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Periodic orbit theory of a circular billiard in homogeneous magnetic fields
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We present a semiclassical description of the level density of a two-dimensional circular quantum dot in a
homogeneous magnetic field. We model the total potefitialuding electron-electron interactipof the dot
containing many electrons bycrcular billiard, i.e., a hard-wall potential. Using the extended approach of the
Gutzwiller theory developed by Creagh and Littlejohn, we derive an analytic semiclassical trace formula. For
its numerical evaluation we use a generalization of the common Gaussian smoothing technique. In strong fields
orbit bifurcations boundary effectg¢grazing orbitg and diffractive effectgcreeping orbity come into play,
and the comparison with the exact quantum-mechanical result shows major deviations. We show that the
dominant corrections stem frograzing orbits the other effects being much less important. We implement the
boundary effects, replacing the Maslov index by a quantum-mechamftattion phaseand obtain a good
agreement between the semiclassical and the quantum result for all field strengths. With this description, we
are able to explain the main features of the gross-shell structure in terms of just one or two classical periodic
orbits.[S1050-2947@7)05507-8

PACS numbes): 03.65.Sq, 73.20.Dx, 73.23.Ps

I. INTRODUCTION rable to the phase coherence length and the mean free path.
One of the most striking successes in recent years has been
The two-dimensional free-electron gé8DEG) that oc- the explanation of conductance oscillations in superlattices,
curs at the interface of suitably designed semiconductor hethe Weiss oscillationf2].
erojunctiongsee, e.gl1]) has attracted a lot of interestinthe  In this paper, we consider the level density of a 2DEG
last years. This is partly due to the two dimensionality,confined by external electric fields to a circular domain, with
which gives rise to new physical effectsuch as the quan- an additional homogeneous magnetic field perpendicular to
tum Hall effec} and partly to the extremely high mobility of the plane of the 2DEG. When this quantum dot contains
the electrons, which comes from the absencésofttering  many electrons, the effective single-particle potentia.,
donors or acceptors in the plane of the electron gas. Ththe Kohn-Sham potential in the language of density func-
most attractive feature, however, is the great variability oftional theory, which contains the electron-electron interac-
these systems. With electron-beam lithography additionation in the local density approximatipis Wood-Saxon-like,
lateral constraints of the 2DEG down to structures of somavith a flat region in the interior and a rather steep surface.
10 nm can be realized. This length is well below the typicalThe level density is not too sensitive to details of the poten-
phase coherence length and the electron mean free(jpath tial edge, so that a circular disk with infinite reflecting walls,
GaAs both of them can be of the order of sopm), and can  i.e., acircular billiard, is a realistic model.
even be comparable to the Fermi wavelength of the electrons The level density itself is hard to access experimentally,
(typically 40 nm for GaA§ so that in such structures quan- but it enters in many observable quantities. Persgtal. [5],
tum confinement effects play an important role. These sysfor example, consider a quantum dot that is connected by
tems are therefore accessible on a quantum scale, opening tyo point contacts to the surrounding 2DEG. They propose
tremendous new possibilities in device design. an approximation in which the conductivity of this system in
Various approaches heave been used to model the 2DE@eak external magnetic fields is proportional to the level
with and without additional lateral confinement. Quantum-density of the dot at the Fermi energifheir measurements
mechanical calculations tend to be rather involved and eveon a circular dot with about 1000—1500 electrons in a homo-
for the simplest systems numerically very demanding. Clasgeneous magnetic field show characteristic conductance os-
sical approaches have the severe drawback that they ignocdlations that could be well explained qualitatively in a per-
guantum interference effects, and are therefore applicableirbative approach by Reimam al.[7]. They reproduce the
only if the system dimensions are long compared to the meaascillations in a simple and intuitive way by a few classical
free path and the phase coherence length. In the resulting g@eriodic orbits of the system and the flux enclosed by them.
of the theoretical description, semiclassical approaches afBecause of its perturbative nature, this description only holds
pear very promising. They approximate quantum mechanics
in such a way that the quantities involved can be interpreted—
classically often in terms of the classical orbits in the sys- This has been shown in self-consistent calculations for quantum
tem. They combine the advantages of the classical descripiots[3] and is analogous to the situation in three-dimensional metal
tion, especially its limited numerical demands, with the abil-clusters[4].
ity to reproduce guantum-mechanical interference effects.?Recent exact quantum-mechanical calculations of the transport
This makes semiclassical methods a very attractive tool foproperties, however, show that this approximation is only valid for
mesoscopicsystems, i.e., systems with dimensions compacontacts at the opposite sides of the pit
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E of #/eR?, whereR is the disk radius. In these units, we have
200 5 \/Esz and with the classical cyclotron radius
R.=#k/eB, we getR./R=kR/B.
) The exact quantum-mechanical solution for the circular
150 < billiard in homogeneous magnetic fields was presented by
Geerinckx[10] and, using a different approach, by Klama
10012 Land Rgsler [11]. The eigenenergies are given by the zeros
of the confluent hypergeometric functiqir; as
501- -~ 1+ 1
En=2B| ay+ — t3) (2.2
ola
0 10 20 30 ~ 40 where
B B
FIG. 1. The quantum-mechanical eigenenergies of the circular 1':1( ~an 1t |||;§) =0. (2.2

billiard in dependence of the magnetic field. The dashed lines cor- .
respond to the four lowest Landau levels. Heren>0 denotes the radial arldthe angular-momentum

