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Interferometric measurement of an atomic wave function
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We discuss a simple method to probe the wave functi¢r) describing the transverse center-of-mass
motion of an atomic beam. We detect position distributions of the atoms after they have interacted with two
counterpropagating laser beams. The resulting interference pattern depends crucially on the cross term
¥* (X) (x— Ax), which finally allows us to reconstruct the phaseydk). [S1050-294{@7)07207-1

PACS numbds): 03.65.Bz, 03.75.Dg

[. INTRODUCTION construction has been applied to the vibrational state of a
diatomic moleculd14].
The concept of a quantum state has always played a key A second set of methods that allow us to determine the
role in discussions treating the foundations of quanturfluantum state of an electromagnetic field in a cavity is based
theory. On one hand Dirac’s notion is very clear: each physion the fundamental interaction of atoms with the cavity field

cal quantity can be represented by a Hermitian operaton’Jnder investigation. The endoscpp_y metlﬁn?ﬂ]_reconstructs
which he calls an observabld]. A measurement of this the quantum state from the excitation statistics of atoms that

observable leaves the system in an eigenstate of the operatgl"’.‘ve interacted with the cavity f"?ld' .The atomic dgflectlon
This is a way ofpreparinga quantum system in a specific method[16] uses momentum distributions of atoms in order

state. On the other hand for Heisenberg a quantum state reg— reveal the quantum state O.f light ins_ide the cavity. In both
resented a set of potentialities that was revealed by certai pses—endoscopy and atomic deflection—the atoms serve as

a tool that probes a quantum state of light. For probing mat-

experimental conditiong2]. A single measurement per-
P 12] g b r endoscopy turns out to be a very useful method as well

formed on a quantum system reveals a certain aspect of i " . .
g Y b 7]. In addition, the art of treating trapped particles has now

state, but it will not uncover this state completely. However, . C )

if we know how to determine the whole set of potentialities,reaChed a point whgre fascinating experim¢# uncover

the quantum state can be reconstructed. This is a way fguantum states of single atoms.

measurethe state of a quantum system. In the measurement sche.me presented here we p.robe a
The question about the measurability of a quantum state igeam of two-level atoms \.N'th the help of running ."ght

actually an old oné3], which has led to a number of answers waves that fom? an atomic mterferome[eB—ZJ].'We will

over the year§4]. Recently much work focused again on the show _that certain |_nterfere_nce patterns of ator_mc waves that

reconstruction of quantum statgs]. This new interest grew have _mteracted_wnh the_ light beams of the |_nterferom_et<_ar

contain enough information for the reconstruction of the ini-

out of the intriguing possibilities of quantum optics, atom tial wave function of the atoms. In contrast to the tomogra
i i ED he physi f icles. o A ' . o9 o
optics, cavity QED, and the physics of trapped particles hic method mentioned before we would like to call this an

There it became possible to design certain quantum stateg, .
for example, Schidinger cats, which existed before on paperlnterferometrlc methodb probe matter wavei2]. The way

only [6,7]. Along with this engineeringof states the measur- to reconstruct the atomic state is completely different and its
ability of a quantum state has experienced a great renai@athemaf['cs IS much smpler._Furthermore the expenmental
sance. Of course it is a basic assumption of quantum theo erequisites are easier to realize than in the case of a tomog-
that an infinite ensemble of systems contains all the informa—aph!C measurement. Therefore we are co'nv[nced that t.he
tion about the wave function. But how can we unravel it? probing of an atomic beam along the lines indicated in this

Several methods have been proposed to measure quantLPrﬁper should be possible in the near future.

states of light as well as quantum states of matter. A centr In Seg. Il we dgscrlbe th? setup of fche mterferometer a_nd
method that allows us to perform measurements on bot e elastic scattering of the initial atomic wave function. This

kinds of wave functions is the so-called tomographic metho eads to an expression for the measured spatial interference

[8,9]. Regarding light this method can be applied in combi-Patterns of the atoms. A certain set of interferences will al-
na'tio.n with homodyne detection and it has been used in g)w us to reconstruct the initial wave function. We will dis-
wonderful set of experiments that reconstructed nonclassicg-SS the strategy for the reconstruction in Sec. lll. In_Sec. v
states of the electromagnetic fidltio]. However, important we conclude with an estimation of important experimental
proposalgq 11] exist showing the reconstruction of quantum parameters for the presented method.

