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Finite-element calculations of the antiprotonic helium atom including relativistic
and QED corrections

Nils Elander and Evgeny Yarevsky*

Department of Physics, Stockholm University, Box 6730, S-11385 Stockholm, Sweden
~Received 10 March 1997!

A recently developed extension to a three-dimensional finite-element Schro¨dinger equation solver in the
total angular momentum representation was used to calculate the energy-level spectrum and wave functions for
antiprotonic helium system. The accuracy of the numerical method was analyzed. Relativistic and QED
corrections to the energy levels were calculated in the main order. Excellent agreement was reached between
relativistically corrected wavelengths and recent experimental data. Radiative transition probabilities and life-
times were calculated and compared with other calculations as well as with experiment.
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I. INTRODUCTION

The spectrum of the general three-body Hamiltonian
considerably more difficult to study than that of the cor
sponding two-body problem. Accurate experimental res
were available earlier only for heliumlike systems where o
tical methods have made it possible to determine a la
number of doubly as well as singly excited energy levels
is only recently that other systems have been studied in s
great detail that they can be used as comparative benchm
for general theoretical three-body methods.

Exotic atoms, i.e., atoms including a massive negativ
charged particle, have been studied for some time. The
few investigations were purely theoretical, dealing with th
spectral and other properties comparing them to norma
oms @1–3#. The computational methods were based on
Born-Oppenheimer~BO! approximation.

The observation of delayed antiproton annihilation in l
uid helium @4# in 1991 changed the situation drasticall
Considerable attention has since been given to the anti

tonic helium systemp̄He1. Both isotope systemsp̄ 3He1

and p̄4He1 were experimentally studied in detail@4–16#.
Recently, high-precision measurements of transition wa
lengths have been reported for bothp̄4He1 @7,11,15,16# and
p̄3He1 @12# systems.

The experimental methods were based on laser-indu
transitions in the visible spectral region giving a relative a
curacy of 4 ppm. This has created a challenge to theore
few-body physics. Thep̄He1 system is in this sense becom
ing an additional benchmark for computational three-bo
theory. This theoretical work has, on the other hand, ch
lenged and guided experiment to observe more wavelen
and decay rates, thus completing and extending our kno
edge of the antiprotonic helium system.

Despite the vast experimental data concerning de
rates, the formation and collisional quenching of the antip
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tonic helium, etc., so far most theoretical work has be

devoted mainly to calculations of energy levels ofp̄He1

@17–23#. Only a few papers have partially dealt with Aug
processes@6,21# or formation and quenching process
@19,24,25# in the system.

Early theoretical attempts used the Born-Oppenheimer
proximation @2,3,17#. The uncertainty reached within th
frame of this approximation is less than 1026 a.u. @17,18#.
Recently, more extensive work have included the use o
configuration-interaction method@19#, an adiabatic approxi-
mation method@18,20#, and a variational method@21#.

While the current experimental accuracy of the measu
transition wavelengths is around 4 ppm, we found that m
prior theoretical results@17–21# disagree with experiment to
about 1000 ppm. Since each of the above-mentioned m
ods most likely has been pushed to its limit, the remain
discrepancies are to be found in the basic assumptions
perhaps the approximations made in each respective the
ical approach.

We reported preliminary results that are closer to the c
rent experimental data@23#. These results are supported b
the recent theoretical work of Korobov@22# ~see below!,
which agrees with experimental transition waveleng
within 40 ppm.

In this work we use a three-dimensional finite-eleme
method~FEM!. The FEM has been used successfully ear
in engineering calculations@26#. The implementation of the
FEM in quantum mechanics is rather rare@27–36# in spite of
its advantages. By combining a total angular momentum r
resentation and FEM, we have been able to calculate en
levels of the p̄4He1 system. However, comparing them
presently available experimental data, we obtain disag
ment up to 40 ppm. The main part of this difference is sho
below to be due to relativistic effects. When calculated,
relativistic corrections produce excellent agreement betw
our theoretical and current experimental data.

Because most experimental results for transition wa
lengths@7,11,15,16# and decay rates@8,11# are presented for
the p̄4He1 isotope system, we shall here restrict our cons
eration to this system. Calculations of thep̄3He1 system are
in progress.
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The paper is organized as follows. In Sec. II, we descr
the formal theory and how the obtained equations are r
ized in a numerical treatment. In Sec. III, the main resu
concerning nonrelativistic energy levels are presented
Sec. IV, relativistic and QED corrections to the energy lev
are reported. In Sec. V, we present and analyze radia
decay times and Einstein coefficients. The paper is c
cluded with a short summary.

II. METHOD OF CALCULATIONS

The p̄He1 system consists of three particles interacti
via Coulomb forces. Here we will neglect nonradiative dec
channels; therefore, the energy levels will be truly bou
states. The total wave functionCJM of the system with the
angular momentumJ and its projectionM can be expanded
in terms of WignerD functions@37,38#:

6CJM5 (
s50,1

J
1

A212ds0

@DMs
J ~a,b,g!