_ _ _ quantum number. The zeros ofF,; were determined

in weak fields. Another example where the level density ennumerically—which is conceptually easy but requires a lot

ters observable quantities is the magnetizaf®). of numerical work. Figure 1 shows the well-known depen-
For the interpretation of experiments on circular quantunyyence of the eigenvalues, on B. One clearly sees how

dots, a semiclassical approximation of the level density withyiih increasing magnetic field the different states condense
arbitrary field strength is desirable. Such a description innto the Landau levelédashed lines

terms of classical orbits is also of theoretical interest. In the
absence of a magnetic field the classical orbits consist of [ll. SEMICLASSICAL METHODS
straight paths bouncing at the bounddsge Fig. 2 They

: : For semiclassical approximations, a broad variety of
have a one-dimensional degeneracy corresponding to the ro- . ' . .
g Y P g methods is at hand. Some of them approximate directly the

tational symmetry of the system. In very strong fields, the uantum-mechanical eigenvalld®,13, whereas others de-

confinement is negligible and the level density is dominatecgCribe the level densitg(E). For this purposeg(E) is Usu-
by the quantization of a free-electron gas, leading quantumIIy split up into a smoo.th part gE), the (extended!

mechanically to the Landau levels and described semiclassf k _ LS
cally by closed cyclotron orbits. These orbits do not touch! Nomas-Fermi level density, and an oscillating pagt
the boundary and have a two-dimensional translational de- ~
generacy. Ayunified semiclassical description thus has to in- 9(B)=g(E)+3g(E). (3.
clude the transition between these two limiting cases, whiclThe latter can be expressed in terms of the periodic orbits of
includes changes of the topology and the degeneracy of th@e corresponding classical system, which is therefore called
classical orbits. Treating these is of conceptual interest sincgeriodic orbit theory POT). Such relations have been estab-
both effects are well known to lead to divergences in semifished by various approach¢$4—18, usually resulting in
classical theories. so-calledtrace formulaeof the form

We conclude this Introduction with a short outline of the 1 £
paper. As a refergnce, we f|r§t presen't in Sgc. Il the quantum- 59(E)= _2 Apsin Sr(E) —anJr m Y.
mechanical solution for the circular billiard in homogeneous Th“T h 2 4
magnetic fields. Section Ill gives a short introduction to
semiclassical methods, and in Sec. IV we derive a semicladderel’ labels all classical periodic orbits of the system. Each
sical trace formula of the disk. We then compare its results t@'bit contributes to the level density via an oscillating term
the quantum-mechanical ones for various field strengths. Théat depends on the classical actfginalong the orbit and on
agreement is good for very weak and for very strong fieldsthe Maslov indexo depending on the orbit’s topology. The
but the semiclassical approach rather appears to fail in themplitudeAr is a slowly varying function of energy, deter-
intermediate regime. The deviations are due to bifurcationghined by classical properties of the orbit such as its degen-
of classical orbits, to diffraction effects, and to boundaryeracy and its stabilt. All semiclassical approaches have
effects. The latter give the largest contributions, and in Sectheir individual merits and drawbackg2], and it is interest-
V we develop a simple approximation to include these efing to note that for the simple integrable case of the circular
fects in the trace formula. This corrected trace formula givedilliard without magnetic field, all applicable methods result
satisfactory results for all magnetic field strengths, and wén the same trace formu[d9-21, which furthermore repro-
give an intuitive interpretation of the the level density in theduces exactly21] the EBK spectrunf.Applying a homoge-
variousB-field regimes. The paper closes with a summary off€ous magnetic field, the system remains integrable, with the
the results and an outlook to further investigations.

Il. THE QUANTUM-MECHANICAL SOLUTION SEspecially,A depends otk only by a factor ~2, wherek is the
) . . — degree of degeneracy of the orbit family.
In the following, we will use normalized energiés in “EBK stands for the semiclassical approximation developed by

units of 42/2mR2 and normalized magnetic fiel&in units  Einstein, Brillouin, and Kellef13].
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FIG. 2. The classical periodical orbits of the circular billiard in
the absence of a magnetic field are the regular polygons. They can
be classified with ,w), wherev is the number of corners and
indicates how often the trajectory winds round the center of the
disk.

cyclotron orbits

. FIG. 3. A magnetic field breaks the time-reversal symmetry, so
energy and the component of the conjugate angular Mo- yha¢ the orbits are no longer independent of the direction of motion.
mentum as constants of the motion. In weak fields, this Sysmroducing an additional index:, the orbits can be classified by
tem was treated using a perturbative approach by Bogachgk w)*, both in weak R.>R) and in strong R.<R) fields. For
and Gogadz¢20], Ullmo et al. [8], and by Reimanretal.  strong fields, there occurs an additional family of orbits that do not
[7]. We have chosen the trace formula of Creagh and Littletouch the boundary, the cyclotron orbits.

