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Generalized Hartree-Fock method for electron-atom scattering
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In the widely used Hartree-Fock procedure for atomic structure calculations, trial functions in the form of
linear combinations of Slater determinants are constructed and the Rayleigh-Ritz minimum principle is applied
to determine the best in that class. A generalization of this approach, applicable to low-energy electron-atom
scattering, is developed here. The method is based on a unique decomposition of the scattering wave function
into open- and closed-channel components, so chosen that an approximation to the closed-channel component
may be obtained by adopting it as a trial function in a minimum principle, whose rigor can be maintained even
when the target wave functions are imprecisely known. Given a closed-channel trial function, the full scattering
function may be determined from the solution of an effective one-body Sitiger equation. Alternatively, in
a generalized Hartree-Fock approach, the minimum principle leads to coupled integrodifferential equations to
be satisfied by the basis functions appearing in a Slater-determinant representation of the closed-channel wave
function; it also provides a procedure for optimizing the choice of nonlinear parameters in a variational
determination of these basis functions. Inclusion of additional Slater determinants in the closed-channel trial
function allows for systematic improvement of that function, as well as the calculated scattering parameters,
with the possibility of spurious singularities avoided. Electron-electron correlations can be important in ac-
counting for long-range forces and resonances. These correlation effects can be included explicitly by suitable
choice of one component of the closed-channel wave function; the remaining component may then be deter-
mined by the generalized Hartree-Fock procedure. As a simple test, the method is applieavi® scattering
of positrons by hydrogerS1050-294{@7)01509-9

PACS numbd(s): 34.80.Bm, 34.80.Kw, 34.18.x

I. INTRODUCTION recently been extended to account for antisymmetrization ex-
plicitly and to include scattering of electrons by positive ions
Well established procedures exist for the calculation of5]. It is reasonable to expect that by optimizing the basis
electron-atom scattering parameters based on the use ®fnctions for the scattering problem at hand, rather than
Slater determinants to represent wave functions, for both th&orking with predetermined Hartree-Fock bound-state orbit-
target and the full scattering systdih—3]. At the simplest als, better convergence properties can be attained. Since the
level, a continuum projectile wave function is combined with Minimum principle determines the best trial function in a
the Hartree-Fock target wave function and is determined@iven set, convergence is monotonic, the calculated phase
with the aid of the Kohn variational principle. In a more Shifts increasing steadily as the trial function is made more
ambitious proceduréZ] one attempts to account for virtual flexible. In particular, such calculations are free of the near-
excitations of the target by adding to the open-channel comsingularity difficulties that can aris@inless special measures
ponent of the wave function a Slater determinéita sum are taken to avoid therf]) in applications of the Kohn
of such determinantsEach single-particle function appear- Principle. . _ _ _ .
ing in the antisymmetrized product is represented as a super- T he scattering formalism which provides the basis for the
position of Slater orbitals, with the linear expansion coeffi-Minimum principle and for the development of the general-
cients then determined by applying the Kohn variationalized Hartree-Fock method is reviewed in Sec. Il. The use of
principle. Slater determinants to represent the closed-channel compo-
Here we propose an alternative procedure, one Whiclﬁ]ent of the wave function is describeq in Sec. ”I, a|OI.’lg with
stays closer to the original Hartree-Fock strategy, which is t@n iterative procedure for generating approximations of
find the “best” Slater determinant. This leads to a set ofsteadily increasing accuracy. Modifications of the method
coupled integrodifferential equations for the single-particledesigned to account explicitly for the effects of long-range
wave functions which must be solved self-consistently. ExJoolarization forces and of resonant interactions, within the
perience gained in the solution of similar sets of equation§ontext of the generalized Hartree-Fock approach, are pre-
appearing in the analogous bound-state problem should Bnted in Sec. IV. An application of the method to positron-
helpful in this task. Specifically, we recall that the Rayleigh-hydrogen scattering is described in Sec. V. Results are sum-
Ritz minimum principle plays a useful role in determining Marized in a concluding section.
the single-particle Hartree-Fock bound-state wave functions,

represented as a superposition of Slater orbitals, by providing Il SCATTERING FORMALISM
a criterion for making the optimum choice of nonlinear '
variational parameters appearing in these orbifdls An The essential limitation of the method to be described is

analogous minimum principle is available for the scatteringthat the scattering energy must lie below the ionization
problem and we base our approach on this principle; it hashreshold. Additional restrictions are introduced here to sim-
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plify the presentation. We confine the present discussion to Since the functiorM, which describes virtual excitations
the scattering of an electron by a target consistinbl@flec-  of the system, is asymptotically decaying one might expect
trons bound to a fixed nucleus of charge|, which in the that it satisfies an equation involving a modified Hamiltonian
LS coupling scheme has zero orbital angular momentum an@shose continuous spectrum lies above the scattering energy
spinS;. Single-channel scattering is assumed, with the morée. This is indeed the case, and it provides the basis for the
general multichannel problem discussed in the Appendixintroduction of a minimum principle applicable to the ap-
The target ground-state wave functiogry, normalized to  proximate evaluation of this function. The modified Hamil-
unity, is coupled to the spin function of the projectile to tonian is
produce a functiory having well-defined total spin and spin

