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Interferometric measurement of an atomic wave function
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Valery P. Yakovlev
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We discuss a simple method to probe the wave functionc(x) describing the transverse center-of-mass
motion of an atomic beam. We detect position distributions of the atoms after they have interacted with two
counterpropagating laser beams. The resulting interference pattern depends crucially on the cross term
c* (x)c(x2Dx), which finally allows us to reconstruct the phase ofc(x). @S1050-2947~97!07207-7#

PACS number~s!: 03.65.Bz, 03.75.Dg
k
um
s
to

ra
c
re
rta
-
f
er
s
y

te
rs
e

m
es
t
e
-
a
o
a

nt
tr
o
o
bi
in
ic

m
e
a
s
-

f a

the
sed
ld

that
on
er
th
e as
at-
ell
ow

be a
ht

that
ter
ni-
ra-
an

its
ntal
og-
the
his

nd
is
nce
al-
-
IV
tal

hat
I. INTRODUCTION

The concept of a quantum state has always played a
role in discussions treating the foundations of quant
theory. On one hand Dirac’s notion is very clear: each phy
cal quantity can be represented by a Hermitian opera
which he calls an observable@1#. A measurement of this
observable leaves the system in an eigenstate of the ope
This is a way ofpreparinga quantum system in a specifi
state. On the other hand for Heisenberg a quantum state
resented a set of potentialities that was revealed by ce
experimental conditions@2#. A single measurement per
formed on a quantum system reveals a certain aspect o
state, but it will not uncover this state completely. Howev
if we know how to determine the whole set of potentialitie
the quantum state can be reconstructed. This is a wa
measurethe state of a quantum system.

The question about the measurability of a quantum sta
actually an old one@3#, which has led to a number of answe
over the years@4#. Recently much work focused again on th
reconstruction of quantum states@5#. This new interest grew
out of the intriguing possibilities of quantum optics, ato
optics, cavity QED, and the physics of trapped particl
There it became possible to design certain quantum sta
for example, Schro¨dinger cats, which existed before on pap
only @6,7#. Along with thisengineeringof states the measur
ability of a quantum state has experienced a great ren
sance. Of course it is a basic assumption of quantum the
that an infinite ensemble of systems contains all the inform
tion about the wave function. But how can we unravel it?

Several methods have been proposed to measure qua
states of light as well as quantum states of matter. A cen
method that allows us to perform measurements on b
kinds of wave functions is the so-called tomographic meth
@8,9#. Regarding light this method can be applied in com
nation with homodyne detection and it has been used
wonderful set of experiments that reconstructed nonclass
states of the electromagnetic field@10#. However, important
proposals@11# exist showing the reconstruction of quantu
states of light without use of tomographic techniques. R
garding matter several proposals exist to reconstruct w
functions of an atomic beam@12# as well as quantum state
of a trapped atom@13#. Experimentally the tomographic re
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construction has been applied to the vibrational state o
diatomic molecule@14#.

A second set of methods that allow us to determine
quantum state of an electromagnetic field in a cavity is ba
on the fundamental interaction of atoms with the cavity fie
under investigation. The endoscopy method@15# reconstructs
the quantum state from the excitation statistics of atoms
have interacted with the cavity field. The atomic deflecti
method@16# uses momentum distributions of atoms in ord
to reveal the quantum state of light inside the cavity. In bo
cases—endoscopy and atomic deflection—the atoms serv
a tool that probes a quantum state of light. For probing m
ter endoscopy turns out to be a very useful method as w
@17#. In addition, the art of treating trapped particles has n
reached a point where fascinating experiments@18# uncover
quantum states of single atoms.

In the measurement scheme presented here we pro
beam of two-level atoms with the help of running lig
waves that form an atomic interferometer@19–21#. We will
show that certain interference patterns of atomic waves
have interacted with the light beams of the interferome
contain enough information for the reconstruction of the i
tial wave function of the atoms. In contrast to the tomog
phic method mentioned before we would like to call this
interferometric methodto probe matter waves@22#. The way
to reconstruct the atomic state is completely different and
mathematics is much simpler. Furthermore the experime
prerequisites are easier to realize than in the case of a tom
raphic measurement. Therefore we are convinced that
probing of an atomic beam along the lines indicated in t
paper should be possible in the near future.