john[18] as a starting point for the description in arbitrarily
strong fields. Switching on the magnetic field causes the classical tra-

jectories to bend, with the direction of the curvature depend-
ing on the direction of motion with respect to the magnetic
IV. TRACE FORMULA FOR THE CIRCULAR BILLIARD field. This entails a breaking of time-reversal symmetry. For
weak fields, the orbits can still be classified Byif an addi-
|.tional index (+) is introduced. This situation is shown in the
pper row of diagrams in Fig. 3 for the orlfit=(4,1). Up to

The trace formula of Creagh and Littlejoht8] is well
suited for the semiclassical description of the circular bi

liard, as it can deal with continuous symmetries. The mairt! field hwh he classical | |
idea of their approach is the separation into a symmetry-fre leld strength where the classical cyclotron radyequals

system treated by usual semiclassical techniques and th e_diskhradiubs_:R, dhencefor:th referr]rgd to alls thﬂe%k-:]ieldl
symmetry, which is used to integrate over the orbit families/€9/M& the orbits do not change their topology and the clas-

The structure of the trace formul8.2) remains essentially Sification = holds. For the strong-field regime with

unchanged by this procedure, but the definitionAois dif- B>kR, the structure of the POs is different. This situation is

ferent, reflecting the different classical structure of the dy-shown in the second row of diagrams in Fig. 3. The

namics. For the details we refer to the original publicationorbits change their shape continuously over the point

[18]. In order to calculate the level density with this trace R-=R, but the 8 orbits change their topology abruptly.

formula, we have to classify the periodic orbits and calculatélowever, since there is a one-to-one correspondence be-

their actions, amplitudes, and Maslov indices. These stepaveen orbits foR.=R and forR <R, B~ still gives a com-

are presented in the following subsections. plete classification of albouncing orbitsi.e., of orbits that

are reflected at the boundary. Fy<R, there are additional

cyclotron orbitsthat do not touch the boundary at all. They

have to be included separately in the sum over all orbits in
The complete classification of the periodic orbits of ourthe trace formula.

system is straightforward. Let us first consider the case with- At field strengths wher& <Rsin(mw/v), the @,w)™ or-

out magnetic field. In a circular billiard, the periodic orbits bits no longer existsee Fig. 4 They vanish pairwise, which

(PO) are identical to those in a three-dimensional sphericals the simplest case of arbit bifurcation This imposes an

cavity, whose complete classification has been given bydditional restriction on the sum ovey,(v). Including this,

Balian and Bloch[15]. All orbits have a one-dimensional we now have a complete classification of all periodic orbits

degeneracy corresponding to the rotational symmetry of thén the circular billiard at arbitrary field strengths.

system. Each family of degenerate orbits with a given action

(or length can be represented by a regular polygon. The firs vwt

few polygons are shown in Fig. 2. These orbit families are

classified 15] by 8= (v,w), wherev denotes the number of

corners (verticeg, and w is the winding number, i.e., it

counts how often an orbit winds around the center. With wv,w)~

v=2w>2 B=(v,w) uniquely describes all families of POs

of the system in the absence of a magnetic field. Because ¢ R.>Rsin(mw/v) R =Rsin(mw/v) R, <R sin(m-w/v)

the time-reversal symmetry, all orbits except the diameter

(v=2w) have an additional discrete twofold degeneracy, FIG. 4. At a field strength wher®,= Rsin(mw/v), the orbits

which has to be accounted for in the trace formula. (v,w)™ vanish pairwise.

A. Classification of the periodic orbits
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FIG. 5. Calculating the magnetic flux enclosed by an orbit, the
multiply enclosed area¢darker gray have to be correctly ac-
counted for.

B. The bouncing orbits

The action of a closed orbit in a magnetic field can be
written as the sum of the kinetic part and the magnetic flux FIG. 6. The actions and amplitudes of the classical periodical

enclosed by the orbit orbits can be expressed purely in terms of the geometrical quantities
shown here.

The geometrical lengthis; and the enclosed areBs of the ~ Orbits, which do not touch the boundary at &lee Fig. 3
periodic orbits discussed aboyeorrectly counting those ar- They form translationally degenerate families, whereas the
eas that are enclosed several times, cf. Figcah be calcu- bouncing orbits ¢,w)* considered above are degenerate
lated by elementary geometry. In terms of the geometricawith respect to rotations. For the translational case, the sym-
guantitiesR. ,R,y, and®, explained in Fig. 6, we obtain metry reduction can be performed directly, without need of
the general procedure of Creagh and Littlejohn. We trans-

Sp(E)=phkRe7, (4.2) form the phase-space coordinates according to
( sin2y { R\2%sin20 . 1 B
()] 25 R ”X:zﬁ(Pﬁ?y), M=+ \feBix,
sin2y ( R\2%sin20 . ¢ <R (4.4
= -y —~ <
n=4 Ty 5 + R, 5 or (B7,R:=<R).
sin2y [ R\%sin20 1 ( eB
R - =— py— —=X|, IlI,:=a,—|eBly.
\ vt — +(RC) 5 for (B7). My mpy 5 y:=mx—|eBly

