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Generalized Hartree-Fock method for electron-atom scattering

Leonard Rosenberg
Department of Physics, New York University, New York, New York 10003

~Received 6 January 1997; revised manuscript received 7 May 1997!

In the widely used Hartree-Fock procedure for atomic structure calculations, trial functions in the form of
linear combinations of Slater determinants are constructed and the Rayleigh-Ritz minimum principle is applied
to determine the best in that class. A generalization of this approach, applicable to low-energy electron-atom
scattering, is developed here. The method is based on a unique decomposition of the scattering wave function
into open- and closed-channel components, so chosen that an approximation to the closed-channel component
may be obtained by adopting it as a trial function in a minimum principle, whose rigor can be maintained even
when the target wave functions are imprecisely known. Given a closed-channel trial function, the full scattering
function may be determined from the solution of an effective one-body Schro¨dinger equation. Alternatively, in
a generalized Hartree-Fock approach, the minimum principle leads to coupled integrodifferential equations to
be satisfied by the basis functions appearing in a Slater-determinant representation of the closed-channel wave
function; it also provides a procedure for optimizing the choice of nonlinear parameters in a variational
determination of these basis functions. Inclusion of additional Slater determinants in the closed-channel trial
function allows for systematic improvement of that function, as well as the calculated scattering parameters,
with the possibility of spurious singularities avoided. Electron-electron correlations can be important in ac-
counting for long-range forces and resonances. These correlation effects can be included explicitly by suitable
choice of one component of the closed-channel wave function; the remaining component may then be deter-
mined by the generalized Hartree-Fock procedure. As a simple test, the method is applied tos-wave scattering
of positrons by hydrogen.@S1050-2947~97!01509-6#

PACS number~s!: 34.80.Bm, 34.80.Kw, 34.10.1x
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I. INTRODUCTION

Well established procedures exist for the calculation
electron-atom scattering parameters based on the us
Slater determinants to represent wave functions, for both
target and the full scattering system@1–3#. At the simplest
level, a continuum projectile wave function is combined w
the Hartree-Fock target wave function and is determin
with the aid of the Kohn variational principle. In a mor
ambitious procedure@2# one attempts to account for virtua
excitations of the target by adding to the open-channel c
ponent of the wave function a Slater determinant~or a sum
of such determinants!. Each single-particle function appea
ing in the antisymmetrized product is represented as a su
position of Slater orbitals, with the linear expansion coe
cients then determined by applying the Kohn variatio
principle.

Here we propose an alternative procedure, one wh
stays closer to the original Hartree-Fock strategy, which is
find the ‘‘best’’ Slater determinant. This leads to a set
coupled integrodifferential equations for the single-parti
wave functions which must be solved self-consistently. E
perience gained in the solution of similar sets of equati
appearing in the analogous bound-state problem should
helpful in this task. Specifically, we recall that the Rayleig
Ritz minimum principle plays a useful role in determinin
the single-particle Hartree-Fock bound-state wave functio
represented as a superposition of Slater orbitals, by provid
a criterion for making the optimum choice of nonline
variational parameters appearing in these orbitals@4#. An
analogous minimum principle is available for the scatter
problem and we base our approach on this principle; it
561050-2947/97/56~3!/1920~9!/$10.00
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recently been extended to account for antisymmetrization
plicitly and to include scattering of electrons by positive io
@5#. It is reasonable to expect that by optimizing the ba
functions for the scattering problem at hand, rather th
working with predetermined Hartree-Fock bound-state or
als, better convergence properties can be attained. Sinc
minimum principle determines the best trial function in
given set, convergence is monotonic, the calculated ph
shifts increasing steadily as the trial function is made m
flexible. In particular, such calculations are free of the ne
singularity difficulties that can arise~unless special measure
are taken to avoid them@2#! in applications of the Kohn
principle.

The scattering formalism which provides the basis for
minimum principle and for the development of the gener
ized Hartree-Fock method is reviewed in Sec. II. The use
Slater determinants to represent the closed-channel com
nent of the wave function is described in Sec. III, along w
an iterative procedure for generating approximations
steadily increasing accuracy. Modifications of the meth
designed to account explicitly for the effects of long-ran
polarization forces and of resonant interactions, within
context of the generalized Hartree-Fock approach, are
sented in Sec. IV. An application of the method to positro
hydrogen scattering is described in Sec. V. Results are s
marized in a concluding section.

II. SCATTERING FORMALISM

The essential limitation of the method to be described
that the scattering energy must lie below the ionizat
threshold. Additional restrictions are introduced here to s
1920 © 1997 The American Physical Society
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56 1921GENERALIZED HARTREE-FOCK METHOD FOR . . .
plify the presentation. We confine the present discussio
the scattering of an electron by a target consisting ofN elec-
trons bound to a fixed nucleus of chargeZueu, which in the
LS coupling scheme has zero orbital angular momentum
spinST . Single-channel scattering is assumed, with the m
general multichannel problem discussed in the Appen
The target ground-state wave functionxT , normalized to
unity, is coupled to the spin function of the projectile
produce a functionx having well-defined total spin and spi
projection. We use the notation

xT~ n̄;ST ,MT!5xT~1,2,...,n21,n11,...,N11;ST ,MT!
~2.1!

