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Discrete variable representation for highly excited states of hydrogen atoms in magnetic fields
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A discrete variable representati§DVR) appropriate for describing the highly excited states of hydrogen
atoms in laboratory-strength magnetic fields is constructed by using a symmetry-adapted direct product of
one-dimensional DVR'’s in parabolic coordinates related to generalized Gauss-Laguerre quadratures. The re-
sulting sparse Hamiltonian matrix is used in an iteratfileer-diagonalization procedure to obtain eigenvalues
and eigenvectors in a given spectral domain. The method is applied to calculate eigenvalues and lifetimes of
“circular” Rydberg states, as well as oscillator strengths for the excitation of highly excited states.
[S1050-2947@7)07409-X

PACS numbd(s): 32.60+i

[. INTRODUCTION Sec. IV, where the eigenvalues and lifetimes of highly ex-
cited “circular” states are compared with the results of other
The discrete variable representatioPVR) was intro- numerical methods and semiclassical estimates. In addition,
duced by Light, Hamilton, and Lill1], and traditionally used ~oscillator strengths for the transitions from low-lying to
(see, for example, Ref2] and references thergimainly in highly excited states close to the ionization threshold are
chemical physics to describe a variety of phenomena such desented. Finally, some concluding remarks are given in
rovibrational motions of the atoms in molecules, chemicalSec. V. Atomic units ¢=m,=%=1) are used throughout
reactions, and molecule-surface interactions. Loosely spealkhe work except where explicitly stated.
ing, the DVR is an approximate discretized coordinate rep-
res_entation in _vv_hich t_he pot_ential-energy matr_ix_is diagonal Il. DVR BASIS FUNCTIONS
while the (multidimensional kinetic-energy matrix is sparse. AND HAMILTONIAN MATRIX
These properties are very desirable in applications of various
iterative numerical methods which are suitable for treatments Let us consider the motion of an electron in the Coulomb
of multidimensional nonseparable systems represented Hield of a proton(assumed to have an infinite massd in
large Hamiltonian matrices. the presence of an external homogeneous magnetic field ori-
Applications in atomic physics have mainly followed the ented along the axis of a coordinate system centered at the
Lagrange-mesh approach of Baye and Heef@h This  proton. The exact integrals of motidgood quantum num-
method provides a special class of DVR’s with analyticallybers are thez component of the electronic angular momen-
calculable differential operators. Recent applications includéum L,=m and the parityll,= *1, corresponding to the
the magnetized hydrogen ato,5], helium atom[6] and  reflectionz— —z. We can restrict our considerations to a
implementation of theR-matrix method[7]. The latter was subspace of states with fixed and disregard the trivial de-
inspired by previous work of Layton and Std@9]. Among  pendence of the eigenfunctions on the azimuthal angle
other DVR-based applications let us mention the time{ (27) ~Y%exp(m¢)], thereby reducing our problem to a two-
dependent treatment of a hydrogen atom in a laser ffilddl ~ dimensional one. Introducing scaled parabolic coordinates
and our recent calculations of the photoionization cross sedu,v)
tions of hydrogen atoms in very strong magnetic figlts).
In the present paper, in Sec. Il we construct a DVR which s ouap
is appropriate for the treatment of highly excited states of X:(P +2z°)7+ 2, (2.9
hydrogen atoms in laboratory-strength magnetic fields. This
DVR is equivalent to the Laguerre mesh introduced previ-
o_usly by Baye and \(inckéﬁl]_. These authors, how_ever, l_Jsed v =(p2+2A)V—7, 2.2
direct methods of diagonalization to solygeneralized ei- A
genvalue problems and restricted their calculations to low-
lying states. Instead, in Sec. Ill, we briefly describe an itera- 1
tive (filter-diagonalization[12]) method for extracting the p dp dz= 3 (u+v)du dv, (2.3
eigenvalues and eigenvectors of large matrices in a given

spectral domain. Results of our calculations are presented in ) o i
we may write the Hamiltonian of our system in the forms
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In the above equation@.1)—(2.6), A is an arbitrary scaling

parameter ang is magnetic field strength measured in units

of By=2.35x 10 T. The linear Zeeman shifty(2)m in Eq.