According to the trace formulgl8], the orbit amplitudes are
composed of an integral over the symmetry group, which forA
the rotational W1) symmetry of the disk just gives®2v, of
the period of the orbit./fk, and of the Jacobian resulting
from the symmetry reductiodL/d¥, where ¥'=—2n0.
All these quantities can be calculated analytically, resulting

n

eB

1 1 1R Jcd H=——(m2+ m2). (4.5
Eo yRkm Jp R VSR

_ +
_ (m=y) for (7,R.<R) 4.3 As expectedH does not depend on the coordinates of the
B~y otherwise, ' ' center of gyration.Il, and II, are canonically conjugate

) _ variables, sinc¢Il, ,I1,]=i%. Because the relative and the
wherec, d, ands are the geometrical lengths sketched incenter-of-gyration coordinates commute, i.I],,m,]=

Fig. 6. The connection of these geometrical quantities to thery ,my]=[11,,m]=[1l,,7,]=0, the degeneracy of a cy-

classification parametgs™ and the cyclotron radiu&: is  clotron orbit is simply the phase-space voluMaccessible

given in Appendix A. for (IT,,I1,), which can be directly read off Fig. &haded
area. We therefore get for the degeneracy

part from a factory|eB|, (w,,m,) are the coordinates of
the motion relative to the center of gyratiohl(,II,), as
illustrated in Fig. 7. In these coordinates the Hamiltonian

C. Cyclotron orbits

For magnetic fields stronger tha=kR, the classical _ )
cyclotron radiusR; is smaller than the disk radiuR. This v E 1 & (4.6)
gives rise to a new class of periodic orbits, tbygclotron 2@h 2 R/ '
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E. The shell structure

In an experiment, the observed levels are always broad-
ened due to temperature, lifetime, or impurity effects. In
most systems the levels are not approximately equally
spaced, but occur in bunches, the so-cafledlls which are

/i separated by relatively wide energy gaps. Smoothing the
level density over a width larger than the typical level spac-
ing, but smaller than the distance of the bunches, reveals the
(gross-) shell structureof the system. It contains in many
cases the dominating quantum effects. This folding proce-
dure can easily be implemented in the semiclassical trace
formula. For pure billiard systemsi.e., systems where

FIG. 7. The motion of a charged particle in a homogeneousS=KL with L independent ok, a Gaussian folding of the
magnetic field can be expressed in the coordinates of the relatii@vel density is equivalent to the multiplication of the orbit
motion (X,y)=|eB|~¥¥—m,,m,) and the coordinates of the cen- amplitudes in the trace formula with a Gaussian with recip-

rocal width. In Appendix B we give a more general form of
this relation, which is not restricted to pure billiard systems
and to Gaussian smoothing, but can deal with general sys-
tems and arbitrary smoothing functions. We will in the fol-
lowing use this generalized approach, as in finite magnetic
fields we no longer have a pure billiard system. As this is a
more technical point, we leave the discussion for Appendix
B. There we also give detailed information about the numeri-
cal evaluation scheme and the smoothing function used. The

ter of gyration ¥,Y)=|eB| *4(Il,,—II,). The Hamiltonian is in-
dependent of I, ,I1,); all orbits with the centerX,Y) in the gray
shaded area are degenerate.

Now, the Hamiltonian Eq(4.5) is identical to that of a one-
dimensional harmonic oscillator. Using its analytically

known trace formuld,the contribution of the cyclotron or- - i i —
bits to the oscillating part of the level density is given by latter is in the following characterized by a parameter
which corresponds to the variance of a Gaussian

exp[—l/Z(kR/';/)z] with the same half-width.

1 R\2” The additional factor in the amplitudes stemming from the
59C:f< 1- EC) 2 cognkwR,—nw). (4.7) smoothing strongly suppresses the longer periodic otisits,
0 n=1 that usually only a few of theni2—10 contribute to the

gross-shell structure. This makes the POT a very convenient
Heren is the winding number around the center of gyration.tool for the calculation of this quantity. The quantum-
Note that the frequency is again determined by the classicahechanical approach is in some sense complementary to the
action along the orbit, which in this case is semiclassical one. It first gives the single eigenvalues, of
which many have to be known to calculate the shell struc-
ture. On the other hand,fall semiclassical quantizatign.e.,
resolving the level density down to the single eigenenergies,
involves in general an exponentially increasing number of
Note that here exactly half of the kinetic contribution to the orbits and thus is a very demanding task. Here we are mainly
action is canceled by the flux term. interested in the semiclassical calculation of the gross-shell
structure, for which only a few of the shortest and most
degenerate periodic orbits are required. We will, neverthe-
less, also try to go for a full quantization—mainly to verify

For a discussion of the additional phases in the trace forthe quality of our semiclassical approximation.

mula (3.2) we refer to Sec. VA. There we find that the
Maslov index for bouncing orbits is=3v, and for the cy- F. Results in the weak-field regime
clotron orbits it isc=2. According to[18,24], we have an
additional phase ob7/2 stemming from the symmetry re-
duction. ¢ is found to be

S=n-#k/7R.. (4.9

D. Additional phases

In the previous sections we have derived an analytical
trace formula for the circular billiard in homogeneous mag-
netic fields of arbitrary strength. Presently we shall discuss
0 for (B7,R.<R) the resulting level densities as a function of energy and mag-
(4.9  netic field. Let us start with weak fieldR¢>R), for which

the topology of the classical periodic orbits is the same as in
the absence of a magnetic figlsee Sec. IV A so that we
We have now analytic formulas for all quantities of the traceexpect the semiclassical approach to be of the same quality
formula. The numerical evaluation of this semiclassical levels for zero field. The high-field regime, where we expect new
density will be performed in Secs. IVF and IVG. effects to arise, will be the topic of the next section.