states of light without use of tomographic techniques. Re-
garding matter several proposals exist to reconstruct wave
functions of an atomic beafii2] as well as quantum states  In this section we analyze the setup, shown in Fig. 1, that
of a trapped atonj13]. Experimentally the tomographic re- allows us to determine the wave functigi{x) describing

II. THE INTERFEROMETRIC SCHEME
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transverse and longitudinal kinetic energy in terms of the

momentum operatorkp and#p, respectively. As usual the
Pauli spin matricesr, ando_ define the internal transitions
of the two-level atom due to the resonant interaction with the
counterpropagating laser beams with wave vectorand
—k. The coupling of atom and field is given by a coupling

W(x)! constantx and it is turned on in the interaction regions
t Yz E 0<z=a and I;<z=<l;+a via the combination of two
2=0 z=1, z=11, Heaviside functions. Between the laser beams 1 and 2 as

well as between laser beam 2 and the detection screen the
FIG. 1. Setup for the interferometric measurement of the waveatolrr?sth%egg\;? gatzgrs\?epz:‘rg“;gisﬁg to answer the question of
function #(x). Two counterpropagating lasers 1 and 2 interact reso ow the incident matter waviaV (x,z=0 1), Eq. (1), trans-
nantly with a beam of two-level atoms whose transverse center-o forms due to the interaction With’laser’s 1’ and > ,Hence our
mass motion is described hy(x). We record atomic position dis- aim is to find the Staté‘lf(x z=1,+1,,t)) that de.termines
tributions on a screen a=1,+1,. Note that these distributions the position distribution of aitomsl onzt'he detection screen
depend crucially on the adjustable phaseetween the two lasers. We present the details of the calculation in the Appendix

the transverse center-of-mass motion of an atomic mattez?'nd restrict ourselves here to a physical interpretation of the

wave. The scheme consists of two counterpropagating Iase%ate
1 and 2, which interact resonantly with a beam of two-level|qf(xy|1+|2,t)>
atoms. The lasers locatedzat 0 andz=1, respectively de-

fine interaction regions of length. A phase shifter controls =e B yy(x,11+12)|@) + hel(X, 1+ 12)[€)]
the relative phase between them. dp

The atom of massn moving in thez direction with a :eiEot/ﬁ[CZJ — ¢(p)e'lPP 1+l +pa gy
velocity much higher than any velocity component in the 2

direction possesses the constant ene@ﬁthgl(Zm) _ dp _
[23]. In other words, the characteristic momentdip, is —Sze"”f 2—qS(p)e'“’z(p*k)'1*’)2(“2“)'2*("*2"”]|g>
supposed to be much larger than any transverse momentum .
component in the direction. After crossing both lasers the . dp ,
atom’s position is recorded on a screen placed=at; + 1 ,. +|SCJ E¢(p)e'[pz(p+k)('1+'2)+(p+k)x]|e>
We start az=0 with two-level atoms that are assumed to

be in the ground staty). Therefore, the stationary incident _ o[ dp
matter wave az=0 reads +isCe (Pj 7, (P
T (x,z=01))=e o/t
[W(x,z=01))=e ¥(x)|9) X @l[Pa(P)l1+Po(p— K2+ (p—k)d g | 3
— o IEqt/h Q ipx|
=e 57 P(PEPg). The longitudinal momentum is defined by the function

(1) p.(p)= \/poz— p2, which expresses energy conservation dur-

] ing the scattering process with scattering amplitudes
Here y(x) and ¢(p) represent the wave function of the c=cogxmi(fipy)a] and S=sin xm/(%ipy)al.

