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Levinson theorem in two dimensions
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A two-dimensional analog of Levinson’s theorem for nonrelativistic quantum mechanics is established,
which relates the phase shift at threshold~zero momentum! for the mth partial wave to the total number of
bound states with angular momentumm\ (m50,1,2, . . . ) in an attractive central field.
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PACS number~s!: 34.10.1x, 34.90.1q, 03.65.2w
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I. INTRODUCTION

In 1949, a theorem in quantum mechanics was establis
by Levinson@1#, which relates the phase shift at thresho
~zero momentum! for the l th partial wave,d l(0), to thenum-
ber of bound states with the same azimuthal quantum n
ber, nl . This is one of the most interesting and beauti
results in nonrelativistic quantum theory. The subject w
then studied by many authors; some are listed in the R
@2–5#. The relativistic generalization of Levinson’s theore
has also been well established@6–8#. However, most of these
authors deal with the problem in ordinary three-dimensio
space. To our knowledge a two-dimensional version
Levinson’s theorem was not presented in the literature.
purpose of this work is to develop an analog of this theor
in two spatial dimensions. It relates the phase shift at thre
old for themth partial wave,hm(0), to thetotal number of
bound states with angular momentumm\, nm~the total num-
ber of bound states with angular momentum2m\ is also
nm):

hm~0!5nmp, m50,1,2, . . . .

This is similar to but slightly simpler than the original one
three dimensions. In three dimensions Levinson’s theo
takes the same form withm replaced byl . But whenl 50 the
relation must be modified if there exists a zero-energy re
nance~a half bound state!. The mathematical origin is tha
the behavior of the phase shiftsd l(k) near k50 may be
different for l 50 and lÞ0. In two dimensions no simila
situation occurs. This paper is organized as follows. In
next section we give a brief formulation of the partial-wa
method for nonrelativistic scattering in two spatial dime
sions. In Sec. III we discuss the behavior of the phase sh
near k50 in some detail. In Sec. IV we establish th
Levinson theorem using the Green function method@2,3,5#.
Section V is devoted to the discussion of some aspects o
theorem.

II. PARTIAL-WAVE METHOD IN TWO DIMENSIONS

A particle with massm and energyE moving in an exter-
nal field V(r ) satisfies the stationary Schro¨dinger equation
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¹2c1V~r !c5Ec. ~1!

We use the polar coordinates (r ,u) as well as the rectangula
coordinates (x,y) in two spatial dimensions. For scatterin
problemsE.0 ~we assume thatV→0 more rapidly than
r 22 when r→`). The incident wave may be chosen as

c i5eikx, ~2!

which solves Eq. ~1! when r→` provided that
k5A2mE/\2. The scattered wave should have t
asymptotic form

cs→
r→`Ai

r f ~u!eikr , ~3!

where the factorAi 5eip/4 is introduced for later conve
nience. This also solves Eq.~1! when r→`. It is easy to
show that the differential cross sections(u) ~in two spatial
dimensions the cross section may be more appropria
called cross width! is given in terms of the scattering ampl
tude f (u) by

s~u!5u f ~u!u2. ~4!

The outgoing wave comprises Eqs.~2! and~3! and thus takes
the following form at infinity:

c →
r→`

eikx1Ai
r f ~u!eikr . ~5!

We are interested in central or spherically symmetric~actu-
ally cylindrically symmetric in two dimensions! potentials
V(r )5V(r ). In this paper we deal only with central poten
tials. Then solutions of Eq.~1! may be expanded as

c~r ,u!5 (
m52`

1`

amRumu~r !eimu, ~6!

whereRm(r ) satisfies the radial equation

Rm9 1
1

r
Rm8 1S k22

2m

\2 V2
m2

r 2 DRm50, m50,1,2, . . . .

~7!
1938 © 1997 The American Physical Society
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56 1939LEVINSON THEOREM IN TWO DIMENSIONS
If V50, the regular solution of Eq.~7! is the Bessel function
and may be taken asRm

(0)(r )5AkJm(kr) and hence has th
asymptotic form

Rm
~0!~r ! →

r→`A 2
prcosS kr2

mp
2 2

p
4 D . ~8!

