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Discrete variable representation for highly excited states of hydrogen atoms in magnetic fields
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A discrete variable representation~DVR! appropriate for describing the highly excited states of hydrogen
atoms in laboratory-strength magnetic fields is constructed by using a symmetry-adapted direct product of
one-dimensional DVR’s in parabolic coordinates related to generalized Gauss-Laguerre quadratures. The re-
sulting sparse Hamiltonian matrix is used in an iterative~filter-diagonalization! procedure to obtain eigenvalues
and eigenvectors in a given spectral domain. The method is applied to calculate eigenvalues and lifetimes of
‘‘circular’’ Rydberg states, as well as oscillator strengths for the excitation of highly excited states.
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I. INTRODUCTION

The discrete variable representation~DVR! was intro-
duced by Light, Hamilton, and Lill@1#, and traditionally used
~see, for example, Ref.@2# and references therein! mainly in
chemical physics to describe a variety of phenomena suc
rovibrational motions of the atoms in molecules, chemi
reactions, and molecule-surface interactions. Loosely sp
ing, the DVR is an approximate discretized coordinate r
resentation in which the potential-energy matrix is diago
while the~multidimensional! kinetic-energy matrix is sparse
These properties are very desirable in applications of var
iterative numerical methods which are suitable for treatme
of multidimensional nonseparable systems represented
large Hamiltonian matrices.

Applications in atomic physics have mainly followed th
Lagrange-mesh approach of Baye and Heenen@3#. This
method provides a special class of DVR’s with analytica
calculable differential operators. Recent applications inclu
the magnetized hydrogen atom@4,5#, helium atom@6# and
implementation of theR-matrix method@7#. The latter was
inspired by previous work of Layton and Stade@8,9#. Among
other DVR-based applications let us mention the tim
dependent treatment of a hydrogen atom in a laser field@10#
and our recent calculations of the photoionization cross s
tions of hydrogen atoms in very strong magnetic fields@11#.

In the present paper, in Sec. II we construct a DVR wh
is appropriate for the treatment of highly excited states
hydrogen atoms in laboratory-strength magnetic fields. T
DVR is equivalent to the Laguerre mesh introduced pre
ously by Baye and Vincke@4#. These authors, however, use
direct methods of diagonalization to solve~generalized! ei-
genvalue problems and restricted their calculations to lo
lying states. Instead, in Sec. III, we briefly describe an ite
tive ~filter-diagonalization@12#! method for extracting the
eigenvalues and eigenvectors of large matrices in a g
spectral domain. Results of our calculations are presente
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Sec. IV, where the eigenvalues and lifetimes of highly e
cited ‘‘circular’’ states are compared with the results of oth
numerical methods and semiclassical estimates. In addi
oscillator strengths for the transitions from low-lying
highly excited states close to the ionization threshold
presented. Finally, some concluding remarks are given
Sec. V. Atomic units (e5me5\51) are used throughou
the work except where explicitly stated.

II. DVR BASIS FUNCTIONS
AND HAMILTONIAN MATRIX

Let us consider the motion of an electron in the Coulom
field of a proton~assumed to have an infinite mass! and in
the presence of an external homogeneous magnetic field
ented along thez axis of a coordinate system centered at t
proton. The exact integrals of motion~good quantum num-
bers! are thez component of the electronic angular mome
tum Lz5m and the parityPz561, corresponding to the
reflection z→2z. We can restrict our considerations to
subspace of states with fixedm and disregard the trivial de
pendence of the eigenfunctions on the azimuthal an
@(2p)21/2exp(imw)#, thereby reducing our problem to a two
dimensional one. Introducing scaled parabolic coordina
(u,v)

u

l
5~r21z2!1/21z, ~2.1!

v
l

5~r21z2!1/22z, ~2.2!

r dr dz5
1

4l3 ~u1v !du dv, ~2.3!

we may write the Hamiltonian of our system in the forms

H5T1V~u,v !1
g

2
m, ~2.4!ur-
1865 © 1997 The American Physical Society
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T5
2l2

u1v F2
]

]u
u

]

]u
2

]

]v
v

]

]v
1

m2

4 S 1

u
1

1

v D G ,
~2.5!