(2.4) is the only place where the sign of enters, and po-

tential (2.6) contains Coulomb and diamagnetic terms.

Following the general procedufé,2], we construct the
DVR basis using the orthonormal and complé&e the in-
terval O<su< +«) set of functions

1/2

®M(u)= LiM(uyulm2e=v2, n=0,1.2...,

(2.7

n!
(n+|mj)!

where L|nm|(u) are Generalized Laguerre polynomials. The

one-dimensional DVR basis is then defined as follows:

N-1
yLm‘(u):wi,’zzo oMoy, e=12,...N,
(2.9

where @,,w,), «=1,2,... N [13] is the associated set of

GROZDANOV, ANDRIC, MANESCU, AND McCARROLL 56

YIME gy = Yﬂ(u,v)iYL;‘j(u,v)
N FIF S WS L

a<p3,

a,B=12,...N.
(2.12

All matrix elements are calculated by using the basic ap-
proximation of all DVR’s[1,2], that is, the substitution of the
exact integration by quadrature formulas. In our case, this
corresponds to

e [ to N N
J J f(up)du do~ 2, w, X, Wgf(Ug,vp).
0 0 a=1 B=1
(2.13

Using this rule and propert§2.9) it is easy to show that any
function of coordinates is diagonal in DVR’s. In particular,
the matrix elements of the potential ener@6) are given
by:

(2.19

Matrix elements of the kinetic energy operat@r5 can be
calculated by using the differential equation, satisfied by the
®!M(u) functions:

VaB,a’ﬁ’:V(ua ,UB)5aa75ﬁBr .

g 9 m? U) il — Im|+1 oI
—EU%—E‘FZ n (U)— n+T n (U)
(2.1

Nth-order generalized Gauss-Laguerre quadrature points arm the symmetric and antisymmetric subspaces we find (
weights. Apart from being orthonormal, the basis functionsgﬂ a'<p")

(2.8) have the remarkable property

yMug =w, %5, (2.9

that is to say, they are zero at all quadrature points excegfitnh

one. In addition, the coordinate is diagonal in the finite

basis(2.8) with eigenvalues equal to the quadrature points

+ o0
fo yrluuyluydu=u,s,. (2.10

For treating our two-dimensional problem the next step is

to form a direct-product DVR basis,

2 3/2
Y'ﬂal(ulv):mm yrwylw), ap=12...N.
(2.19

T ! iT ’ ’
+ ap,a’B aB,B'a
Taparp = : 2.1
B B (1T 6,0 P14 0,07 (210
2N2(tY  Bpp+ Suarttar)
Toparp = aa' 7P pe 2.17
) (UQ+UB)(UO(/+UB/)
where, for example
N—-1
m+1
=S, ol ne T e,
n=0
e 2.1
4 aa’ " ( . &

The sparse structure of the kinetic-energy matrix is obvious

The normalization factor follows from the form of the Jaco- from Eq. (2.17), and actually only the “one-dimensional”

bian (2.3) and the property2.10.

However, as mentioned above, our Hamiltonidfgs.
(2.4—(2.6)] is invariant with respect to a reflection in the
=0 plane, which corresponds to an interchangev of
parabolic coordinates. The basis functid@sl]) transform

according to:YLr’}(v,u)=Y|B”jl(u,v). Therefore, as our final

basis we take eitheNp,r=21/2N(N+1) symmetric or

Npyr=1/2N(N—1) antisymmetric combinations of the

direct-product basis function®.11):

matrix (2.18 needs to be stored in computer memory.

