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Levinson theorem in two dimensions
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A two-dimensional analog of Levinson’s theorem for nonrelativistic quantum mechanics is established,
which relates the phase shift at thresh@eéro momentumfor the mth partial wave to the total number of
bound states with angular momentunmz (m=0,1,2...) in an attractive central field.
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I. INTRODUCTION 72
Hy=— - V2y+ V(1) y=Ey. (@)
In 1949, a theorem in quantum mechanics was established H
by Levinson[1], which relates the phase shift at threshold\ye yse the polar coordinates, §) as well as the rectangular
(zero momenturnfor thelth partial wave5(0), to thenum-  cqordinates X,y) in two spatial dimensions. For scattering
ber of bound states with the same azimuthal quantum nums ohlemsE>0 (we assume thaV—0 more rapidly than

ber, n;. This is one of the most interesting and beautiful . -2 whenr —). The incident wave may be chosen as
results in nonrelativistic quantum theory. The subject was

then studied by many authors; some are listed in the Refs. U= e, 2)

[2-5]. The relativistic generalization of Levinson’s theorem

has also been well establishigd-8|]. However, most of these which solves Eq. (1) when r—o provided that

authors deal with the problem in ordinary three-dimensionak = \/m The scattered wave should have the

space. To our knowledge a two-dimensional version ofasymptotic form

Levinson’s theorem was not presented in the literature. The

purpose of this work is to develop an analog of this theorem r—o i kr

in two spatial dimensions. It relates the phase shift at thresh- ¥s — Vrf(0)e™, )

old for the mth partial wave,n,(0), to thetotal number of

bound states with angular momentun#, n.(the total num-  where the factor\i=e' ™ is introduced for later conve-

ber of bound states with angular momenturm# is also  nience. This also solves E@l) whenr—oo. It is easy to

Ny): show that the differential cross sectiotf#) (in two spatial

dimensions the cross section may be more appropriately

m(0)=Npm, m=0,12.... called cross widthis given in terms of the scattering ampli-

This is similar to but slightly simpler than the original one in tudef(6) by
three dimensions. In three dimensions Levinson's theorem

takes the same form witm replaced by. But whenl =0 the
relation must be modified if there exists a zero-energy res
nance(a half bound staje The mathematical origin is that
the behavior of the phase shif(k) neark=0 may be
different for =0 andl+#0. In two dimensions no similar row i .
situation occurs. This paper is organized as follows. In the P — et \[Ff(ﬁ)e'kr-
next section we give a brief formulation of the partial-wave

method for nonrelativistic scattering in two spatial dimen-\We are interested in central or Spherica”y Symme(taidu-
sions. In Sec. Il we discuss the behavior of the phase shiftg|ly cylindrically symmetric in two dimensionspotentials
near k=0 in some detail. In Sec. IV we establish the v(r)=V(r). In this paper we deal only with central poten-

Levinson theorem using the Green function meth®@®,5.  tials. Then solutions of Eq1) may be expanded as
Section V is devoted to the discussion of some aspects of the

theorem. te _
P(r,0)= 2 apRpy(r)em, (6)
Il. PARTIAL-WAVE METHOD IN TWO DIMENSIONS m=-—

iml4

a(0)=1f(0)|%. 4

OThe outgoing wave comprises E@8) and(3) and thus takes
the following form at infinity:

®

A particle with massu and energyE moving in an exter- whereR(r) satisfies the radial equation
nal field V(r) satisfies the stationary Schiinger equation ) )
m
=27V —7|Ry=0, m=012....

*Mailing address. (7

" 1 !
Rm+ ?Rm-i-
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If V=0, the regular solution of Eq7) is the Bessel function R,(r) with the boundary conditiofB), which is proportional
and may be taken a&{%(r)= \kJ,(kr) and hence has the to f.(r,k), need not be an integral function kof We denote

asymptotic form a potential that satisfieg(r) =0 whenr>a>0 by V,(r). In
such potentials the solution of E(Z) whenr>a may take
o= [2 mm o the form
RﬁT?)(r) — F(:O%kr_T_Z)' (8)