V~u,v !52
2l

u1v
1

g2

8l2 uv. ~2.6!

In the above equations~2.1!–~2.6!, l is an arbitrary scaling
parameter andg is magnetic field strength measured in un
of B052.353105 T. The linear Zeeman shift (g/2)m in Eq.
~2.4! is the only place where the sign ofm enters, and po-
tential ~2.6! contains Coulomb and diamagnetic terms.

Following the general procedure@1,2#, we construct the
DVR basis using the orthonormal and complete~on the in-
terval 0<u,1`! set of functions

Fn
umu~u!5F n!

~n1umu!! G
1/2

Ln
umu~u!uumu/2e2u/2, n50,1,2, . . . ,

~2.7!

where Ln
umu(u) are Generalized Laguerre polynomials. T

one-dimensional DVR basis is then defined as follows:

ya
umu~u!5wa

1/2(
n50

N21

Fn
umu~ua!Fn

umu~u!, a51,2, . . . ,N,

~2.8!

where (ua ,wa), a51,2, . . . ,N @13# is the associated set o
Nth-order generalized Gauss-Laguerre quadrature points
weights. Apart from being orthonormal, the basis functio
~2.8! have the remarkable property

ya
umu~ub!5wa

21/2dab , ~2.9!

that is to say, they are zero at all quadrature points exc
one. In addition, the coordinateu is diagonal in the finite
basis~2.8! with eigenvalues equal to the quadrature point

E
0

1`

ya
umu~u!uyb

umu~u!du5uadab . ~2.10!

For treating our two-dimensional problem the next step
to form a direct-product DVR basis,

Yab
umu~u,v !5

2l3/2

~ua1vb!1/2 ya
umu~u!yb

umu~v !, a,b51,2, . . . ,N.

~2.11!

The normalization factor follows from the form of the Jac
bian ~2.3! and the property~2.10!.

However, as mentioned above, our Hamiltonian@Eqs.
~2.4!–~2.6!# is invariant with respect to a reflection in thez
50 plane, which corresponds to an interchangeu↔v of
parabolic coordinates. The basis functions~2.11! transform
according to:Yab

umu(v,u)5Yba
umu(u,v). Therefore, as our fina

basis we take eitherNDVR51/2N(N11) symmetric or
NDVR51/2N(N21) antisymmetric combinations of th
direct-product basis functions~2.11!:
nd
s

pt

s

Yab
umu6~u,v !5

Yab
umu~u,v !6Yba

umu~u,v !

@2~11dab!#1/2 ,

a<b, a,b51,2, . . . ,N.
~2.12!

All matrix elements are calculated by using the basic
proximation of all DVR’s@1,2#, that is, the substitution of the
exact integration by quadrature formulas. In our case,
corresponds to

E
0

1`E
0

1`

f ~u,v !du dv' (
a51

N

wa (
b51

N

wb f ~ua ,vb!.

~2.13!

Using this rule and property~2.9! it is easy to show that any
function of coordinates is diagonal in DVR’s. In particula
the matrix elements of the potential energy~2.6! are given
by:

Vab,a8b85V~ua ,vb!daa8dbb8 . ~2.14!

Matrix elements of the kinetic energy operator~2.5! can be
calculated by using the differential equation, satisfied by
Fn

umu(u) functions:

S 2
]

]u
u

]

]u
2

m2

4u
1

u

4DFn
umu~u!5S n1

umu11

2 DFn
umu~u!.

~2.15!

In the symmetric and antisymmetric subspaces we finda
<b, a8<b8)

Tab,a8b8
6

5
Tab,a8b6Tab,b8a8

~11dab!1/2~11da8b8!
1/2, ~2.16!

with

Tab,a8b85
2l2~ taa8

u dbb81daa8tbb8
v !

~ua1vb!~ua81vb8!
, ~2.17!

where, for example

taa8
u

5wa
1/2wa8

1/2(
n50

N21

Fn
umu~ua!S n1

umu11

2 DFn
umu~ua8!

2
ua

4
daa8 . ~2.18!

The sparse structure of the kinetic-energy matrix is obvio
from Eq. ~2.17!, and actually only the ‘‘one-dimensional’
matrix ~2.18! needs to be stored in computer memory.