6~21!sDM2s
J ~a,b,g!#6c~Js!~R!. ~1!

Here plus and minus signs refer to states with normal
anomalous spatial parity, respectively. The Euler anglesa,
b, andg define a rotation of the body-fixed frame with r
spect to the laboratory-fixed one andR is a three-
dimensional coordinate in the body-fixed frame. As the sta
of the anomalous spatial parity decay rapidly via Auger tr
sitions @1,22#, the only states of interest can be described
1CJM. In the following, we thus consider only such stat
and omit the plus in the designation of the wave function

There are a few different possible choices of the bo
fixed coordinateR. The usual one@17,18,22# is ‘‘standard’’
Jacobi coordinates. Here the first vector joins two heavy p
ticles ~helium and antiproton! and the second connects th
electron and the center of mass of thep̄He21; see Fig. 1~a!.
The main reason for that choice is that it is possible to se
rate the electron motion for the case of infinite masses of
heavy particles. However, we have chosen another Ja
coordinate system plotted in Fig. 1~b!. Namely, let particles
1, 2, and 3 represent the antiproton, the electron, and
helium nucleus, respectively. Thenx is the distance betwee
particles 2 and 3~i.e., electron and helium nucleus!, y is the
distance between particle 1~antiproton! and the center of
mass of particles 2 and 3, andf is the angle betweenx and
y. In short, this choice is caused by a simpler structure of
wave function in these coordinates and will be explained
Sec. III.

After substituting expansion~1! into the Schro¨dinger
equation and using an orthogonality relation for theD func-
tion @37# one can derive the system of equations@38#

2 iA11ds1

l2~J,s!

2m1,23y
2S ]

]f
1~12s!cotf Dc~Js21!

1@2Dx
~s!2Dy

~s!1VCoul~x,y,f!2E#c~Js!

2 iA11ds0

l1~J,s!

2m1,23y
2S ]

]f
1~11s!cotf Dc~Js11!

50, s50, . . . ,J, ~2!
e
l-

s
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wherel6(J,s)5@J(J11)2s(s61)#1/2 andc (J21)[0. The
diagonal part2Dx,y

(s) of the kinetic-energy operator and th
Coulomb potentialVCoul are defined as

2Dx
~s!52

1

2m23x
2Fx

]2

]x2
x1S ]2

]f2
1cotf

]

]f
2

s2

sin2f
D G ,

2Dy
~s!52

1

2m1,23y
2F y

]2

]y2
y2@J~J11!22s2#

1S ]2

]f2
1cotf

]

]f
2

s2

sin2f
D G ,

VCoul~x,y,f!52
2

r 13
2

2

r 23
1

1

r 12
.

The interparticle distancesr i j can easily be expressed i
terms of Jacobi coordinates and the reduced massesm have
been defined in terms of the particle massesmi as
m235m2m3 /(m21m3) and m1,235m1(m21m3)/@m1

1(m21m3)]. The componentsc (Js) must satisfy the bound
ary conditions with respect to the anglef so that

c~Js!~x,y,f!5sinsfc̃~Js!~x,y,f!, ~3!

wherec̃ (Js)(x,y,f) is a bounded function of its arguments
The most important advantage of the set of equations~2!

is that they couple the three componentsc (Js21), c (Js), and

FIG. 1. Jacobi coordinate systems:~a! ‘‘standard’’ Jacobi coor-
dinates and~b! our choice, discussed in the text. The angular va

ablec5cosf5(x̂,ŷ).
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56 1857FINITE-ELEMENT CALCULATIONS OF THE . . .
c (Js11) only. In a numerical realization this produces a ba
matrix with a fixed bandwidth for any angular momentumJ.
This decreases computational requirements substantially

Numerically we have realized Eq.~2! using the finite-
element method. Here we outline the general ideas of
method, while one can find its detailed description elsewh
@26,33,35#.

The three-dimensional space formed byx, y, andc5cosf
is divided into some number of rectangular boxes numbe
by i . Each componentc̃ (Js) of the total wave function is
expanded in a finite-element basis such that

c̃~Js!~x,y,c!5(
im

v imf im~x,y,c!. ~4!

For the sake of simplicity, we omit the indices (Js) on the
right-hand of Eq.~4!. Here v im are expansion coefficient
defined in each elementi and restricted through continuit
conditions for the wave function at element boundaries
basis functionf im(x,y,c) has in the finite-element algorithm
the property

f im~x,y,c![0 for ~x,y,c!¹ element i . ~5!

Then the coefficientsv im and the energyE are obtained
by means of minimization of a functional^CuHuC&, where
the HamiltonianH is defined in Eq.~2!. The best approxi-
mation is evaluated by solving a generalized eigenva
problem

H̃v5E S̃v,

where

~H̃ ! im, jk5^ f imuHu f jk&,

~ S̃! im, jk5^ f imu f jk&. ~6!

