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Finite-element calculations of the antiprotonic helium atom including relativistic
and QED corrections
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A recently developed extension to a three-dimensional finite-element @obes equation solver in the
total angular momentum representation was used to calculate the energy-level spectrum and wave functions for
antiprotonic helium system. The accuracy of the numerical method was analyzed. Relativistic and QED
corrections to the energy levels were calculated in the main order. Excellent agreement was reached between
relativistically corrected wavelengths and recent experimental data. Radiative transition probabilities and life-
times were calculated and compared with other calculations as well as with experiment.
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I. INTRODUCTION tonic helium, etc., so far most theoretical work has been

devoted mainly to calculations of energy levels pHe™

The spectrum of the general three-body Hamiltonian ig17-23. Only a few papers have partially dealt with Auger
ConSiderably more difficult to Study than that of the Corre-processe3[6,21] or formation and quenching processes
sponding two-body problem. Accurate experimental result$19 24,25 in the system.
were available earlier only for heliumlike systems where op-  Early theoretical attempts used the Born-Oppenheimer ap-
tical methods have made it possible to determine a larg@roximation [2,3,17. The uncertainty reached within the
number of doubly as well as singly excited energy levels. Iframe of this approximation is less than 10a.u.[17,18.
is only recently that other systems have been studied in sudRecently, more extensive work have included the use of a
great detail that they can be used as comparative benchmar&enfiguration-interaction methdd 9], an adiabatic approxi-
for general theoretical three-body methods. mation method 18,20, and a variational metho®1].

Exotic atoms, i.e., atoms including a massive negatively While the current experimental accuracy of the measured
charged particle, have been studied for some time. The firdfansition wavelengths is around 4 ppm, we found that most
few investigations were purely theoretical, dealing with theirPrior theoretical resultfl7-21 disagree with experiment to
spectral and other properties comparing them to normal a@Pout 1000 ppm. Since each of the above-mentioned meth-

oms[1-3]. The computational methods were based on the@ds most likely has been pushed to its limit, the remaining
Born-Oppenheime(BO) approximation. discrepancies are to be found in the basic assumptions and

The observation of delayed antiproton annihilation in lig- P€r"aps the approximations made in each respective theoret-

uid helium [4] in 1991 changed the situation drastically, '¢& approach.

Considerable attention has since been given to the antipro- We repqrted preliminary results that are closer to the cur-
rent experimental datg23]. These results are supported by

tonic helium systempHe . Both isotope systemp*He®  the recent theoretical work of Korobdi22] (see below
and p*He™ were experimentally studied in detdd#—16].  which agrees with experimental transition wavelengths
Recently, high-precision measurements of transition wavewithin 40 ppm.

lengths have been reported for bgthHe * [7,11,15,16 and In this work we use a three-dimensional finite-element
p3He* [12] systems. method(FEM). The FEM has been used successfully earlier

The experimental methods were based on Iaser—inducei engineering calculatior_IESZG_]. The implementa_ltion_of the
transitions in the visible spectral region giving a relative ac- =M in guantum mechanics is rather rg27 -3 in spite of

curacy of 4 ppm. This has created a challenge to theoreticél'iS advar)tages. By combining a total angular momentum rep-
. — L resentation and FEM, we have been able to calculate energy
few-body physics. The@He™ system is in this sense becom-

nidat ;
ing an additional benchmark for computational three-bod)JeveIS of thep_ He system. However, comparing th_em to
theory. This theoretical work has, on the other hand, chalPréSently available experimental data, we obtain disagree-

lenged and guided experiment to observe more wavelengt ent up to 40 ppm. The main part of this difference is shown

and decay rates, thus completing and extending our knowP€elow to be due to relativistic effects. When calculated, the
edge of the antir;rotonic helium system relativistic corrections produce excellent agreement between

Despite the vast experimental data concerning deca§ur theoretical and current experimental data.

; i ; ; Because most experimental results for transition wave-
rates, the formation and collisional quenching of the antipro-
g g P lengths[7,11,15,16 and decay ratel88,11] are presented for

the?He+ isotope system, we shall here restrict our consid-

*Permanent address: Laboratory of Complex Systems Theory, Ireration to this system. Calculations of '[t]—éHe+ system are
stitute for Physics, St. Petersburg University, St. Petersburg, Russiil progress.
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The paper is organized as follows. In Sec. Il, we describe e
the formal theory and how the obtained equations are real- p
ized in a numerical treatment. In Sec. Ill, the main results
concerning nonrelativistic energy levels are presented. In
Sec. IV, relativistic and QED corrections to the energy levels
are reported. In Sec. V, we present and analyze radiative
decay times and Einstein coefficients. The paper is con- Y\ ¢
cluded with a short summary.

[l. METHOD OF CALCULATIONS

_ (@) He ™
The pHe™ system consists of three particles interacting

via Coulomb forces. Here we will neglect nonradiative decay .

channels; therefore, the energy levels will be truly bound P

states. The total wave functioli’™ of the system with the

angular momenturd and its projectiorM can be expanded

in terms of WigneD functions[37,38:

J
1
————[D},(a,B,
s;),l 2+2550[ Ms( B?’)
++

(=1 Dy_(@.B NI YIR). (1) (®) He

FIG. 1. Jacobi coordinate systenta) “standard” Jacobi coor-
ates andb) our choice, discussed in the text. The angular vari-
ablec=cosp=(X,y).