R* (1) = VK[ cospmdm(Kr) = singNm(kr)],
We have assumed thel(r)— 0 more rapidly tham ~2 when " e e

r—oo, so the solutiorR,(r) approaches the form of a linear m=0,1,2..., (14)
combination of the Bessel function and the Neumann func-
tion at larger and may have the asymptotic form where the superscript +" indicates r>a. It is easy to

verify thatR. (r) indeed satisfies the boundary conditi®
9) Whenr<a we have

r—oo mar T
Rn(r) — Fcos{kr— -~ 7+ (k) |-
Here n(K) is the phase shift of theth partial wave. It is a R0 =An(0Tn(r.k), - m=012.... {19
function ofk. As in three dimensions, alj,(k) are realina where the superscript “” indicates r<a. In general the
real potential. Substituting Eq9) into Eq. (6) gives one coefficient A, depends onk, so that the two parts of
asymptotic form fory, while substitution of the formula Ry (r) can be connected smoothly 1at a. This leads to

_ PIn(p) = Brm(p)Im(p)

+ oo

ekx= D' jlmg  (kr)e™? (10) tang,=— , (16)
w I 7™ pNi(p) = B p)Nir( )
and the asymptotic form of the Bessel functions into &). wherep=ka and
gives another. Comparing these two asymptotic forms one
finds an expression fdi(#) in terms of the phase shifts: afy(ak)
+ oo fm(ank)
2
_ Al 7mlei imé . - . .. .
f(e)_m;w K& mising|m e 1D where the prime indicates differentiation with respect to

As mentioned abovef,,(a,k) is an integral function ok,
The total cross sectioar, turns out to be and so isf;(a,k). Moreover, both of them are even func-
tions ofk since Eq.(7) depends only ok?. Therefore when

(e 4 _— k—0 or p—0, the leading term foB,,(p) may have one of
7 fo d8 o(6)= F( S|n2170+2mZ:1 Sm27”“>' (12 the following forms:

From the above relations one easily realizes that all informa- Bm(p)ﬂa;pm;,

tion of the scattering process is contained in the phase shifts

nm(K). The latter are determined by solving the radial equa-

tion (7) with the boundary conditio®) and thus depend on

the particular form o#/(r). In an attractive field, the number

of bound states with given angular momentamfi, denoted

by nr,, above, also depends on the particular fornVéf). It~ wherea,,, ay,, andy,, are nonzero constants, whilg and

will be shown thatn,, is related tony,(k) at threshold. This | are natural numbers. Using these relations and the leading

is similar to Levinson’s theorem in three dimensions. In theterms of J,(p) and N,,(p) for p—0, the leading term in

next section we first discuss the behavior @rf](k) near tany,, when p—0 can be exp||c|t|y worked out. When

k=0. vYm=—mM some care should be taken. However, careful
analysis gives in any case

Brnlp)— amp2'm,

Bm(p)— yYmt amPZ|ma

Ill. PHASE SHIFTS NEAR THRESHOLD
T

Assuming thatV(r) is less singular tharr =2 when tany,—bmp?m  or o, (k=0), (18
r— 0, then the regular solution of the radial equati@ghmay p
have the following power dependence omearr =0: whereb,,# 0 is a contant an@,, is a natural number. Equa-
(o M tion (18) is important for the development of the Levinson
fo(r.k) — ST m=0,12.... (13)  theorem in the next section.

For comparison we give the corresponding results in three
dimensions. The phase shifts are denoteddhik). By a

Here we denote the regular solution of E@) with the similar analysis it can be shown in a potentig)(r) that

boundary condition(13) by f.,(r,k). Note that Eq.(7) de-
pends ork only throughk?, which is an integral function of tans,—cp?~1, 1=0,12... (k—0), (18)

k, and the boundary conditiaid3) is independent ok. Thus

a theorem of Poincareells us thatf,(r,k) is an integral wherec,;#0 is a constant, and, is a natural number for
function of k for a fixedr. On the other hand, the solution # 0, while gy may be a natural number or zero. We see that
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6,(0) generally equals a multiple af for all |. But y(0) For an attractive field we have a discrete spectréy, < 0)
gets an additionair/2 whengo=0. The latter case does not as well as a continuous spectrufg{.>0). We can, how-
occur for anyn,(0), which is obvious from Eq(18). The ever, require the wave functions to vanish at a sufficiently
difference between Eq18) and Eq.(18) comes from the large radiusk [R>a for V,(r)] and thus discretize the con-
fact that the Neumann function in the solutiti¥) involves  tinuous part of the spectrum. In this case the upper limit of
the logarithmic function while the spherical Neumann func-the integration in Eq(25) should be replaced by. It is easy
tion in the three-dimensional solution does not. It can beo show that

shown thatsy(0) gets an additionak/2 when there exists a L
half bound statgla zero-energy resonancen the angular , ,
momentum channdl=0 ¥ ; G(r,r",E)=Go(r.,r',B) 5—