It is worth noticing that the global basis set is a particu
case of the method described above where one box on
used. However, the FEM manifests its advantages in u
many boxes, defined by the locality of the basis functio
~5!. One such advantage is that the final matricesH̃ and S̃
become banded and relatively sparse and the overlap m
S̃ is well defined in contradiction to the ill-defined one a
pearing for a global basis set.

Let us now discuss some details of the general sch
used for our calculations. The basis functions are expres
as products of one-dimensional basis functions

f im~x,y,c!5 f i ,n~m!
~x! ~x! f i ,k~m!

~y! ~y! f i ,l ~m!
~c! ~c!. ~7!

Such a representation of the basis functions simplifies
evaluation of the matrix elements in Eq.~6! and reduces
most three-dimensional integrals to a product of o
dimensional ones.

The number of boxes for the space coordinatesx,y is
defined by convergence properties. However, one box o
was chosen for the angular variablec. The one-dimensiona
basis functions in every box were chosen to be
d
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f i ,n
~x!~x!5Pn~ x̂!exp~2nx!,

f i ,k
~y!~y!5Pk~ ŷ!gd~y!, ~8!

f i ,l
~c!~c!5Pl~c!.

HerePl is a Legendre polynomial andgd is a damping func-
tion that will be discussed later. Variablesx̂ and ŷ appear
instead ofx and y due to a normalization of every one
dimensional box to the interval@21,1#. This normalization
causes a maximum linear independence of the basis f
tions in the box and decreases the ill definiteness of the o
lap matrix.

The above choice of the basis functions is guided by
fact that we are dealing with a Coulomb potential only. Th
makes it possible to use simple analytical expressions for
potential matrix element in Eq.~6! and to reduce the CPU
time of the calculations as well as to increase the accura

There are different possibilities in choosing a set of fun
tions defined by Eq.~8!. We have found that one of the mo
convenient set is the set with the bounded maximal powe
polynomials

n1k1 l<M . ~9!

In principle, one can use the functions defined by Eq.~8!
with n50 and gd(y)51. However, to speed up conve
gence, it is convenient to find an appropriate constantn and
a functiongd . We have fixed the damping function to me
the asymptotic behavior of the wave function at the orig
and at infinity:

gd~y!5CyJexpS 2
m1,23

J111q
yD . ~10!

Here q is an arbitrary parameter. Thus the only nonline
parameters to be optimized aren and q. We have found a
slow eigenvalue dependence on these parameters. This
ables the value ofn to be fixedn51.5 for all levels and the
value ofq to be calculated on a small number of boxes.

Using this basis, the generalized eigenvalue problem~6!
was solved by means of an inverse iteration procedure.
solving the set of linear equations so appearing, we used
block LU factorization method@39#.

III. COULOMB ENERGY LEVELS

In this section we present our results for energy levels
transition wavelengths for the pure Coulomb case. The a
protonic helium has properties that resemble both molec
and atomic systems. Both molecular rovibrational (v,J) and
atomic (n,l ) quantum numbers may be used in a level cl
sification. The two sets of quantum numbers are rela
through@17#

n5v1J11, l 5J. ~11!

In the following, we use the molecular classification schem
The mesh used in the calculations was fixed to meet

strong localization of the wave function@17,19#. The total
number of elements was chosen to be 36. Six elements w
used forx and y and only one element forc. This mesh is
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1858 56NILS ELANDER AND EVGENY YAREVSKY
shown in Fig. 2. The matrix elements of the potential in E
~6! were calculated analytically with respect toc. Numerical
integration forx and y was performed using the 30-poin
Gauss quadrature rule for the elements containing the C
lomb singularity and the 20-point one was used for the o
ers. The number of functions for thec variable was fixed to
be 19. An increase in the number of functions beyond 19
not influence the results within the present accuracy.

The convergence properties of the numerical scheme
been proved as follows. The asymptotic behavior for an
proximate eigenvalueE(p) can, for rather small element vo
umesh and large polynomial degreesp, be written as

E~p!5Eexact1Ch2p, ~12!

whereC is some constant@26#. As our elements have ver
different volumes, we preferred to reach the final results
increasingp. When the asymptotic behavior~12! is reached,
an estimate

D~p![E~p11!2E~p!5C̃h2p ~13!

is valid. One can see in Fig. 3 that the calculated res
agree well with the theoretical prediction already in the ran
p53, . . . ,6 both for polynomials only in Eq.~8! and for
polynomials with the damping functions.

By means of extrapolation of the asymptotic behav
E(p) we can calculateEexact and we can therefore estima
the error, which is equal to the difference between the
trapolated valueEexact and the calculated valueE(p). We use
the values calculated with the damping functions becaus
their higher accuracy. The accuracy defined in this way
431026 a.u. for v50,1,2, 631026 a.u. for v53, and
1531026 a.u. forv54.