Finally, let us note that any wave functigri{u,v) (with
well defined parityll,) is represented in our DVR by a vec-
tor with components ¢< B):

Xa,8:<Y‘an[]3‘i(uiv)|X(uiv)>
1/2

(UgFvp)W,Wg
% X(ua’uﬁ)_

2N3(1+ 8,p)

(2.19
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lll. FILTER-DIAGONALIZATION METHOD The functiondy (x) is peaked ak=0, and has a decaying
The basic idea of the method is due to Neuhaliset oscillatory behavior at largéx|, fulfilling the above men-

The eigenvaluesand eigenvectoysof a given Hamiltonian tioned filtering property. As\l— +o, the expansior(3.3)

; o o : , : tends toward the spectral density operat8fE—H)=
H in a desired “energy window'[ Ep,, Enayl are obtained ™ + )
by diagonalizing the Hamiltonian matrix in a small basis set (1/m)ImG"(E), and can be obtained from the Chebyshev-

of optimally adapted “window” functions {y}, | polynomial expansion of the Green’s opera@®t (E)=(E

) . —H+i0) ! [15].
=1,2,... Nuin- Such a basis can be generated by acting - .
with a suitable filtering operatof(E—H) onto a generic Now combining Eqs(3.1) and (3.3 [and neglecting the

initial wave packety: unimportant normalization factor in Eq3.3)], for the
P ' window-basis functions we obtain:
gi=f(Ej—H)x, j=12,... Nyin, (3.)

M
where Epn<E;<-+<E<-<Ey <Epa and f(x) is a ¢i:%§0+n§1 coqne(E))é, (3.7
function which is peaked at=0 and decays rapidly for

large |x|. Expanding the initial wave packet in the forgn ~ where

=X ,C,b, WhereHo,=€,¢,, it is seen that each of the

functionsy; is mainly composed of the eigenfunctionstéf =X, &=HpomXs  &nr1=2Hnomén—&n-1-
corresponding to eigenvalues closeBp. 3.8

It is important to note that thg; dependence in Eq3.7) is
=2 F(Ej=€,)Catba (3.2  factored, so that a single iteration of H8.8) is sufficient to
“ generate all basis functionf, j=1,2, ... Ny, . After that,

h the basis sef3.7) can be Schmidt orthogonalized, and any

linear dependence eliminated. The diagonalization of a
with eigenvalues,, which are far away fronk; . Hamiltonian matrix in this small basis can than be perforr_ned

Originally [12], a Gaussian filter with adaptive width was by any of the standqrd methods. The quality of the obtained
used:f (E—H)~exg — ((E—H)/a)?]. For the realization of €i9envalues, and eigenvectors, can be checked by cal-
the operatofmatrix) action in Eq.(3.1) usually a polynomial culating the following estimate of the absolute error:
expansion of (E—H) is used. In the present work we adopt e.=|(H=e,) .| 3.9
an alternative filtering functiofil4], namely, the finite-width “« el '
ofunction filter f(E—H) = 5 (E—H). This function can be  The number of window-basis functiors,;, should be, of
defined directly through its expansion in terms of Chebysheygyrse, |arger than the number of eigenvalues in a given
polynomialsT(x): window. As a result of diagonalization in the small widow
basis, the eigenvalues located outside the given window

It is the above mentioned form of the filtering function whic
suppresses the contribution in E8.2) from eigenstateg,,

5M(E—H)=—;. [Emin Emax] Will also appear, but with the error3.9) of
AHm sing(E) orders of magnitude larger. The maximum number of win-
M dow functions is limited by the available core memory of a

% EJF E co@(E)To(Hporm |, (3.3 computer. Wide spectral ranges of a very large matrices can
2 i1 be covered by a series of overlapping windows.

. The main CPU time-consuming operation in the filter-
with diagonalization method is the matrix-vector multiplication in
B . recursion(3.8). However, due to the sparseness of the Hamil-

To(Hnom) =1, T1(Hnorm) = Hnom. (3.4  tonian matrix in a DVR this is actually aNpyrINNpyr pro-

cess rather than W3, process, and a very efficient coding

Th1(Hnom) = 2HnomT n(Hnorm) = To—1(Hnorm) - of this operation is possiblesee, for example, Ref2]).