- 1 otherwise.

5The harmonic oscillator is one of the few cases that can be ®This holds of course only for pure billiard systems. The suitable
treatedexactlywithin standard POT23]. generalization is again given in Appendix B.
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FIG. 8. The semiclassical level density of the disk billi&sdlid FIG. 10. The semiclassical level density€0.35) of the disk

line) matches perfectly the equivalently smoothed quantumJbilliard (solid) compared to the equivalently smoothed quantum-

mechanical resultdashed, and well hidden under the solid Jine Mechanical resultdashegl The gray lines and the arrows indicate
The smoothing width i$=0.35. the positions of the first four Landau levels. For strong fields

(Rc<R), the agreement between the semiclassical and the

The case of the circular billiard in small h0mogeneouso'uamunr"meChan'C"’1| results is not satisfactory.

magnetic fields has already been treated by Bogachek and . ) -
Gogadzd20] and by Reimantet al.[7] using a perturbative f|C|ethIy many of them. The r.esultplus shown in Fig. 9, where
approach for weak fields. Replacing the amplitudes of Eqwe display theotal level densityg=g + &g, averaged over a

(4.3) by their asymptotic values f@— 0 and expanding the Wwidth y=0.025, which is smaller than the typical level spac-

actions of Eq(4.2) up to first order irB reproduces, indeed, INd-AS Tanaka has shown [8], the smooth part of the level
their results. density of the circular billiard does not depend on the mag-

In Fig. 8 the semiclassical level density obtained with"€tic field to leading order ii. We use the Thomas-Fermi
level density for zero field, which is identical to the familiar

'y=0.35 (solid line) is plotted against the equivalently Weyl expansior]26]

smoothed quantum resuldashed for various values oB.
The agreement is almost perfect—just as it is in the zero- -

field case, which has been extensively discussed by Reimann g(k)= 4_Eo( 1- ﬁ) (4.10
et al. [25]. Note that the calculation requires over 850 nu-
merically determined eigenvalues for the quantum-
mechanical calculatiofiwhich then have to be smoothed

whereas the semiclassical calculation is analytical and ju
requires the most important orbithe diameter and the two

Both the semiclassical level densitgolid) and the corre-
§ponding guantum-mechanical oftiashed in Fig. 9 exhibit

S ; . .
Clearly separated peaks whose heights give the degeneracies
of the individual levels. The two lines can hardly be distin-

triangle, square, pentagon, and hexagon orbits . . : .
Sigr]me v?e havg a clgssification of gall pcgriodic orbits ang@Uished; thus the semiclassical approach gives almost perfect
results even in this extreme case of full quantization.

analytic expressions for their actions and amplitudes, we can
attempt a full semiclassical quantization by summing up suf-
G. Results in the strong-field regime

Figure 10 is the strong-field equivalent of Fig. 8. It dis-
plays again the semiclassicabolid) and the quantum-
mechanical (dashedl level densities, obtained with an

equivalent averaging widthy = 0.35. The agreement for
small fields R.<R) is good, as already shown in Sec. IVF.
For stronger fields, the positions of the Landau levglay
lines in Fig. 10 are well reproduced, but their degeneracies
are overestimated in the semiclassical approximation.
Figure 11 corresponds to Fig. 9 and displays the full
quantization of the system. The semiclassical approach is
seen to fail for stronger fields. As already mentioned, this is
due to the neglect of various effects. First, there are orbit
bifurcations where classical orbits vanish pairwise with in-
FIG. 9. The semiclassical level densitolid) for a smoothing  creasing magnetic fieltsee Figs. 4, 17 and 18The change
width 7=0.025, which is small enough to resolve the single of the topology of the8™ orbits and the occurrence of cy-
eigenenergieé ‘full quantization”). One can hardly distinguish this clotron orbits are also bifurcation effects. Those are known
from the equivalently smoothed quantum-mechanical r¢dakhed to lead to divergences in the trace formula. Second, we have
line underneath The positions of the quantum-mechanical eigen-neglected boundary effects from grazing orbits and diffrac-
values in dependence &f are indicated by the gray lines. tion effects, which could be implemented in the trace for-

OB

degeneracy (g ¥/ G oy )
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FIG. 11. The semiclassical level density resolved up to theture, the billiard boundary can be implemented in the effective one

single eigenenergigsolid) compared to the equivalently smoothed dimensional motior(b)—~(d).
guantum-mechanical levelglashefl The gray lines indicate the A. The Maslov index

positions of the eigenenergies as functlo_nd_%ofF_or strong fields The origin of the Maslov index can most easily be under-
(R.<R) the agreement between semiclassical and quantum-

mechanical calculation is bad. Note especially the large discrepans-toosj in the one-dlmenS|on§1I case. Semiclassically, one ap-
oximates the wave functions to lowest order by plane

cies in the degeneracies of the Landau levels, and the completeRf ;
missing states slightly above the Landau levekse insets waves with the local wave numbé(x) = y2m[E—V(x)].