Finally, let us note that any wave functionx(u,v) ~with
well defined parityPz! is represented in our DVR by a vec
tor with components (a<b):

xab5^Yab
umu6~u,v !ux~u,v !&

5F ~ua1vb!wawb

2l3~11dab! G1/2

x~ua ,ub!. ~2.19!
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III. FILTER-DIAGONALIZATION METHOD

The basic idea of the method is due to Neuhauser@12#.
The eigenvalues~and eigenvectors! of a given Hamiltonian
H in a desired ‘‘energy window’’@Emin , Emax# are obtained
by diagonalizing the Hamiltonian matrix in a small basis
of optimally adapted ‘‘window’’ functions $c j%, j
51,2, . . . ,Nwin . Such a basis can be generated by act
with a suitable filtering operatorf (E2H) onto a generic
initial wave packetx:

c j5 f ~Ej2H !x, j 51,2, . . . ,Nwin , ~3.1!

where Emin,E1,•••,Ej,•••,ENwin
,Emax and f (x) is a

function which is peaked atx50 and decays rapidly fo
large uxu. Expanding the initial wave packet in the formx
5(acafa whereHfa5eafa , it is seen that each of th
functionsc j is mainly composed of the eigenfunctions ofH
corresponding to eigenvalues close toEj :

c j5(
a

f ~Ej2ea!cafa . ~3.2!

It is the above mentioned form of the filtering function whic
suppresses the contribution in Eq.~3.2! from eigenstatesfa
with eigenvaluesea which are far away fromEj .

Originally @12#, a Gaussian filter with adaptive width wa
used:f (E2H);exp@2„(E2H)/s…2#. For the realization of
the operator~matrix! action in Eq.~3.1! usually a polynomial
expansion off (E2H) is used. In the present work we ado
an alternative filtering function@14#, namely, the finite-width
d-function filter f (E2H)5dM(E2H). This function can be
defined directly through its expansion in terms of Chebys
polynomialsTn(x):

dM~E2H !52
2

DHp sinw~E!

3F1

2
1 (

n51

M

cosnw~E!Tn~Hnorm!G , ~3.3!

with

T0~Hnorm!5I ,T1~Hnorm!5Hnorm,
~3.4!

Tn11~Hnorm!52HnormTn~Hnorm!2Tn21~Hnorm!.

In the above,I is the unit matrix, andHnorm is the shifted and
normalized Hamiltonian matrix:

Hnorm5
H2H̄I

dH
, ~3.5!

where H̄5 1
2 (Hmax1Hmin), DH5 1

2 (Hmax2Hmin), and Hmax
andHmin , respectively, are the upper and lower estimates
the maximum and minimum eigenvalues of the Hamilton
matrix H. Thus, the spectrum ofHnorm is confined to the
segment@21,1#. The dependence onE in Eq. ~3.3! is con-
tained in the phase

w~E!5arccosS E2H̄

DH D . ~3.6!
t

g

v

f
n

The functiondM(x) is peaked atx50, and has a decaying
oscillatory behavior at largeuxu, fulfilling the above men-
tioned filtering property. AsM→1`, the expansion~3.3!
tends toward the spectral density operatord(E2H)5
2(1/p)ImG1(E), and can be obtained from the Chebyshe
polynomial expansion of the Green’s operatorG1(E)5(E
2H1 i0)21 @15#.

Now combining Eqs.~3.1! and ~3.3! @and neglecting the
unimportant normalization factor in Eq.~3.3!#, for the
window-basis functions we obtain:

c j5
1
2 j01 (

n51

M

cosnw~Ej !jn , ~3.7!

where

j05x, j15Hnormx, jn1152Hnormjn2jn21 .
~3.8!

It is important to note that theEj dependence in Eq.~3.7! is
factored, so that a single iteration of Eq.~3.8! is sufficient to
generate all basis functionsc j , j 51,2, . . . ,Nwin . After that,
the basis set~3.7! can be Schmidt orthogonalized, and a
linear dependence eliminated. The diagonalization o
Hamiltonian matrix in this small basis can than be perform
by any of the standard methods. The quality of the obtain
eigenvaluesea and eigenvectorsfa can be checked by cal
culating the following estimate of the absolute error:

ea5i~H2ea!fai . ~3.9!