The formalism, discussed above, yielded sparse matr
of dimension about 9000 with a total bandwidth of abo
4000. All calculations were performed on a DEC/Alpha 60
4-256 workstation in double precision and took about 2 h of
CPU time for each level.

FIG. 2. Mesh used in calculations forx andy coordinates.
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Results for eigenvaluesEvJ(N), converged within the
present accuracy with respect to the number of equat
N, are presented in Table I for a few typical values
(v,J). All energies are measured in atomic units. The mas
of 4He21 and p̄ adopted are 7294.299me and
1836.1527me @40#.

One can see that the finite mass corrections as well as
corrections coming from higher equations have an esse
influence on the final results. The corrections become lar
for lower values ofJ. This is in accordance with the consid
eration of the validity of the BO approximation@17#. The
difference between our and the BO results is inside the
certainty of the BO approximation, which is of the order
the mass ratiome /mp̄ . It can be seen that the main diffe
ence, especially for small values ofJ, comes from the higher

FIG. 3. Dependence ofD(p) on the maximum degree of th
polynomialsp for J536 and different vibration numbersv. The
solid line, dashed line, short-dashed line, dotted line, and da
dotted line correspond tov50,1,2,3,4, respectively. The conve
gence for~a! only polynomials and~b! polynomials with the damp-
ing functions are shown.
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TABLE I. Energies~a.u.! of some levels of thep̄4He1 system. The results are presented for the B
approximation@18# and our calculations with one@E(1)#, two @E(2)#, and three@E(3)# equations.

EnergiesEvJ

(v,J) BO EvJ(1) EvJ(2)2EvJ(1) EvJ(3)2EvJ(2) Final

~1,39! -2.610523 -2.610298 -0.000092 , -13 1029 -2.610391
~1,36! -2.813061 -2.812883 -0.000219 -1.03 1029 -2.813102
~1,33! -3.104987 -3.104909 -0.000461 -3.03 1028 -3.105370
~1,31! -3.363874 -3.363901 -0.000739 -5.53 1027 -3.364640
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equation corrections. As the functionsc (Js) with s>1 corre-
spond to excited electron states, the energy-level shifts
to those states are of major importance in an exact calc
tion of the antiprotonic helium level structure.

We are now ready to explain our choice of the coordin
system used in Eq.~2!. Although Eq. ~2! becomes a BO
approximation for infinitely heavy nuclei, the BO approx
mation does not give lower estimates for our energies a
usually does@18#. One can in Table I see that theE(1)
eigenvalues can be higher as well as lower than the BO
genvalues. This is due to a change of they coordinate when
me /mHe was made nonzero.

However, there are two reasons for our choice of the
ordinate system. The first reason is obvious from Fig.
where two cuts of the wave function for the typical lev
(0,36), obtained with our coordinate system and with
‘‘standard’’ one, are displayed. One observes that the co
dinate system that was used produces a much smoo
variation than the standard one does. Thus, using our c
dinate system, we can obtain a more accurate nume
wave function. Our choice is also guided by the fact th
physically one may understand the system as a ma
spherical electron distribution around the helium nucle
which is only slightly perturbed in the vicinity of the ant
proton @17,19#. The second reason for our choice can
found by a comparison of Table I and Korobov’s results@22#
for the second equation correction@Korobov finds
E(1)522.812 682 a.u. andE(2)2E(1)520.000 432 a.u.
for the (1,36) level#. This correction is smaller in our coor
dinates and our choice of coordinates may thus also be
portant for calculations that include many equations. Stud
of Auger rates is an example of such a case.

The corrections coming from the fourth equation of sy
tem~2! are very small. A typical additional energy-level sh
does not exceed 1027 a.u. Thus we have used only the fir
three equations in our calculations. However, we would l
to mention that a larger number of equations is likely to
essential for an accurate description of antiprotonic heli
with lower J values. In that case a description of the ene
levels as truly bound states is incorrect since they are ab
autoionize. It is then necessary to use some technique de
oped for resonant states, e.g., the complex rotation me
@41#.

Our basic results for the energy levelsEvJ and favored
transition wavelengths

l„~v,J!→~v,J21!…5@2R~EvJ2EvJ21!#21 ~14!

are presented in Tables II and III. For the Rydberg cons
we used the valueR510 973 731.5 m21. Since our calcula-
ue
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tions are variational ones, the results given in Table II
upper estimates for the true energies.