In Sec. II we describe the setup of the interferometer a
the elastic scattering of the initial atomic wave function. Th
leads to an expression for the measured spatial interfere
patterns of the atoms. A certain set of interferences will
low us to reconstruct the initial wave function. We will dis
cuss the strategy for the reconstruction in Sec. III. In Sec.
we conclude with an estimation of important experimen
parameters for the presented method.

II. THE INTERFEROMETRIC SCHEME

In this section we analyze the setup, shown in Fig. 1, t
allows us to determine the wave functionc(x) describing
195 © 1997 The American Physical Society
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196 56FREYBERGER, KIENLE, AND YAKOVLEV
the transverse center-of-mass motion of an atomic ma
wave. The scheme consists of two counterpropagating la
1 and 2, which interact resonantly with a beam of two-le
atoms. The lasers located atz50 andz5 l 1 respectively de-
fine interaction regions of lengtha. A phase shifter controls
the relative phasew between them.

The atom of massm moving in thez direction with a
velocity much higher than any velocity component in thex
direction possesses the constant energyE0[\2p0

2/(2m)
@23#. In other words, the characteristic momentum\p0 is
supposed to be much larger than any transverse mome
component in thex direction. After crossing both lasers th
atom’s position is recorded on a screen placed atz5 l 11 l 2.

We start atz50 with two-level atoms that are assumed
be in the ground stateug&. Therefore, the stationary inciden
matter wave atz50 reads

uC~x,z50,t !&[e2 iE0t/\c~x!ug&

[e2 iE0t/\E dp

2p
f~p!eipxug&.

~1!

Here c(x) and f(p) represent the wave function of th
transverse motion in its position and momentum represe
tion, respectively. The aim of our considerations will be
demonstrate an interferometric method for the reconstruc
of this wave function. For simplicity we restrict ourselve
here to the case of a pure state and discuss later how
results can be generalized to mixed states described by
sity matrices.

The incident matter waveuC(x,z50,t)&, Eq. ~1!, is scat-
tered elastically at the two laser beams. In the rotating-w
approximation the Hamiltonian that governs the scatter
process reads

Ĥ5
\2

2m
~ p̂21 p̂z

2!2Q~z!Q~a2z!\k@s2e
2 ikx1s1e

ikx#

2Q~z2 l 1!Q~ l 11a2z!\k@s2e
i ~kx1w!

1s1e
2 i ~kx1w!#, ~2!

when we deal with resonant interactions of the atom with
light fields. The first part of this Hamiltonian contains th

FIG. 1. Setup for the interferometric measurement of the w
functionc(x). Two counterpropagating lasers 1 and 2 interact re
nantly with a beam of two-level atoms whose transverse cente
mass motion is described byc(x). We record atomic position dis
tributions on a screen atz5 l 11 l 2. Note that these distribution
depend crucially on the adjustable phasew between the two lasers
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transverse and longitudinal kinetic energy in terms of
momentum operators\ p̂ and\ p̂z respectively. As usual the
Pauli spin matricess1 ands2 define the internal transition
of the two-level atom due to the resonant interaction with
counterpropagating laser beams with wave vectorsk and
2k. The coupling of atom and field is given by a couplin
constantk and it is turned on in the interaction region
0<z<a and l 1<z< l 11a via the combination of two
Heaviside functions. Between the laser beams 1 and 2
well as between laser beam 2 and the detection screen
atoms behave as free particles.

In the next step we are going to answer the question
how the incident matter waveuC(x,z50,t)&, Eq. ~1!, trans-
forms due to the interaction with lasers 1 and 2. Hence
aim is to find the stateuC(x,z5 l 11 l 2 ,t)& that determines
the position distribution of atoms on the detection screen

We present the details of the calculation in the Appen
and restrict ourselves here to a physical interpretation of
state

uC~x,l 11 l 2 ,t !&

[e2 iE0t/\@cg~x,l 11 l 2!ug&1ce~x,l 11 l 2!ue&]

5e2 iE0t/\FC2E dp

2p
f~p!ei [pz~p!~ l11 l2!1px] ug&

2S2eiwE dp

2p
f~p!ei [pz~p1k!l11pz~p12k!l21~p12k!x] ug&

1 iSCE dp

2p
f~p!ei [pz~p1k!~ l11 l2!1~p1k!x] ue&

1 iSCe2 iwE dp

2p
f~p!