The number of window-basis functionsNwin should be, of
course, larger than the number of eigenvalues in a gi
window. As a result of diagonalization in the small wido
basis, the eigenvalues located outside the given wind
@Emin ,Emax# will also appear, but with the errors~3.9! of
orders of magnitude larger. The maximum number of w
dow functions is limited by the available core memory of
computer. Wide spectral ranges of a very large matrices
be covered by a series of overlapping windows.

The main CPU time-consuming operation in the filte
diagonalization method is the matrix-vector multiplication
recursion~3.8!. However, due to the sparseness of the Ham
tonian matrix in a DVR this is actually anNDVRlnNDVR pro-
cess rather than aNDVR

2 process, and a very efficient codin
of this operation is possible~see, for example, Ref.@2#!.

Previous numerical experience@14,16# suggests that the
number of termsM necessary in Eq.~3.7! in order to obtain
well-converged eigenstates is given by the following emp
cal estimate

M;2DHr, ~3.10!

where 2DH is the spectral range of the Hamiltonian matr
andr is the local spectral density.

IV. APPLICATIONS

The DVR Hamiltonian of Sec. II and the filter
diagonalization method explained in Sec. III are applied h
for calculations of eigenvalues and radiative transition pr
abilities of highly excited states of hydrogen atoms
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TABLE I. Comparison of the calculated eigenenergiesE ~in 1024 a.u.! of circular states with semiclassical estimatesESC as predicted by
the theory of Germann@18#, for different values of the magnetic-field strength. The energies of the circular states withm.0 are obtained by
addinggm.

g

m5235 m5239 m5240

E ESC E ESC E ESC

0 23.858 0247 23.858 0247 23.125 0000 23.125 0000 22.974 4200 22.974 4200
231027 23.892 9384 23.892 9384 23.163 8688 23.163 8688 23.014 2753 23.014 2753
231026 24.199 4132 24.199 4132 23.501 9361 23.501 9360 23.360 0181 23.360 0180
331026 24.363 7037 24.363 7035 23.680 7594 23.680 7589 23.542 2102 23.542 2096
431026 24.523 8103 24.523 8096 23.853 3844 23.853 3829 23.717 6224 23.717 6207
631026 24.831 8667 24.831 8636 24.181 0541 24.181 0480 24.049 3618 24.049 3548
131025 25.402 9624 25.402 9450 24.774 4253 24.774 3975 24.646 5193 24.646 4887
1.431025 25.921 7731 25.921 7283 25.300 7072 25.300 6443 25.173 1889 25.173 1220
231025 26.621 0925 26.620 9878 25.996 6114 25.996 4831 25.866 7507 25.866 6181
331025 27.631 0714 27.630 8425 26.984 4737 26.984 2229 26.847 9021 26.847 6481
431025 28.504 4753 28.504 1096 27.829 0090 27.828 6279 27.684 8587 27.684 4760
631025 29.986 3690 29.985 7123 29.250 3774 29.249 7212 29.091 3259 29.090 6717
131024 212.335 253 212.333 972 211.487 385 211.486 139 211.301 886 211.300 648
1.431024 214.222 650 214.220 703 213.276 965 213.275 087 213.068 763 213.066 902
231024 216.561 837 216.558 835 215.488 608 215.485 732 215.251 052 215.248 208
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laboratory-strength magnetic fields. The first applicat
deals with ‘‘circular’’ Rydberg states with a large angul
momentum~see, for example@17,18# and references therein!
while the second one concerns calculations of oscilla
strengths for transitions from low-lying states to highly e
cited states close to the continuum border.

A. Eigenvalues and lifetimes of circular Rydberg states

‘‘Circular’’ Rydberg states in magnetic fields are th
‘‘ground’’ states of variousm manifolds, with umu@1 and
well-defined parityPz511. The name comes from the fa
that the electron is localized in the vicinity of a circular orb
perpendicular to the field direction@18#. Being located at the
edge of the spectrum of the manifold, where the local sp
tral density is small, these eigenstates are relatively eas
obtain with the filter-diagonalization method.