N+1

projection. We use the notation ~ —

H=H-2> W :

_ n; (n) (2.63
)(T(n;ST,MT)=)(-|-(1,2,...n—1,n+l,...N+1;S-|-,MT)
2D with

to denote the antisymmetrized target function, with the sym- h(n)|x+(n; St , M)} x1(n;Sr,M1)|h(n)
bol j representing the space and spin coordinates of tthe W(n)=2 TSy M) oM 5. M
particle, for the system from which theth electron has been by | Oer(mSp, M) () (n: Sy M)

removed. The functiony(n)=x(1,2,..n—1n+1,..N+1) (2.6

represents the result of coupling the spin of the target withrpis form forw(n) is simplified by application of the target
that of thenth electron; the resultant spin quantum ”Umberseigenvalue equation. However, whenis replaced by a trial
are suppressed in this notati¢Ror states with the same spin ynction, as required in general, the form given above is to
quantum numbers the normalization conditior(n)|x(n))  pe employed. It has been shown that with this version of the
=1 holds, with the understanding that integrations rangqyified HamiltonianH adopted, its continuous spectrum
over the spatial coort;hnates of the target and sums a_ﬂe_r lies at an energy that approaches the target excitation thresh-
spins are taken-The eigenvalue equation for the target in its o1y a5 the accuracy of the trial target wave function is in-
ground state is creased, in which case, for trial functions of sufficient accu-
h(n)|x(M) = e|x(M), 2.2 racy and for a range of en_ergiEsin _the elastic sgatte_ring
region, the operato — E will be positive[6]. To simplify
and the Schrdinger equation for the full scattering system is the following development of the formalism, the target func-
(H—E)¥=0, with the total energj taken here to lie be- tion will be assumed to be exact.
low the first excitation threshold. It will be convenient to  We look for the functionM as the solution of the inho-
decompose the Hamiltonian as mogeneous equation

H=K(n)+V(n)+h(n), (2.3 (H—E)M=—J, 2.7

whereK(n) represents the sum of the kinetic energy of thewhere

nth electron and its monopole Coulomb interaction with the - —

residual system, whose Hamiltonian li§n). This leaves J=AV(1)x(DF(1), (2.9
V(n) to represent the interaction, with the monopole Cou-

lomb component removed, of theh electron with the re- and
sidual system; thus R o
V(1)=V(1)— >, W(n). (2.9
2 N+1 e2 n#1
V()=-—+2 —. @3 - _
rv 71 Iy With this choice the Schdinger equation reduces, after a

. o brief calculation, to
We look for the scattering wave function in the form

N+1
V(1,2 .N+1)=Ax(1)f(1)+M(1,2,..N+1), A E—e—K(1)— > W) | x(Df(1)= 21 W(MM.
(2.4 n'#1 n=

(2.10
with the residual antisymmetrizer defined, in terms of the

operatorP;; that interchanges the space and spin coordinate$ Will now be shown that this equation will be satisfied
of the pairij, as provided the relation

N+1

A=1-3, Pyy. 25 [E—e=KDIx(DID+WD 2, (=1)"x(mf(n)

=W(1)M 2.1
The proper antisymmetrization of the scattering function in (1) 219

Eq. (2.4 is verified using the relationPy;x(1)f(1)= holds. This is accomplished by makit— 1 copies of Eq.
(—1)'x()f(j), with the closed-channel functioM as- (2.11), obtained by applying the interchange operators
sumed to be completely antisymmetric. P15,P13,...,P1y successively and making use of the anti-



1922 LEONARD ROSENBERG 56

symmetry property of the functionsandM. In this way we  single-particle wave equation expressed in terms of an effec-
obtainN equations of the form tive (or optica) potential[5,7]. Thus we introduce the formal
solution M=G(E)J and define the propagatofwith

principal-value prescription understood in the treatment of
the singularity

(—1)"HE—e—K(n)]x(n)f(n)+W(n)

x 2 (=1)"x("f(n)=W(mM. (2.12
n’#n G= 1 €
It remains to show that by adding these equations the origi- E-e-KE-K
nal equation(2.10 is regained. This is readily accomplished 1o \yave functionF is defined as the solution of(~E
with the aid of the relations +¢€)F=0, and normalized on the energy scale. Equation