In the above| is the unit matrix, andH s the shifted and Previous numerical experien¢@4,16 suggests that the
normalized Hamiltonian matrix: number of termdvl necessary in E(:3.7) in order to obtain
o well-converged eigenstates is given by the following empiri-
H—HI cal estimate
Hnorm= SH ' (3.5
M~2AHp, (3.10

H=1 =1 — . I :
where H= 3 (HmactHiin), AH=3(Hma—Hmin), and Huax  where 20H s the spectral range of the Hamiltonian matrix
andH i, respectively, are the upper and lower estimates Ofandp is the local spectral density.

the maximum and minimum eigenvalues of the Hamiltonian
matrix H. Thus, the spectrum ofl ., is confined to the
segmenf{ —1,1]. The dependence d& in Eq. (3.3 is con-
tained in the phase The DVR Hamiltonian of Sec. Il and the filter-
— diagonalization method explained in Sec. Il are applied here
E- H) 3.6 for calculations of eigenvalues and radiative transition prob-
AH |° ' abilities of highly excited states of hydrogen atoms in

IV. APPLICATIONS

o(E)= arcco%
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TABLE |. Comparison of the calculated eigenenerdie@n 10”4 a.u) of circular states with semiclassical estima&$ as predicted by
the theory of German[iL8], for different values of the magnetic-field strength. The energies of the circular statemwilhare obtained by
adding ym.

m=—35 m=—39 m=—40

y E ESC E ESC E ESC

0 —3.858 0247 —3.858 0247 —3.125 0000 —3.125 0000 —2.974 4200 —2.974 4200
2Xx10°7 —3.892 9384 —3.892 9384 —3.163 8688 —3.163 8688 —3.014 2753 —3.014 2753
2x10°6 —4.,199 4132 —4.,199 4132 —3.501 9361 —3.501 9360 —3.360 0181 —3.360 0180
3x10°8 —4.363 7037 —4.363 7035 —3.680 7594 —3.680 7589 —3.542 2102 —3.542 2096
4x10°8 —4.523 8103 —4.523 8096 —3.853 3844 —3.853 3829 —3.717 6224 —3.717 6207
6x10°6 —4.831 8667 —4.831 8636 —4.181 0541 —4.181 0480 —4.049 3618 —4.049 3548
1x10°° —5.402 9624 —5.402 9450 —4.774 4253 —4.774 3975 —4.646 5193 —4.646 4887
1.4x10°° —5.921 7731 —5.921 7283 —5.300 7072 —5.300 6443 —5.173 1889 —5.173 1220
2Xx10°° —6.621 0925 —6.620 9878 —5.996 6114 —5.996 4831 —5.866 7507 —5.866 6181
3x107° —7.6310714 —7.630 8425 —6.984 4737 —6.984 2229 —6.847 9021 —6.847 6481
4x10°° —8.504 4753 —8.504 1096 —7.829 0090 —7.828 6279 —7.684 8587 —7.684 4760
6x10°° —9.986 3690 —9.985 7123 —9.250 3774 —9.249 7212 —9.091 3259 —9.090 6717
1x10°% —12.335 253 —12.333972 —11.487 385 —11.486 139 —11.301 886 —11.300 648
1.4x10°4 —14.222 650 —14.220 703 —13.276 965 —13.275 087 —13.068 763 —13.066 902
2x10°4 —16.561 837 —16.558 835 —15.488 608 —15.485 732 —15.251 052 —15.248 208

laboratory-strength magnetic fields. The first applicationrecently derived by Germariid8]. This approach is actually

deals with “circular” Rydberg states with a large angular an extension of the previous work of REL9]. It is based on

momentum(see, for examplél7,18 and references thergin an expansion in terms of the small parameter=(|m|

while the second one concerns calculations of oscillator-1)~1. The crucial quantity is the scaled radipg of the

strengths for transitions from low-lying states to highly ex-circular orbit in z=0 plane around which the electron is

cited states close to the continuum border. localized. It is defined as the location of the minimum of an
effective potential

A. Eigenvalues and lifetimes of circular Rydberg states

- 1 1

“Circular” Rydberg states in magnetic fields are the Veff(P)IzT’)z—§+T, (4.7)
“ground” states of variousm manifolds, with|m|>1 and
well-defined parityll,= + 1. The name comes from the fact \yhere= 52p andy=8"3y. The energy of a circular state
that the electron is localized in the vicinity of a circular orbit js then given by
perpendicular to the field directidii8]. Being located at the
edge of the spectrum of the manifold, where the local spec- my
tral density is small, these eigenstates are relatively easy to eﬁf=7+ Ve(pm) +36°
obtain with the filter-diagonalization method.