IV. THE LEVINSON THEOREM

Now we proceed to establish the Levinson theorem by the
Green functlon method. We introduce the retarded Greeﬂ/here
function G(r,r’,E) defined by

o P (D) (1) . Une(F)U% (1) )
E)= 2 EEie 19  Gm(r.r'.E) EK) TEErig ™ 012....
(27)

For a free particle, the following results can be obtained in
the same way:

where{y,(r)} is a complete set of orthonormal solutions to
Eg. (1), ande=0". G(r,r’,E) satisfies the equation
(E—=H+ie)G(r,r',E)=6(r—r"). (20

1
(0) ' )] ' -
For a free particle we have a similar definition: G B) =Gy (r.r",E) 2@

PP () S cosn(6—6')
O p=S """ U/ +2> GY(r " E)———,
GO(r,r'E) 2 o (21) 2, GR( )——
(0) i . (28
where{y,(r)} is a complete set of orthonormal solutions to
Eq. (1) with V=0. GO(r,r’,E) satisfies where
(E-—Ho+ie)GO(r,r",E)y=6(r—r’), (22 DUQ*(r")
GO(r,r' E)= Z u (0)( , m=012...,
whereH, is the Hamiltonian of the free particle. We have NI (E-Ep,tie)
the integral equation fo&(r,r’,E): (29
, o Y O ) whereu{%(r) satisfies Eq(24) with V=0, and the energy
G(r,r',E)=G(r,r ’E):f dr” G(r,r", E)V(r") spectrum E{%>0) is discretized according to the above-
o described prescription. Thus the orthonormal relation for
XG(r',r',E). (23 4O)(r) is similar to Eq.(25). Substituting Eqs(26) and (28)

In a central fieldV(r)=V(r) [not necessaril\W,(r)], we into Eq.(23) we get an integral equation f@(r.r’,E):

have Gm(rlr,lE)_GE’T(]J)(rlr,lE)
Ujmy (1) €M7
P (1, 0)=thn(r,0)= TE m=0,=1,=2,..., zf dr’ "GO (r,r" E)W(r")Gum(r",r' E),
where k is a quantum number associated with the energy m=0,1,2.... (30

Em., Which is determined by solving the radial equation
Using the orthonormal relatiof25) it is easy to show that
—-1/4

hZ(EmK )_ r2

Une=0, m=0,12...,
(24)

1
J' dr er(r,r,E)=E m (32
K Mk

with appropriate boundary conditions in the radial direction.Employing the mathematical formula
The radial wave functions, (r) satisfy the orthonormal
condition 1

X+ie

= P;—iwé(x) (32)

Ui »Umner ) = wdru* MUy (1) =6, 25 i i ) .
(U ) fo mel 1)U (1) 9 and taking the imaginary part of the above equation we have



ImJ dr er(r,r,E)=—7-rZ S(E—En,)- (33
Integrating this equation ovéf from —« to 0~ yields

Imf(rdE f dr rGy(r,r,E)=—n_m, (39

wheren,, is the number of bound states with negative ener

gies and with angular momentum# (whenm=0 we have

the same number of bound states with angular momentu
—m#A as wel). The possibility of a zero-energy bound state
will be discussed in the next section. In a similar way one

can show that

ImJ'(rdE f dr rG'9(r,r,E)=0. (35)

Here and in Eq(34) the integration oveE is performed to
the upper limit 0" instead of O such that it suffers no ambi-
guity. Combining Eqgs(34) and(35) we have
Imf0 dE f dr r[Gp(r,r,.E)—G2(r,r,[E)]=—n_ .
(36)
On the other hand, substituting Eq27) and (29) into the
right-hand side of Eq(30) we have
f dr r[Gp(r,r,E) =GO (r,r,E)]

(Umer i) (Ut V Uig)
o (E—EQ +ie)(E—Ep,tie)

37)

Using the radial equations fcuﬁ,?,((r) and u,,,(r) and the
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Imj+xdE f dr r[Gu(r,r,.E) =GO (r,r,E)]=n_ .
o
(41)