(2.18

N+1 (2.17 may then be reformulated as the integral equation

2 (~D)"HE-e=Km]x(mf(n) =4 QVE. 2.19

= A[E—e—K(1)]x(1)f(1) (2.13  The effective potential may now be written as=x®

+ V) with
and . o
N+1 v<°>=<x<1>|{AV(1>+[E—K(l)](A—l)}lx(l»Z2
S WE S x(m)n)(-1)" e
=t n'#n and
== AZ, WD (D). (2.14 VU= (x(DIV(D)G(E)AV(D)[x(D). (221

. . ) ) A convenient starting point for the introduction of varia-
With Eq. (2.11) thus established we project each side ontotjonal approximation methods is the resolvent identity
the target statéy(1)| and make use of the eigenvalue equa- . .
tion (2.2) and the relatior x(1)|W(1) = e(x(1)|; in this way G=G+G[(H-E)G+1], (2.22

we obtain the equivalent single-particle wave equation ) _ N ]
expressed here in terms of the trial resolvéiht Equiva-

[K(1)—E+e]lf(1))+ e(x(D)](A—1)|x(D)|F(1)) lently, we have, after a single iteration
+e(x(DIM)=0. (2.1 G=Gyart [(H=E)G+1]"G[(H-E)G+1],
An alternative version of this equation is often useful. We 229
first note that from Eqs(2.33, (2.63, and(2.9) we have where the variational approximation to the resolvent is
H=h(1)+K(1)+ V(1) (2.16 Gya= G+ G (H—E)G+1]. (2.24

with ﬁ(1)=h(1)—W(3 and(X(ﬁﬁ(l)zo. With these re-  Since the error term in Eq2.23 is negative, these last two
lations in mind we may evaluate the result of projecting bothelations provide the basis for the use of a minimum prin-

. ) , ciple in the evaluation of matrix elements of the resolvent.
sides of EQ.(2.7) onto_the state(x(1)|;_we find that[E A number of numerical methods are available for solving

_K<1)]<X(1)|M)—_<X(1)|V(l)|M>:<){(1?|J>' Soing  yhe equivalent one-body scattering problem defined by Eq.
formally for €(x(1)|M) and then substituting of the resulting (2.19. A particularly convenient method is provided by the
expression for into E¢(2.15, we obtain the relation Kohn variational principle[8], an application of which is

. described in Sec. V.
— (x(D]AV(1
E—k(p) KBV lll. SLATER-DETERMINANT FORM
FOR TRIAL FUNCTIONS

[K(1)—E+e]lf(1))+

+[E-K(1)](A-1)[x(1))[f(1))
. o The component of the scattering wave function that de-
+ ———— (x(1|V(1)|M)=0. (2.17)  scribes virtual excitations satisfies the inhomogeneous equa-
E—-K(1) tion (2.7). Assuming temporarily that the functionJ is
known, an approximate solutioM; may be obtained by

Equations (2.7) and (2.17 must be solved self fyvriting M;=G;J and minimizing the functional

consistently. The uniqueness of the solution of these sel
consistency conditions, or rather their multichannel generali-
zation, is established in the Appendix for the case in which
the target wave function is of determinantal form. In an
equivalent formulation of the theory a solution of E8.7),  One might choose, for example, a trial function of the form
in terms of the negative-definite resolvent operaBy(E) M,=3,c;®;, where the function®; may be constructed as
=(E—H) 1, may be combined with Eq2.16) to arrive ata  Slater determinants formed from a predetermined basis. With

F=(3|Gyald)=(M|H—E[M)+(IIM)+(M{J).
3
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the linear expansion coefficients determined variationally  In constructing matrix elements that appear in Bj1) we
one obtains the improved approximatibh,,,= G, ,J with use the notatiorix|h|y)=h,,, (x|v]y)=vy, and

<W(1)|<X(2)|V(112)|Y(1)>|Z(2)>:wa;yz- 3.7

Grar= 2, [®3)(d™1); (D] (3.2
bl We then find that

and d;;=(®;|[E—H|®;). The minimum principle may be LM|H—E|M)=(a|a)hy,p+ (b|bYh,aT ({(alb)hya
used to optimize the choice of nonlinear variational param- .
eters in the basis functions, in analogy with standard treat- +(blayh,p) —E({ala)(b|b)+(a|b)
ments of the bound-state problem. Starting with a given trial _
functionM,, the approximation may be improved systemati- X(b[a)) +Vapan* Vabba: (3.89
cally by an iterative procedure in which the second-order, 4
error term, defined by the identi{2.23), is itself replaced by
a variationaj approximation thus providing an approximation 1(m |3y =(a|u)vp;F(b|u)v 4t + Vpa tu ™ Vab:ru— €(alu)
correct tothird order.