Here plus and minus signs refer to states with normal améijin
anomalous spatial parity, respectively. The Euler angles
B, and y define a rotation of the body-fixed frame with re-
spect to the laboratory-fixed one and is a three-
dimensional coordinate in the body-fixed frame. As the statewhere . (J,s) =[J(J+1)—s(s=1)]*2and 4~ V=0. The

of the anomalous spatial parity decay rapidly via Auger tran-diagonal part— Aﬁf)y of the kinetic-energy operator and the
sitions[1,22], the only states of interest can be described a€oulomb potentialV©°" are defined as

@M In the following, we thus consider only such states

and omit the plus in the designation of the wave function.

There are a few different possible choices of the body- (s)_ 1
fixed coordinateR. The usual on¢17,18,23 is “standard” —AT=— 2 2
Jacobi coordinates. Here the first vector joins two heavy par- HradX
ticles (helium and antiprotonand the second connects the

> +(ﬁ_2+ wl S )
xe ap? Cod)ﬂ(ﬁ sirfg) |’

electron and the center of mass of thele?*; see Fig. ). 1 P

The main reason for that choice is that it is possible to sepa- —A§5)= - —z{y—zy—[.](.H— 1)—2s?]
rate the electron motion for the case of infinite masses of the 2p1y 9y

heavy particles. However, we have chosen another Jacobi 5 9
coordinate system plotted in Fig(kh. Namely, let particles + a—+cot 7 _ S

1, 2, and 3 represent the antiproton, the electron, and the d¢p? b sirtg) |

helium nucleus, respectively. Tharis the distance between

particles 2 and 3i.e., electron and helium nucleyy is the

distance between particle (Bntiproton and the center of coul 2 2 1

mass of particles 2 and 3, amflis the angle betweex and VXY, é) =~ [ r_23+ [

y. In short, this choice is caused by a simpler structure of the

wave function in these coordinates and will be explained in

Sec. lll. The interparticle distances; can easily be expressed in
After substituting expansior(l) into the Schrdinger terms of Jacobi coordinates and the reduced masseave

equation and using an orthogonality relation for thdunc-  been defined in terms of the particle masses as

tion [37] one can derive the system of equati¢88] Moz=Momg/(my+mg)  and  wg=my(My+mg)/[my

+(my+mg)]. The componentg’ must satisfy the bound-

_im)\(J’S)(i+(l—s)cot¢)w<“1> ary conditions with respect to the angleso that

1

° 2#1,23\/2 I$
LA = AT VENy, ) — BTy YOy, ¢) =sif by o (xy, b), )
—ivl+ 5502’“1 2 £+(1+S)C°t¢’) Yot whereyU9(x,y, ¢) is a bounded function of its arguments.

The most important advantage of the set of equati@ns
=0, s=0,...J, (2) s that they couple the three componess™0), 49 and



56 FINITE-ELEMENT CALCULATIONS OF THE ... 1857

"D only. In a numerical realization this produces a band £X)(x) = P, (X)exp — vX)
matrix with a fixed bandwidth for any angular momentdm hh "
This decreases computational requirements substantially. fi(,yk)(y): Pk(gl)gd( ), ®

Numerically we have realized Ed2) using the finite-
element method. Here we outline the general ideas of this
method, while one can find its detailed description elsewhere
[26,33,35. HereP, is a Legendre polynomial argy, is a damping func-

_ The three-dimensional space formedby, andc=cosp tion that will be discussed later. Variablesandy appear
is divided into some number of rectangular boxes numbere .
instead ofx andy due to a normalization of every one-

by i. Each componenf’? of the total wave function is  gimensional box to the intervél- 1,1]. This normalization

f9(c)=P|(c).

expanded in a finite-element basis such that causes a maximum linear independence of the basis func-
tions in the box and decreases the ill definiteness of the over-

PI(xy,c)= v f (X,Y.C). 4 lap matrix.
yry.c) % imfim(.Y.C) @ The above choice of the basis functions is guided by the

fact that we are dealing with a Coulomb potential only. This
For the sake of simplicity, we omit the indiceds) on the  makes it possible to use simple analytical expressions for the
right-hand of Eq.(4). Herev;,, are expansion coefficients potential matrix element in Eq6) and to reduce the CPU
defined in each elememtand restricted through continuity time of the calculations as well as to increase the accuracy.
conditions for the wave function at element boundaries. A There are different possibilities in choosing a set of func-
basis functiorf;.,(x,y,c) has in the finite-element algorithm tions defined by Eq8). We have found that one of the most
the property convenient set is the set with the bounded maximal power of

polynomials

fim(x,y,c)=0 for (x,y,c) ¢ elementi. (5)
n+k+I1<M. 9
Then the coefficients;,, and the energy¥ are obtained o . .

by means of minimization of a function&¥’|H| W), where In principle, one can use the functions defined by ).
the HamiltonianH is defined in Eq(2). The best approxi- With =0 andgq(y)=1. However, to speed up conver-

mation is evaluated by solving a generalized eigenvalu§€Nce, it is convenient to find an appropriate consteand
problem a functiongy. We have fixed the damping function to meet

the asymptotic behavior of the wave function at the origin
Ho=E< and at infinity:

. (10

M1,23
h =C _ 2
wnere gd(y) )’JEXF{ J+1 qy

(H)im,jk={fim|H|fj10), Here q is an arbitrary parameter. Thus the only nonlinear
_ parameters to be optimized areand q. We have found a
(S)im,jk=<fim|fjk>. (6) slow eigenvalue dependence on these parameters. This en-
ables the value of to be fixedv= 1.5 for all levels and the
It is worth noticing that the global basis set is a particularvalue ofq to be calculated on a small number of boxes.
case of the method described above where one box only is Using this basis, the generalized eigenvalue problém
used. However, the FEM manifests its advantages in usingas solved by means of an inverse iteration procedure. For
many boxes, defined by the locality of the basis functionssolving the set of linear equations so appearing, we used the
(5). One such advantage is that the final matriseandS  block LU factorization method39].
become banded and relatively sparse and the overlap matrix

S is well defined in contradiction to the ill-defined one ap- lll. COULOMB ENERGY LEVELS
pearing for a global basis set.