We have assumed thatV(r )→0 more rapidly thanr 22 when
r→`, so the solutionRm(r ) approaches the form of a linea
combination of the Bessel function and the Neumann fu
tion at larger and may have the asymptotic form

Rm~r ! →
r→`A 2

prcosFkr2
mp
2 2

p
41hm~k!G . ~9!

Herehm(k) is the phase shift of themth partial wave. It is a
function ofk. As in three dimensions, allhm(k) are real in a
real potential. Substituting Eq.~9! into Eq. ~6! gives one
asymptotic form forc, while substitution of the formula

eikx5 (
m52`

1`

i umuJumu~kr !eimu ~10!

and the asymptotic form of the Bessel functions into Eq.~5!
gives another. Comparing these two asymptotic forms
finds an expression forf (u) in terms of the phase shifts:

f ~u!5 (
m52`

1` A 2

pk
eih umusinh umue

imu. ~11!

The total cross sections t turns out to be

s t5E
0

2p

du s~u!5
4

kS sin2h012 (
m51

`

sin2hmD . ~12!

From the above relations one easily realizes that all inform
tion of the scattering process is contained in the phase s
hm(k). The latter are determined by solving the radial eq
tion ~7! with the boundary condition~9! and thus depend on
the particular form ofV(r ). In an attractive field, the numbe
of bound states with given angular momentumm\, denoted
by nm above, also depends on the particular form ofV(r ). It
will be shown thatnm is related tohm(k) at threshold. This
is similar to Levinson’s theorem in three dimensions. In t
next section we first discuss the behavior ofhm(k) near
k50.

III. PHASE SHIFTS NEAR THRESHOLD

Assuming thatV(r ) is less singular thanr 22 when
r→0, then the regular solution of the radial equation~7! may
have the following power dependence onr nearr 50:

f m~r ,k!→
r→0 r m

2mm!
, m50,1,2, . . . . ~13!

Here we denote the regular solution of Eq.~7! with the
boundary condition~13! by f m(r ,k). Note that Eq.~7! de-
pends onk only throughk2, which is an integral function of
k, and the boundary condition~13! is independent ofk. Thus
a theorem of Poincare´ tells us thatf m(r ,k) is an integral
function of k for a fixed r . On the other hand, the solutio
-

e

-
fts
-

e

Rm(r ) with the boundary condition~9!, which is proportional
to f m(r ,k), need not be an integral function ofk. We denote
a potential that satisfiesV(r )50 whenr .a.0 by Va(r ). In
such potentials the solution of Eq.~7! when r .a may take
the form

Rm
1~r !5Ak@coshmJm~kr !2sinhmNm~kr !#,

m50,1,2, . . . , ~14!

where the superscript ‘‘1’’ indicates r .a. It is easy to
verify thatRm

1(r ) indeed satisfies the boundary condition~9!.
When r ,a we have

Rm
2~r !5Am~k! f m~r ,k!, m50,1,2, . . . , ~15!

where the superscript ‘‘2 ’’ indicates r ,a. In general the
coefficient Am depends onk, so that the two parts o
Rm(r ) can be connected smoothly atr 5a. This leads to

tanhm5
rJm8 ~r!2bm~r!Jm~r!

rNm8 ~r!2bm~r!Nm~r!
, ~16!

wherer5ka and

bm~r!5
a fm8 ~a,k!

f m~a,k!
, ~17!

where the prime indicates differentiation with respect tor .
As mentioned above,f m(a,k) is an integral function ofk,
and so isf m8 (a,k). Moreover, both of them are even func
tions ofk since Eq.~7! depends only onk2. Therefore when
k→0 or r→0, the leading term forbm(r) may have one of
the following forms:

bm~r!→am
1r2l m

1

,

bm~r!→am
2r22l m

2

,

bm~r!→gm1amr2l m,

wheream
6 , am , andgm are nonzero constants, whilel m

6 and
l m are natural numbers. Using these relations and the lea
terms of Jm(r) and Nm(r) for r→0, the leading term in
tanhm when r→0 can be explicitly worked out. When
gm52m some care should be taken. However, care
analysis gives in any case

tanhm→bmr2pm or
p

2lnr
~k→0!, ~18!

wherebmÞ0 is a contant andpm is a natural number. Equa
tion ~18! is important for the development of the Levinso
theorem in the next section.