Rather than introduce a predetermined set of basis func- X(u[f)(blu)(1F1), (3.8b
tions one may, in the spirit of the standard Hartree-Fock N
approach to the bound-state problem, attempt to derive aWith (JM)=(M|J)*.
optimum determinantal wave function by requiring that the N the Hartree-Fock procedure for bound states the
functional (3.1) be minimized. Once such a function, or an Rayleigh-Ritz functional is minimized subject to an ortho-
approximation to it, has been obtained it may be adopted dgormall'gy constraint placed on the_smgle-partlcle basis fqnc-
the starting point for the above-mentioned iterative procelions. Since we deal here with an inhomogeneous equation a
dure in which improved approximations are obtained in ahormalization condition cannot be imposed. One might sup-
systematic way. Along with the obvious similarities with the POS€ that in the triplet case, where, for example, the addition
Hartree-Fock method there are distinct differences, arising® the functionb of a multiple ofa leaves the functioMm
from the fact that here we look for solutions of amomo-  uUnchanged, it would be desirable to impose an orthogonality
geneoudlifferential equation. To bring out these differencescondition in order to simplify the numerical calculatigh].
in the clearest manner, we first consider the relatively simpldn fact, the orthogonality property follows directly from the
problem of elastic electron-hydrogen scattering, and theigquations; there is no lack of uniqueness in the solutions as
electron-lithium scattering in a frozen-core model, as illus-the following argument demonsrates.
trations of the method. An extension required to account for We introduce the functional?”=7—2(b|a)[E(a|b)
the effect of the polarizability of the target is described in —hap], that is, we subtract terms froft that are propor-
Sec. IV. tional to(b|a), and require—the reason will soon be clear—

The hydrogenic target wave function is represented as that variations of” with respect to the vectdfa|, with no

L constraints applied, should vanish. The resultant single-
x(D)=u(2)£.(1,2), (3.3  particle equation is, in the triplet state,

whereu(2) is the spatial part of the hydrogenic ground-statel@)hpp+ (b|b)h|a) — [b)hya— E|@)(b|b) + Viyp|a) = Via/b)
wave function and . (1,2) is the normalized spin function of _ B _
the electron pair, the subscripts distinguishing between trip- Vi U) = Vil )+ vpe|u) —v[f)(bu) =0, 3.9

let (+) and singlet—) states. The simplest choice of closed- \ hereV.. (1)=(x(2)|V(1,2)|y(2)). When the statdb] is
channel wave function is a sum of determinantal functionsprojectea’y onto each member of E(.9 we find that
based on two single-particle spatial states denotddpgnd <b|a>[ﬁ —E(b|b)]=0, the canceling of all other terms
!b>' In this appro_ximation the full scattering wave function, may beb?raced to the ’fact that one has effectively replaced
in the form (2.4), is then a with b in the antisymmetrized product function
_ — a(1l)b(2)—a(2)b(1). SinceE is not fixed we conclude that
P(1=[uNDFuD)T(2)+a(2)b(1) (bla) must vanish, so that the orthogonality condition is sat-
Fa(1)b(2)]£+(1,2. (3.4  isfied automatically by functiona andb determined by Eq.
(3.9. Now the equation obtained by varyifg with respect
To write down the form taken by the functioné8.1) we  to (a| differs from Eq.(3.9) in that the left-hand side con-

define, following Eq.(2.6a, tains the additional terngb|a)[ E|b)— h|b)] which vanishes
L . for (bla)=0. It follows that this latter equation will be sat-
H=h(1)+h(2)+V(1,2), (3.5 isfied by a solution of Eq(3.9); thus the orthogonality of the

R functionsa andb is a property of the solution that minimizes
with  V(1,2)=e?/ry,, h(i)=K(i)+v(i)—e€u(i)){u(i)|, theoriginal functional F. It is not difficult to show that when
andv(i)=—e?/r;. [The spin sum in Eq(2.6b has been the functionsa andb are each represented by a linear super-
performed using closurkThe modified electron-target inter- position =" ;c;,¢;, @=a or b, of atomic orbitals;, the
action, defined in Eqg(2.9), is here given by orthogonality property is passed on to the vectors formed

R from the linear expansion coefficientg . These coefficients
V(1)=v(1)+V(1,2—€lu(1)){u(1)]. (3.6)  are to be determined self-consistently, but now algebraically,
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with the exponential parameters appearing in the atomic orreplaced by that corresponding to the frozen-core approxima-
bitals optimized with the aid of the minimum principle; this tion Eq.(3.11). The functiond has been defined in EqR.8)
is in close analogy with similar procedures that have provedand(2.9) [11].

useful in the bound-state probleim,9]. We observe that the argument given earlier for the
In the singlet state the equation corresponding to(E®) electron-hydrogen system to the effect that the spatial func-
takes the form tionsa andb in the triplet state, as determined by Eg.9),
R R . R are orthogonal, is immediately generalized. The proof relies
|ayhyp+(bla)yh|b)+(b|b)h|a)+ |b)h,,— E(|a)(b|b) on the antisymmetry of the functiod under interchange of
a andb, a property satisfied by the triplet version of the form
+[b)(bla)) +V,p|@) + Via0) + Vi e[ u) + V[ ) given in Eq.(3.14. It is easily verified that in both the triplet