Results of our calculations of the energies of circular
states withm=-35, —39, and —40 in the range of
magnetic-field strengthg=0—2x10 4 B=0—47 T) are

1
w1+ wy— .b—,z) , 4.2

m

where the frequencies

~2
shown in Table I. They were obtained by usiNg-40 one- w%%_ é+ 7_, w§=~—13 (4.3
dimensional DVR basis functions, that, is the totalNyfyr Pm Pm 4 Pm

=3N(N+1)=820 two-dimensional basis functiongor o _
DVR gr|d po|nt9 with the value of the Sca”ng paramemr are related to oscillations of the electron perpendlCUlar to the
=0.03.N,,;;= 50— 100 window functions were used and only Circular orbit. As can be seen from Table I, the simple semi-
M =300 iterations in Eqs(3.7) and (3.8) were necessary to classical expressiot#.2) reproduces 47 significant figures
obtain errorse, <109 a.u. for circular and nearby states. Of the exact results. This excellent agreement confirms the
The initial, generic wave packgtwas taken either randomly highly “semiclassical nature™ of circular states. In accord
formance of the method. become less accurate at larger magnetic-field strengths.
Ref.[17] by diagonalization of a banded Hamiltonian matrix & circular state is to the neighboring circular state with one
. . . . ’ I —
constructed in the basis of 70 radial Sturmians and 70 spher€SS_quantum of angular momenturm—m’, |m’[=|m|
cal harmonics. We found the agreement with these results to 1. The lifetimer,, of a circular state is therefore given by
all eight significant figures shown in Table I.
For further comparisons, also shown in Table | are the a4 3 2

. . . . T =53 (Em_ Gml) |dm/ m| , (44)

semiclassical results which we calculated using the formulas m  3c :
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TABLE Il. Comparison of the calculated lifetimes (in millisecond$ of circular states with the results of RgfL7], 7V, and with
semiclassical estimates® as predicted by the theory of Germafi8], for different values of the magnetic field strength.

m=+35 m=—40 m=+40

’y T TW TSC T TSC T TSC
0 5.489 5.498 5.584 10.55 10.71 10.55 10.71
2x1077 5.416 5.425 5.509 10.77 10.92 10.34 10.50
2x10°© 4.776 4.756 4.857 12.71 12.89 8.558 8.680
3x10°° 4.441 4.447 4.514 13.79 13.98 7.662 7.767
4x10°8 4,122 4.128 4,189 14.86 15.05 6.847 6.936
6x10°° 3.543 3.547 3.597 16.85 17.04 5.465 5.528
1x10°° 2.617 2.620 2.650 20.14 20.31 3.561 3.590
1.4x10°° 1.960 1.962 1.980 22.49 22.62 2.436 2.450
2x107° 1.325 1.327 1.335 24.69 24.79 1.507 1.512
3x10°5 0.770 0.771 0.774 26.39 26.44 0.808 0.809
4x10°5 0.498 0.498 0.499 26.91 26.94 0.500 0.501
6x10°° 0.250 0.255 0.255 26.69 26.69 0.245 0.245
1x10™4 0.103 0.103 0.103 25.10 25.08 0.0962 0.0961
1.4x10°4 0.0556 0.0557 0.0556 23.51 23.48 0.0510 0.0509
2x10°4 0.0285 0.0285 0.0284 21.56 21.53 0.0258 0.0258
with the dipole matrix elementnf’'=m=1): where

A m= T 27 "X g (p,2,0) | p™ | il p. 2, 0)). o, |- 22Iml+ (512)(|m| +- 1)+ 2| Im +2 @9

m’,m .