. . In this section we present our results for energy levels and
Let us now discuss some details of the general schemﬁ;‘ P 9y

used for our calculations. The basis functions are express nsition wavelengths for the pure Coulomb case. The anti-
RS : . P eﬁﬂ)tonic helium has properties that resemble both molecular
as products of one-dimensional basis functions

and atomic systems. Both molecular rovibrationall) and
atomic (n,1) quantum numbers may be used in a level clas-

X
fim(x,y,c)zfi(’,z(m)(x)ff}’ﬁ(m)(y)ffﬁ}m)(c). @) sification. The two sets of quantum numbers are related
Such a representation of the basis functions simplifies a}}hrough[l?]
evaluation of the matrix elements in E¢) and reduces n=v+J+1, |=J. (12)
most three-dimensional integrals to a product of one-
dimensional ones. In the following, we use the molecular classification scheme.
The number of boxes for the space coordinatgg is The mesh used in the calculations was fixed to meet the

defined by convergence properties. However, one box onlgtrong localization of the wave functidi7,19. The total
was chosen for the angular varialdeThe one-dimensional number of elements was chosen to be 36. Six elements were
basis functions in every box were chosen to be used forx andy and only one element far. This mesh is
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FIG. 2. Mesh used in calculations farandy coordinates.

shown in Fig. 2. The matrix elements of the potential in Eq.
(6) were calculated analytically with respectdoNumerical
integration forx andy was performed using the 30-point
Gauss quadrature rule for the elements containing the Cou-
lomb singularity and the 20-point one was used for the oth-
ers. The number of functions for tleevariable was fixed to

be 19. An increase in the number of functions beyond 19 did
not influence the results within the present accuracy.

The convergence properties of the numerical scheme has
been proved as follows. The asymptotic behavior for an ap-
proximate eigenvalug (P can, for rather small element vol-
umesh and large polynomial degregs be written as

A(p)

E(P)=E®XacY Ch?P, (12)

1.0e-6 1

whereC is some constar26]. As our elements have very
different volumes, we preferred to reach the final results by
increasingp. When the asymptotic behavi@t?2) is reached,

an estimate

(b)

FIG. 3. Dependence ah(p) on the maximum degree of the
polynomialsp for J=36 and different vibration numbers. The
. solid line, dashed line, short-dashed line, dotted line, and dash-
A(p)=EPTV—EP=Ch? (13)  dotted line correspond to=0,1,2,3,4, respectively. The conver-
gence for(a) only polynomials andb) polynomials with the damp-
is valid. One can see in Fig. 3 that the calculated resulting functions are shown.
agree well with the theoretical prediction already in the range . o
p=3,...,6 both for polynomials only in Eq(8) and for Results for eigenvalueg&, ;(N), converged within the
polynomials with the damping functions. present accuracy with respect to the number of equations

By means of extrapolation of the asymptotic behaviorN, are presented in Table | for a few typical values of
E(M we can calculat&e*act and we can therefore estimate (v,J). All energies are measured in atomic units. The masses
the error, which is equal to the difference between the exef “He?* and p adopted are 7294.289 and
trapolated valu&®*@°tand the calculated value®. We use  1836.1527h, [40].
the values calculated with the damping functions because of One can see that the finite mass corrections as well as the
their higher accuracy. The accuracy defined in this way iorrections coming from higher equations have an essential
4x10°% a.u. for v=0,1,2, 6x10 % a.u. for v=3, and influence on the final results. The corrections become larger
15x 10~ % a.u. forv =4. for lower values of]. This is in accordance with the consid-

The formalism, discussed above, yielded sparse matricearation of the validity of the BO approximatidri7]. The
of dimension about 9000 with a total bandwidth of aboutdifference between our and the BO results is inside the un-
4000. All calculations were performed on a DEC/Alpha 600/certainty of the BO approximation, which is of the order of
4-256 workstation in double precision and took ab®un of  the mass ration./m~ It can be seen that the main differ-
CPU time for each level. ence, especially for small values &fcomes from the higher
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TABLE I. Energies(a.u) of some levels of th@He+ system. The results are presented for the BO
approximation18] and our calculations with onee(1)], two [E(2)], and threq E(3)] equations.