For comparison we give the corresponding results in th
dimensions. The phase shifts are denoted byd l(k). By a
similar analysis it can be shown in a potentialVa(r ) that

tand l→clr
2ql21, l 50,1,2, . . . ~k→0!, ~188!

whereclÞ0 is a constant, andql is a natural number forl
Þ0, while q0 may be a natural number or zero. We see t
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d l(0) generally equals a multiple ofp for all l . But d0(0)
gets an additionalp/2 whenq050. The latter case does no
occur for anyhm(0), which is obvious from Eq.~18!. The
difference between Eq.~18! and Eq.~188! comes from the
fact that the Neumann function in the solution~14! involves
the logarithmic function while the spherical Neumann fun
tion in the three-dimensional solution does not. It can
shown thatd0(0) gets an additionalp/2 when there exists a
half bound state~a zero-energy resonance! in the angular
momentum channell 50.

IV. THE LEVINSON THEOREM

Now we proceed to establish the Levinson theorem by
Green function method. We introduce the retarded Gr
function G(r ,r 8,E) defined by

G~r ,r 8,E!5(
n

cn~r !cn* ~r 8!

E2En1 i e
, ~19!

where$cn(r )% is a complete set of orthonormal solutions
Eq. ~1!, ande501. G(r ,r 8,E) satisfies the equation

~E2H1 i e!G~r ,r 8,E!5d~r2r 8!. ~20!

For a free particle we have a similar definition:

G~0!~r ,r 8,E!5(
n

cn
~0!~r !cn

~0!* ~r 8!

E2En
~0!1 i e

, ~21!

where$cn
(0)(r )% is a complete set of orthonormal solutions

Eq. ~1! with V50. G(0)(r ,r 8,E) satisfies

~E2H01 i e!G~0!~r ,r 8,E!5d~r2r 8!, ~22!

whereH0 is the Hamiltonian of the free particle. We hav
the integral equation forG(r ,r 8,E):

G~r ,r 8,E!2G~0!~r ,r 8,E!5E dr 9 G~0!~r ,r 9,E!V~r 9!

3G~r 9,r 8,E!. ~23!

In a central fieldV(r )5V(r ) @not necessarilyVa(r )#, we
have

cn~r ,u!5cmk~r ,u!5
uumuk~r !

Ar

eimu

A2p
, m50,61,62, . . . ,

where k is a quantum number associated with the ene
Emk , which is determined by solving the radial equation

umk9 1F2m

\2 ~Emk2V!2
m221/4

r 2 Gumk50, m50,1,2, . . . ,

~24!

with appropriate boundary conditions in the radial directio
The radial wave functionsumk(r ) satisfy the orthonorma
condition

~umk ,umk8!5E
0

`

dr umk* ~r !umk8~r !5dkk8. ~25!
-
e

e
n

y

.

For an attractive field we have a discrete spectrum (Emk,0)
as well as a continuous spectrum (Emk.0). We can, how-
ever, require the wave functions to vanish at a sufficien
large radiusR @R@a for Va(r )# and thus discretize the con
tinuous part of the spectrum. In this case the upper limit
the integration in Eq.~25! should be replaced byR. It is easy
to show that

G~r ,r 8,E!5G0~r ,r 8,E!
1

2p

1 (
m51

`

Gm~r ,r 8,E!
cosm~u2u8!

p
, ~26!

where

Gm~r ,r 8,E!5(
k

umk~r !umk* ~r 8!

Arr 8~E2Emk1 i e!
, m50,1,2, . . . .

~27!

For a free particle, the following results can be obtained
the same way:

G~0!~r ,r 8,E!5G0
~0!~r ,r 8,E!

1

2p

1 (
m51

`

Gm
~0!~r ,r 8,E!

cosm~u2u8!

p
,

~28!

where

Gm
~0!~r ,r 8,E!5(

k

umk
~0!~r !umk

~0!* ~r 8!

Arr 8~E2Emk
~0!1 i e!