This approximation obviously breaks down at the classical
mula by considering creeping orbits. A closer look at Fig. 11turning points wherd&=V(x) and the wavelength diverges.
gives some hints as to which of these effects dominate. ThExpanding the wave function around the classical turning
two most striking observations are as follow$) The trace  points and matching the solutions to the plane-wave solu-
formula reproduces well the positions of the Landau leVels, tions far from the turning points leads to additional phases in
but it overestimates the degeneracies of these states. Thige semiclassical quantizati¢f?2]. In the limit #—0 these
error becomes smaller with increasing field strengte in-  are independent of the detailed shape of the potential. Each
sets in Fig. 11 (2) The levels that have energies slightly reflection at a softturning point gives a phase of /2,
above the Landau levels are completely missed by the semjvhereas each reflection at an infinitely steep wall gives a
classical approach. These two observations suggest that it ffhase of— 7. Writing this phase as-o#/2, one usually
a boundary effect that causes the discrepancies. A simplglls o the Maslov index
hand-waving argument might be useful to illustrate the ef- |n the case of the circular disk, the Maslov index can be
fect. Quantum mechanically, a particle moving on a cyclo-gbtained simply by counting the classical turning points of
tron orbit will feel the boundary even if classically not touch- the one-dimensional effective potential in the radial variable
ing it. Particles on cyclotron orbits close to the boundary thus . For skipping orbits, the Maslov index per bounce is 3,
feel an additional confinement. This restriction to a smallefincluding one soft reflection at the centrifugal barrier and one
volume will lead to a higher energy. In this picture, not all hard-wall reflection. For the cyclotron orbits, the effective
the cyclotron orbits are degenerate. The orbits close to thpotential is a one-dimensional harmonic oscillateee Sec.
boundary will no longer have the energy of the Landau leveljy C) with two soft turning points, and thus their Maslov
but a slightly higher one. This is exactly what would correctindex per period is 2.
the observed defects of the semiclassical approximation. In
the next section we will present a simple way to incorporate B. Reflection phases

this boundary effect in the trace formula. o N ) .
For finitez the additional phase stemming from classical

turning points will depend on the shape of the potential. Let
us consider a cyclotron orbit at a distangg to the billiard
boundary. Neglecting the curvature of the boundavhich
The observations of Sec. IV G suggest that boundary efeorresponds to the strong-field linjitve can reduce the mo-
fects are responsible for the failure of the semiclassical aption in the presence of the wall to an effective 1D motion just
proximation in strong fields. The only place where boundaryas in the unbounded case presented in Sec. IVC. This is
properties enter the standard trace formula is the Maslov inshown in Fig. 12. The upper row of diagrams shows the 2D
dex. We therefore propose here to replace the Maslov indemotion, the lower row gives the reduction to the one-
by a more sophisticated quantity, which includes some guardimensional motion in an effective potential. Figure(d)2
tum effects. Before doing this, let us give a brief summary ofshows the unbounded case, in(d2the orbit is near the
the origin of the Maslov index. boundary, and 12) and 12d) illustrate skipping orbits.
A particle in the potential sketched in Fig. (b2 is clas-
sically not influenced by the additional wall, since it will
"This is no surprise since the Landau levels are due to the free
cyclotron motion of the electrons, which is equivalent to that of a
1D harmonic oscillator. The latter is known to be exact in the semi- 3‘Soft” here means that the slopes of the potential at the classical
classical approximation. turning points are finite.

V. BOUNDARY CORRECTIONS
TO THE TRACE FORMULA
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FIG. 13. The reflection phase;, in dependence of the distance £ 14 The semiclassical coarse-grained level density of the
of the center of gyration from the boundagy,. The transition from disk calculated with reflection phasdsolid) compared to the
XW<1~tO Xw>1 is continEous and gets sharper for ir‘(:ree‘Si'r‘gequivalently smoothed quantum-mechanical resdidshed The
(kR)?/B. In the limit (kR)?/B— o, which corresponds to the semi- gray lines and the arrows indicate the positions of the lowest Lan-
classical limiti—0, the Maslov phaséthick line) is recovered. dau levels. The agreement is considerably better than with the use

of the Maslov indices as displayed in Fig. 10.
never touch it. Quantum mechanically, however, the wave

function enters the classically forbidden region and thus feels . . .
the boundary even for,,>R. . This leads to a smooth tran- improved when using reflection phases. The coarse-grained