3ei [pz~p!l11pz~p2k!l21~p2k!x] ue&G . ~3!

The longitudinal momentum is defined by the functio
pz(p)5Ap022p2, which expresses energy conservation d
ing the scattering process with scattering amplitud
C[cos@km/(\p0)a# andS[sin@km/(\p0)a#.

The first term on the right-hand side of Eq.~3! describes
atoms that have experienced no internal transition on t
way from the first laser beam to the detection screen. Th
fore, this part of the total quantum state accumulates
phase factor exp@ipz(p)(l11l2)# of free evolution. Atoms that
undergo aug&2ue& transition during the first laser interactio
and a furtherue&2ug& transition during the second laser in
teraction are represented by the second term. Those a
absorb a photon from laser 1 giving rise to the phase fa
exp@ipz(p1k)l1# and emit a photon in laser 2 resulting in th
phase factor exp@ipz(p12k)l2#. Equivalently, the phases o
the last two terms have a clear physical meaning. The th
and fourth terms describe atoms undergoing aug&2ue& tran-
sition only in laser 1 and laser 2, respectively. Summing
Eq. ~3! is a superposition of four probability amplitudes:~i!
no transition,~ii ! two transitions due to laser 1 and laser
~iii ! one transition due to laser 1, and~iv! one transition due
to laser 2.

The stateuC(x,l 11 l 2 ,t)&, Eq. ~3!, determines the atomic
position distribution on the detection screen. Let us supp

e
-
f-
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56 197INTERFEROMETRIC MEASUREMENT OF AN ATOMIC . . .
that we record ground-state atoms only, which is no limi
tion. The interferometric method works as well if we me
sure the positions of atoms irrespective of their inter
states, that is, if we take the trace over the internal state
Eq. ~3!. However, in this case the equations become m
complicated and we would like to formulate the principle
simple as possible.

Ground-state atoms are distributed over the detec
screen according to the probability amplitudecg(x,l 11 l 2)
in Eq. ~3!. We can rewrite the exponents ofcg when we
apply the expansion

pz~p!5Ap022p2'p02
p2

2p0
~4!

and analogously forpz(p1k) andpz(p12k). This approxi-
mation is valid as long as the characteristic momentump0 is
much larger than any momentump in the x direction. Note
that we need the same assumption in the Appendix in o
to derive the final state, Eq.~3!. In that casecg simplifies
and we arrive at

cg~x,l 11 l 2!5eip0~ l11 l2!@C2c~x,T!2S2exp~ i w̃12ikx!

3c~x2Dx,T!# ~5!

with the freely propagated wave function

c~x,T![expS 2 i
\ p̂2

2m
TDc~x!

5E dp

2p
f~p!expS ipx2 i

\p2

2m
TD ~6!

and the definitions of a free propagation time

T[
m~ l 11 l 2!

\p0
, ~7!

of a spatial ruler

Dx[
k

p0
~ l 112l 2! ~8!

and of a modified phase

w̃[w2
k2

2p0
~ l 114l 2!. ~9!

Hencec(x,T) is just the initial wave functionc(x) spread
by a period of free evolution during the timeT, which is the
time a classical particle with kinetic energyE0 would need to
pass from laser 1 to the detection screen. In other word
we know c(x,T), we can easily reconstructc(x) just by
inverting Eq.~6!. In the next section we will show how th
position distributionucgu2 enables us to find the spread wa
functionc(x,T).

III. MEASUREMENT AND RECONSTRUCTION

How can we extract modulusand phase ofc(x,T) from
the measured data? It turns out that we have to identif
certain set of position distributions measured on the scree
-
-
l
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e

n

er
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a
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order to reconstruct this wave function.
First, we can directly measure the modulusuc(x,T)u by

just switching off the laser beams, which is equivalent
settinga50 or C51 andS50 in Eq. ~5!. Then the mea-
sured distribution on the screen atz5 l 11 l 2 provides us
uc(x,T)u2. Subsequent to this premeasurement we are
with the crucial question how to extract the phase inform
tion contained inc(x,T)[uc(x,T)uexp@iu(x,T)#.

According to Eq.~5! the probability distribution for the
positions of the ground-state atoms reads

w~x,Dx,w̃ !