We have thereupon finished the first step in our establish-
ment of the Levinson theorem.
The next step is to calculate the left-hand side of @4)

in another way. In the above treatment we have discretized

the continuous spectrum &) and the continuous part of

Em«- In the following we will directly deal with these con-

tinuous spectra. We will denota’®)(r) by ul%r), and

Um.(r) with continuousk by uy,(r), whereas thosa,,(r)
with discretex (bound stateswill be denoted by the original
notation. The notation&{®) andE,,, with continuousx will
also be changed toE!") and E, (both are equal
to #2k?/2u), respectively. The orthonormal relation for
u(r) now takes the form

(Ui Ui ) = S(k—=K"). (42
The orthonormal relation fau,,(r) is similar, while that for
Um.(r) has the same appearance as &%). It is easy to

show that
um(r)=krdn(kr), k= V2uEN/A

satisfies the radial equation with=0 and the orthonormal
relation (42). Thusu)(r) has the asymptotic form

©) r—m\F mm
umk(r)—> ECO kr——z——z

corresponding to Eq8). In an external field, the wave func-
tions are distorted and thus the asymptotic formugg(r)
becomes

(43

r—o

Uni(r) —

2 mmT T
;Cos{kr— -5 = Z+ Um(k)

. (49

boundary condition that these radial wave functions vanish a&orresponding to Eq(9). Note that the coefficient in the

r=0 andr =R, it is not difficult to show that

(U0 V) = (Eme— Eon (Ul up,).

K

(39

Substituting this result into E¢37) and taking the imaginary
part we have

ImJ dr r[Gu(r,r,.E)—GO(r,r,E)]

=7, [8(E—E) = 8(E—Eme) 11(UQ,Umy)|2.

KO

(39

Integrating this equation ové& from — oo to + o< it is easy to
find that

|mf+°°dEfdr r[Gu(r.r,E)—GO(r,r,E)]=0.
(40)

asymptotic form is the same far0)(r) andup(r). In this
treatment it can be shown that

umK(r)u:nK(r,)
Gy(r,r' E)=
mlF.rE) 2 VIt (E—E +ie)

Ui U1

dk
VIT ' (E—=Etie)

+

(45)
and thus

Imj dr rG(r,r,E)=—m>, 8(E—Em,)

_Wf dk 5(E_Emk)(umk,umk).
(46)

Integrating this equation ovet from 0~ to +o0 and taking

Similar to the three-dimensional case, this equation meang, account the fact tha,, <0 while E, =0, we have
that the total number of states in a specific angular momen- )

tum channel is not altered by an attractive field, except that
some scattering states are pulled down into the bound-state

region. This result, together with E(B6), leads to

ImfotwdEfdr er(r,r,E)=—7rf dk (UmisUmp) -
(47)
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There is no ambiguity in the integration ovEr since the
lower limit is set to be 0 instead of O(note thatE,,, may

equal Q. As before, the possibility of a zero-energy bound
state will be discussed in Sec. V. In the same way, we have© far in this sectiorV(r) need not be/,(r). In the follow-

. sin2krg
lim ———
ro—® mk

= 5(K).

ImJ dEJdr rG(°>(r,r,E)——7TJ dk (ul%,ul).
(48)

It should be pointed out that the integrands in both &q)
and Eg.(48) are §(0)(==) according to Eq.(42) and a

similar equation fow,,(r). However, there is a subtle dif-

ference between these twbfunctions, and it is this differ-

ence that leads to the Levinson theorem. Since both inte-

grands are singular, we first evaluate
© 0 o
(umkvuml)ro_(umk!uml)roE JO dr umk(r)uml(r)

- | ar ugrouio,

(49

wherer is a large but finite radius, and finally take the limit
|—k andry—. As in the discretized case, we have the

boundary condition

uPN(0)=0, upy(0)= (50)

Using the radial equation and this boundary condition it is

easy to show that

(T Umi(To)-
(51)