EnergiesE,;
(v.J) BO E,a(1) E,a(2)—Ey(1) E,a(3)—Eys(2) Final
(1,39 -2.610523 -2.610298 -0.000092 < -1x 107° -2.610391
(1,36 -2.813061 -2.812883 -0.000219 -x010~° -2.813102
(1,33 -3.104987 -3.104909 -0.000461 -x010°8 -3.105370
(1,31 -3.363874 -3.363901 -0.000739 %5107 -3.364640

equation corrections. As the functiop§’ with s=1 corre- tions are variational ones, the results given in Table Il are
spond to excited electron states, the energy-level shifts dugpper estimates for the true energies.

to those states are of major importance in an exact calcula- Let us compare our results with recently published work
tion of the antiprotonic helium level structure. of Korobov[22]. He used the same representati@nof the

We are now ready to explain our choice of the coordinatetotal wave function?’™. To minimize the Hamiltonian he
system used in Eq(2). Although Eq.(2) becomes a BO uses a global basis set expressed in spheroidal coordinates.
approximation for infinitely heavy nuclei, the BO approxi- The accuracy for most nonrelativistic energy levels was
mation does not give lower estimates for our energies as itated to be better than 10 a.u. We can see by a compari-
usually does[18]. One can in Table | see that tH&(1)  son of Table Il herein and Table IV in Reff22] that our
eigenvalues can be higher as well as lower than the BO eresults agree within 10° a.u. for most energy levels. The
genvalues. This is due to a change of yheoordinate when
m./mye Was made nonzero.

However, there are two reasons for our choice of the co-
ordinate system. The first reason is obvious from Fig. 4,
where two cuts of the wave function for the typical level
(0,36), obtained with our coordinate system and with the
“standard” one, are displayed. One observes that the coor-
dinate system that was used produces a much smoother
variation than the standard one does. Thus, using our coor-
dinate system, we can obtain a more accurate numerical
wave function. Our choice is also guided by the fact that
physically one may understand the system as a mainly
spherical electron distribution around the helium nucleus,
which is only slightly perturbed in the vicinity of the anti-
proton [17,19. The second reason for our choice can be
found by a comparison of Table | and Korobov's res{®a]
for the second equation correctiomKorobov finds
E(1)=-2.812 682 a.u. anf(2)—E(1)=—0.000 432 a.u.
for the (1,36) level This correction is smaller in our coor-
dinates and our choice of coordinates may thus also be im-
portant for calculations that include many equations. Studies
of Auger rates is an example of such a case.

The corrections coming from the fourth equation of sys-
tem(2) are very small. A typical additional energy-level shift
does not exceed 10 a.u. Thus we have used only the first
three equations in our calculations. However, we would like
to mention that a larger number of equations is likely to be
essential for an accurate description of antiprotonic helium
with lower J values. In that case a description of the energy
levels as truly bound states is incorrect since they are able to
autoionize. It is then necessary to use some technique devel- 0
oped for resonant states, e.g., the complex rotation method 1
[41]. S 4

Our basic results for the energy levdts; and favored (b) x (a.u.) 5
transition wavelengths

1.0
0.5

c

1.0
0.5

0.0
-0.5 c
-1.0

FIG. 4. Modulus square of the wave function for the (0,36) state
AMN(v,J)—(v,J—-1))=[2R(E,;— EUJ_l)]’l (19 for (a) standard Jacobi coordinates &l our choice, discussed in
the text. The function is plotted in arbitrary units. Theoordinate
are presented in Tables Il and Ill. For the Rydberg constanivas fixed so thaf¥ (x=0,y,c=0)|? had a maximum as a function
we used the valuR=10 973 731.5 m*. Since our calcula- of y.
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TABLE Il. Energy levelsE,; (a.u) of the p’He* system.

J v=0 v=1 v=2 v=3 v=4

30 -3.679769 -3.517965 -3.37509 -3.24887 -3.13731

31 -3.507629 -3.364640 -3.238585 -3.127307 -3.02948

32 -3.353750 -3.227664 -3.116664 -3.019026 -2.933068
33 -3.216235 -3.105370 -3.007965 -2.922430 -2.847329
34 -3.093456 -2.996323 -2.911166 -2.836513 -2.770997
35 -2.984009 -2.899269 -2.825133 -2.760221 -2.703267
36 -2.886669 -2.813102 -2.748847 -2.692612 -2.643233
37 -2.800358 -2.736828 -2.681382 -2.632821 -2.590088
38 -2.724111 -2.669539 -2.621881 -2.580040 -2.543078
39 -2.657045 -2.610391 -2.569536 -2.533514 -2.501511

typical difference for the favored transition wavelengths iskept only terms of the ordwz(me/mpo. This means that
less than 0.005 nm. we have neglected spin-orbit corrections, retardation terms,
The accuracy reached in our calculations is not as good and corrections due to an interaction of spin magnetic di-
the one in Ref[22]. On the other hand, it is worth noticing poles. Let us now, for consistency, check the relativistic cor-
that our numerical scheme is more general. While the variarections originating in terms from the second and higher
tional expansion used by Korobov is mainly suitable only forequations in systerf2). We find that we can neglect a num-
semiadiabatic three-body systems, our method can be aper of terms that are at least of first ordemm/m".
plied to nonadiabatic systems such as the usual helium atom Thus the only terms to be calculated are the relativistic
with the same accuracy. Furthermore, calculations of sysmass correction term for the electron and Darwin terms for
tems in external fields were successfully performed using théhe electron-antiproton and electron-helium interactions.
present FEM approadi4,36). They can be expressed in terms of the electron momeptum
and ¢ functions of the corresponding distanddg]:

IV. RELATIVISTIC CORRECTIONS

FOR THE ENERGY LEVELS 4

rel Pe

Both our nonrelativistic and Korobov[@2] results for the AET= “2< o)~ gt 5[25“23) a 5(r12)]‘ ¢(JO)> '

transition wavelengths are about 50 ppm smaller than experi- (15

mental data. We estimated earli@3] that relativistic cor-

rections might have an essential influence on the position of Some care must be taken in the numerical calculation of

the energy levels. In this section we present the relativistithe mass correction term in E@.5). Due the decrease of the

corrections calculated in a systematic way. bound-state wave function at infinity, we can use a well-
First of all, it is worth noticing that the present experi- known trick [43] and write the first term in E¢15) as

mental accuracy16] makes it meaningful to calculate the

relativistic corrections only up to an ordtir af, wherea is (30) o] 1 (JON | [a2./(30)][|2

the fine-structure constant=7.29735¢ 10~ 3. These correc- (¥~ [Pel#'™) =[lpey ™|

tions include the following termpA2]: relativistic mass cor- =(2 2 (I(E. ,— \Couly ;,(30)[|2

_ . stc T ; (2129 [[(E,y )|
rection terms, Darwin terms for two-particle interactions,
spin-orbit force corrections, retardation terms, and an inter- — 2( A IO ALY 0Ny — [|A P 0] |2].
action of spin magnetic-dipole moments. Some of these 16
terms include an additional small factor (16)

_ 4 : . o .
me/m;=5.4x10"". In the present calculations we have thus | Fig. 5 we show contributions of the two terms in Eq.

- — . (15 to the total-energy corrections as a functio_nJofor
TABLE Ill. Favored transition wavelengttiem) of p“He". v=2. One notices a big cancellation effect: the final correc-
tion is about 5 times smaller than each term. There is an even

J v=0 v=1 . . v=4 bigger cancellation effect for the transition wavelengths be-
31 264.69 297.17 333.8 374.8 4225 cause the di1‘ferenc@E(UrJe')—AEnge,')1 is about 10 times

32 296.10 332.64 373.71 420.79 472.6 smaller than each correction. Notice also that the resulting
33 331.33 372.57 419.17 471.69 531.42 cancellation effect inppHe™ is a few times smaller than in
34 371.10 417.83 470.70 530.32 596.91 the usual helium atorfd2] and in this sense the relativistic
35 416.30 469.47 529.60 597.22 672.73 effects manifest themselves more strongly in the antiprotonic
36 468.09  528.78  597.27  673.92 758.95 helium.

37 527.90 597.36  675.37  762.04  857.35  The calculated results fakE"®) are presented in Table
38 597.57 677.13 765.75 863.26 069.21 IV. As the values of the relativistic corrections are rather
39 679.37 770.31 870.45 979.31 1096.14 small, they can be calculated with a smaller relative accuracy

than the nonrelativistic energies. On the other hand, it was
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TABLE IV. Relativistic correctionsAE('?" (1076 a.u) for the TABLE V. Lamb shift AE-; (10 ° a.u) for the p*He™* system.

p*He* system.

J v=0 v=1 v=2 v=3 v=4
J v=0 v=1 v=2 v=3 v=4

30 11.6 12.9 135 15.6 17.0
30 -28.70 -32.94 -37.26 -41.59 -48.58 31 12.5 13.8 15.2 16.2 18.1
31 -31.61 -36.27 -40.97 -45.68 -52.39 32 13.4 14.8 16.3 17.7 19.1
32 -34.80 -39.84 -44.87 -49.86 -56.32 33 14.4 15.9 17.3 18.8 20.2
33 -38.27 -43.64 -48.96 -54.12 -60.31 34 154 16.9 184 19.9 21.2
34 -42.03 -47.67 -53.19 -58.45 -64.33 35 16.5 18.1 19.6 21.0 22.3
35 -46.08 -51.92 -57.53 -62.79 -68.31 36 17.7 19.2 20.7 22.1 23.3
36 -50.40 -56.36 -61.94 -67.08 -72.20 37 18.9 20.4 21.8 231 24.2
37 -54.98 -60.93 -66.37 -71.27 -75.94 38 20.2 21.6 23.0 24.1 25.1
38 -59.77 -65.59 -70.77 -75.52 -79.47 39 21.4 22.8 24.1 25.1 26.0
39 -64.72 -70.25 -75.04 -79.28 -82.76

AE, =—8a32<¢”°)|5(r )| %)
demonstratedi28,29 that the FEM gave fewer errors in the v) 3 23

wave-function matrix elements than the global basis set
method when the same accuracy for eigenvalues was « _9+2 In— —In .
reached. Thus we estimate the accuracy of the present rela- 30 aZ Z? Ry
tivistic corrections to be about 10 a.u. using our wave
functions. Since Korobov's nonrelativistic energy levels areHereKo is the Bethe average excitation energy. An expres-
more accurate than ours, we mean that we will obtain bette$ion Similar to Eq.(17) could be written for the electron-
estimates of the exact total energies by using his nonrelati@ntiproton interaction. However, we neglect this additional
istic energies and our relativistic corrections. term as the calculation shows thab(r;,))=<15(5(r»3))
Because of the big cancellation effect demonstratedor all levels. Furthermore, the expression for the
above, the correction of the next order with respectato electron-antiproton Lamb shift is half of this value since
could have an essential influence on the energy-level corre&=1 here. Thus we can estimate thalE'U'J(e 9))
tions. The main additional correction arises from the Lamb<0.0%A Ebj(eHe”). The next uncertainty arises froi,.
shift, which is of ordera®In(1/a) [42]. It is known[42,44  We have adopte,=84 Ry as for the usual He atof42]
that the Lamb shift for one electron in a heliumlike atom despite the fact that this value must be smaller due to the
with a nuclear chargé& can be expressed as screening-charge effect in our system. The total error intro-
duced in this way can be estimated to be less than 5% of
AEIEJ and is produced mainly by the neglected electron-
antiproton term.