, m50,1,2, . . . ,

~29!

whereumk
(0)(r ) satisfies Eq.~24! with V50, and the energy

spectrum (Emk
(0).0) is discretized according to the abov

described prescription. Thus the orthonormal relation
umk

(0)(r ) is similar to Eq.~25!. Substituting Eqs.~26! and~28!
into Eq. ~23! we get an integral equation forGm(r ,r 8,E):

Gm~r ,r 8,E!2Gm
~0!~r ,r 8,E!

5E dr9 r 9Gm
~0!~r ,r 9,E!V~r 9!Gm~r 9,r 8,E!,

m50,1,2, . . . . ~30!

Using the orthonormal relation~25! it is easy to show that

E dr rGm~r ,r ,E!5(
k

1

E2Emk1 i e
. ~31!

Employing the mathematical formula

1

x1 i e
5P

1

x
2 ipd~x! ~32!

and taking the imaginary part of the above equation we h
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56 1941LEVINSON THEOREM IN TWO DIMENSIONS
ImE dr rGm~r ,r ,E!52p(
k

d~E2Emk!. ~33!

Integrating this equation overE from 2` to 02 yields

ImE
2`

02

dE E dr rGm~r ,r ,E!52nm
2p, ~34!

wherenm
2 is the number of bound states with negative en

gies and with angular momentumm\ ~whenmÞ0 we have
the same number of bound states with angular momen
2m\ as well!. The possibility of a zero-energy bound sta
will be discussed in the next section. In a similar way o
can show that

ImE
2`

02

dE E dr rGm
~0!~r ,r ,E!50. ~35!

Here and in Eq.~34! the integration overE is performed to
the upper limit 02 instead of 0 such that it suffers no amb
guity. Combining Eqs.~34! and ~35! we have

ImE
2`

02

dE E dr r @Gm~r ,r ,E!2Gm
~0!~r ,r ,E!#52nm

2p.

~36!

On the other hand, substituting Eqs.~27! and ~29! into the
right-hand side of Eq.~30! we have

E dr r @Gm~r ,r ,E!2Gm
~0!~r ,r ,E!#

5(
ks

~ums ,umk
~0! !~umk

~0! ,Vums!

~E2Emk
~0!1 i e!~E2Ems1 i e!

. ~37!

Using the radial equations forumk
(0)(r ) and ums(r ) and the

boundary condition that these radial wave functions vanis
r 50 andr 5R, it is not difficult to show that

~umk
~0! ,Vums!5~Ems2Emk

~0! !~umk
~0! ,ums!. ~38!

Substituting this result into Eq.~37! and taking the imaginary
part we have

ImE dr r @Gm~r ,r ,E!2Gm
~0!~r ,r ,E!#

5p(
ks

@d~E2Emk
~0! !2d~E2Ems!#u~umk

~0! ,ums!u2. ~39!

Integrating this equation overE from 2` to 1` it is easy to
find that

ImE
2`

1`

dE E dr r @Gm~r ,r ,E!2Gm
~0!~r ,r ,E!#50.

~40!

Similar to the three-dimensional case, this equation me
that the total number of states in a specific angular mom
tum channel is not altered by an attractive field, except t
some scattering states are pulled down into the bound-s
region. This result, together with Eq.~36!, leads to
-

m

e

at

ns
n-
at
te

ImE
02

1`

dE E dr r @Gm~r ,r ,E!2Gm
~0!~r ,r ,E!#5nm

2p.

~41!

We have thereupon finished the first step in our establ
ment of the Levinson theorem.

The next step is to calculate the left-hand side of Eq.~41!
in another way. In the above treatment we have discreti
the continuous spectrum ofEmk

(0) and the continuous part o
Emk . In the following we will directly deal with these con
tinuous spectra. We will denoteumk

(0)(r ) by umk
(0)(r ), and

umk(r ) with continuousk by umk(r ), whereas thoseumk(r )
with discretek ~bound states! will be denoted by the origina
notation. The notationsEmk

(0) andEmk with continuousk will
also be changed toEmk

(0) and Emk ~both are equal
to \2k2/2m), respectively. The orthonormal relation fo
umk

(0)(r ) now takes the form

~umk
~0! ,umk8

~0!
!5d~k2k8!. ~42!