to denote the antisymmetrized target function, with the sy
bol j representing the space and spin coordinates of thej th
particle, for the system from which thenth electron has been
removed. The functionx(n̄)5x(1,2,...,n21,n11,...,N11)
represents the result of coupling the spin of the target w
that of thenth electron; the resultant spin quantum numb
are suppressed in this notation.@For states with the same sp
quantum numbers the normalization condition^x(n̄)ux(n̄)&
51 holds, with the understanding that integrations ran
over the spatial coordinates of the target and sums oveall
spins are taken.# The eigenvalue equation for the target in
ground state is

h~n!ux~ n̄!&5eux~ n̄!&, ~2.2!

and the Schro¨dinger equation for the full scattering system
(H2E)C50, with the total energyE taken here to lie be-
low the first excitation threshold. It will be convenient
decompose the Hamiltonian as

H5K~n!1V~n!1h~n!, ~2.3a!

whereK(n) represents the sum of the kinetic energy of t
nth electron and its monopole Coulomb interaction with t
residual system, whose Hamiltonian ish(n). This leaves
V(n) to represent the interaction, with the monopole Co
lomb component removed, of thenth electron with the re-
sidual system; thus

V~1!52
Ne2

r 1
1 (

j Þ1

N11
e2

r 1 j
. ~2.3b!

We look for the scattering wave function in the form

C~1,2,...,N11!5Ax~ 1̄! f ~1!1M ~1,2,...,N11!,
~2.4!

with the residual antisymmetrizer defined, in terms of t
operatorPi j that interchanges the space and spin coordin
of the pairi j , as

A512 (
j 52

N11

P1 j . ~2.5!

The proper antisymmetrization of the scattering function
Eq. ~2.4! is verified using the relationP1 jx(1̄) f (1)5
(21) jx( j̄ ) f ( j ), with the closed-channel functionM as-
sumed to be completely antisymmetric.
to
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Since the functionM , which describes virtual excitation
of the system, is asymptotically decaying one might exp
that it satisfies an equation involving a modified Hamiltoni
whose continuous spectrum lies above the scattering en
E. This is indeed the case, and it provides the basis for
introduction of a minimum principle applicable to the a
proximate evaluation of this function. The modified Ham
tonian is

Ĥ5H2 (
n51

N11

W~ n̄! ~2.6a!

with

W~ n̄!5(
MT

S h~n!uxT~ n̄;ST ,MT!&^xT~ n̄;ST ,MT!uh~n!

^xT~ n̄;ST ,MT!uh~n!uxT~ n̄;ST ,MT!& D .

~2.6b!

This form forW(n̄) is simplified by application of the targe
eigenvalue equation. However, whenxT is replaced by a trial
function, as required in general, the form given above is
be employed. It has been shown that with this version of
modified HamiltonianĤ adopted, its continuous spectru
lies at an energy that approaches the target excitation thr
old as the accuracy of the trial target wave function is
creased, in which case, for trial functions of sufficient acc
racy and for a range of energiesE in the elastic scattering
region, the operatorĤ2E will be positive @6#. To simplify
the following development of the formalism, the target fun
tion will be assumed to be exact.

We look for the functionM as the solution of the inho
mogeneous equation

~Ĥ2E!M52J, ~2.7!

where

J5AV̂~1!x~ 1̄! f ~1!, ~2.8!

and

V̂~1!5V~1!2 (
nÞ1

W~ n̄!. ~2.9!

With this choice the Schro¨dinger equation reduces, after
brief calculation, to

AFE2e2K~1!2 (
n8Þ1

W~ n̄8!Gx~ 1̄! f ~1!5 (
n51

N11

W~ n̄!M .

~2.10!

It will now be shown that this equation will be satisfie
provided the relation

@E2e2K~1!#x~ 1̄! f ~1!1W~ 1̄! (
nÞ1

~21!nx~ n̄! f ~n!

5W~ 1̄!M ~2.11!

holds. This is accomplished by makingN21 copies of Eq.
~2.11!, obtained by applying the interchange operato
P12,P13,...,P1N successively and making use of the an
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1922 56LEONARD ROSENBERG
symmetry property of the functionsx andM . In this way we
obtainN equations of the form

~21!n11@E2e2K~n!#x~ n̄! f ~n!1W~ n̄!

3 (
n8Þn

~21!n8x~ n̄8! f ~n8!5W~ n̄!M . ~2.12!

It remains to show that by adding these equations the o
nal equation~2.10! is regained. This is readily accomplishe
with the aid of the relations

(
n51

N11

~21!n11@E2e2K~n!#x~ n̄! f ~n!

5A@E2e2K~1!#x~ 1̄! f ~1! ~2.13!

and

(
n51

N11

W~ n̄! (
n8Þn

x~ n̄8! f ~n8!~21!n8

52A(
nÞ1

W~ n̄!x~ 1̄! f ~1!. ~2.14!

With Eq. ~2.11! thus established we project each side o
the target statêx(1̄)u and make use of the eigenvalue equ
tion ~2.2! and the relation̂x(1̄)uW(1̄)5e^x(1̄)u; in this way
we obtain the equivalent single-particle wave equation

@K~1!2E1e#u f ~1!&1e^x~ 1̄!u~A21!ux~ 1̄!&u f ~1!&

1e^x~ 1̄!uM &50. ~2.15!