sition of the quantum-mechanical reflection phase over level dengity now is good at all 'magne'tic field strengths. The
the pointx,=R., whereas the semiclassical Maslov phasefu" quantization displayed in Fig. 15 is not perfect, but the
is discontinuous at this point; as we have just seen in Sednost striking error in standard POT, giving the wrong degen-
VA above, it is — for x,>R, and —3/27 for x,<R,.  €racies of the Landau levels, is now corrected. This is dis-
Our way to implement these quantum effects at the boundarf!yed in detail in the insets 1 and 2 in Figs. 11 and 15,
in the semiclassical trace formula is therefore to replace thEeSPectively. The single states between the Landau levels,
Maslov index by the guantum-mechanical reflection phasgpwever, are still not reproduced correctly. This is due to our
or Of the corresponding one-dimensional motion. ThisSIMPIe approximation, which only includes boundary effects
smooth version of the Maslov phase will also remove the’!2 the reflection phase. The classical orbits are not changed,
former clear separation between cyclotron orbits and skipS© that in our approximation the center of gyration of the
ping orbits. These two limiting cases are now continuoushyCYclotron orbits &> R.) is fixed, whereas for bouncing or-

linked, with ¢ ranging between-m and —3/27. We will  PitS (xw<Rc) it moves around the disk. Modeling the ex-
refer to the orbits in the transition region, which are close td°€ctéd smooth transition from,>R; to xy<R. semiclas-
the boundary withirf, as to thegrazing orbits sically would require including diffractive orbits that we

The calculation of the reflection phases is in this approxi-have neglected here. The resulting error can be understood as

mation reduced to the problem of the one-dimensional harfollows: a generic two-dimensional system has two quantum
monic oscillator in an additional square-well potential. This"umbers, thus requiring two semiclassical quantization con
system was approached by Isihara and Ep2¥§ who used

local expansions in terms of Airy functions. We use a differ- .,
ent approach and integrate the quantum-mechanical problenB
numerically. From the solutions we calculate the reflection 40
phasespr, which is displayed in Fig. 13. As expected, they
show a smooth transition from 7 at x> R, to — 3/27 at 30

xw<R.. The transition gets sharper ikR)?/B increases.

For (kR)2/B—o, which corresponds to the semiclassical
limit #—0, the standard Maslov phagthick line) is repro-
duced. Quantum corrections are seen to have the greates
influence on the grazing orbitxg~R;) and on orbits with
xw=—R;. These are known as thghispering galleryor-

degeneracy(g ¥/ Gy,

bits, as they move in a narrow region along the boundary. 2 4 6 8 10 12 kR 14

FIG. 15. The semiclassical level density with corrected reflec-
tion phases resolved up to the single eigenenergies of the billiard

Figures 14 and 15 show the coarse-grained level densitysolid) compared to the equivalently smoothed quantum-mechanical
and the full quantization of the spectrum, respectively, bothresult(dashedl The gray lines indicate the positions of the eigenen-
calculated with the reflection phases of Sect. VB. A com-grgies in dependence Bf The agreement is much better than in the
parison with the corresponding diagrams in Figs. 10 and 1lgase of the Maslov indices in Fig. 11. The degeneracies of the
which display the result obtained with the standard MaslovLandau levels are correctly reproduced, only the levels that are
indices, immediately shows that the situation is drasticallyclose to condensing on the Landau levels show deviafimsets.

C. Comparison to the quantum-mechanical result
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0 *30 b VY EVEAY dependence oR./R. For R.>R G is independent of the index
‘ﬁ *. In the limit of small fields R./R—%), the geometric orbit
ol P lengths are reproduced. The orbit bifurcation points in strong fields
420 " ‘ (vertical lineg can be clearly seen.
4 o ) o
0 FAw | range from zero field to full Landau quantizati@olid). The
410 e comparison with the exact quantum res(dashed shows
4 ‘ that the semiclassical approximation is in fact valid dobi-
0 o trarily strong fields. Small deviations occur only at the bifur-
-4

cation points of the dominating orbits. As already mentioned,
we did not include the effects of the bifurcations in our cal-
culation. The resulting errors are much smaller than the ef-
fect of the reflection phase, and they are seen to be more
important for the gross-shell structure than for the full
quantizationt’

D. Semiclassical interpretation of the shell structure

In Sec. VC we have shown that the semiclassical ap-
proximation for the level density is valid for arbitrarily
strong fields. It reproduces the exact quantum-mechanical
_ ] ) _ result with a remarkably reduced numerical effort. For the

FIG. 16. The semiclassical coarse-grained level density of thgyyantum-mechanical calculation shown in Fig. 16 about
disk billiard with corrected reflection phaséslack compared to 2500 eigenvalues had to be calculated and numerically

e e e o o arecaer o gfmo0Ied for each value , whereas th semiciassica
9 P 9 gees, Yesult is obtained summing the contributions of just 20

and magnetic fields. The vertical lines indicate the blfurcatlong{bits.ll The most attractive feature of the semiclassical ap-

points of the most important orbits. The shaded regions are enlarge oximation, however, is the simple, intuitive picture it