[ucgu25C4uc~x,T!u21S4uc~x2Dx,T!u2

22S2C2Re$ei ~ w̃12kx!c* ~x,T!c~x2Dx,T!%. ~10!

The phase difference ofc(x,T) andc(x2Dx,T) is encoded
in the interference term of this equation and it depends on
adjustable phasew̃ , Eq. ~9!, as well as on the spatial rule
Dx, Eq. ~8!. Hence, we proceed as follows. First, we choo
a certain spatial rulerDx by appropriately fixing the dis-
tancesl 1 and l 2 of the interferometer. Note that we ca
modify Dx without changing the timeT @Eq. ~7!#, that is,
without changing the total length of the interferometer. S
ond, we measure a set of four position distributio
w(x,Dx,w̃) with w̃50, p/2, p, and 3p/2. The variation of
w̃ is achieved with the help of the phase shifter between la
beams 1 and 2. Having this set of distributions at our d
posal it is straightforward to show with the help of Eq.~10!
that the interference term can be expressed as

c* ~x,T!c~x2Dx,T![uc~x,T!c~x2Dx,T!u

3exp@2 i „u~x,T!2u~x2Dx,T!…#

5
e2 i2kx

~2CS!2Fw~x,Dx,p!2w~x,Dx,0!

1 iwS x,Dx, p2 D2 iwS x,Dx, 3p

2 D G .
~11!

With the help of this relation we can experimentally d
termine @24# the set of phase difference
$uexpt(x,T)2uexpt(x2Dx,T)%. Starting with the additional
assumption uexpt(0,T)50 we recursively calculate
uexpt(Dx,T),uexpt(2Dx,T), . . . on a grid defined by the
spacingDx. Note that the assumptionuexpt(0,T)50 is not a
limitation of the method. Instead ofc(x,T) we reconstruct
the wave function@25#

cexpt~x,T!.c~x,T!e2 iu~0,T!, ~12!

that is, the original wave function up to a common pha
factor, which is arbitrary and not observable. The reconstr
tion can be refined by choosing further values forDx, which
should define grid points lying between the previous one
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198 56FREYBERGER, KIENLE, AND YAKOVLEV
To finish the reconstruction we finally apply Eq.~6!,
which leads to the function

cexpt~x!5expS i \ p̂2

2m
TDcexpt~x,T!.c~x!e2 iu~0,T!, ~13!

which in the limits of the experiment representsc(x) up to a
common phase factor.

Note at this point that we have determinedcexpt(x,T) at
discrete grid points only with a resolution given by the sp
tial ruler Dx. However, the application of the operat
exp@i(\p̂2)/(2m)T# requires in principle the knowledge of th
continuous functionc(x,T). This places certain limitations
on wave functions that can be reconstructed by using
discussed method. If, for example, the structures inc(x,T)
are much finer than the grid spacingDx then the method will
fail. We will discuss those limitations and the correspond
numerical problems elsewhere.

IV. CONCLUSIONS

We presented the principle of an interferometric meth
to probe matter waves. The method is applicable to a stat
ary beam of two-level atoms with large and sufficien
monochromatic longitudinal momentapz'p0@p,k. It al-
lows us to measure the wave function of the atomic cen
of-mass motion in the transverse direction.

The most essential information, that is, the information
the phase of a wave function, is encoded in the interfere
term of Eq.~10!, which obviously plays the prime role in th
measurement scheme. The scheme is based on the ind
recoil effects due to the interaction of the two-level ato
with resonant light fields. Changing the atomic transve
momentum by6\k leads to a small change of the atom
longitudinal momentum in accordance with energy conser
tion. Taking into account these deviations provides the c
rect description of the spatial interference patterns that li
the heart of the presented method.

The phasew̃ and the dimensionless spatial rulerkDx in
the interference term are determined by the parametervRT,
where vR5\k2/(2m) is the recoil frequency and
T5( l 11 l 2)/v0 is the characteristic time of an atom passi
from the first laser to the detection screen with characteri
velocity v0[\p0 /m. For typical valuesvR'105 s21,
-
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ced
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ic

l 11 l 2'10 cm andv0'106 cm/s the parameter isvRT'1.
The main limitations of the method are connected w

nonmonochromaticity in the velocity of the atomic beam a
with spontaneous relaxation. We must properly control
phasew̃ and the rulerkDx in order to have a chance i
evaluating the interference pattern. Therefore, the devia
of the parametervRT due to nonmonochromaticity of th
atomic beam should be small:

d~vRT!5vRTdv0 /v0!1. ~14!