An alternative version of this equation is often useful. W
first note that from Eqs.~2.3a!, ~2.6a!, and~2.9! we have

Ĥ5ĥ~1!1K~1!1V̂~1! ~2.16!

with ĥ(1)5h(1)2W(1̄) and^x(1̄)uĥ(1)50. With these re-
lations in mind we may evaluate the result of projecting b
sides of Eq.~2.7! onto the statê x(1̄)u; we find that @E
2K(1)#^x(1̄)uM &2^x(1̄)uV̂(1)uM &5^x(1̄)uJ&. Solving
formally for e^x(1̄)uM & and then substituting of the resultin
expression for into Eq.~2.15!, we obtain the relation

@K~1!2E1e#u f ~1!&1
e

E2K~1!
^x~ 1̄!uAV̂~1!

1@E2K~1!#~A21!ux~ 1̄!&u f ~1!&

1
e

E2K~1!
^x~ 1̄!uV̂~1!uM &50. ~2.17!

Equations ~2.7! and ~2.17! must be solved self-
consistently. The uniqueness of the solution of these s
consistency conditions, or rather their multichannel gener
zation, is established in the Appendix for the case in wh
the target wave function is of determinantal form. In
equivalent formulation of the theory a solution of Eq.~2.7!,
in terms of the negative-definite resolvent operatorĜ(E)
5(E2Ĥ)21, may be combined with Eq.~2.16! to arrive at a
i-

o
-

h

lf-
li-
h

single-particle wave equation expressed in terms of an ef
tive ~or optical! potential@5,7#. Thus we introduce the forma
solution M5Ĝ(E)J and define the propagator~with
principal-value prescription understood in the treatment
the singularity!

G5
1

E2e2K

e

E2K
. ~2.18!

The wave functionF is defined as the solution of (K2E
1e)F50, and normalized on the energy scale. Equat
~2.17! may then be reformulated as the integral equation

f 5F1GVf . ~2.19!

The effective potential may now be written asV5V(0)

1V(1) with

V ~0!5^x~ 1̄!u$AV̂~1!1@E2K~1!#~A21!%ux~ 1̄!&
~2.20!

and

V ~1!5^x~ 1̄!uV̂~1!Ĝ~E!AV̂~1!ux~ 1̄!&. ~2.21!

A convenient starting point for the introduction of varia
tional approximation methods is the resolvent identity

Ĝ5Ĝt1Ĝ@~Ĥ2E!Ĝt11#, ~2.22!

expressed here in terms of the trial resolventĜt . Equiva-
lently, we have, after a single iteration

Ĝ5Ĝvar1@~Ĥ2E!Ĝt11#†Ĝ@~Ĥ2E!Ĝt11#,
~2.23!

where the variational approximation to the resolvent is

Ĝvar5Ĝt1Ĝt@~Ĥ2E!Ĝt11#. ~2.24!

Since the error term in Eq.~2.23! is negative, these last two
relations provide the basis for the use of a minimum pr
ciple in the evaluation of matrix elements of the resolven

A number of numerical methods are available for solvi
the equivalent one-body scattering problem defined by
~2.19!. A particularly convenient method is provided by th
Kohn variational principle@8#, an application of which is
described in Sec. V.

III. SLATER-DETERMINANT FORM
FOR TRIAL FUNCTIONS

The component of the scattering wave function that
scribes virtual excitations satisfies the inhomogeneous e
tion ~2.7!. Assuming temporarily that the functionJ is
known, an approximate solutionMt may be obtained by
writing Mt5ĜtJ and minimizing the functional

F[^JuĜvaruJ&5^MtuĤ2EuMt&1^JuMt&1^MtuJ&.
~3.1!

One might choose, for example, a trial function of the fo
Mt5( iciF i , where the functionsF i may be constructed a
Slater determinants formed from a predetermined basis. W
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56 1923GENERALIZED HARTREE-FOCK METHOD FOR . . .
the linear expansion coefficientsci determined variationally
one obtains the improved approximationM var5ĜvarJ with

Ĝvar5(
i , j

uF i&~d21! i j ^F j u ~3.2!

and di j 5^F i uE2ĤuF j&. The minimum principle may be
used to optimize the choice of nonlinear variational para
eters in the basis functions, in analogy with standard tre
ments of the bound-state problem. Starting with a given t
functionMt , the approximation may be improved systema
cally by an iterative procedure in which the second-or
error term, defined by the identity~2.23!, is itself replaced by
a variational approximation thus providing an approximat
correct tothird order.

Rather than introduce a predetermined set of basis fu
tions one may, in the spirit of the standard Hartree-Fo
approach to the bound-state problem, attempt to derive
optimum determinantal wave function by requiring that t
functional ~3.1! be minimized. Once such a function, or a
approximation to it, has been obtained it may be adopted
the starting point for the above-mentioned iterative pro
dure in which improved approximations are obtained in
systematic way. Along with the obvious similarities with th
Hartree-Fock method there are distinct differences, aris
from the fact that here we look for solutions of aninhomo-
geneousdifferential equation. To bring out these differenc
in the clearest manner, we first consider the relatively sim
problem of elastic electron-hydrogen scattering, and t
electron-lithium scattering in a frozen-core model, as illu
trations of the method. An extension required to account
the effect of the polarizability of the target is described
Sec. IV.