(2]m[+1)2m*3

As the output of our filter-diagonalization calculations we The above exact formula gives lifetimes which coincide with
obtain the e|genvalu§sn ande,, as well as the DVR com- the results of our calculations.

ponents¢Lm‘B and ¢‘:,‘ ‘ﬁ, of the eigenvectors. Since DVR’s Also shown for comparison in Table Il are the predictions
are|m|-dependentsee Sec. )| in order to calculate matrix ©f the semiclassical approach of Germdns]. The dipole
elements(4.5) it is necessary to transform to a single DVR matrix elements are calculated according to the formula
(say to the one related fon|). This transformation can be

N ’ ~2 =2
derived from general expressi¢®.19 and is given by © - I(wlwzwlwz)m( 56')%2 o] _ C1Pm_ ©1Pm
0 m’,m 2b(2ma)'? 26 28
| W} Syl 2 2
a.B o' 8 Vo g ar . aw C
B 2)\3(1+ 561,3) algﬁ/ B B A Xl 1+c _) eXF{_) ’ (41@
(4.6) b 4b

Now, the dipole matrix element.5) can be simply calcu- Wwhere a= %(2263+wé5'3), b=3w:6°+w;6'%), and c
lated as =wipmétwipy,d’. [In Eqg. (15 of Ref. [18] the factor
" (66")%?is missingd. As can be seen from Table II, the semi-
 (Ugvg) classical lifetimes agree very well with the quantum-
Ao m=+2""2 417y TB $us- (47  mechanical values over a wide range of magnetic-field
a=p strengths. This means that the approximate wave functions of
Germann[18], given as simple products of Gaussians cen-
tered atz=0 andp=p,,, are very good approximations to
the exact eigenfunctions.

Results of our calculations of the lifetimes are shown in
Table I, for circular states witlm= + 35 and*+40 and the
range of magnetic-field strengthsy=0—2x10 *(B
=0-47T). The comparison with the calculations of Ref.
[17] is also presented. We see that, contrary to the case of the B. Photoexcitation of highly excited states

eigenvalues, there appear to be some small differences. The |n order to test our method further, we applied it to cal-
origin of the discrepancy is unknown, but one can see that igy|ations of the eigenvalues and eigenvectors in the regions
persists even in the limiB=0. In this limit, however, one of high local spectral density. To our knowledge, the tabu-
can analytically calculate the lifetime of a circular stétteat  |ated eigenvalues of the converged numerical calculations for
is, of a hydrogenic state with spherical quantum numbersighly excited states exist only in the work of Clark and
{n=|m[+1, 1=|m|, m}): Taylor [20] based on the expansions in terms of radial Stur-
mians and spherical harmonics. The tabulated energies, how-
ever, correspond to the so callednixing regime(where the
principal quantum numben is approximately conserved

4 1 1
(7_0) 1—_ _
m 3¢ 2|m[? 2(]m|+1)2

3
0
|dm"m|21 (48)
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FIG. 1. The oscillator strengths for transitions frora &ate of FIG. 2. The same as Fig. 1, but at energies closer to the ioniza-
hydrogen atom inton= 0, odd-parity Rydberg states in a magnetic tion threshold.
field of 6.1 T.

_ ) _ regular pattern appears. It is well known that this transfor-
and cover the cases of five manifolds with=23, m  mation of the spectrum closely follows the transition from
=0,1,2,II,=*1 at a field strengttB=4.7T. We have yeqylar to chaotic classical motion of the Rydberg electron
found it comparatively easy to reproduce with our method a”(see, for example, Ref22)).
seven significant figures of the eigenvalues listed in Ref. Rasults presented in Figs. 1 and 2 have been obtained by
[20]. . using six overlapping energy windows withl,;,=200
As a more challenging task we have chosen to reproducg;indow-basis functions in each of them. The parameters of
the results of theR-matrix calculations of O'Mahony21].  ihe DVR basis were in the rangeN=40-100 (Npyr
We therefore study the photoexcitation, from an initia 3 —780-4950),\ =0.05-0.02, and the number of iterations
state of a hydrogen atom in a field Bf=6.1 T by photons =(2-10)x 1%, corresponding, respectively, to lowest
linearly polarized along the field direction. The final statesyq highest energies considered. This has been enough to
are highly excited odd-parityl{,=—1) states of then=0  chjeve convergendavith respect to variations dfl and)
manifold. The quantities calculated are oscillator strengths {5 gix significant figures of the eigenvalues and 2—3 figures
4.19) of oscillator strengths, while the quoted number of iterations
' was needed to obtain absolute errors of the eigenvalues of
where the matricee, <10’ cm™*,
A very large number of iterations is related to the high
Z3s 1= Yas(p.Z,9) |z 1(p,Z,9)). (4.12  local spectral density and is in accord with estime&el0.
Although our results confirm the high numerical stability of
As a result of our DVR-filter-diagonalization method, we the Chebyshev recursion relatiof@8) with respect to the
have eigenvalues; and DVR componentﬁSLB of the final-  roundoff errors, large numbers of iterations represent clearly
state eigenvectors. The dipole matrix elem@hi?) is than limitation of the methodbut see the discussion in Sec).V
given by The calculations in the uppermost windows took tens of CPU
hours on an IBM 6000/370 workstation.