Second, spontaneous relaxation of the excited state ca
neglected in the casegT!1, wheng describes the relaxation
rate of the atoms in the beam.

For example, let us consider40Ca atoms on the weak
transition 4s224s4p with k5105 cm21 and g52.63103

s21. If the size of the interferometer is given b
l 11 l 2510 cm and the average velocity byv05106 cm/s we
havevRT'1 andgT,0.1. Then the nonmonochromaticit
dv0 /v0 should be less than 10%, which is a realistic valu

For simplicity we only discussed the interference patte
of ground-state atoms. One can use as well interference
excited atoms or even both internal states, which obviou
provides us with additional phase information. However,
principle of the presented method remains the same and
the mathematics for the reconstruction becomes more sop
ticated. Note finally that the suggested method allows us
principle, to reconstruct the density matrixr̂ of the trans-
verse center-of-mass motion of the atomic beam. In this c
the interference term will be proportional tor(x,x2Dx),
that is, by changing the rulerDx we directly measure off-
diagonal elements of the density matrix in position repres
tation.
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APPENDIX: SCATTERING OF THE ATOMIC BEAM

In this Appendix we solve the scattering problem for
stationary incident matter wave atz5z0:
uC~x,z0 ,t !&5e2 iE0t/\F E dp

2p
Fg~p,z0!e

ipxug&1E dp

2p
Fe~p,z0!e

ipxue&G , ~A1!

whose interaction with a laser of wave vectork in the regionz0<z<z01a is described by the Hamiltonian

Ĥ5
\2

2m
~ p̂21 p̂z

2!2Q~z2z0!Q~z01a2z!\k~s2e
2 i ~kx2a0!1s1e

i ~kx2a0!!. ~A2!

Note that the momentum operator for thex degree of freedom readsp̂52 i ]/]x and the one for thez degree of freedom is
given by p̂z52 i ]/]z. Two Heaviside functionsQ switch the interaction on and off andk determines the coupling of atom
and field. As usuals2 ands1 are the ladder operators of the atomic two-level system anda0 is an arbitrary phase.

In the interaction region the matter wave will have the general form



n
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uC~x,z,t !&5e2 iE0t/\F E dp

2p
Fg~p,z!eipz~p!~z2z0!eipxug&1E dp

2p
Fe~p,z!eipz~p!~z2z0!eipxue&G , ~A3!

where we have separated thez dependence into the slowly varying amplitudesFg(p,z) andFe(p,z) and the fast oscillating
function exp$ipz(p)(z2z0)%. Note that the scattering process is elastic, that is, the total energyE0[\2p0

2/2m5(\2/
2m)(p21pz

2) will remain constant, defining the longitudinal momentumpz5pz(p).
In the next step we investigate the evolution of the amplitudesFg andFe in order to find them after the interaction regio

at z5z01a. Hence we use Eq.~A3! as an ansatz for the solution of the time-dependent Schro¨dinger equation
i\(]/]t)uC&5ĤuC& with the Hamiltonian Eq.~A2!. In the interaction regionz0<z<z01a we get the coupled equations

SE02
\2p2

2m
2

\2pz
2~p!

2m DFg~p,z!52
i\2

m
pz~p!

]

]z
Fg~p,z!2

\2

2m

]2

]z2
Fg~p,z!2\keia0ei [pz~p1k!2pz~p!] ~z2z0!Fe~p1k,z!

~A4!

and

SE02
\2p2

2m
2

\2pz
2~p!

2m DFe~p,z!52
i\2

m
pz~p!

]

]z
Fe~p,z!2

\2

2m

]2

]z2
Fe~p,z!2\ke2 ia0ei [pz~p2k!2pz~p!] ~z2z0!Fg~p2k,z!.