(kz_lz)(umkvuml)ro mk(ro)uml(ro) U

Sincer, is large, we can use E¢44) to evaluate the right-
hand side(rhs) and in the limitl—k we get

m

ro 1, (—)
(Umkaumk)roz_ ;ﬂm(k)—mcoizwﬁzﬁm(kﬂ-
(52)
In the same way we have
(u® Ul (_)mCOSZ(I’ (53)
mk 1 Umk I’o 2k 0-
Therefore,
(Uit~ (U4 U, = (k)
mk>Umir, mk +HmkJro = m
(_ m
8(K)sin27(K)
+(_)mc052kr sir? 7m(K)
wk oSIN” 7y, ’
(54)

where we have employed the well-known formula

ing we setV(r)=V,(r). Then Eq.(18) is valid, and we have
sin27,(0)=0. Therefore the second term on the rhs of Eq.
(54) vanishes. Integrating this result ovér (from 0 to

+ ), taking the limitry—o0, and incorporating the results
(47), (48) we arrive at

Imf defdr r[Gu(r,r,E)=G9(r,r,E)]
o
= m(0) = Pm(®) — (= )mrggnm

xj dk%z“o sirt 7,.(K).
0

The last term in this equation can be decomposed into two
integrals, the first from 0 te=0", which can be shown to
vanish on account of Eq18), while the second fronz to
+90, which also vanishes in the limiy— o since the factor
cosXr, oscillates very rapidly. Therefore we have

(59

Imf wdEfdr r[Gu(r,r, E)=G9(r,r,E)]
o

= 7m(0) = 7m(*). (56)

Combining Egs.(56) and (41) we arrive at the Levinson
theorem:

m=0,1,2 .... (57

In the next section we will discuss some aspects of this theo-

rem, and get a more general form that takes zero-energy
bound states into consideration.

7m(0) = 7pm(%°) =Ny,

V. DISCUSSIONS

In this section we discuss and clarify some aspects of the
Levinson theorem obtained in the form E&?7) in the last
section.

1. On zero-energy bound statds Sec. IV we did not
take into account the possible existence of a zero-energy
bound state. Indeed, this may occur for a square-well poten-
tial with radius a and depth Vo when m>1 and
Jn_1(8)=0 where &£=kpa and ko=+2uVy/h. (For
m=0,1 regular solutions with zero energy may be found but
they are not normalizable and thus are not bound states; see
below) The existence of a zero-energy bound state would
not alter the result$34)—(36) wheren,, is the number of
bound states with negative energies. Therefore (Ef). re-
mains valid in this case. On the other hand, &) becomes

ImjotxdE J dr er(r,r,E)Z—ﬂT—ﬂTj dk (Umi;Umi) s
(58)

which is an obvious consequence of E46). Accordingly,
the result(56) becomes

ImedE f dr r[Gu(r,r,.E)—GO(r,r,E)]
o
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= 9m(0) — () — 7, (599  an additionakr/2 as pointed out in Sec. lll, and the Levinson
theorem is modified byz— ny+ 1/2. This is different from
Hence, the Levinson theorem takes in the present case thge casem=0,1 in two dimensions wherey,,(0) always
form equals a multiple ofr. Whenl>0 the case is basically the
same asn>1 in two dimensions.
7m(0) = 7m(%0) =N, (60 2. About 7,,(). We write down two radial equations

where n,=n.,+1 represents the total number of bound for umy(r) andum(r) in the external potentialt(r) and

states, including the one with zero energy. When there is n&/(r), respectively. Using the boundary conditi¢g0) and
zero-energy bound state,,=n-,. Thus Eq.(60) holds in Erje asymptotic form(44) for un,(r) and similar ones for

any case and is the final form of the Levinson theorem.  Umi(r), it is easy to show that
To see the difference in zero-energy states between two
and three dimensions, we notice that the two-dimensional ; - - W”fw ]
' Si K)— 7m(K)]=— 55| dr [U(r)—U(r
radial wave functionu,(r) satisfies Eq.(24). When re- (k)= ()1 == 5523 0 LU =U(n)]
garded as a one-dimensional Satinger equation, the effec-

tive potential reads XUR () UmidT). (61)
- #2(m?—1/4) Now we take U(r)=V(r) [not necessarilyV,(r)] and
Va(r)=V(r)+ 2ur? U(r)=0, it is natural to defines,(k)=0 in the absence of

an external field. Obviouslyy(r)=u'%(r), so Eq.(61)

where the subscript “2” indicates two dimensions. In threepecomes
dimensions, Withym,(r,8,6)=1"1x1.(r)Ym(8,¢) (here

r, 8, etc. should not be confused with those in two dimen- ) T [ . )
siong, the radial wave functiomy, (r) satisfies Sinym(K) == 22 . dr up(NDV(Nupm(r). (62
X+ Z_M(E —\V)— I(1+1) X1.=0, 1=0,1,2 For very largek, V(r) can be ignored in the radial equation
e 2 e r? b e since it is less singular than 2 near the origin and well