The hydrogenic target wave function is represented a

x~ 1̄!5u~2!j6~1,2!, ~3.3!

whereu(2) is the spatial part of the hydrogenic ground-st
wave function andj6(1,2) is the normalized spin function o
the electron pair, the subscripts distinguishing between t
let ~1! and singlet~2! states. The simplest choice of close
channel wave function is a sum of determinantal functio
based on two single-particle spatial states denoted byua& and
ub&. In this approximation the full scattering wave functio
in the form ~2.4!, is then

C~1,2!5@u~2! f ~1!7u~1! f ~2!1a~2!b~1!

7a~1!b~2!#j6~1,2!. ~3.4!

To write down the form taken by the functional~3.1! we
define, following Eq.~2.6a!,

Ĥ5ĥ~1!1ĥ~2!1V~1,2!, ~3.5!

with V(1,2)5e2/r 12, ĥ( i )5K( i )1v( i )2euu( i )&^u( i )u,
and v( i )52e2/r i . @The spin sum in Eq.~2.6b! has been
performed using closure.# The modified electron-target inter
action, defined in Eq.~2.9!, is here given by

V̂~1!5v~1!1V~1,2!2euu~1!&^u~1!u. ~3.6!
-
t-
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In constructing matrix elements that appear in Eq.~3.1! we
use the notation̂xuĥuy&5ĥxy , ^xuvuy&5vxy , and

^w~1!u^x~2!uV~1,2!uy~1!&uz~2!&5Vwx;yz . ~3.7!

We then find that

1
2 ^M uĤ2EuM &5^aua&ĥbb1^bub&ĥaa7~^aub&ĥba

1^bua&ĥab!2E~^aua&^bub&7^aub&

3^bua&!1Vab;ab7Vab;ba , ~3.8a!

and

1
2 ^M uJ&5^auu&vb f7^buu&va f1Vba; f u7Vab; f u2e^auu&

3^uu f &^buu&~171!, ~3.8b!

with ^JuM &5^M uJ&* .
In the Hartree-Fock procedure for bound states

Rayleigh-Ritz functional is minimized subject to an orth
normality constraint placed on the single-particle basis fu
tions. Since we deal here with an inhomogeneous equati
normalization condition cannot be imposed. One might s
pose that in the triplet case, where, for example, the addi
to the functionb of a multiple of a leaves the functionM
unchanged, it would be desirable to impose an orthogona
condition in order to simplify the numerical calculation@1#.
In fact, the orthogonality property follows directly from th
equations; there is no lack of uniqueness in the solution
the following argument demonstrates.

We introduce the functionalF85F22^bua&@E^aub&
2ĥab#, that is, we subtract terms fromF that are propor-
tional to ^bua&, and require—the reason will soon be clear
that variations ofF8 with respect to the vector̂au, with no
constraints applied, should vanish. The resultant sing
particle equation is, in the triplet state,

ua&ĥbb1^bub&ĥua&2ub&ĥba2Eua&^bub&1Vb;bua&2Vb;aub&

1Vb; f uu&2Vb;uu f &1vb fuu&2vu f &^buu&50, ~3.9!

whereVx;y(1)[^x(2)uV(1,2)uy(2)&. When the statêbu is
projected onto each member of Eq.~3.9! we find that
^bua&@ ĥbb2E^bub&#50, the canceling of all other term
may be traced to the fact that one has effectively repla
a with b in the antisymmetrized product functio
a(1)b(2)2a(2)b(1). SinceE is not fixed we conclude tha
^bua& must vanish, so that the orthogonality condition is s
isfied automatically by functionsa andb determined by Eq.
~3.9!. Now the equation obtained by varyingF with respect
to ^au differs from Eq.~3.9! in that the left-hand side con
tains the additional term̂bua&@Eub&2ĥub&] which vanishes
for ^bua&50. It follows that this latter equation will be sat
isfied by a solution of Eq.~3.9!; thus the orthogonality of the
functionsa andb is a property of the solution that minimize
theoriginal functionalF. It is not difficult to show that when
the functionsa andb are each represented by a linear sup
position ( i 51

m ciaz i , a5a or b, of atomic orbitalsz i , the
orthogonality property is passed on to the vectors form
from the linear expansion coefficientscia . These coefficients
are to be determined self-consistently, but now algebraica
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1924 56LEONARD ROSENBERG
with the exponential parameters appearing in the atomic
bitals optimized with the aid of the minimum principle; th
is in close analogy with similar procedures that have pro
useful in the bound-state problem@4,9#.

In the singlet state the equation corresponding to Eq.~3.9!
takes the form

ua&ĥbb1^bua&ĥub&1^bub&ĥua&1ub&ĥba2E~ ua&^bub&

1ub&^bua&)1Vb;bua&1Vb;aub&1Vb; f uu&1Vb;uu f &

1vb fuu&1vu f &^buu&22e^buu&^uu f &uu&50; ~3.10!

the proof of the orthogonality of the functionsa andb does
not apply in this case.