+opu)+o|F)(bju)—2e(bluy(ulf)|uy=0; (3.10 and singlet states the addition of an arbitrary multiple of the
core functionc to either of the functionsa or b leavesM, as
the proof of the orthogonality of the functiomsandb does ~ defined above, unchanged—the vanishing of the additional
not apply in this case. term is most simply viewed as a consequence of the exclu-
The procedure described above leading to &) for ~ Sion of a third particle from a closed two-particle subshell.
the basis functions in the triplet state may be reformulated if NiS_property, rather than indicating a lack of uniqueness,
an equivalent but more convenient manner. One omits fronRrovides _the basis for a proof that the equations determining
the functionalF terms containing the overlaga|b) as well ~ the functionsa andb ensure that each are orthogonalcto
as(b|a). The variation of this functional with respectasis ~ The argument is similar to the orthogonality proof used ear-
set equal to zero. The resultant equation must be modifielfr for € -H scattering and alluded to just above. That is,
since the vanishing dfa|b) does not imply that variations of On€ may evaluate the functiond, Eq. (3.1, by ignoring
(a|b) will vanish. The correct equation is obtained by in- overlaps of either of the functiorssor b with c. This elimi-
cluding a term\|b), with X evaluated using the requirement Nates a large number of terms, thereby simplifying the cal-
that the resultant equation have the property seen in Ed:_ulatlon. After setting the variation of this functlc_)nallwnh
(3.9—the left-hand member must be orthogonallsh. This ~ feSpect toa or b. equal to zero, the correct equation is ob-
requires thamz—ﬁba. In this formulation[10], the pre- f[alneq by inserting a fgctor (_1|C><.C|) before each term,
scription is easily generalized to apply to multiparticle appli-'91°ring overlaps ot with the functionsa, b, andu.
cations where it considerably simplifies the analysis. As ar}orwe do not record here the analogs of E3s9) and(3.10

illustration we briefly consider the form of trial functions that 10f & -Li scattering since they are rather lengthy. Rather, we
may be used in a frozen-core model of electron-lithium SCat_cpnclude this discussion with the remark that the expressions

simplify considerably in the approximation that the spatial
extent of the frozen-core functianis small enough to justify
ignoring matrix elements connecting that function with the
other bound state and scattering orbitals. The equations then
- _ P take on the form obtained for scattering by H, but containing
Xr(L12,12 =M1~ Pz P24)X°(3’4)u(2)a(2)(’3 17 @ correction in which the potentiai(1), theinteraction of
' particle 1 with the Li nucleus, is replaced by the shielded

where A is a normalization constant ane(2) is a spin-1/2  Potential
function with projection+1/2; the target state with projec-

tering.
The antisymmetrized lithium-target trial wave function,
corresponding to spin projection 1/2, is taken to be

tion —1/2 is obtained by replacing(2) with 3(2). The anti- 3e? 2e?
symmetric heliumlike core is represented as vs(1)=— ?+<C(3)| T lc(3)). (3.20
Xc(3:4=c(3)c(4)é-(3,9), (3.12
. o IV. LONG-RANGE FORCES
with (c|c)=1 and(c|u)=0. We now couple the projectile AND RESONANCE EEFECTS
spin to that of the target to construct a triplet or singlet state
according to The calculational procedure outlined above must be modi-

fied in order to account explicitly for the effect, of particular
X(l_)zj\/(l_ Pas— Podxe(3.4u(2)£.(1,2). (3.13  importance at low energies, of long-range forces arising from
B the polarizability of the target. Specifically, a representation
The approximate scattering wave function is of the formof the closed-channel wave function appearing in@¢f) as

shown in Eq(2.4). Consistent with the frozen-core model of &n antisymmetrized product of single-particle orbitals that

the target, the closed-channel wave function is chosen as decay asymptotically will be inappropriate—the long-range
potential induces a power-law falloff. Inclusion of the effect

M =A(1— Py~ P,y xo(3.4a(2)b(1)£.(1,2), of long-range forces is accomplished most directly with the
(3.14 aid of the variational treatment of the effective potential dis-
cussed at the conclusion of Sec. Il. Thus with reference to
with A=(1—P,,— P35~ Py,); the core state is fixed and the Egs.(2.21)—(2.23 we write V=1 1+ A with W) de-
basis functions andb are to be determined by minimizing termined such that it provides the dominant contribution to
the functional(3.1). The modified Hamiltonian is that shown the effective potential at great distances. It would then be
in Eq. (2.6a, with the exact target functiogy in Eq. (2.6b appropriate to apply the generalized Hartree-Fock procedure
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to the estimate of the error tertdY; this is discussed — F'=(J'|Gyald’)=(M{[H—E[M!)+(3'|M!)+(M/]3").
further below. (4.9