Results of our calculations of the energies of circu
states with m5235, 239, and 240 in the range of
magnetic-field strengthsg502231024(B50247 T) are
shown in Table I. They were obtained by usingN540 one-
dimensional DVR basis functions, that, is the total ofNDVR
5 1

2 N(N11)5820 two-dimensional basis functions~or
DVR grid points! with the value of the scaling parameterl
50.03.Nwin550– 100 window functions were used and on
M5300 iterations in Eqs.~3.7! and ~3.8! were necessary to
obtain errorsea,1029 a.u. for circular and nearby state
The initial, generic wave packetx was taken either randoml
or uniformly over the DVR grid with no difference in per
formance of the method.

Eigenvalues form5235 were previously calculated i
Ref. @17# by diagonalization of a banded Hamiltonian matr
constructed in the basis of 70 radial Sturmians and 70 sph
cal harmonics. We found the agreement with these resul
all eight significant figures shown in Table I.

For further comparisons, also shown in Table I are
semiclassical results which we calculated using the formu
n

r

c-
to

r

ri-
to

e
s

recently derived by Germann@18#. This approach is actually
an extension of the previous work of Ref.@19#. It is based on
an expansion in terms of the small parameterd 5(umu
11)21. The crucial quantity is the scaled radiusr̃m of the
circular orbit in z50 plane around which the electron
localized. It is defined as the location of the minimum of
effective potential

Veff~ r̃ !5
1

2r̃22
1

r̃
1

g̃2r̃2

8
, ~4.1!

wherer̃5d2r and g̃5d23g. The energy of a circular stat
is then given by

em
sc5

mg

2
1d2Veff~ r̃m!1 1

2 d3S v11v22
1

r̃m
2 D , ~4.2!

where the frequencies

v1
25

3

r̃m
4 2

2

r̃m
3 1

g̃2

4
, v2

25
1

r̃m
3 ~4.3!

are related to oscillations of the electron perpendicular to
circular orbit. As can be seen from Table I, the simple se
classical expression~4.2! reproduces 4–7 significant figure
of the exact results. This excellent agreement confirms
highly ‘‘semiclassical nature’’ of circular states. In acco
with the findings of Ref.@19#, the semiclassical eigenvalue
become less accurate at larger magnetic-field strengths.

The only allowed radiative electric-dipole transition fro
a circular state is to the neighboring circular state with o
less quantum of angular momentum:m→m8, um8u5umu
21. The lifetimetm of a circular state is therefore given b

tm
215

4

3c3 ~em2em8!
3udm8,mu2, ~4.4!
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TABLE II. Comparison of the calculated lifetimest ~in milliseconds! of circular states with the results of Ref.@17#, tW, and with
semiclassical estimatestSC as predicted by the theory of Germann@18#, for different values of the magnetic field strength.

g

m5135 m5240 m5140

t tW tSC t tSC t tSC

0 5.489 5.498 5.584 10.55 10.71 10.55 10.71
231027 5.416 5.425 5.509 10.77 10.92 10.34 10.50
231026 4.776 4.756 4.857 12.71 12.89 8.558 8.680
331026 4.441 4.447 4.514 13.79 13.98 7.662 7.767
431026 4.122 4.128 4.189 14.86 15.05 6.847 6.936
631026 3.543 3.547 3.597 16.85 17.04 5.465 5.528
131025 2.617 2.620 2.650 20.14 20.31 3.561 3.590
1.431025 1.960 1.962 1.980 22.49 22.62 2.436 2.450
231025 1.325 1.327 1.335 24.69 24.79 1.507 1.512
331025 0.770 0.771 0.774 26.39 26.44 0.808 0.809
431025 0.498 0.498 0.499 26.91 26.94 0.500 0.501
631025 0.250 0.255 0.255 26.69 26.69 0.245 0.245
131024 0.103 0.103 0.103 25.10 25.08 0.0962 0.0961
1.431024 0.0556 0.0557 0.0556 23.51 23.48 0.0510 0.0509
231024 0.0285 0.0285 0.0284 21.56 21.53 0.0258 0.0258
e
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with the dipole matrix element (m85m61):

dm8,m57221/2^cm8~r,z,w!ure6 iwucm~r,z,w!&.
~4.5!