t_ransverse motion in its position and m(_)men'gum representa- The first term on the right-hand side of E@) describes
tion, respectively. The aim of our considerations will be 104toms that have experienced no internal transition on their
demonstrate an interferometric method for the reconstructioyay from the first laser beam to the detection screen. There-
of this wave function. For simplicity we restrict ourselves fore this part of the total quantum state accumulates the
here to the case of a pure state and discuss Ia_lter how ﬂﬁhase factor eXip,(p)(I,+1,)] of free evolution. Atoms that
results can be generalized to mixed states described by defingergo 4g) — |e) transition during the first laser interaction
Sity matrices. . and a furthefe)—|g) transition during the second laser in-
The incident matter wavel (x,z=01)), Ed.(1), is Scat-  (eraction are represented by the second term. Those atoms
tered elastically at the two laser beams. In the rotating-wavggorp a photon from laser 1 giving rise to the phase factor
approximation the Hamiltonian that governs the Scatteri”%x;{ipz(mk)ll] and emit a photon in laser 2 resulting in the
process reads phase factor eXfjp,(p+2K)l,]. Equivalently, the phases of

52 the last two terms have a clear physical meaning. The third
A= -—(p?+p3)—-0(2)0(a—2)hik[o_e "+ o, "] and fourth terms describe atoms undergoirjg)a-|e) tran-
2m sition only in laser 1 and laser 2, respectively. Summing up,
Y _ i (kx+ Eq. (3) is a superposition of four probability amplitudes)
O(z-1)0(l1+a—2)hin[o_e*"? no transition,(ii) two transitions due to laser 1 and laser 2,
+o, e e 2) (iii) one transition due to laser 1, afig) one transition due
to laser 2.

when we deal with resonant interactions of the atom with the The statd ¥ (x,l,+1,,t)), Eq. (3), determines the atomic
light fields. The first part of this Hamiltonian contains the position distribution on the detection screen. Let us suppose
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that we record ground-state atoms only, which is no limita-order to reconstruct this wave function.

tion. The interferometric method works as well if we mea-  First, we can directly measure the modulygx,T)| by
sure the positions of atoms irrespective of their internaljust switching off the laser beams, which is equivalent to
states, that is, if we take the trace over the internal states igettinga=0 or C=1 andS=0 in Eq. (5). Then the mea-
Eq. (3). However, in this case the equations become moraured distribution on the screen at1;+1, provides us
complicated and we would like to formulate the principle as|¢(x,T)|2. Subsequent to this premeasurement we are left

simple as possible. with the crucial question how to extract the phase informa-
Ground-state atoms are distributed over the detectiomion contained iny(x,T)=|y(x,T)|exdiéx,T)].
screen according to the probability amplitugg(x,l;+15) According to Eq.(5) the probability distribution for the

in Eq. (3). We can rewrite the exponents gf, when we  positions of the ground-state atoms reads
apply the expansion

5 p2 W(X!AXI;)
Pa(P) = VPo—P*~Po= 5 - 4
=|hg|2=CHp(x,T) |2+ SH p(x— A, T)|?
and analogously fop,(p+Kk) andp,(p+ 2k). This approxi- vl v _ | v |
mation is valid as long as the characteristic momenpyis — 2S2C?Re(e! ¢+ 2Ny (x, T)h(x— Ax,T)}.  (10)

much larger than any momentumin the x direction. Note

that we need t_he same assumption in the Appe_ndix_ i_n orde-rhe phase difference af(x,T) and¢(x— Ax,T) is encoded
to derive the final state, Eq3). In that caseyy simplifies  j, he interference term of this equation and it depends on the

and we arrive at . ~ .
adjustable phase, Eq. (9), as well as on the spatial ruler

z,bg(x,l1+I2)=eipo('1*'2)[C2¢(x,T)—Szexp(i'{é+2ikx) AX, Eq._(8). He_nce, we proceed as fo_llows. I_:i_rst, we ch_oose
a certain spatial ruleAx by appropriately fixing the dis-
X h(x—AX,T)] (5) tancesl; and |, of the interferometer. Note that we can
. . modify Ax without changing the tim& [Eq. (7)], that is,
with the freely propagated wave function without changing the total length of the interferometer. Sec-
n2 ond, we measure a set of four position distributions
lp(X,T)Eexp( —i _p_l_) #(X) W(X,AX,¢) with =0, 7/2, 7, and 3r/2. The variation of
2m ¢ is achieved with the help of the phase shifter between laser