The procedure described above leading to Eq.~3.9! for
the basis functions in the triplet state may be reformulate
an equivalent but more convenient manner. One omits fr
the functionalF terms containing the overlaps^aub& as well
as^bua&. The variation of this functional with respect toa is
set equal to zero. The resultant equation must be mod
since the vanishing of̂aub& does not imply that variations o
^aub& will vanish. The correct equation is obtained by i
cluding a termlub&, with l evaluated using the requireme
that the resultant equation have the property seen in
~3.9!—the left-hand member must be orthogonal toub&. This
requires thatl52ĥba . In this formulation @10#, the pre-
scription is easily generalized to apply to multiparticle app
cations where it considerably simplifies the analysis. As
illustration we briefly consider the form of trial functions th
may be used in a frozen-core model of electron-lithium sc
tering.

The antisymmetrized lithium-target trial wave functio
corresponding to spin projection 1/2, is taken to be

xT~ 1̄;1/2,1/2!5N~12P232P24!xc~3,4!u~2!a~2!,
~3.11!

whereN is a normalization constant anda~2! is a spin-1/2
function with projection11/2; the target state with projec
tion 21/2 is obtained by replacinga~2! with b~2!. The anti-
symmetric heliumlike core is represented as

xc~3,4!5c~3!c~4!j2~3,4!, ~3.12!

with ^cuc&51 and^cuu&50. We now couple the projectile
spin to that of the target to construct a triplet or singlet st
according to

x~ 1̄!5N~12P232P24!xc~3,4!u~2!j6~1,2!. ~3.13!

The approximate scattering wave function is of the fo
shown in Eq.~2.4!. Consistent with the frozen-core model
the target, the closed-channel wave function is chosen a

M5A~12P232P24!xc~3,4!a~2!b~1!j6~1,2!,
~3.14!

with A5(12P122P132P14); the core state is fixed and th
basis functionsa andb are to be determined by minimizin
the functional~3.1!. The modified Hamiltonian is that show
in Eq. ~2.6a!, with the exact target functionxT in Eq. ~2.6b!
r-

d

in
m

d

q.

-
n

t-

e

replaced by that corresponding to the frozen-core approxi
tion Eq.~3.11!. The functionJ has been defined in Eqs.~2.8!
and ~2.9! @11#.

We observe that the argument given earlier for t
electron-hydrogen system to the effect that the spatial fu
tions a andb in the triplet state, as determined by Eq.~3.9!,
are orthogonal, is immediately generalized. The proof re
on the antisymmetry of the functionM under interchange o
a andb, a property satisfied by the triplet version of the for
given in Eq.~3.14!. It is easily verified that in both the triple
and singlet states the addition of an arbitrary multiple of
core functionc to either of the functionsa or b leavesM , as
defined above, unchanged—the vanishing of the additio
term is most simply viewed as a consequence of the ex
sion of a third particle from a closed two-particle subshe
This property, rather than indicating a lack of uniquene
provides the basis for a proof that the equations determin
the functionsa andb ensure that each are orthogonal toc.
The argument is similar to the orthogonality proof used e
lier for e2-H scattering and alluded to just above. That
one may evaluate the functionalF, Eq. ~3.1!, by ignoring
overlaps of either of the functionsa or b with c. This elimi-
nates a large number of terms, thereby simplifying the c
culation. After setting the variation of this functional wit
respect toa or b equal to zero, the correct equation is o
tained by inserting a factor (12uc&^cu) before each term,
ignoring overlaps ofc with the functionsa, b, andu.

We do not record here the analogs of Eqs.~3.9! and~3.10!
for e2-Li scattering since they are rather lengthy. Rather,
conclude this discussion with the remark that the express
simplify considerably in the approximation that the spat
extent of the frozen-core functionc is small enough to justify
ignoring matrix elements connecting that function with t
other bound state and scattering orbitals. The equations
take on the form obtained for scattering by H, but contain
a correction in which the potentialv(1), the interaction of
particle 1 with the Li nucleus, is replaced by the shield
potential

vs~1!52
3e2

r 1
1^c~3!u

2e2

r 13
uc~3!&. ~3.20!

IV. LONG-RANGE FORCES
AND RESONANCE EFFECTS

The calculational procedure outlined above must be mo
fied in order to account explicitly for the effect, of particula
importance at low energies, of long-range forces arising fr
the polarizability of the target. Specifically, a representat
of the closed-channel wave function appearing in Eq.~2.4! as
an antisymmetrized product of single-particle orbitals th
decay asymptotically will be inappropriate—the long-ran
potential induces a power-law falloff. Inclusion of the effe
of long-range forces is accomplished most directly with t
aid of the variational treatment of the effective potential d
cussed at the conclusion of Sec. II. Thus with reference
Eqs.~2.21!–~2.23! we writeV(1)5Vvar

(1)1DV(1) with Vvar
(1) de-

termined such that it provides the dominant contribution
the effective potential at great distances. It would then
appropriate to apply the generalized Hartree-Fock proced



e

is
se
te

re

of
y
q

a
o

e

g
u

po
he

E

th
he

h

tial
ion
lied

nt
n

m-
n
a
ge

fre-
lic-
d
se

n

, the

pec-

um

xi-

de-

56 1925GENERALIZED HARTREE-FOCK METHOD FOR . . .
to the estimate of the error termDV(1); this is discussed
further below.