The orthonormal relation forumk(r ) is similar, while that for
umk(r ) has the same appearance as Eq.~25!. It is easy to
show that

umk
~0!~r !5AkrJm~kr !, k5A2mEmk

~0!/\

satisfies the radial equation withV50 and the orthonorma
relation ~42!. Thusumk

(0)(r ) has the asymptotic form

umk
~0!~r ! →

r→`A2
pcosS kr2

mp
2 2

p
4 D ~43!

corresponding to Eq.~8!. In an external field, the wave func
tions are distorted and thus the asymptotic form forumk(r )
becomes

umk~r ! →
r→`A2

pcosFkr2
mp
2 2

p
41hm~k!G , ~44!

corresponding to Eq.~9!. Note that the coefficient in the
asymptotic form is the same forumk

(0)(r ) andumk(r ). In this
treatment it can be shown that

Gm~r ,r 8,E!5(
k

umk~r !umk* ~r 8!

Arr 8~E2Emk1 i e!

1E dk
umk~r !umk* ~r 8!

Arr 8~E2Emk1 i e!
~45!

and thus

ImE dr rGm~r ,r ,E!52p(
k

d~E2Emk!

2pE dk d~E2Emk!~umk ,umk!.

~46!

Integrating this equation overE from 02 to 1` and taking
into account the fact thatEmk,0 while Emk>0, we have

ImE
02

1`

dE E dr rGm~r ,r ,E!52pE dk ~umk ,umk!.

~47!
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There is no ambiguity in the integration overE since the
lower limit is set to be 02 instead of 0~note thatEmk may
equal 0!. As before, the possibility of a zero-energy bou
state will be discussed in Sec. V. In the same way, we h

ImE
02

1`

dE E dr rGm
~0!~r ,r ,E!52pE dk ~umk

~0! ,umk
~0!!.

~48!

It should be pointed out that the integrands in both Eq.~47!
and Eq. ~48! are d(0)(5`) according to Eq.~42! and a
similar equation forumk(r ). However, there is a subtle dif
ference between these twod functions, and it is this differ-
ence that leads to the Levinson theorem. Since both i
grands are singular, we first evaluate

~umk ,uml!r 0
2~umk

~0! ,uml
~0!!r 0

[E
0

r 0
dr umk* ~r !uml~r !

2E
0

r 0
dr umk

~0!* ~r !uml
~0!~r !,

~49!

wherer 0 is a large but finite radius, and finally take the lim
l→k and r 0→`. As in the discretized case, we have t
boundary condition

umk
~0!~0!50, umk~0!50. ~50!

Using the radial equation and this boundary condition it
easy to show that

~k22 l 2!~umk ,uml!r 0
5umk* ~r 0!uml8 ~r 0!2umk8* ~r 0!uml~r 0!.

~51!

Sincer 0 is large, we can use Eq.~44! to evaluate the right-
hand side~rhs! and in the limitl→k we get

~umk ,umk!r 0
5

r 0

p
1

1

p
hm8 ~k!2

~2 !m

2pk
cos@2kr012hm~k!#.

~52!

In the same way we have

~umk
~0! ,umk

~0!!r 0
5

r 0

p
2

~2 !m

2pk
cos2kr0 . ~53!

Therefore,

~umk ,umk!r 0
2~umk

~0! ,umk
~0!!r 0

5
1

p
hm8 ~k!

1
~2 !m

2
d~k!sin2hm~k!

1
~2 !m

pk
cos2kr0sin2hm~k!,

~54!

where we have employed the well-known formula
e

e-

s

lim
r 0→`

sin2kr0

pk
5d~k!.

So far in this sectionV(r ) need not beVa(r ). In the follow-
ing we setV(r )5Va(r ). Then Eq.~18! is valid, and we have
sin2hm(0)50. Therefore the second term on the rhs of E
~54! vanishes. Integrating this result overk ~from 0 to
1`), taking the limit r 0→`, and incorporating the result
~47!, ~48! we arrive at

ImE
02

1`

dE E dr r @Gm~r ,r ,E!2Gm
~0!~r ,r ,E!#

5hm~0!2hm~`!2~2 !m lim
r 0→`

3E
0

`

dk
cos2kr0

k
sin2hm~k!. ~55!