dp . hp? beams 1 and 2. Having this set of distributions at our dis-
= f Zd’(p)exﬁ{ ipx—i ﬁT) (6)  posal it is straightforward to show with the help of EG0)
that the interference term can be expressed as
and the definitions of a free propagation time
P (X T) (X = AX T =X, T) h(X— A, T)|

m(l1+15)
TEﬁ—po’ (7 xexg —i(6(x,T)— 6(x—Ax,T))]
¢ fial | efizkx
of a spatial ruler - _
2C9 W(X,AX,7)—W(X,AX,0)
k
Ax=—(1,+2l5) (8) 3
po * 2 +iw x,Ax,g) —iw(x,Ax,; .
and of a modified phase (11)
_ 2
P=e 2_po(|1+4|2)- © With the help of this relation we can experimentally de-

termine [24] the set of phase differences
Hencey(x,T) is just the initial wave function(x) spread  {Oexp{X,T) — Oexp{X— AX,T)}. Starting with the additional
by a period of free evolution during the tinTg which is the  assumption 6,,(0,T)=0 we recursively calculate
time a classical particle with kinetic energy would need to  Oeyo{ AX,T), Oexp{ 24X, T), ... on a grid defined by the
pass from laser 1 to the detection screen. In other words, BpacingAx. Note that the assumptiof,,(0,T)=0 is not a
we know (x,T), we can easily reconstruak(x) just by limitation of the method. Instead af(x,T) we reconstruct
inverting Eq.(6). In the next section we will show how the the wave functiorj25]
position distributior ¢4|> enables us to find the spread wave

function ¢(x,T). Yexp X, T)=h(x,T)e 190D, (12)

. MEASUREMENT AND RECONSTRUCTION . . .
that is, the original wave function up to a common phase

How can we extract moduluand phase ofy(x,T) from  factor, which is arbitrary and not observable. The reconstruc-
the measured data? It turns out that we have to identify #éon can be refined by choosing further values Aot, which
certain set of position distributions measured on the screen ishould define grid points lying between the previous ones.
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To finish the reconstruction we finally apply E¢), |;+1,~10 cm andv,~10° cm/s the parameter isgT~1.
which leads to the function The main limitations of the method are connected with
nonmonochromaticity in the velocity of the atomic beam and
with spontaneous relaxation. We must properly control the
phasep and the rulerkAx in order to have a chance in

o o ) evaluating the interference pattern. Therefore, the deviation
which in the limits of the experiment represegitsx) upto a  of the parametewgT due to nonmonochromaticity of the

"2

‘/’expt(x) = EX;{ i %T) wexpt(xj-) = lﬁ(X)e_i #om, (13

common phase factor. _ atomic beam should be small:
Note at this point that we have determingg,,(x,T) at
discrete grid points only with a resolution given by the spa- S wRT)=wgrTdvglvg<l. (14

tial ruler Ax. However, the application of the operator , ,
i (5pA)/(2m)T] requires in principle the knowledge of the Second, spontaneous relaxation of the excited state can be
€ P q P P 9 neglected in the casgl <1, whenvy describes the relaxation

O e e Il e of e atoms inthe beam
discussed method. If, for example, the structureg(r,T) For example, let us considef’Ca atoms on the weak
are much finer thaﬁ tf,le grid spacin’g; then the method will tra?smon 4:;2—4s4p with k=;05 cm”* and 7’.:2'@( 10°

- If the size of the interferometer is given by

fail. We will discuss those limitations and the correspondingI +'| — 10 cm and the average velocity by=10° cm/s we
1 27— -

numerical problems elsewhere. have wgT~1 andyT<0.1. Then the nhonmonochromaticity
dvglvg should be less than 10%, which is a realistic value.
For simplicity we only discussed the interference patterns

We presented the principle of an interferometric methocPf ground-state atoms. One can use as well interferences of
to probe matter waves. The method is applicable to a statiorXcited atoms or even both internal states, which obviously
ary beam of two-level atoms with large and sufficiently Provides us with additional phase information. However, the