Let us compare our results with recently published wo
of Korobov @22#. He used the same representation~1! of the
total wave functionCJM. To minimize the Hamiltonian he
uses a global basis set expressed in spheroidal coordin
The accuracy for most nonrelativistic energy levels w
stated to be better than 1027 a.u. We can see by a compar
son of Table II herein and Table IV in Ref.@22# that our
results agree within 1025 a.u. for most energy levels. Th

FIG. 4. Modulus square of the wave function for the (0,36) st
for ~a! standard Jacobi coordinates and~b! our choice, discussed in
the text. The function is plotted in arbitrary units. They coordinate
was fixed so thatuC(x50,y,c50)u2 had a maximum as a function
of y.
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TABLE II. Energy levelsEvJ ~a.u.! of the p̄4He1 system.

J v50 v51 v52 v53 v54

30 -3.679769 -3.517965 -3.37509 -3.24887 -3.1373
31 -3.507629 -3.364640 -3.238585 -3.127307 -3.029
32 -3.353750 -3.227664 -3.116664 -3.019026 -2.9330
33 -3.216235 -3.105370 -3.007965 -2.922430 -2.8473
34 -3.093456 -2.996323 -2.911166 -2.836513 -2.7709
35 -2.984009 -2.899269 -2.825133 -2.760221 -2.7032
36 -2.886669 -2.813102 -2.748847 -2.692612 -2.6432
37 -2.800358 -2.736828 -2.681382 -2.632821 -2.5900
38 -2.724111 -2.669539 -2.621881 -2.580040 -2.5430
39 -2.657045 -2.610391 -2.569536 -2.533514 -2.5015
is

d
g
ri
fo

a
to
y
th

e

n
st

ri-
e

s
te
es
r

us

ms,
di-
or-
er
-

tic
for
ns.

of
e
ll-

q.

c-
ven

be-

ting

c
nic

er
acy
as
typical difference for the favored transition wavelengths
less than 0.005 nm.

The accuracy reached in our calculations is not as goo
the one in Ref.@22#. On the other hand, it is worth noticin
that our numerical scheme is more general. While the va
tional expansion used by Korobov is mainly suitable only
semiadiabatic three-body systems, our method can be
plied to nonadiabatic systems such as the usual helium a
with the same accuracy. Furthermore, calculations of s
tems in external fields were successfully performed using
present FEM approach@34,36#.

IV. RELATIVISTIC CORRECTIONS
FOR THE ENERGY LEVELS

Both our nonrelativistic and Korobov’s@22# results for the
transition wavelengths are about 50 ppm smaller than exp
mental data. We estimated earlier@23# that relativistic cor-
rections might have an essential influence on the positio
the energy levels. In this section we present the relativi
corrections calculated in a systematic way.

First of all, it is worth noticing that the present expe
mental accuracy@16# makes it meaningful to calculate th
relativistic corrections only up to an order ofa2, wherea is
the fine-structure constanta57.2973531023. These correc-
tions include the following terms@42#: relativistic mass cor-
rection terms, Darwin terms for two-particle interaction
spin-orbit force corrections, retardation terms, and an in
action of spin magnetic-dipole moments. Some of th
terms include an additional small facto
me /mp̄55.431024. In the present calculations we have th

TABLE III. Favored transition wavelengths~nm! of p̄4He1.

J v50 v51 v52 v53 v54

31 264.69 297.17 333.8 374.8 422.5
32 296.10 332.64 373.71 420.79 472.6
33 331.33 372.57 419.17 471.69 531.42
34 371.10 417.83 470.70 530.32 596.91
35 416.30 469.47 529.60 597.22 672.73
36 468.09 528.78 597.27 673.92 758.95
37 527.90 597.36 675.37 762.04 857.35
38 597.57 677.13 765.75 863.26 969.21
39 679.37 770.31 870.45 979.31 1096.14
as
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e
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kept only terms of the ordera2(me /mp̄)0. This means that
we have neglected spin-orbit corrections, retardation ter
and corrections due to an interaction of spin magnetic
poles. Let us now, for consistency, check the relativistic c
rections originating in terms from the second and high
equations in system~2!. We find that we can neglect a num
ber of terms that are at least of first order inme /mp̄ .

Thus the only terms to be calculated are the relativis
mass correction term for the electron and Darwin terms
the electron-antiproton and electron-helium interactio
They can be expressed in terms of the electron momentumpe
andd functions of the corresponding distances@42#:

DEvJ
~rel !5a2K c~J0!U2 pe

4

8
1

p

2
@2d~r23!2d~r12!#Uc~J0!L .

~15!

Some care must be taken in the numerical calculation
the mass correction term in Eq.~15!. Due the decrease of th
bound-state wave function at infinity, we can use a we
known trick @43# and write the first term in Eq.~15! as

^c~J0!upe
4uc~J0!&5uupe

2c~J0!uu2

5~2m23!
2@ uu~EvJ2VCoul!c~J0!uu2

22^Dx
~0!c~J0!uDy

~0!c~J0!&2uuDy
~0!c~J0!uu2#.

~16!