We begin by introducing the Green’s functigil)=[e
_ﬂ(l)]*l, where the modified target Hamiltonian was de-Since the effects of the long-range polarization potential
fined earlier a:fw(l)=h(1)—W(1). Note thatj is a negative have been accpunted for in the construction of the functipn
operator sincee lies below the minimum eigenvalue of J', the genergllzed Hartree-Fock procedgre may be applied
[12]. The (antisymmetrized trial Green’s function in the fto the eva}luatlon of the closed-channel trial functh{I. It
adiabatic approximation, in which target polarization is IS convenient to transform the functional to an amplitude-
evaluated with the projectile taken to be at rest, is chosefldependent form by writing; =c®’ and determininge
(under the assumption that it acts on antisymmetrized 3tate¥ariationally. This converts Ed4.6) to
as

Gi=(N+1)"143(1). (4.2) F=1®) ey (0 @D
With this form introduced into Eq2.22, a variational ap-
proximation to the effective potential, E(.21), is obtained

in the form Y= 1D+(1.2) e find that

In this way we obtain an approximation to the component
M’ of the closed-channel wave function, with polarization

effects included, of the fortM,=G,J" with
VD =(N+1) Y x(D[V(1)AG(1)AV(1)|x(1).

(4.2 Gya=|P'V——e—— (D]. 4.8
The first-order correction is obtained with the aid of the re-
lation This variational approximation to the resolvent may be com-
- - bined with Eq.(4.5 to provide a variational approximation
Q=(H-E)G+1 to the error in the effective potential, thus allowing for a

smooth joining of the effects of long-range and short-range

— -1 _ \ o
=(N+1)AK(D) -E+e+V(D]O(D), (43 interactions in the scattering process.

where Eq.(2.16) and the definition(4.1) was used in the Bound states of the modified Hamiltoni&h correspond
evaluation): we find that to scattering resonances of the closed-channel type. It is fre-
quently desirable to include the effect of such states explic-
V(lyz):(N_F1)*1<X(l_)|\’\/(1)Ag(l)\QA\A/(1)|X(1_)>_ itly, thereby simplifying the calculation of the background
(4.4 scattering. Suppose for simplicity that only one of these

states exist, satisfying

An estimate of the Green’s functiancan be obtained by
application of the minimum principle to the calculation of |3||B>=Eb||3>, (4.9
the electric multipole polarizability of the target, in analogy
with the procedure discussed above in connection with Eqswith E,<E. We look for the closed-channel wave function
(3.1 and (3.2 [13]. It is not difficult to verify that the in the form
asymptotic form of the approximate effective potennié.ﬁ
=V1D1 (12 correctly reproduces the leading 4and 118 M=a|B)+M", (4.10
terms that appear in the true effective potential for large val-
ues of the projectile-target separation. The coefficients ofvherea is a parameter to be determined avid is required
these termg14] may be determined variationally from the to satisfy
calculation ofg.

A noteworthy feature of the present analysis of the long- (ﬁmod_ E)[M")=—|J) (4.12)
range behavior of the effective potential is that the Pauli
principle is accounted for, as is the presence of the monopolgith
component of the Coulomb field. Moreover, the error in the
adiabatic approximation leading to Eqg.2)—(4.4) can be R R I:||B)(B|I:|
estimated in a systematic way. Thus in accordance with Eq. Hpo=H— —~——. (4.12
(2.23, the errorA VY =11 i given by the expression (BIH[B)

AV<1>=(N+1)’1<X(1_)|\A/(1)AQéQTA\A/(1)|X(1_)). For energies near or above the energy of the resonance, the
4. minimum principle based on Ed3.1) is violated, but the

resonant state has effectively been removed from the spec-
A variational estimate of the error, aided by the use of therum 0f|:|mod- While the bound-state wave functi@will in
minimum principle, may be obtained by application of the most cases of interest be imprecisely known, the minimum
procedure described earlier in connection with Egsl) and  principle applied to the approximate solution of E¢.11)
(3.2). Since we are here at the next level of iteration thewill be preserved provided the trial function used to approxi-
function J is replaced byd’'=QJ, with G, given by Eq. mateB in Eq. (4.12 is sufficiently accurate to give binding
(4.1, and Eq.(3.2) is replaced by [15]. The generalized Hartree-Fock method, in the form de-
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scribed in Sec. Ill, is applicable for the construction of the
functionM”, with no impediments arising from the existence
of the resonance.