As the output of our filter-diagonalization calculations w
obtain the eigenvaluesem andem8 as well as the DVR com-

ponentsfa,b
umu and fa8,b8

um8u of the eigenvectors. Since DVR’
are umu-dependent~see Sec. II!, in order to calculate matrix
elements~4.5! it is necessary to transform to a single DV
~say to the one related toumu!. This transformation can be
derived from general expression~2.19! and is given by

fa,b
um8u5F ~ua1vb!wawb

2l3~11dab! G1/2

(
a8<b8

fa8,b8
um8u Ya8,b8

um8u1
~ua ,vb!.

~4.6!

Now, the dipole matrix elements~4.5! can be simply calcu-
lated as

dm8,m57221/2(
a<b

fa,b
um8u ~uavb!1/2

l
fa,b

umu . ~4.7!

Results of our calculations of the lifetimes are shown
Table II, for circular states withm5135 and640 and the
range of magnetic-field strengthsg502231024(B
50 – 47 T). The comparison with the calculations of R
@17# is also presented. We see that, contrary to the case o
eigenvalues, there appear to be some small differences.
origin of the discrepancy is unknown, but one can see th
persists even in the limitB50. In this limit, however, one
can analytically calculate the lifetime of a circular state~that
is, of a hydrogenic state with spherical quantum numb
$n5umu11, l 5umu, m%!:

~tm
0 !215

4

3c3 S 1

2umu22
1

2~ umu11!2D 3

udm8,m
0 u2, ~4.8!
.
he
he
it

rs

where

udm8,m
0 u5

22umu1~5/2!~ umu11! umu12umu umu13

~2umu11!2umu13 . ~4.9!

The above exact formula gives lifetimes which coincide w
the results of our calculations.

Also shown for comparison in Table II are the predictio
of the semiclassical approach of Germann@18#. The dipole
matrix elements are calculated according to the formula

dm8,m
0

57
~v1v2v18v28!1/4~dd8!3/2

2b~2pa!1/2 expS 2
v1r̃m

2

2d
2

v18r̃m8
2

2d8
D

3F11cS p

b D 1/2

expS c2

4bD G , ~4.10!

where a5 1
2(v2d

31v28d83), b5 1
2(v1d31v18d83), and c

5v1r̃md1v18r̃m8 d8. @In Eq. ~15! of Ref. @18# the factor
(dd8)3/2 is missing#. As can be seen from Table II, the sem
classical lifetimes agree very well with the quantum
mechanical values over a wide range of magnetic-fi
strengths. This means that the approximate wave function
Germann@18#, given as simple products of Gaussians ce
tered atz50 and r̃5 r̃m , are very good approximations t
the exact eigenfunctions.

B. Photoexcitation of highly excited states

In order to test our method further, we applied it to ca
culations of the eigenvalues and eigenvectors in the reg
of high local spectral density. To our knowledge, the tab
lated eigenvalues of the converged numerical calculations
highly excited states exist only in the work of Clark an
Taylor @20# based on the expansions in terms of radial St
mians and spherical harmonics. The tabulated energies, h
ever, correspond to the so calledl -mixing regime~where the
principal quantum numbern is approximately conserved!
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and cover the cases of five manifolds withn523, m
50,1,2, Pz561 at a field strengthB54.7 T. We have
found it comparatively easy to reproduce with our method
seven significant figures of the eigenvalues listed in R
@20#.

As a more challenging task we have chosen to reprod
the results of theR-matrix calculations of O’Mahony@21#.
We therefore study the photoexcitation, from an initials
state of a hydrogen atom in a field ofB56.1 T by photons
linearly polarized along the field direction. The final stat
are highly excited odd-parity (Pz521) states of them50
manifold. The quantities calculated are oscillator strength

f 3s, f52~e f2e3s!z3s, f , ~4.11!

where

z3s, f5^c3s~r,z,w!uzuc f~r,z,w!&. ~4.12!