The last term in this equation can be decomposed into
integrals, the first from 0 to«501, which can be shown to
vanish on account of Eq.~18!, while the second from« to
1`, which also vanishes in the limitr 0→` since the factor
cos2kr0 oscillates very rapidly. Therefore we have

ImE
02

1`

dE E dr r @Gm~r ,r ,E!2Gm
~0!~r ,r ,E!#

5hm~0!2hm~`!. ~56!

Combining Eqs.~56! and ~41! we arrive at the Levinson
theorem:

hm~0!2hm~`!5nm
2p, m50,1,2, . . . . ~57!

In the next section we will discuss some aspects of this th
rem, and get a more general form that takes zero-ene
bound states into consideration.

V. DISCUSSIONS

In this section we discuss and clarify some aspects of
Levinson theorem obtained in the form Eq.~57! in the last
section.

1. On zero-energy bound states. In Sec. IV we did not
take into account the possible existence of a zero-ene
bound state. Indeed, this may occur for a square-well po
tial with radius a and depth V0 when m.1 and
Jm21(j)50 where j5k0a and k05A2mV0/\. ~For
m50,1 regular solutions with zero energy may be found b
they are not normalizable and thus are not bound states
below.! The existence of a zero-energy bound state wo
not alter the results~34!–~36! where nm

2 is the number of
bound states with negative energies. Therefore Eq.~41! re-
mains valid in this case. On the other hand, Eq.~47! becomes

ImE
02

1`

dE E dr rGm~r ,r ,E!52p2pE dk ~umk ,umk!,

~58!

which is an obvious consequence of Eq.~46!. Accordingly,
the result~56! becomes

ImE
02

1`

dE E dr r @Gm~r ,r ,E!2Gm
~0!~r ,r ,E!#
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56 1943LEVINSON THEOREM IN TWO DIMENSIONS
5hm~0!2hm~`!2p, ~59!

Hence, the Levinson theorem takes in the present case
form

hm~0!2hm~`!5nmp, ~60!

where nm5nm
211 represents the total number of bou

states, including the one with zero energy. When there is
zero-energy bound state,nm5nm

2 . Thus Eq.~60! holds in
any case and is the final form of the Levinson theorem.

To see the difference in zero-energy states between
and three dimensions, we notice that the two-dimensio
radial wave functionumk(r ) satisfies Eq.~24!. When re-
garded as a one-dimensional Schro¨dinger equation, the effec
tive potential reads

Ṽ2~r !5V~r !1
\2~m221/4!

2mr 2 ,

where the subscript ‘‘2’’ indicates two dimensions. In thr
dimensions, withc lmk(r ,u,f)5r 21x lk(r )Ylm(u,f) ~here
r , u, etc. should not be confused with those in two dime
sions!, the radial wave functionx lk(r ) satisfies

x lk9 1F2m

\2 ~Elk2V!2
l ~ l 11!

r 2 Gx lk50, l 50,1,2, . . . .

~248!

When this is regarded as a one-dimensional Schro¨dinger
equation, the effective potential is

Ṽ3~r !5V~r !1
\2l ~ l 11!

2mr 2 ,

which is obviously different fromṼ2(r ), and as a conse
quence the zero-energy solutions are different from thos
Eq. ~24!. More specifically, withV(r )5Va(r ) andEm050,
the exterior solution (r .a) of Eq. ~24! reads

um0
1 ~r !5r 2m11/2.

A zero-energy solution exists ifVa(r ) is such that the inte-
rior solution um0

2 (r ) can be connected withum0
1 (r ) at r 5a

smoothly. This leads to the above-mentioned condition fo
square-well potential. Here we are concerned about the
malizability of the solution. It is clear that the above soluti
can be normalized and thus is a bound state only w

m.1. We havec10
→

r→`

0, andc00 is finite at infinity though

u00(r ) →
r→`

`, thus both are regular. But either of them cann
be normalized and thus is not a bound state. In this c
hm(0) gets no additional term and Eq.~57! is not modified.
Whenm.1, however,nm

2→nm
2115nm andhm(0) gets an

additionalp if a zero-energy solution~a bound state! actu-
ally exists. In three dimensions, withV(r )5Va(r ) and
El050, the exterior solution of Eq. (248) reads

x l0
1~r !5r 2 l .