~A5!
ke
t.
-

s
a

it
e

-

The equations simplify considerably when we ta
E05(\2/2m)(p21pz

2) and two approximations into accoun
These approximations are as follows.~i! We neglect the sec
ond derivatives of the slowly varying amplitudesFg and
Fe and~ii ! we approximate the momentum in thez direction
by the characteristic momentum, that is,pz(p1k)
'pz(p2k)'pz(p)'p0. The second approximation mean
that phase changes of the matter wave in the scattering
z0<z<z01a are small compared to unity, that is,

@p02pz~p!#a'
p2

2p0
a!1 ~A6!

for all momentap in the x direction.
Under these conditions Eqs.~A4! and ~A5! read

iv0
]

]z
Fg~p,z!52keia0Fe~p1k,z! ~A7!

and

iv0
]

]z
Fe~p,z!52ke2 ia0Fg~p2k,z!, ~A8!

where we have introduced the characteristic veloc
v0[\p0 /m. Now their solutions can be found easily and w
arrive at
rea

y

Fg~p,z!5Fg~p,z0!cosS k

v0
~z2z0! D

1 ieia0Fe~p1k,z0!sinS k

v0
~z2z0! D ~A9!

and

Fe~p,z!5Fe~p,z0!cosS k

v0
~z2z0! D

1 ie2 ia0Fg~p2k,z0!sinS k

v0
~z2z0! D .

~A10!

The amplitudesFg(p,z0) andFe(p,z0) are determined by
the initial conditions atz5z0, that is, by Eq.~A1!. Hence we
find the scattered wave atz5z01a when we insert Eqs.
~A9! and ~A10! into Eq. ~A3!. From there on the wave un
dergoes free evolution over a distancel 0, which leads to a
further phase factor exp$ipz(p)l0%. Combining these results
we arrive at
uC~x,z01a1 l 0 ,t !&5e2 iE0t/\FcosS k

v0
aD E dp

2p
Fg~p,z0!e

i [pz~p!~a1 l0!1px] ug&1 ieia0sinS k

v0
aD

3E dp

2p
Fe~p1k,z0!e

i [pz~p!~a1 l0!1px] ug&1cosS k

v0
aD E dp

2p
Fe~p,z0!e

i [pz~p!~a1 l0!1px] ue&

1 ie2 ia0sinS k

v0
aD E dp

2p
Fg~p2k,z0!e

i [pz~p!~a1 l0!1px] ue&G , ~A11!
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which represents the scattered wave atz5z01a1 l 0.
Let us finally specialize this solution to our interferome

~see Fig. 1! where the atomic beam interacts with the fi
laser beam in the region 0<z<a. This interaction is de-
scribed by the Hamiltonian Eq.~2!, which has the structure
of Eq. ~A2! with z050 and a relative phasea050. The
incident matter wave atz050 reads

uC~x,0,t !&5e2 iE0t/\E dp

2p
f~p!eipxug& ~A12!

and the initial conditions areFg(p,0)5f(p) and
Fe(p,0)50. After free evolution over the distanc
l 0[ l 12a we find for the scattered wave atz5 l 1

uC~x,l 1 ,t !&5e2 iE0t/\FCE dp

2p
f~p!ei [pz~p!l11px] ug&

1 iSE dp

2p
f~p2k!ei [pz~p!l11px] ue&G ,

~A13!

in accordance with the general solution Eq.~A11!. Here we
have used the simpler notationsC[cos@(k/v0)a# and
S[sin@(k/v0)a#.

The same calculation has to be repeated for the interac
with the second counterpropagating laser beam in the re
-

od

N

L

ev

,

r
t

on
on

l 1<z< l 11a. This interaction is governed by the third ter
of the Hamiltonian Eq.~2!. Therefore, we can again appl
our general solution Eq.~A11! when we seta05w and re-
place k by 2k. The initial conditions
Fg(p,l 1)5Cf(p)eipz(p) l1 and Fe(p,l 1)5 iSf(p
2k)eipz(p) l1 at z05 l 1 follow from Eq. ~A13!. Using these
expressions in Eq.~A11! we arrive at

uC~x,l 11 l 2 ,t !&

5e2 iE0t/\FC2E dp

2p
f~p!ei [pz~p!~ l11 l2!1px] ug&

2S2eiwE dp

2p
f~p!ei [pz~p1k!l11pz~p12k!l21~p12k!x] ug&

1 iSCE dp

2p
f~p!ei [pz~p1k!~ l11 l2!1~p1k!x] ue&

1 iSCe2 iwE dp

2p
f~p!ei [pz~p!l11pz~p2k!l21~p2k!x] ue&G ,

~A14!

where we have taken into account the free evolution over
distancel 0[ l 22a.
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