IV. CONCLUSIONS

monochromatic longitudinal momenta,~py>p,k. It al- principle of the presented method remains the same and only
lows us to measure the wave function of the atomic centerthe mathematics for the reconstruction becomes more sophis-
of-mass motion in the transverse direction. ticated. Note finally that the suggested method allows us, in

The most essential information, that is, the information onprinciple, to reconstruct the density matrixof the trans-
the phase of a wave function, is encoded in the interferenceerse center-of-mass motion of the atomic beam. In this case
term of Eq.(10), which obviously plays the prime role in the the interference term will be proportional {(x,x—AX),
measurement scheme. The scheme is based on the indudédt is, by changing the rulekx we directly measure off-
recoil effects due to the interaction of the two-level atomsdiagonal elements of the density matrix in position represen-
with resonant light fields. Changing the atomic transverseation.
momentum by*+ 7k leads to a small change of the atom’s
longitudinal momentum in accordance with energy conserva- ACKNOWLEDGMENTS
tion. Taking into account these deviations provides the cor-
rect description of the spatial interference patterns that lie at V.P.Y. acknowl_edges support from th_e Heraeus Founda-
the heart of the presented method. tion and the Russian Foundation fqr Bagc Research. S.H.K.
~ . . . . acknowledges support by the Studienstiftung des Deutschen
The phasep and the dimensionless spatial rulekx in Volkes.
the interference term are determined by the parametar,
where wr=%k?/(2m) is the recoil frequency and
T=(l1+15)/v is the characteristic time of an atom passing
from the first laser to the detection screen with characteristic In this Appendix we solve the scattering problem for a

velocity vo=#py/m. For typical valueswr~10 s1, stationary incident matter wave at z:

APPENDIX: SCATTERING OF THE ATOMIC BEAM

) — a—iEqgt/h dpq) ipx dpq) ipx
[W(x.20.1))=e 5. Po(p.20)€™(g)+ | S—Pe(p.20)ee) |, (AD)
whose interaction with a laser of wave vecton the regionzo<z=<z,+a is described by the Hamiltonian

1 "2, 2 —i(kx—ag) i (kx—ag)

H=ﬁ(p +py)—0(z—25)0O(zg+a—2z)hik(o_e€ +o.e o). (A2)

Note that the momentum operator for thelegree of freedom rea(fb: —idlox and the one for the degree of freedom is

given by p,=—idldz. Two Heaviside function® switch the interaction on and off ane determines the coupling of atom
and field. As usuab_ ando, are the ladder operators of the atomic two-level systemanid an arbitrary phase.
In the interaction region the matter wave will have the general form
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|1{,(X’Z,t)>:efiE0’[/h

dp : o dp i —20)u
J'Eq)g(prz)elpZ(p)(z Zo)ele|g>+JE(I)e(plz)elpz(p)(z Zo)e|px|e> , (A3)

where we have separated thélependence into the slowly varying amplitudeg(p,z) and®(p,z) and the fast oscillating
function exp{|pz(p)(z Z))}. Note that the scattering process is elastic, that is, the total enEggyh pS/Zm (h2/
2m) (p?+ p2) will remain constant, defining the longitudinal momentpgs p,(p).

In the next step we investigate the evolution of the amplitubllgand®, in order to find them after the interaction region
at z=zy,+a. Hence we use EQ(A3) as an ansatz for the solution of the time-dependent “Sahger equation

ifi(alot)| W)= H|\If> with the Hamiltonian Eq(A2). In the interaction regiozy<z<z,+a we get the coupled equations

#%p?  %2pZ(p) i%2 P B2 2 o
__ " _ - _ _ _ iagal[pL(p+K)—p,(P)](z—2q)
(Eo om om Dy(p,2) m P(p) &Zcbg(p,z) om aZz%(lo,z) fi ke'*oe VD (ptk,2)
(A4)
and
#2p2  H2pA(p) i7:2 J 72 52
__ e - _ iagal[p(pP—K)—pz(p)](z—2
0" 5m om ) Pe(P2) o P2P) - Pe(p,2) — 5 — 2 Pe(p,2) — ke e 0Py(p—k,2).