To determine the coefficient in Eq. (4.10 we combine
the form given there foM with Eq. (2.7). Assuming for this
purpose that the exact wave functiBrappears, and making
use of its eigenvalue equation, we obtain

a(Ey—E)|B)= — E,|B)(BIM"). (413

Now projecting the ke{B| onto both sides of E¢4.11) and
employing the relationB|H,,s=0, satisfied whenB| is
exact, we find thaE(B|M”)=(B|J), and inserting the value
of a thereby determined, we have

Ep ,
|M>:EE——Eb|B><B|J>+|M ). (4.14
Equivalently, withM zéJ, we have
. B .
G= EE-E |B){B|+ G, (4.19

with émod:(E—I:Imod)*l. Referring back to Eq(2.21) for
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FIG. 1. s-wave phase shift plotted as a function of the momen-
tum of the incident positron. The dashed curve is obtained using the
static approximation for the effective potential. The solid curve
shows the phase shift with closed-channel contributions to the ef-
fective potential included.

self-consistency procedure in which an improved approxima-
tion to V) is determined. With the Green’s functid®(E)
appearing in Eq(2.21) replaced by a single-term version of
the variational approximatiof8.2) we have

one of the components of the effective potential, we may

write W =ULD+ (12 with

E, —- 1 ’ "N
VI =g ((DIVD)[B) g=g (BIAV(DIX(D),
(4.16
representing the resonant contribution and
V(l'z):<X(1_)|\A/émodv4\’\/(l)|)((l_)>' (4'17)

The minimum principle is applicable to the construction of
the background contributiob®? to the effective potential.

V. AN ILLUSTRATIVE APPLICATION

(FVDf)=(3| D) (®[J). (5.9

(®|E—H|D)

HereH is the modified three-particle Hamiltonian in which
the hydrogenic target Hamiltoniah is replaced byh
—€lu)(u|, a form in which the ground-state component has
been subtracted off. The functiahy is given by Eq.(2.8)
with the exact solutiorf replaced byf,. A simple trial func-
tion

1/2
wk) (sinkr+A(1—e “")cokr+Bre "),

(5.5

ft(r):<

In order to illustrate some aspects of the proposed calcuyith E=k?/2, containing two linear parameters and a single
lational procedure in a simple context we consider elasti@xponential parameter to be varied, was employed and ap-

s-wave scattering of positrons by hydrogEgt6]. It will be
convenient to replace the integral equati@ril9 by the dif-
ferential equation

(=G 1+ VO + YDy f=0, (5.1

with the modified Green'’s function given by E@.18. The
expression(2.20 for W% reduces(atomic units are used in
the following) to the static approximation

WO(r)=e 21(r;1+1), (5.2)

where we have s&¢(1)=V(1)=r;'~r} and A=1. The
appropriate version of the Kohn variational princip&,

tand, o =tans,— m(f,| -G 1+ VO+VY|f), (5.3

peared to give a level of accuracy adequate for our present
purposes in all cases considered.

To start the self-consistency search we ignav€d in Eq.
(5.3 and obtained a variational solution of the “static”
problem, leading to phase shifts represented in Fig. 1 by the
dashed curve for a range of energies extending just below the
threshold for positronium formation. These phases lie below
the conventionally defined static phase shifts since the opera-
tor

(K—E+e¢)?
€]
contains an additional repulsive term, as required in the for-

mulation of the minimum principle for the effective poten-
tial. The presence of higher-order derivatives in this addi-

—G '=(K-E+e)+ (5.6

is adopted to provide an approximation for the phase shiftional term causes no difficulty, either in the derivation of the

given a specific choice of the effective potenti&l). Such a
calculation generates, in addition(raonvariational approxi-
mation to the wave functioh for use in the next phase of the

variational principle or in its implementation.
For the trial functiond appearing in Eq(5.4) the simplest
product form
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D(ry,ro)=exp(—Bri—yry) (5.7  Fock procedure, andwith significant exceptions discussed
here sharing many of its features.

was chosen, with exponential parameters determined by

minimization of the expression on the right in E§.4). At ACKNOWLEDGMENT
each stage, updated values were employed for the variational __ . . . .
parameters appearing in the trial functiti5); only a few This work was supported in part by the National Science
iterations were required to achieve self-consistency. Th&oundation under Grant No. PHY-9400673.