As a result of our DVR-filter-diagonalization method, w
have eigenvaluese f and DVR componentsfab

f of the final-
state eigenvectors. The dipole matrix element~4.12! is than
given by

z3s, f5 (
a,b

fab
3s ua2vb

2l
fab

f , ~4.13!

wherefab
3s are the DVR components of the hydrogenics

wave function which can be found from the general form
~2.19!.

Results of our calculations for the range of final-state
ergies@2260,280# cm21 are shown in Fig. 1, while thos
covering the range@280,220# cm21 are presented in Fig
2. No visible difference can be found with the results
R-matrix calculations@21#. As can be seen from Fig. 1 a
lower energies,n manifolds are well separated~l -mixing re-
gime! and characterized by regular distributions of oscilla
strengths which are repeated in each of the manifolds.
higher energies manifolds begin to overlap~n-mixing re-
gime! and the regularity in the distribution of oscillato
strengths disappears. At even higher energies, closer to
ionization threshold, as seen from Fig. 2, a completely

FIG. 1. The oscillator strengths for transitions from 3s state of
hydrogen atom intom50, odd-parity Rydberg states in a magne
field of 6.1 T.
ll
f.

ce

s

-

f

r
t

he
-

regular pattern appears. It is well known that this transf
mation of the spectrum closely follows the transition fro
regular to chaotic classical motion of the Rydberg elect
~see, for example, Ref.@22#!.

Results presented in Figs. 1 and 2 have been obtaine
using six overlapping energy windows withNwin5200
window-basis functions in each of them. The parameters
the DVR basis were in the rangesN540– 100 (NDVR
5780– 4950),l50.05– 0.02, and the number of iteration
M5(2 – 10)3105, corresponding, respectively, to lowe
and highest energies considered. This has been enoug
achieve convergence~with respect to variations ofN andl!
to six significant figures of the eigenvalues and 2–3 figu
of oscillator strengths, while the quoted number of iteratio
was needed to obtain absolute errors of the eigenvalue
the matricesea,1027 cm21.

A very large number of iterations is related to the hi
local spectral density and is in accord with estimate~3.10!.
Although our results confirm the high numerical stability
the Chebyshev recursion relations~3.8! with respect to the
roundoff errors, large numbers of iterations represent cle
limitation of the method~but see the discussion in Sec. V!.
The calculations in the uppermost windows took tens of C
hours on an IBM 6000/370 workstation.

V. CONCLUDING REMARKS

In the present work, we have demonstrated that the p
posed DVR can successfully be applied to treating bou
state problems of a highly excited hydrogen atom
laboratory-strength magnetic fields. Extensions to proble
of the continuous spectrum, such as calculations of re
nances or photoionization cross sections, are possible by
use of absorbing boundary conditions and correspond
polynomial expansions of Green’s operator@11,14#.

One of the main advantages of any DVR is the absenc
the necessity to calculate multidimensional matrix eleme
numerically, because the potential energy matrix is diago
and can be trivially obtained. In the case of a hydrogen at
perturbed by external magnetic and electric fields the tra
tional use of the Sturmian basis@20# results in~analytically
calculable! banded Hamiltonian matrices. This is, however

FIG. 2. The same as Fig. 1, but at energies closer to the ion
tion threshold.
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consequence of the fact that the perturbing potentials
polynomials in electronic coordinates. On the other hand,
DVR introduced in Sec. II can be applied to any cylindrica
symmetric potential~for example, core potential of a nonhy
drogenic atom, as well as electric field parallel to the m
netic field can be added!. The treatment of fully three-
dimensional problems~without cylindrical symmetry!, can
easily be developed by including into the direct product
additional one-dimensional DVR corresponding to the a
muthal anglew.

The sparseness of a Hamiltonian matrix in the DVR
very useful for efficient coding of the iterative metho
which are inevitable when dealing with matrices of ve
large dimensions. In the present work we used the form
the filter-diagonalization method which becomes very C
time consuming when dealing with a very high density
states. However, we note that recently@16#, significant im-
T.
o

re
e

-

n
i-

f

f

provements of the method have been developed which sp
up the recursive procedure and reduce the spectral rang
the Hamiltonian, and thus make it more efficient. Of cour
once the DVR of a Hamiltonian is constructed, one is n
limited to this method. For example, the possible alternati
are the iterative methods based on the Lanczos algori
@23#.
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