In Fig. 5 we show contributions of the two terms in E
~15! to the total-energy corrections as a function ofJ for
v52. One notices a big cancellation effect: the final corre
tion is about 5 times smaller than each term. There is an e
bigger cancellation effect for the transition wavelengths
cause the differenceDEvJ

(rel)2DEvJ21
(rel) is about 10 times

smaller than each correction. Notice also that the resul
cancellation effect inp̄He1 is a few times smaller than in
the usual helium atom@42# and in this sense the relativisti
effects manifest themselves more strongly in the antiproto
helium.

The calculated results forDEvJ
(rel) are presented in Table

IV. As the values of the relativistic corrections are rath
small, they can be calculated with a smaller relative accur
than the nonrelativistic energies. On the other hand, it w
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demonstrated@28,29# that the FEM gave fewer errors in th
wave-function matrix elements than the global basis
method when the same accuracy for eigenvalues
reached. Thus we estimate the accuracy of the present
tivistic corrections to be about 1027 a.u. using our wave
functions. Since Korobov’s nonrelativistic energy levels a
more accurate than ours, we mean that we will obtain be
estimates of the exact total energies by using his nonrela
istic energies and our relativistic corrections.

Because of the big cancellation effect demonstra
above, the correction of the next order with respect toa
could have an essential influence on the energy-level cor
tions. The main additional correction arises from the La
shift, which is of ordera3ln(1/a) @42#. It is known @42,44#
that the Lamb shift for one electron in a heliumlike ato
with a nuclear chargeZ can be expressed as

TABLE IV. Relativistic correctionsDEvJ
(rel) (1026 a.u.! for the

p̄4He1 system.

J v50 v51 v52 v53 v54

30 -28.70 -32.94 -37.26 -41.59 -48.58
31 -31.61 -36.27 -40.97 -45.68 -52.39
32 -34.80 -39.84 -44.87 -49.86 -56.32
33 -38.27 -43.64 -48.96 -54.12 -60.31
34 -42.03 -47.67 -53.19 -58.45 -64.33
35 -46.08 -51.92 -57.53 -62.79 -68.31
36 -50.40 -56.36 -61.94 -67.08 -72.20
37 -54.98 -60.93 -66.37 -71.27 -75.94
38 -59.77 -65.59 -70.77 -75.52 -79.47
39 -64.72 -70.25 -75.04 -79.28 -82.76

FIG. 5. Relativistic corrections for (2,J) states. The dashed line
short-dashed line, and dotted line correspond to Darwin terms
relativistic mass correction term, andDE2J

(rel) , respectively. The
dash-dotted line corresponds to the Lamb shiftDE2J

L and the solid
line to the total~relativistic and QED! correction.
t
as
la-

e
er
v-

d

c-
b

DEvJ
L 5

8a3Z

3
^c~J0!ud~r23!uc~J0!&

3S 19

30
12 ln

1

aZ
2 ln

K0

Z2 Ry
D . ~17!

HereK0 is the Bethe average excitation energy. An expr
sion similar to Eq.~17! could be written for the electron
antiproton interaction. However, we neglect this addition

term as the calculation shows that^d(r12)&<
1

10 ^d(r23)&
for all levels. Furthermore, the expression for t
electron-antiproton Lamb shift is half of this value sin
Z51 here. Thus we can estimate thatDEvJ

L (e p̄)
<0.05DEvJ

L (eHe21). The next uncertainty arises fromK0.
We have adoptedK0584 Ry as for the usual He atom@42#
despite the fact that this value must be smaller due to
screening-charge effect in our system. The total error in
duced in this way can be estimated to be less than 5%
DEvJ

L and is produced mainly by the neglected electro
antiproton term.

The values ofDEvJ
L are presented in Table V and illus

trated for (2,J) states in Fig. 5. One can see that these val
are not small in comparison with relativistic corrections a
constitute about13 of DEvJ

(rel) . Thus both relativistic and QED
corrections must be taken into account in order to obtai
precise consistent comparison between theoretical and
perimental data.

In Table VI we present the experimentally known tran
tion wavelengths, Korobov’s and our nonrelativistic resu
as well as relativistically corrected values. Because th
were no details of calculations in Refs.@16,22#, we cannot
now analyze the existing small differences of relativistic c
rections. WhenDEvJ

(rel) are used only for the corrections, w
have very good agreement with present experimental d
However, our final transition wavelengths, including bo
relativistic DEvJ

(rel) and Lamb shiftDEvJ
L corrections, are in

all cases shorter than the experimentally measured ones.
worth noticing that in a very recent paper@15# there was
reported a slow dependence of the measured wavelengt
the pressure of a helium gas target: 529.621 nm at 1.0
and 529.623 nm at 1.3 bar. It was stated that other kno
wavelengths had a similar dependence.~They were measured
at 0.6–1.0 bar@7,11,16#.! As our values are calculated for th
isolated system, they have to be compared with experime

TABLE V. Lamb shiftDEvJ
L (1026 a.u.! for the p̄4He1 system.