17

400 T T T T The values ofAE"; are presented in Table V and illus-
trated for (2]) states in Fig. 5. One can see that these values
0+~ T = are not small in comparison with relativistic corrections and
,,,,,,,, constitute abou} of AE('$" . Thus both relativistic and QED
3 200 -7 - corrections must be taken into account in order to obtain a
O precise consistent comparison between theoretical and ex-
o 100 |- - perimental data.
= In Table VI we present the experimentally known transi-
Y 0 tion wavelengths, Korobov’s and our nonrelativistic results,
= as well as relativistically corrected values. Because there
g -100 |- - were no details of calculations in Refd.6,27, we cannot
w now analyze the existing small differences of relativistic cor-
-200 |- - rections. Whem\E"$" are used only for the corrections, we
have very good agreement with present experimental data.
-300 - -1 However, our final transition wavelengths, including both
Tl relativistic AE("?" and Lamb shiftAE", corrections, are in
-400 . . ' — all cases shorter than the experimentally measured ones. It is

% % 34J % %8 worth noticing that in a very recent papgt5] there was
reported a slow dependence of the measured wavelength on
FIG. 5. Relativistic corrections for (2) states. The dashed line, the pressure of a helium gas target: 529.621 nm at 1.0 bar
short-dashed line, and dotted line correspond to Darwin terms, thand 529.623 nm at 1.3 bar. It was stated that other known
relativistic mass correction term, antlESS" , respectively. The Wwavelengths had a similar dependendéey were measured
dash-dotted line corresponds to the Lamb shifi5; and the solid  at 0.6—1.0 baf7,11,16.) As our values are calculated for the
line to the total(relativistic and QEL correction. isolated system, they have to be compared with experimental
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TABLE VI. Comparison between theoretical and experimental favored transition wavelefmgihs
(v,J)—(v,J—1). Our results are presented when relativistic correct'xbﬁgf') only and both relativistic
AE(®) and Lamb shiftAE., corrections are taken into account.

Nonrelativistic Relativistic
(v,9) Present Ref[22] Refs.[16,22] AE(ED AEE) + AEL, Experiment
(2,34) 470.702 470.7051 470.7241 470.7257 470.720 4724
(3,35) 597.224 597.2287 597.2563 597.2627 597.254 59(72?59
(2,36) 597.266 597.2634 597.298 597.2979 597.289 5972798
(1,37) 597.363 597.3626 597.398 597.3984 597.389 59897
(0,38) 597.575 597.5716 597.609 597.6092 597.601 592507
(2,35) 529.600 529.5964 529.623 529.6231 529.616 52&3512?
(1,36) 528.778 528.7810 528.808 528.8082 528.801 5263508
(0,37) 527.900 527.9032 527.931 527.9312 527.924 5272930
aReferencd11].
bReferencd7].
‘Referencd 16].
dReferencd 15].

data extrapolated to the zero pressure. The processes behimdEq. (20) we assume that the wave function is normalized
the above-mentioned pressure dependence are rather comgitch that

cated. However, if we just linearly extrapolated the recent

experimental wavelength measuremefit§] to zero pres- J

sure, we obtain 529.614 nm, which is in excellent agreement > [$99(x,y,c)|[2=1. (22)
with our theoretical result. s=0

If only the zero component™? is involved in the calcu-
V. TRANSITION PROBABILITIES lation, Eq.(20) resembles the expression used by Shimamura
In the previous sections we have calculated the energ 7] for the_ calqulation of the. transitiqn probabilitie_s in the
O approximation. The validity of this approximation will
be discussed below.

The lifetimes for states with the vibrational quantum num-
%erSz;:O,l,Z are presented in Fig. 6. Both the results using
the three-equation formalism and the one-equation formal-
ism are displayed. Despite the fact that the wave function for

levels for thep*He™ system that are in a quite good agree-
ment with experimental data. In order to compare with ex-
periment, however, we need to show that the intensity of th
measured8,11] and calculated transitions are comparable.

The lifetime of the statey(,J) associated with radiative
transitions to all lower states is

-1 25
Tvd= ( E AvJ,v’J') ’ (18)
EU,J/<EU\]
) ] o ] 2
where the Einstein coefficiemt,; , ;» can be expressed in
terms of the oscillator strength,; /5 by the relation
5 5 S 15
AUJ'UrJr:_Za’ (EUJ_EU!J!) va,v’J" (19) g
_ _ Y
The oscillator strengths have been calculated in terms of E 15
the wave-function component&?’®(x,y,c). The calculation 2
is cumbersome but straightforward. We obtain -
2 i L i
va,v/J, =— §(EUJ_ Evar)(SJ',Jtlm ..............................
J 2 0 ] 1 1 1
x| 2 (¢9D[g ) (20) 32 34 3 38
s=0 J
whereJ- =maxJ,J'} and the dipole operator element FIG. 6. Radiative lifetimes, ;. The lines without symbols, with
’ crosses, and with squares correspond +®,1,2, respectively. The
solid line corresponds to the calculations with three equations and
D=y+ ( 1+ —|xc. (21 the dashed one refers to a one-equation calculation. The dotted line
my+mg represents a calculation without the core-polarization effect.
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one equation does not coincide with the BO function, they
are similar since both include atomic-core polarization ef-
fects while both of them do not include electronic excita-
tions. The displayed lifetimes coincide in general with the
results in Ref[19]. However, a detailed comparison reveals
some differences. Fov =0 both the present and previous
[19] calculations give lifetimes that are decreasing withn

the rangel=30-34. While the previous papEt9] reports a
similar behavior forv=1, we find a slow, smooth increase
of 7 in the entire investigated range for batk 1 and 2. One
can see that for larger values of momentuie=B4—39 the
influence of the next equations is weak and becomes much
smaller with increasing. However, for smalled this influ-
ence changes the lifetime considerably, especially for higher
values ofv.