(A5)

The equations simplify considerably when we take K

Eo= (%%/2m)(p?+ p2) and two approximations into account. Dy(p,2)= ‘I’g(p.Zo)CO<v—(Z— Zo))

These approximations are as follows.We neglect the sec- 0

ond derivatives of the slowly varying amplitudds, and Ciw RS

@, and (i) we approximate the momentum in thelirection +ie'0d¢(p+k,zg)sin U—O(Z—Zo) (A9)
by the characteristic momentum, that ig,(p+k)

~pAp—Kk)=p,p)=po. The second approximation means

that phase changes of the matter wave in the scattering areg

Zp<7=<1Z7y+a are small compared to unity, that is,

p2
— a~-—a<l1 A6
[Po—P2(p)Ja~ 5 - (A6) CDe(p,Z)=¢’e(p,Zo)COS<U—KO(Z—ZO))
for all momentap in the x direction.
Under these conditions Eg6A4) and (A5) read +ie—iao¢g(p_k zo)sin(i(z—zo)).
Uo

o~ cpg(p 7)=—ke'“od (p+k,2z) (A7) (A10)

and The amplitudesPy(p,z;) and ®¢(p,z,) are determined by

9 B the initial conditions az= z,, that is, by Eq(Al). Hence we
o= Pe(p.2)=—xe 11004(p—k,2), (A8)  find the scattered wave at=z,+a when we insert Egs.
(A9) and (A10) into Eq. (A3). From there on the wave un-
where we have introduced the characteristic velocitydergoes free evolution over a distarige which leads to a
vo=7%pe/m. Now their solutions can be found easily and we further phase factor eXip,(p)lg}. Combining these results
arrive at we arrive at

f dp Dy (p,2o)€llPAP @+ 10+ | g) 1 jgiosin

|W(x,zg+a+],t))=e"Fot/f 5

—a

K
cog —a
Uo

j _¢e(p+ k Zo)e'[pz(p)(a+|0)+px]|g>+Co{ia
Vo

d .
f ZZ‘I’e(p,Zo)e'[pz<p)<a+'o>+px] le)

+ie~@osjn (A11)

d .
f %‘Dg(p_ k,zo)e'[PP) (@10 P | gy |

K
—a
Uo
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which represents the scattered waveatzy+a+l. I,=<z=<I,+a. This interaction is governed by the third term
Let us finally specialize this solution to our interferometerof the Hamiltonian Eq(2). Therefore, we can again apply

(see Fig. 1 where the atomic beam interacts with the firstour general solution EA11l) when we setxg= ¢ and re-

laser beam in the region<9z=<a. This interaction is de- place k by —k. The initial conditions

scribed by the Hamiltonian Eq2), which has the structure ®y(p,l;)=Cg(p)e’P«P' and D(p,11)=iSe(p

of Eq. (A2) with ;=0 and a relative phase,=0. The —k)e'P«P'1 at z,=1, follow from Eq. (A13). Using these

incident matter wave at,=0 reads expressions in EqA11l) we arrive at

_igqun [ 9P i
[W(x0n)=e "% | = g(p)e™(g)  (A12)  [W(xlitlat)
and the initial conditions are®y(p,0)=¢(p) and
®.(p,0)=0. After free evolution over the distance

_e—iEOt/h[CZJ :_p¢(p)ei[pz(p)(ll+|2)+px]|g>
lo=1,—a we find for the scattered wave a1, m

_ Szeupf g_p () ellP=P 1L+ pa(p+ 20015+ (P 2601 g
an

. d .
| (x,l,t))=e " 'Eo/A Cf £¢(p)e|[pz(p)ll+pxl|g>

dp _
i — [p2(p+K)(I1+12)+(p+k)x]
+i8fg—p¢(p—k)ei[pz(p)|1+px]|e> ’ +|SCJ' 27T¢(p)e' 1+l X|e>
T

(AL13) +iSCe wf—qﬁ(p i[pP 1+ PAP—Kl2+(p=kX] | gy |

in accordance with the general solution E411). Here we
have used the simpler notation€=cog(«/vg)a] and
S=sin (x/vg)al.

The same calculation has to be repeated for the interactiowhere we have taken into account the free evolution over the
with the second counterpropagating laser beam in the regiodistancel y=I,—

(A14)
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