We begin by introducing the Green’s functionĝ(1)[@e
2ĥ(1)#21, where the modified target Hamiltonian was d
fined earlier asĥ(1)5h(1)2W(1̄). Note thatĝ is a negative
operator sincee lies below the minimum eigenvalue ofĥ
@12#. The ~antisymmetrized! trial Green’s function in the
adiabatic approximation, in which target polarization
evaluated with the projectile taken to be at rest, is cho
~under the assumption that it acts on antisymmetrized sta!
as

Ĝt5~N11!21Aĝ~1!. ~4.1!

With this form introduced into Eq.~2.22!, a variational ap-
proximation to the effective potential, Eq.~2.21!, is obtained
in the formVvar

(1)5V(1,1)1V(1,2). We find that

V~1,1!5~N11!21^x~ 1̄!uV̂~1!Aĝ~1!AV̂~1!ux~ 1̄!&.
~4.2!

The first-order correction is obtained with the aid of the
lation

V[~Ĥ2E!Ĝt11

5~N11!21A@K~1!2E1e1V̂~1!#ĝ~1!, ~4.3!

where Eq.~2.16! and the definition~4.1! was used in the
evaluationV; we find that

V~1,2!5~N11!21^x~ 1̄!uV̂~1!Aĝ~1!VAV̂~1!ux~ 1̄!&.
~4.4!

An estimate of the Green’s functionĝ can be obtained by
application of the minimum principle to the calculation
the electric multipole polarizability of the target, in analog
with the procedure discussed above in connection with E
~3.1! and ~3.2! @13#. It is not difficult to verify that the
asymptotic form of the approximate effective potentialVvar

(1)

5V(1,1)1V(1,2) correctly reproduces the leading 1/r 4 and 1/r 6

terms that appear in the true effective potential for large v
ues of the projectile-target separation. The coefficients
these terms@14# may be determined variationally from th
calculation ofĝ.

A noteworthy feature of the present analysis of the lon
range behavior of the effective potential is that the Pa
principle is accounted for, as is the presence of the mono
component of the Coulomb field. Moreover, the error in t
adiabatic approximation leading to Eqs.~4.2!–~4.4! can be
estimated in a systematic way. Thus in accordance with
~2.23!, the errorDV(1)5V(1)2Vvar

(1) is given by the expression

DV~1!5~N11!21^x~ 1̄!uV̂~1!AVĜV†AV̂~1!ux~ 1̄!&.
~4.5!

A variational estimate of the error, aided by the use of
minimum principle, may be obtained by application of t
procedure described earlier in connection with Eqs.~3.1! and
~3.2!. Since we are here at the next level of iteration t
function J is replaced byJ85VJ, with Ĝt given by Eq.
~4.1!, and Eq.~3.1! is replaced by
-

n
s

-

s.

l-
f

-
li
le

q.

e

e

F8[^J8uĜvaruJ8&5^Mt8uĤ2EuMt8&1^J8uMt8&1^Mt8uJ8&.
~4.6!

Since the effects of the long-range polarization poten
have been accounted for in the construction of the funct
J8, the generalized Hartree-Fock procedure may be app
to the evaluation of the closed-channel trial functionMt8 . It
is convenient to transform the functionalF8 to an amplitude-
independent form by writingMt85cF8 and determiningc
variationally. This converts Eq.~4.6! to

F85^J8uF8&
1

^F8uE2ĤuF8&
^F8uJ8&. ~4.7!

In this way we obtain an approximation to the compone
M 8 of the closed-channel wave function, with polarizatio
effects included, of the formM var8 5ĜvarJ8 with

Ĝvar5uF8&
1

^F8uE2ĤuF8&
^F8u. ~4.8!

This variational approximation to the resolvent may be co
bined with Eq.~4.5! to provide a variational approximatio
to the error in the effective potential, thus allowing for
smooth joining of the effects of long-range and short-ran
interactions in the scattering process.

Bound states of the modified HamiltonianĤ correspond
to scattering resonances of the closed-channel type. It is
quently desirable to include the effect of such states exp
itly, thereby simplifying the calculation of the backgroun
scattering. Suppose for simplicity that only one of the
states exist, satisfying

ĤuB&5EbuB&, ~4.9!

with Eb,E. We look for the closed-channel wave functio
in the form

M5auB&1M 9, ~4.10!

wherea is a parameter to be determined andM 9 is required
to satisfy

~Ĥmod2E!uM 9&52uJ& ~4.11!

with

Ĥmod5Ĥ2
ĤuB&^BuĤ

^BuĤuB&
. ~4.12!