This is normalizable whenl .0. Thus onlyl 50 is distin-
guished. When thel 50 solution really emerges,d0(0) gets
the

o

o
al

-

of

a
r-

n

t
se

an additionalp/2 as pointed out in Sec. III, and the Levinso
theorem is modified byn0→n011/2. This is different from
the casem50,1 in two dimensions wherehm(0) always
equals a multiple ofp. When l .0 the case is basically th
same asm.1 in two dimensions.

2. About hm(`). We write down two radial equation
for umk(r ) and ũmk(r ) in the external potentialsU(r ) and
Ũ(r ), respectively. Using the boundary condition~50! and
the asymptotic form~44! for umk(r ) and similar ones for
ũmk(r ), it is easy to show that

sin@hm~k!2h̃m~k!#52
pm

\2kE0

`

dr @U~r !2Ũ~r !#

3umk* ~r ! ũmk~r !. ~61!

Now we take U(r )5V(r ) @not necessarilyVa(r )# and
Ũ(r )50, it is natural to defineh̃m(k)50 in the absence o
an external field. Obviously,ũmk(r )5umk

(0)(r ), so Eq. ~61!
becomes

sinhm~k!52
pm

\2kE0

`

dr umk* ~r !V~r !umk
~0!~r !. ~62!

For very largek, V(r ) can be ignored in the radial equatio
since it is less singular thanr 22 near the origin and well
behaved elsewhere as assumed and so can be neglecte
erywhere@cf. Eq. ~24!#. Thereforeumk(r ) in Eq. ~62! can be
replaced byumk

(0)(r ) in this limit, and we have for very large
k

sinhm~k!52
pm

\2kE0

`

dr uumk
~0!~r !u2V~r !. ~63!

Substitutingumk
(0)(r )5AkrJm(kr) into this equation, and then

substituting the asymptotic formula for the Bessel functi
ask is large, we have approximately

sinhm~k!52
2m

\2kE0

`

dr cos2S kr2
mp

2
2

p

4 DV~r !.

~64!

Further, sincek is very large, the cosine oscillates very ra
idly and thus the squared cosine may be replaced by its m
value 1/2. In this way we arrive at

sinhm~k!52
m

\2kE0

`

dr V~r ! ~65!

for very largek, where we assume that the integral exis
This result has the same form as that in three dimensions
course it holds in the special caseV(r )5Va(r ). Obviously,
sinhm(k)→0 when k→`, hence we can freely defin
hm(`)50. Under this convention the Levinson theore
takes the form

hm~0!5nmp, m50,1,2, . . . . ~66!

This means that the phase shift at threshold serves a
counter for the bound states. This is similar to the case
three dimensions, but is somewhat simpler. In three dim
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sions, the casel 50 should be modified when there exists
zero-energy resonance~a half bound state!. Here we have no
such problem.

3. Extension to more general potentials. In the above de-
velopment of the Levinson theorem, we have assumed
V(r )50 whenr .a. We also assumed thatV(r ) is less sin-
gular thanr 22 whenr→0, so that the power dependence
Eq. ~13! nearr 50 is valid. Indeed, the existence of the i
tegral in Eq.~65! requires thatV(r ) is less singular thanr 21

whenr→0. We will always assume thatV(r ) is sufficiently
well behaved near the origin such that the above requ
ments are all satisfied. On the other hand, the radiusa be-
yond whichV(r ) vanishes is not specified in our discussio
Though bothhm(0) andnm in Eq. ~66! depend on the par
ticular form of V(r ) and thus depend ona, the equality be-
tween them does not. Hence one expects that Eq.~66!
at

e-

.

remains valid whenVa(r ) is varied continuously to the limit
a→` if nm remains finite in the process. It seems that t
Levinson theorem holds for quite general potentials~well
behaved near the origin as emphasized above! as long as they
decrease rapidly enough whenr→` such that the total num
ber of bound states in a particular angular momentum ch
nel is finite. Extension of the present work to relativist
quantum mechanics is currently in progress.
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