phase shifts determined in this way are shown as the solid

curve in Fig. 1. Polarization of the target by the low-energy APPENDIX

positron, when fully accounted for, has a strongly attractive In standard applications of close-counling theory. with the
effect not included in the present model, which is based on PP piing Y,

product wave functions having no explicit dependence on théarget wave funct|o_r) approxmateq by a Stater determma_nt,
electron-positron separation,. It is was therefore to be orthogonality conditions must be imposed on the projectile

expected at the outset that the phases obtained here will di orbital to fix it uniquely[1]. The tighter constraints built into

fer markedly from the exact valu¢$7]. (Effectively, we are he present approacr_l obviate t_he need for t_he Imposition of
. . i . : : additional orthogonality constraints. We confirm this here by
working with a model in which the positron-electron inter- . : . )
. . : demonstrating the uniqueness of the solution of the multi-
action 1f;, is replaced by XL .) The calculation serves to

demonstrate the applicability of the method, based on th((e:hannel version of the self-consistency problem formulated

minimum orinciole and self-consistency. in a simple. non-"" Sec. Il for the case in which the target is treated in
P P y: pie, Hartree-Fock approximation. We begin by summarizing the

trivial case. multichannel generalization of the formalism developed in
Sec. Il. The scattering wave function corresponding to an
VI. SUMMARY incident channel with index is represented as
While minimum principles for scattering have been p

known for many years, applications have been limited 0y (12  N+1)=A4, Xy(l_)fyv(l)+MU(1,2,---N+1)-
relatively simple few-body systems for which the target y=1
ground-state wave function is known. The version of the (A1)
minimum principle reviewed here in Sec. Il is applicable to a
wider class of scattering systems. The use of determinantafere x,f,, is understood as a vector-coupled product com-
trial wave functions is a practical necessity in applications tdining the orbital and spin angular momenta of the target and
multielectron systems, and it is natural to seek the optimunProjectile to give a state of definite total orbital angular mo-
choice of such functions with the aid of the minimum prin- mentum and spin, along with their projections. The closed-
ciple. The Hartree-Fock method for bound states provides ghannel wave function is taken to be the solution of an equa-
model for such an approach. An outline of a generalizedion of the form(2.7) where the operatd(n) in Eq.(2.6) is
Hartree-Fock procedure was developed in Sec. Ill, with parhere replaced by a sum of such terms, one for each open
ticular attention paid to those features, such as the uniqu&hannel. The scattering problem is then defined by the
ness and orthogonality properties of the single-particle wavéoupled equations
functions, that differ in the scattering and bound-state formu-
lations. This was described in the context of simffigdro- o _ 9 N
genlike targetsin order to illustrate these features in the (H=B)M,= Azy VXD (L), (A2)
clearest way. In its general form the method does not depend
on any specific choice of target wave function, provided tha _ T
it is sufficiently accurate in the sense descripggb]. (The tK(l) Bt eallfar(D)F ealxa(D]
target function may be fixed at the outset and when, as will —
frequently be the case, a Hartree-Fock solution for this func- % 2 (A= Dx,(D)[f50(1)+ealx,IM,)=0.  (A3)
tion is chosen, self-consistency between the orbitals in the 7
target function and the closed-channel wave function is not
required) The formal and practical advantages gained byI

: . . . ut
expressing the theory in terms an effectioe optica) po-
tential was emphasized. In particular, the treatment of long- £
range forces associated with the polarizability of the target, L
and of resonances associated with closed-channel bound. L .
states, is carried out most conveniently in using the effectiveSXIStS: safisfying equations of the fo“‘_“*z) and (A3). To
potential formalism. The modifications of the calculational leave ¥, unchanggd we - require that.AMU:
procedure required to account for target polarization and AE*/X*/MW' _Accordmg to Eq.(A2), this function must
resonance effects were taken up in Sec. IV. The procedur’%atISfy the relation
was seen to work effectively in a first test, an application to
positron-hydrogen scattering decribed in Sec. V. Methods (H—E)AM,=—A>, \“/XyAfyv (A5)
described here can provide the basis for systematic, large- Y
scale numerical treatments of electron-atom scattering, com-
parable in scope and accuracy to the widely used Hartreawhich may be reduced to the form

To test uniqueness we suppose that a different set of so-
ions

:f7U+Af)’U’ M;:M0+AMU (A4)
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N - (1 E-K(1)] (1
AE X)/(l)[K(l)_E]Af:yv(l)zo (AG) (ZS( )+€a[ ( )] ¢( )
Y

a2 (Xa(DI(A=D)x,(DE-K(D)] (1)
Y

A general solution of this equation is provided by the form
Af,,=[E—-K(1)] ¢, whereg is an arbitrary linear com- —€ 1A INE—K(D)1 td(1)=0.
bination of the orbitals that appear in the target Slater deter- «(Xel )] 271 A (L1 7e)
minant.[The left-hand side of EA6) is then recognized as (A7)
an N-electron determinantal wave function which vanishes
identically] The desired uniqueness property, namgfy,, ~ Combining terms and making use of the orthonormality
=0 and AM,=0, is established by the observation thatproperty(x,(1)|x,(1))=6,, of the target wave functions,
¢=0. Thus withf,,, andM, replaced byAf,, andAM,,  we observe that all terms cancel but the first, which implies
respectively, in Eq(A3) this equation becomes that =0 and and that the solution is unigque.
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