For energies near or above the energy of the resonance
minimum principle based on Eq.~3.1! is violated, but the
resonant state has effectively been removed from the s
trum of Ĥmod. While the bound-state wave functionB will in
most cases of interest be imprecisely known, the minim
principle applied to the approximate solution of Eq.~4.11!
will be preserved provided the trial function used to appro
mateB in Eq. ~4.12! is sufficiently accurate to give binding
@15#. The generalized Hartree-Fock method, in the form
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scribed in Sec. III, is applicable for the construction of t
functionM 9, with no impediments arising from the existen
of the resonance.

To determine the coefficienta in Eq. ~4.10! we combine
the form given there forM with Eq. ~2.7!. Assuming for this
purpose that the exact wave functionB appears, and making
use of its eigenvalue equation, we obtain

a~Eb2E!uB&52EbuB&^BuM 9&. ~4.13!

Now projecting the ket̂Bu onto both sides of Eq.~4.11! and
employing the relation̂ BuĤmod50, satisfied when̂ Bu is
exact, we find thatE^BuM 9&5^BuJ&, and inserting the value
of a thereby determined, we have

uM &5
Eb

E

1

E2Eb
uB&^BuJ&1uM 9&. ~4.14!

Equivalently, withM5ĜJ, we have

Ĝ5
Eb

E

1

E2Eb
uB&^Bu1Ĝmod, ~4.15!

with Ĝmod5(E2Ĥmod)
21. Referring back to Eq.~2.21! for

one of the components of the effective potential, we m
write V(1)5V(1,1)1V(1,2) with

V~1,1!5
E

Eb
^x~ 1̄!uV̂~1!uB&

1

E2Eb
^BuAV̂~1!ux~ 1̄!&,

~4.16!

representing the resonant contribution and

V~1,2!5^x~ 1̄!uV̂ĜmodAV̂~1!ux~ 1̄!&. ~4.17!

The minimum principle is applicable to the construction
the background contributionV(1,2) to the effective potential.

V. AN ILLUSTRATIVE APPLICATION

In order to illustrate some aspects of the proposed ca
lational procedure in a simple context we consider ela
s-wave scattering of positrons by hydrogen@16#. It will be
convenient to replace the integral equation~2.19! by the dif-
ferential equation

~2G211V~0!1V~1!! f 50, ~5.1!

with the modified Green’s function given by Eq.~2.18!. The
expression~2.20! for V(0) reduces~atomic units are used in
the following! to the static approximation

V~0!~r 1!5e22r 1~r 1
2111!, ~5.2!

where we have setV̂(1)5V(1)5r 1
212r 12

21 andA51. The
appropriate version of the Kohn variational principle@8#,

tandvar5tand t2p^ f tu2G211V~0!1V~1!u f t&, ~5.3!

is adopted to provide an approximation for the phase s
given a specific choice of the effective potentialV(1). Such a
calculation generates, in addition, a~nonvariational! approxi-
mation to the wave functionf for use in the next phase of th
y

f

u-
ic

ft

self-consistency procedure in which an improved approxim
tion to V(1) is determined. With the Green’s functionĜ(E)
appearing in Eq.~2.21! replaced by a single-term version o
the variational approximation~3.2! we have

^ f tuV~1!u f t&5^JtuF&
1

^FuE2ĤuF&
^FuJt&. ~5.4!

Here Ĥ is the modified three-particle Hamiltonian in whic
the hydrogenic target Hamiltonianh is replaced byh
2euu&^uu, a form in which the ground-state component h
been subtracted off. The functionJt is given by Eq.~2.8!
with the exact solutionf replaced byf t . A simple trial func-
tion

f t~r !5S 2

pkD 1/2

~sinkr1A~12e2ar !coskr1Bre22r !,

~5.5!

with E5k2/2, containing two linear parameters and a sing
exponential parameter to be varied, was employed and
peared to give a level of accuracy adequate for our pre
purposes in all cases considered.

To start the self-consistency search we ignoredV(1) in Eq.
~5.3! and obtained a variational solution of the ‘‘static
problem, leading to phase shifts represented in Fig. 1 by
dashed curve for a range of energies extending just below
threshold for positronium formation. These phases lie be
the conventionally defined static phase shifts since the op
tor

2G215~K2E1e!1
~K2E1e!2

ueu
~5.6!

contains an additional repulsive term, as required in the
mulation of the minimum principle for the effective poten
tial. The presence of higher-order derivatives in this ad
tional term causes no difficulty, either in the derivation of t
variational principle or in its implementation.

For the trial functionF appearing in Eq.~5.4! the simplest
product form

FIG. 1. s-wave phase shift plotted as a function of the mome
tum of the incident positron. The dashed curve is obtained using
static approximation for the effective potential. The solid cur
shows the phase shift with closed-channel contributions to the
fective potential included.
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F~r 1 ,r 2!5exp~2br 12gr 2! ~5.7!

was chosen, with exponential parameters determined
minimization of the expression on the right in Eq.~5.4!. At
each stage, updated values were employed for the variati
parameters appearing in the trial function~5.5!; only a few
iterations were required to achieve self-consistency. T
phase shifts determined in this way are shown as the s
curve in Fig. 1. Polarization of the target by the low-ener
positron, when fully accounted for, has a strongly attract
effect not included in the present model, which is based
product wave functions having no explicit dependence on
electron-positron separationr 12. It is was therefore to be
expected at the outset that the phases obtained here wil
fer markedly from the exact values@17#. ~Effectively, we are
working with a model in which the positron-electron inte
action 1/r 12 is replaced by 1/r . .! The calculation serves to
demonstrate the applicability of the method, based on
minimum principle and self-consistency, in a simple, no
trivial case.