J v50 v51 v52 v53 v54

30 11.6 12.9 13.5 15.6 17.0
31 12.5 13.8 15.2 16.2 18.1
32 13.4 14.8 16.3 17.7 19.1
33 14.4 15.9 17.3 18.8 20.2
34 15.4 16.9 18.4 19.9 21.2
35 16.5 18.1 19.6 21.0 22.3
36 17.7 19.2 20.7 22.1 23.3
37 18.9 20.4 21.8 23.1 24.2
38 20.2 21.6 23.0 24.1 25.1
39 21.4 22.8 24.1 25.1 26.0

he



1862 56NILS ELANDER AND EVGENY YAREVSKY
TABLE VI. Comparison between theoretical and experimental favored transition wavelengths~nm!:
(v,J)→(v,J21). Our results are presented when relativistic correctionsDEvJ

(rel) only and both relativistic
DEvJ

(rel) and Lamb shiftDEvJ
L corrections are taken into account.

Nonrelativistic Relativistic
(v,J) Present Ref.@22# Refs.@16,22# DEvJ

(rel) DEvJ
(rel)1DEvJ

L Experiment

(2,34) 470.702 470.7051 470.7241 470.7257 470.720 470.724~2!a

(3,35) 597.224 597.2287 597.2563 597.2627 597.254 597.259~2!b

(2,36) 597.266 597.2634 597.298 597.2979 597.289 597.298~2!c

(1,37) 597.363 597.3626 597.398 597.3984 597.389 597.397~2!c

(0,38) 597.575 597.5716 597.609 597.6092 597.601 597.607~2!c

(2,35) 529.600 529.5964 529.623 529.6231 529.616 529.622~3!d,c

(1,36) 528.778 528.7810 528.808 528.8082 528.801 528.808~8!c

(0,37) 527.900 527.9032 527.931 527.9312 527.924 527.930~2!c

aReference@11#.
bReference@7#.
cReference@16#.
dReference@15#.
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data extrapolated to the zero pressure. The processes b
the above-mentioned pressure dependence are rather co
cated. However, if we just linearly extrapolated the rec
experimental wavelength measurements@15# to zero pres-
sure, we obtain 529.614 nm, which is in excellent agreem
with our theoretical result.

V. TRANSITION PROBABILITIES

In the previous sections we have calculated the ene
levels for thep̄4He1 system that are in a quite good agre
ment with experimental data. In order to compare with e
periment, however, we need to show that the intensity of
measured@8,11# and calculated transitions are comparable

The lifetime of the state (v,J) associated with radiative
transitions to all lower states is

tvJ5S (
Ev8J8,EvJ

AvJ,v8J8D 21

, ~18!

where the Einstein coefficientAvJ,v8J8 can be expressed i
terms of the oscillator strengthf vJ,v8J8 by the relation

AvJ,v8J8522a3~EvJ2Ev8J8!
2f vJ,v8J8. ~19!

The oscillator strengths have been calculated in term
the wave-function componentsc (Js)(x,y,c). The calculation
is cumbersome but straightforward. We obtain

f vJ,v8J852
2

3
~EvJ2Ev8J8!dJ8,J61

J.

2J11

3U(
s50

J

^c~Js!uDuc~J8s!&U2

, ~20!

whereJ.5max$J,J8% and the dipole operator element

D5y1S 11
m2

m21m3
D xc. ~21!
ind
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In Eq. ~20! we assume that the wave function is normaliz
such that

(
s50

J

uuc~Js!~x,y,c!uu251. ~22!

If only the zero componentc (J0) is involved in the calcu-
lation, Eq.~20! resembles the expression used by Shimam
@17# for the calculation of the transition probabilities in th
BO approximation. The validity of this approximation wi
be discussed below.

The lifetimes for states with the vibrational quantum nu
bersv50,1,2 are presented in Fig. 6. Both the results us
the three-equation formalism and the one-equation form
ism are displayed. Despite the fact that the wave function

FIG. 6. Radiative lifetimestvJ . The lines without symbols, with
crosses, and with squares correspond tov50,1,2, respectively. The
solid line corresponds to the calculations with three equations
the dashed one refers to a one-equation calculation. The dotted
represents a calculation without the core-polarization effect.
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one equation does not coincide with the BO function, th
are similar since both include atomic-core polarization
fects while both of them do not include electronic exci
tions. The displayed lifetimes coincide in general with t
results in Ref.@19#. However, a detailed comparison revea
some differences. Forv50 both the present and previou
@19# calculations give lifetimes that are decreasing withJ in
the rangeJ530–34. While the previous paper@19# reports a
similar behavior forv51, we find a slow, smooth increas
of t in the entire investigated range for bothv51 and 2. One
can see that for larger values of momentum (J>34–35! the
influence of the next equations is weak and becomes m
smaller with increasingJ. However, for smallerJ this influ-
ence changes the lifetime considerably, especially for hig
values ofv.