Actually, this change is defined only by the first term
s=0 in Eq.(20), while other terms are negligibly small. This
means that the reason is only a change of the component
9 in the few-equation calculations. This may be under-
stood as follows. It is known that the core-polarization effect
is rather big and the lifetime changes drastically when one J
takes this effect into accoufit9]. To illustrate this effect, in FIG. 7. Einstein coefficienta, , , ;. The solid line corresponds

Fig. 6 we show the lifetimes calculated without core- g the calculations with three equations and the dashed one refers to

polarization effect, i.e., fob=y. Only theP-wave compo-  j one-equation calculation. The lines without symbols, with crosses,
nent of the wave function contributes to the core-polarizatiorand  with diamonds correspond to thev,d)— (v,J—1),

effect, while theS component mainly defines the energy val- (y,J)— (v —1J-1), and ¢,J)—(v+1,J—1) transitions, respec-
ues. Thus even small changes in the wave function can irtvely. The lines with squares refer to the JP~(0,J—1) transi-
fluence the lifetime considerably when they refer to the tion.

component. In our calculations we have exactly such a situ-

ation because one can in E@) see that the off-diagonal
terms connecting/"? and ¢V are exactly zero for th&

v=0
v=1
v=2

v=2

v=1

Einstein coefficients (s'l)

implies that we are not able to describe these states as bound
. . AD) states. Taking into account the resonant properties of these
component of the total wave function. Thus, while bg states may lead to considerable changes in the corresponding
and theP component of/”®) are small, their interaction can ave functions. energy eigenvallds], and therefore radia-
produce considerable changes in lifetimes in spite of the fact, ¢ |ifetimes.
that the energy shift due t¢"' is rather small. Finally, we compare known experimen{&,11] and the-
~ The same situation can be observed for the Einstein coefyetical values of the decay rates. They are represented in
ficients presented in Fig. 7. One can see that the lifetimes fofap|e viI. One can see that various theoretical results agree
J=34 are essentially descr_lbed .by the.ffavored transitionsyith each other rather well and depend only slightly on the
Av=0,AJ=—1. The next Einstein coefficients for the tran- method of calculations. However, despite satisfactory agree-
sitions Av=—1, AJ=—1 are smaller £15%) and de- ment with experimental data for (3,35)(3,34) transition,
crease the lifetimes only slightly. The analysis of the propenyne difference in the decay rates for the (2,;34)2,33) tran-
sity rules given in Ref[17] is thus valid for these values of ijtion is rather large. This may be explained by the fact that
J. one has neglected Auger decays in all of the theoretical cal-
a_rtk_)itrary va][ues Og-tThiS_it_S b:&C(?USOe) thedonly possible Frﬁ”'Auger processes is in principle necessary for an accurate
sitions are favored transitions\( =0) and transitions wit L Lt
Av=+1. The Einstein coefficients for the latter ones aredescrlp'uon of any processes in tpéte™ system.
small due to small energy differences in E{9).

On the other hand, the changes in the Einstein coefficient TABLE VIL Experimental and theoretical decay rates
with the number of equations for largerand smallet can ~ (10° s™") for two states of p-*He ™.
be essential. Furthermore, nonfavored transitions can b¢

come comparable with favored ones. The reason for suc  Source State (2,34 (3,35)
drastic changes is the same as that pointed out abov [17] 0.754 0.619
namely, that a strong coupling of two small components de 6] 0.734 0.614
fines a large part of the dipole matrix element in E20). [21] 0713 0.597
However, these Ein.stein coefficients are of academic intere: present work 0:7 9 0: 599
only. The states with value3<33 andv=2 are unstable experiment .18(47 0.7202)°

with respect to Auger decay$] and their lifetimes are in
practice defined by Auger processes while the radiative de*Reference [11].
cay rates are smaller by a few orders of magnitileThis  Reference [8].
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VI. CONCLUSION processes should be performed in order to obtain the detailed
. . description of the dynamics of the antiprotonic helium. Such
In this paper we present a recently developed extension to o i — .
a three-dimensional finite-element code. Earlier, the imple@ Study could be especially interesting for m%—ke' system
mented method manifested itself as a convenient tool fol? connection with recently observed intermedigtetween
studies of various quantum-mechanical problems: abovAUger and radiativelived states[13]. We believe that the
threshold ionization of hydrogei84], tdx andddy muonic recently calcu@ed high-precision wave functions and energy
molecular iong35], and laser-induced recombination to ex- levels for thepHe™ system will be useful for the further
cited states of hydrogenlike iofi36]. Using the total angular investigation of this interesting and intensively studied sys-
momentum representation, we have been able to calculatém.
here energy levels and wave functions for the antiprotonic
helium system with rather high accuracy.
Relativistic and QED corrections to the energy levels in
the main order ine were calculated in terms of matrix ele-  We would like to thank Professor T. Yamazaki for valu-
ments of the nonrelativistic wave functions. Excellent agreeable information about the current stages of the antiproton
ment was reached between our theoretical results and expelielium project at CERN, Dr. E. Lindroth for discussions
mental data. However, in spite of this agreement, calculatedbout the relativistic corrections, and Dr. A. Scrinzi for sup-
and measured data for decay rates differ considerably. Theort during the early stage of the project. This work was
reason for this discrepancy is a neglect of resonant propertiesipported by generous grants from the Royal Swedish Acad-
of the involved states. Thus precise calculations of Augeemy of Sciences and the Wenner-Gren Center Foundation.