VI. SUMMARY

While minimum principles for scattering have bee
known for many years, applications have been limited
relatively simple few-body systems for which the targ
ground-state wave function is known. The version of t
minimum principle reviewed here in Sec. II is applicable to
wider class of scattering systems. The use of determina
trial wave functions is a practical necessity in applications
multielectron systems, and it is natural to seek the optim
choice of such functions with the aid of the minimum pri
ciple. The Hartree-Fock method for bound states provide
model for such an approach. An outline of a generaliz
Hartree-Fock procedure was developed in Sec. III, with p
ticular attention paid to those features, such as the uniq
ness and orthogonality properties of the single-particle w
functions, that differ in the scattering and bound-state form
lations. This was described in the context of simple~hydro-
genlike targets! in order to illustrate these features in th
clearest way. In its general form the method does not dep
on any specific choice of target wave function, provided t
it is sufficiently accurate in the sense described@5,6#. ~The
target function may be fixed at the outset and when, as
frequently be the case, a Hartree-Fock solution for this fu
tion is chosen, self-consistency between the orbitals in
target function and the closed-channel wave function is
required.! The formal and practical advantages gained
expressing the theory in terms an effective~or optical! po-
tential was emphasized. In particular, the treatment of lo
range forces associated with the polarizability of the targ
and of resonances associated with closed-channel bo
states, is carried out most conveniently in using the effect
potential formalism. The modifications of the calculation
procedure required to account for target polarization a
resonance effects were taken up in Sec. IV. The proced
was seen to work effectively in a first test, an application
positron-hydrogen scattering decribed in Sec. V. Meth
described here can provide the basis for systematic, la
scale numerical treatments of electron-atom scattering, c
parable in scope and accuracy to the widely used Hart
by
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Fock procedure, and~with significant exceptions discusse
here! sharing many of its features.
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APPENDIX

In standard applications of close-coupling theory, with t
target wave function approximated by a Slater determina
orthogonality conditions must be imposed on the projec
orbital to fix it uniquely@1#. The tighter constraints built into
the present approach obviate the need for the imposition
additional orthogonality constraints. We confirm this here
demonstrating the uniqueness of the solution of the mu
channel version of the self-consistency problem formula
in Sec. II for the case in which the target is treated
Hartree-Fock approximation. We begin by summarizing
multichannel generalization of the formalism developed
Sec. II. The scattering wave function corresponding to
incident channel with indexv is represented as

Cv~1,2,...,N11!5A(
g51

p

xg~ 1̄! f gv~1!1M v~1,2,...,N11!.

~A1!

Herexg f gv is understood as a vector-coupled product co
bining the orbital and spin angular momenta of the target
projectile to give a state of definite total orbital angular m
mentum and spin, along with their projections. The clos
channel wave function is taken to be the solution of an eq
tion of the form~2.7! where the operatorW(n̄) in Eq. ~2.6! is
here replaced by a sum of such terms, one for each o
channel. The scattering problem is then defined by
coupled equations

~Ĥ2E!M v52A(
g

V̂~1!xg~ 1̄! f gv~1!, ~A2!

@K~1!2E1ea#u f av~1!&1ea^xa~ 1̄!u

3(
g

~A21!uxg~ 1̄!&u f gv~1!&1ea^xguM v&50. ~A3!

To test uniqueness we suppose that a different set of
lutions

f gv8 5 f gv1D f gv , M v85M v1DM v ~A4!

exists, satisfying equations of the form~A2! and ~A3!. To
leave Cv unchanged we require that DM v5
2A(gxgD f gv . According to Eq.~A2!, this function must
satisfy the relation

~Ĥ2E!DM v52A(
g

V̂xgD f gv ~A5!

which may be reduced to the form
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A(
g

xg~ 1̄!@K~1!2E#D f gv~1!50. ~A6!

A general solution of this equation is provided by the fo
D f gv5@E2K(1)#21f, wheref is an arbitrary linear com-
bination of the orbitals that appear in the target Slater de
minant.@The left-hand side of Eq.~A6! is then recognized a
an N-electron determinantal wave function which vanish
identically.# The desired uniqueness property, namelyD f gv
50 and DM v50, is established by the observation th
f50. Thus with f gv and M v replaced byD f gv and DM v ,
respectively, in Eq.~A3! this equation becomes
r-

oc
.
a

his
c

tin
th
v.

of
ge

e
es
-

f
c
du

d
t-
r-

s

t

2f~1!1ea@E2K~1!#21f~1!

1ea(
g

^xa~ 1̄!u~A21!uxg~ 1̄!&@E2K~1!#21f~1!

2ea^xa~ 1̄!uA(
g

uxg~ 1̄!&@E2K~1!#21f~1!50.

~A7!

Combining terms and making use of the orthonorma
property ^xa(1̄)uxg(1̄)&5dag of the target wave functions
we observe that all terms cancel but the first, which impl
that f50 and and that the solution is unique.
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