ofT51100 K.

Good agreement exists between our value of the cr
section for 3D2-3D1 transfer and the cross section report
by Kallenbach and Kock. These values, however, differ b
factor of 10 from the cross section measured by Brust
Gallagher. As discussed elsewhere@12,13#, the data reduc-
tion method of Kallenbach and Kock, who populated t
6 1P1 state by pulsed laser excitation and measured the ti
dependent state populations of up to 13 atomic and io
states of the Ba atom, employed a complicated rate equa
model including Ba-noble gas, Ba-Ba, and Ba-electron c
lisions, as well as radiation trapping. Judging from their
sults for Ba-Ar collisions as compared to the results
Ehrlacher and Huennekens@12# and Brust and Gallagher@13#
in the case of3DJ fine-structure transfer and the measur

FIG. 5. Energy dependence of the cross section of the proce
3P1-1D2 ~top s!, 5 1D2-5 3D3 ~top, h!, 5 3D3-5 3D2 ~bottom,
n!, and 53D2-53D1 ~bottom,L!. An energy of 610 cm21 corre-
sponds to an experimental temperature ofT5690 K.
tom and
TABLE I. Comparison of experimental and theoretical cross sections for singlet-triplet transfer in collisions between a helium a
an excited barium atom. The numbers cited below are collision cross sections in units of 10220m2.

Process
E5691 cm21

Present theory
kT5612 cm21

Experimenta
E5610 cm21

Present theory
kT5528 cm21

Experimentb
kT5765 cm21

Experimentc

3P1-1D2 6.9 3.560.7 6.3 5.561.5
1D2-3D3 2.5 5.360.7 2.0 1.560.7 0.160.06
1D2-3D2 0.013 <1.1 0.01

aReference@13#, T5880 K.
bReference@14,15#, T5760 K.
cReference@26#, T51100 K.
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TABLE II. Comparison of experimental and theoretical fine-structure transfer cross sections in B
collisions. The numbers cited below are collision cross sections in units of 10220m2.

Process
E5610 cm21

Present theory
E5691 cm21

Present theory
kT5612 cm21

Experimenta
kT5765 cm21

Experimentb

3P223P1 0.0046 0.0011 <0.4 0.00160.0006
3P123P0 631027 0.00 015 <0.2 <0.005
3D323D2 0.022 0.065 2.160.4 0.4060.24
3D223D1 0.20 0.52 2.860.5 0.2760.16
3D323D1 0.0002 0.00 062 <0.6

aReference@13#, T5880 K.
bReference@26#, T51100 K.
ct

se
fe
.
t

fe
di
ie
y
m

o

e

tu
et
e

l-
li

e

ta

itent

se-
re
ium
the
ly

ex-
os-

atic
ther
eri-

are

for
.B.
vid-
is
da-
cross sections for singlet-triplet transfer of Vadlaet al.
@14,15#, which agree with each other fairly well, we expe
the values of Brust and Gallagher for 53DJ fine-structure
transfer in Ba-He collisions to be more reliable. In this ca
however, the theoretical result for both fine-structure trans
processes strongly deviates from the experimental data
possible explanation for the observed discrepancies in
case of the3DJ fine-structure transfer is that these trans
processes are dominated by couplings at interatomic
tances around 5a0 , where there are significant discrepanc
between our potential curves@20# and curves calculated b
Czuchajet al. Therefore, it would be desirable to perfor
close-coupling calculations using the potential curves
Czuchajet al. and to test othere2-He pseudopotentials in
our approach.

Fairly good agreement, within a factor of 5, is found b
tween our theoretical result for the process 63P2-63P1 and
the value measured by Kallenbach and Kock at a tempera
of T51100 K. We expect this experimental value to be b
ter than the ones for3DJ fine-structure transfer since th
6 3P2-6 3P1 transfer directly follows the 61P1-6 3P2
quenching process of the pumped resonance state while
population of the3DJ states proceeds through different co
lisional and radiative channels which might have comp
cated the data reduction in a fit.

Also given in Tables I and II are the upper limits of th
cross sections for the reactions 51D2-5 3D2 , 6 3P1-6 3P0 ,
and 5 3D3-5 3D1 , which are suggested by experimen
s

ys
,
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l

data. In all cases we find theoretical cross sections cons
with those measurements.

VI. CONCLUSION

We have performed a fully quantum-mechanical clo
coupling calculation of singlet-triplet and fine-structu
transfer cross sections for colllisions between excited bar
and ground-state helium atoms. With the exception of
cross section for3DJ fine-structure transfer we find general
good agreement between our theoretical results and the
perimental cross sections reported in the literature. A p
sible explanation for discrepancies in the case of the3DJ
fine-structure transfer cross sections might be the system
disagreement between our potential curves and those of o
calculations at small interatomic distances. Further exp
mental and theoretical investigations of these processes
desirable to clarify the remaining discrepancies.
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