ACKNOWLEDGMENTS

[1] G. T. Condo, Phys. Let®, 65 (1964). [27] C. Bottcher, Adv. At. Mol. Phys20, 241 (1985.
[2] J. E. Russel, Phys. Rev. B 721(1970; 1, 735(1970; 1, 742 [28] F. S. Levin and J. Shertzer, Phys. Rev33 3285(1985; J.
(1970. Shertzer and F. S. Levirbid. 43, 2531(1991).
[3] R. Ahlrichs, O. Dumbrajs, H. Pilkuhn, and H. G. Schaile, Z. [29] J. Ackermann and J. Shertzer, Phys. Re\64A 365 (1996).
Phys. A306, 297 (1982. [30] D. Heinemann, B. Fricke, and D. Kolb, Phys. Rev38, 4994
[4] M. lwasakiet al, Phys. Rev. Lett67, 1246(1991). (1988.
[5] T. Yamazakiet al., Nature(London 361, 238(1993. [31] J. Olsen, P. Jorgensen, and J. Simons, Chem. Phys.166}4t.
[6] N. Morita, K. Ohtsuki, and T. Yamazaki, Nucl. Instrum. Meth- 463 (1990.
ods Phys. Res. 830, 439(1993. [32] D. Sundholm and J. Olsen, Chem. Phys. L&#t1, 53 (1990.
[7] N. Morita et al, Phys. Rev. Lett72, 1180(1994. [33] A. Scrinzi and N. Elander, J. Chem. Phg@8, 3866(1993.
[8] R. S. Hayanet al, Phys. Rev. Lett73, 1485(1994; 73, 3181 [34] A. Scrinzi, N. Elander, and B. Piraux, Phys. Rev48, R2527
(1994). (1993.
[9] S. N. Nakamureet al, Phys. Rev. A 49, 4457(1994). [35] A. Scrinzi, Comput. Phys. CommuB6, 67 (1995.
[10] E. Widmannet al, Phys. Rev. A51, 2870(1995. [36] A. Scrinzi, N. Elander, and A. Wolf, Z. Phys. B4, 185
[11] F. E. Maaset al, Phys. Rev. A52, 4266(1995. (1995.
[12] H. A. Torii et al, Phys. Rev. A53, R1931(1996. [37] D. A. Varshalovish, A. M. Moskalev, and V. K. Khersonskii,
[13] B. Ketzeret al, Phys. Rev. A53, 2108(1996. Quantum Theory of Angular MomentutiVorld Scientific,
[14] E. Widmannet al,, Phys. Rev. A53, 3129(1996. Singapore, 1989
[15] R. S. Hayancet al, Phys. Rev. A55, R1 (1997). [38] C. F. Curtiss, J. O. Hirschfelder, and F. T. Adler, J. Chem.
[16] B. Ketzeret al, Phys. Rev. Lett78, 1671(1997. Phys.18, 1638(1950.
[17] I. Shimamura, Phys. Rev. A6, 3776(1992. [39] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
[28] I. V. Puzynin, T. P. Puzynina, S. I. Vinitsky, and V. I. Puzynin, terling, Numerical RecipeCambridge University Press, Cam-
Hyperfine Interact101/102 493(1996. bridge, 1989.

[19] T. Yamazaki and K. Ohtsuki, Phys. Rev.4%5, 7782(1992. [40] Particle Data Group, Phys. Lett. B39, 1 (1990.
[20] P. T. Greenland and R. Thurwachter, Hyperfine Inter@6t.  [41] E. Balslev and J. M. Combes, Commun. Math. PI3%.280

355(1993. (1972); B. Simon, Ann. Math97, 247 (1973; C. Van Winter,
[21] O. I. Kartavtsev, Phys. At. Nucb9, 1483(1996. J. Math. Anal. Appl.47, 633 (1974; several papers iReso-
[22] V. I. Korobov, Phys. Rev. A54, R1749(1996; Hyperfine nancesedited by E. Bradas and N. Elander, Lecture Notes in

Interact.101/102 479 (1996. Physics Vol. 325Springer, Berlin, 1989
[23] E. Yarevsky and N. Elander, Europhys. L&%, 453(1997. [42] H. A. Bethe and E. E. SalpeteQuantum Mechanics of One-
[24] W. A. Beck, L. Wilets, and M. A. Alberg, Phys. Rev. A8, and Two-Electron Atom&lenum, New York, 1977

2779(1993. [43] C. L. Pekeris, Phys. Rel12 1649(1958.

[25] G. Ya. Korenman, Phys. At. Nucl&9, 1665(1996; Hyper- [44] A. Kono and S. Hattori, Phys. Rev. 34, 1727(1986.
fine Interact.101/102 463(1996. [45] E. Brandas, N. Elander, and P. Froelich, Int. J. Quantum

[26] K. W. Morton, Comput. Phys. Reis, 1 (1987. Chem.98, 443(1978.