Actually, this change is defined only by the first ter
s50 in Eq.~20!, while other terms are negligibly small. Th
means that the reason is only a change of the compo
c (J0) in the few-equation calculations. This may be und
stood as follows. It is known that the core-polarization effe
is rather big and the lifetime changes drastically when o
takes this effect into account@19#. To illustrate this effect, in
Fig. 6 we show the lifetimes calculated without cor
polarization effect, i.e., forD5y. Only theP-wave compo-
nent of the wave function contributes to the core-polarizat
effect, while theS component mainly defines the energy va
ues. Thus even small changes in the wave function can
fluence the lifetime considerably when they refer to theP
component. In our calculations we have exactly such a s
ation because one can in Eq.~2! see that the off-diagona
terms connectingc (J0) and c (J1) are exactly zero for theS
component of the total wave function. Thus, while bothc (J1)

and theP component ofc (J0) are small, their interaction ca
produce considerable changes in lifetimes in spite of the
that the energy shift due toc (J1) is rather small.

The same situation can be observed for the Einstein c
ficients presented in Fig. 7. One can see that the lifetimes
J>34 are essentially described by the favored transitio
Dv50, DJ521. The next Einstein coefficients for the tra
sitions Dv521, DJ521 are smaller (<15%) and de-
crease the lifetimes only slightly. The analysis of the prop
sity rules given in Ref.@17# is thus valid for these values o
J.

Also, the variation oft for (0,J) initial states are small for
arbitrary values ofJ. This is because the only possible tra
sitions are favored transitions (Dv50) and transitions with
Dv511. The Einstein coefficients for the latter ones a
small due to small energy differences in Eq.~19!.

On the other hand, the changes in the Einstein coefficie
with the number of equations for largerv and smallerJ can
be essential. Furthermore, nonfavored transitions can
come comparable with favored ones. The reason for s
drastic changes is the same as that pointed out ab
namely, that a strong coupling of two small components
fines a large part of the dipole matrix element in Eq.~20!.
However, these Einstein coefficients are of academic inte
only. The states with valuesJ<33 andv>2 are unstable
with respect to Auger decays@6# and their lifetimes are in
practice defined by Auger processes while the radiative
cay rates are smaller by a few orders of magnitude@6#. This
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implies that we are not able to describe these states as b
states. Taking into account the resonant properties of th
states may lead to considerable changes in the correspon
wave functions, energy eigenvalues@45#, and therefore radia-
tive lifetimes.

Finally, we compare known experimental@8,11# and the-
oretical values of the decay rates. They are represente
Table VII. One can see that various theoretical results ag
with each other rather well and depend only slightly on t
method of calculations. However, despite satisfactory ag
ment with experimental data for (3,35)→(3,34) transition,
the difference in the decay rates for the (2,34)→(2,33) tran-
sition is rather large. This may be explained by the fact t
one has neglected Auger decays in all of the theoretical
culations. Thus, as pointed out above, taking into acco
Auger processes is in principle necessary for an accu
description of any processes in thep̄He1 system.

FIG. 7. Einstein coefficientsAvJ,v8J8. The solid line corresponds
to the calculations with three equations and the dashed one refe
a one-equation calculation. The lines without symbols, with cros
and with diamonds correspond to the (v,J)→(v,J21),
(v,J)→(v21,J21), and (v,J)→(v11,J21) transitions, respec-
tively. The lines with squares refer to the (2,J)→(0,J21) transi-
tion.
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VI. CONCLUSION

In this paper we present a recently developed extensio
a three-dimensional finite-element code. Earlier, the imp
mented method manifested itself as a convenient tool
studies of various quantum-mechanical problems: ab
threshold ionization of hydrogen@34#, tdm andddm muonic
molecular ions@35#, and laser-induced recombination to e
cited states of hydrogenlike ions@36#. Using the total angular
momentum representation, we have been able to calcu
here energy levels and wave functions for the antiproto
helium system with rather high accuracy.

Relativistic and QED corrections to the energy levels
the main order ina were calculated in terms of matrix ele
ments of the nonrelativistic wave functions. Excellent agr
ment was reached between our theoretical results and ex
mental data. However, in spite of this agreement, calcula
and measured data for decay rates differ considerably.
reason for this discrepancy is a neglect of resonant prope
of the involved states. Thus precise calculations of Au
Z.
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to
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processes should be performed in order to obtain the deta
description of the dynamics of the antiprotonic helium. Su
a study could be especially interesting for thep̄3He1 system
in connection with recently observed intermediate~between
Auger and radiative! lived states@13#. We believe that the
recently calculated high-precision wave functions and ene
levels for the p̄He1 system will be useful for the furthe
investigation of this interesting and intensively studied s
tem.
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