(24)  Dbehaved elsewhere as assumed and so can be neglected ev-

erywhere[cf. Eq. (24)]. Thereforeu,(r) in Eq. (62 can be

replaced byu{°)(r) in this limit, and we have for very large

k

When this is regarded as a one-dimensional Stihger
equation, the effective potential is

A2(1+1)

Vo) =V(1) + ey | . T ([

3(N=V(r) 2ur? smnm(k):—mfo dr [ulQ(r)|2V(r). (63)
which is obviously different fromV,(r), and as a conse-
guence the zero-energy solutions are different from those
Eq. (24). More specifically, withV(r)=V,(r) andE,,=0,
the exterior solutionr(>a) of Eq. (24) reads

o?ubst_itut_ingjﬁ,?,l(r) = \/WJm(kr) into this equation, and then
Substituting the asymptotic formula for the Bessel function
ask is large, we have approximately

_ 2 ® mm T
Umo(r)=r~m+12 Sinyy,(k)=— ﬁ—ér(fo dr cosz( kr— - - Z)V(r).
A zero-energy solution exists W,(r) is such that the inte- (64)

rior solutionu(r) can be connected with,(r) atr=a . . : .
. . . Further, sincek is very large, the cosine oscillates very rap-
smoothly. This leads to the above-mentioned condition for a ) ;
: idly and thus the squared cosine may be replaced by its mean
square-well potential. Here we are concerned about the nor-

malizability of the solution. It is clear that the above solutionvaIue 1/2. In this way we arrive at

can be normalized and thus is a bound state only when w (=
— e Sinnm(k):_Tf dr V(r) (65
m>1. We havey,, — 0, andiyq, is finite at infinity though ko

r—o

Uoo(r) — =, thus both are regular. But either of them cannotfor very largek, where we assume that the integral exists.
be normalized and thus is not a bound state. In this casghis result has the same form as that in three dimensions. Of
7m(0) gets no additional term and EG7) is not modified.  course it holds in the special ca¥ér)=V,(r). Obviously,
Whenm>1, howevern, —ny+1=ny and 7,(0) gets an  siny(k)—0 when k—c, hence we can freely define
additional 7 if a zero-energy solutiofa bound stajeactu- 4 ()=0. Under this convention the Levinson theorem
ally exists. In three dimensions, witNW(r)=V,(r) and takes the form
E ;=0, the exterior solution of Eq. (2} reads
7m(0)=npm, m=0,12.... (66)
oyl
Xio(r)=r". . .

This means that the phase shift at threshold serves as a

This is normalizable wheh>0. Thus onlyl =0 is distin-  counter for the bound states. This is similar to the case in

guished. When thé=0 solution really emergesi,(0) gets  three dimensions, but is somewhat simpler. In three dimen-
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sions, the casé=0 should be modified when there exists aremains valid wherv(r) is varied continuously to the limit
zero-energy resonanca half bound staje Here we have no a—« if n,, remains finite in the process. It seems that the
such problem. Levinson theorem holds for quite general potentigi®ll

3. Extension to more general potentials the above de- behaved near the origin as emphasized abaséong as they
velopment of the Levinson theorem, we have assumed thgfecrease rapidly enough whess such that the total num-
V(r)=0 whenr>a. We also assumed th¥f(r) is less sin-  per of bound states in a particular angular momentum chan-

-2 i . .. . L.
gular thanr = whenr—0, so that the power dependence innej s finite. Extension of the present work to relativistic
Eqg. (13) nearr=0 is valid. Indeed, the existence of the in- guantum mechanics is currently in progress.

tegral in Eq.(65) requires thaw/(r) is less singular than™*
whenr—0. We will always assume that(r) is sufficiently
well behaved near the origin such that the above require-
ments are all satisfied. On the other hand, the radile-
yond whichV(r) vanishes is not specified in our discussion. The author is grateful to Professor Guang-jiong Ni for
Though both%,,(0) andn,, in Eq. (66) depend on the par- useful communications and for encouragement. This work
ticular form of V(r) and thus depend oa, the equality be- was supported by the National Natural Science Foundation
tween them does not. Hence one expects that (B  of China.
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