fas1=2(€r— €35)Z3s 1

u,—v
— 3s “a YB f
ng'f_o;ﬁ ¢aﬁ 2\ d)alBY (413)

V. CONCLUDING REMARKS

where ¢isﬁ are the DVR components of the hydrogenis 3 In the present work, we have demonstrated that the pro-
wave function which can be found from the general formulaposed DVR can successfully be applied to treating bound-
(2.19. state problems of a highly excited hydrogen atom in
Results of our calculations for the range of final-state endaboratory-strength magnetic fields. Extensions to problems
ergies[ —260,—80] cm ! are shown in Fig. 1, while those of the continuous spectrum, such as calculations of reso-
covering the rangé— 80, —20] cm™! are presented in Fig. nances or photoionization cross sections, are possible by the
2. No visible difference can be found with the results ofuse of absorbing boundary conditions and corresponding
R-matrix calculationg21]. As can be seen from Fig. 1 at polynomial expansions of Green’s operafdf.,14.
lower energiesh manifolds are well separatéb-mixing re- One of the main advantages of any DVR is the absence of
gime) and characterized by regular distributions of oscillatorthe necessity to calculate multidimensional matrix elements
strengths which are repeated in each of the manifolds. Ahumerically, because the potential energy matrix is diagonal
higher energies manifolds begin to overlap-mixing re-  and can be trivially obtained. In the case of a hydrogen atom
gime) and the regularity in the distribution of oscillator perturbed by external magnetic and electric fields the tradi-
strengths disappears. At even higher energies, closer to thi®nal use of the Sturmian badi20] results in(analytically
ionization threshold, as seen from Fig. 2, a completely ir-calculablg banded Hamiltonian matrices. This is, however, a
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consequence of the fact that the perturbing potentials arprovements of the method have been developed which speed
polynomials in electronic coordinates. On the other hand, theip the recursive procedure and reduce the spectral range of
DVR introduced in Sec. Il can be applied to any cylindrically the Hamiltonian, and thus make it more efficient. Of course,
symmetric potentialfor example, core potential of a nonhy- once the DVR of a Hamiltonian is constructed, one is not
drogenic atom, as well as electric field parallel to the magiimited to this method. For example, the possible alternatives

netic field can be addedThe treatment of fully three- gare the iterative methods based on the Lanczos algorithm
dimensional problemswithout cylindrical symmetry can  [23].

easily be developed by including into the direct product an
additional one-dimensional DVR corresponding to the azi-
muthal anglep.

The sparseness of a Hamiltonian matrix in the DVR is
very useful for efficient coding of the iterative methods T.P.G. and C.M. are grateful for the hospitality shown by
which are inevitable when dealing with matrices of verythe Laboratoire de Dynamique des lons, Atomes et Mol-
large dimensions. In the present work we used the form oécules, UniversitePierre et Marie Curie where part of this
the filter-diagonalization method which becomes very CPUwork has been done. T.P.G. acknowledges support of this
time consuming when dealing with a very high density ofwork by the Ministry of Science and Technology of the Re-
states. However, we note that recerthf], significant im-  public of Serbia.
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