;ﬂéqi\jguégigflog 'I}Cg:]ei;h:ehtehltzlj(thnes show the interpretation ogives. Let us now exploit this to explain the behavior of the
yasg ' shell structure of the disk billiard in terms of classical quan-
ditions. The free 2D electron gas in a homogeneous magnetlt'ct's.s' Accorq;)ng to the traﬁle fprmula E@'Z)I’ e?ch perlod!c
field has an additional dynamical symmetry and only one>’ Itp pontrl utes an oscl atlng_ term @y t‘? requency 1
guantum numbeflabeling the Landau level This additional determined by the chssmaI acti@y along this path, which
symmetry is broken by the presence of a curved boun‘?ﬂary.c""n be locally approximated by
This implies _that the semiclassical d_escription in terms _of S(K)=Ss(ko) +7Gg(k) (K—Ko), (5.
cyclotron orbits near the boundary misses one quantization
condition, which is hidden in the broken dynamical symme-with the quasiperiodsG. The amplitudes of the oscillating
try. Therefore these orbits give rise to a continuous semiclagerms areAzF(Gg), whereF is the window function that
sical (sub spectrum. Bouncing orbits, however, have thedepends on the desired smoothing of the level der(sitg
correct symmetry and lead to a discrete subspectrum. Thi8ppendix B. Before we interpret the contributions of the
transition can be seen in Fig. 15. On the low-energy side o¥arious orbits tosg, let us discuss the behavior &, and
inset 3, the semiclassical level density shows a continuou.
spectrum stemming from the grazing orbits, whereas the Figure 17 shows the dependetfc®f G on the ratio
guantum-mechanical result gives quantized levels. This errdR./R. Note that forR,>R (see right diagram of Fig. 17
affects mainly the fully quantized spectrum; the influence onG is independent of the direction of motiah, even if the
the gross-shell structure is negligible. classical action depends on it. In the limit of weak fields
Figure 16 shows once again the semiclassical level den-
sity calculated with reflection phases, now in the whole
1%This implies that even though the amplitudes are diverging, the
trace formula can still be used. Note, however, that near the bifur-
%A straight boundary does not break the symmetry. This is thecation points the numerical evaluation of the trace formula has to be
reason why in this case it is possible to reduce the system to ongerformed with special care, as described in Appendix B.
dimension, which we have exploited in Sec. VI for the calculation *For R,;>R even 10 orbits are sufficient.

of the reflection phase. 2The explicit formula forG is given in Appendix B.
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For the interpretation of the shell structure, let us first
look at the weak-field regimeR;>R). The amplitudes for
zero field given in Eq(5.2) are proportional to ~ /2, favor-
ing orbits with a small number of bounces The depen-
dence of the amplitudes on the magnetic field as shown in
Fig. 18 indicates that in the region where the-* orbits
differ significantly from the *+" orbits, the latter are negli-
gible. These effect§ together strongly favor the (2,1) and
the (3,1) orbits. They end up with comparable amplitudes.
From this picture we expect as the dominating feature of the
level density a pronounced beating pattern from the interfer-
ence of the diameter and the triangular orbit. This beating
pattern is well known for the zero-field case. In three-
dimensional metal clusters, it is usually referred tcaper-
shell oscillations[31].1®> Our description suggests that this
FIG. 18. The amplitudes of the dominating orbjts=(v,1)>  beating will survive in homogeneous magnetic fields up to a

withv=2, ..., 5relative to theiB=0 value.(The amplitude of the strength ofB=kR. This is indeed observed, as seen in Fig.

cyclotron orbit is in arbitrary unity. At the bifurcation points 16. The thick lines in the frameda) and (1b) correspond to
R.=sin(mv/w) indicated by vertical lines, the amplitudes diverge. a f.unctior}e

For R.>R the amplitudes of the bouncing orbits quickly approach
their asymptotic(zero-field value. The inset shows this conver-
gence in a wider range @&.

AG G
sin(kG(m)+sin(kG(1y3)—)=sin( kT) sin( k;) .
(R;/R—>), we have a pure billiard system ar@ ap- (5.3
proaches the geometrical orbit length.R& R all orbits are
creeping along the boundary, forming tlispering-gallery
mode There G is again the geometrical orbit lendth

27R. In strong fields R,<R, left diagram G is different Approaching the field strength wheR,=R, all orbits

for the “+” and the “—" orbits. Only at the bifurcation ;
. ; . g . changeG sharply to 2r, so that they interfere coherently,
gmr';ts, v;/hereffchlz tv‘;ﬁ orbllts gln??he, t’;hfey h?ve Id?ntt'calforming the whispering gallery mode. We therefore expect
L Fors ro?g Z'S S, the value @ at the biturcation points 4t the beating behavior will disappear, leaving just a simple
converges tar K. . . . oscillation with the common frequency. In Fig. 16 this sud-
In Fig. 18 the amplitudes of the orbits relative to the den stop of the beat ®.= R can be clearly seen. The solid

It predicts correctly the structure of the level density in this
regime.

B=0 values, line in frame 2 shows that the frequency of the remaining
. 3 single oscillation is predicted correctly.
sin®2@ . L
0— (5.2) For R.<R, the influence of the cyclotron orbits increases
p \/E with stronger fields. The large amplitudes of the bouncing

_ orbits near the bifurcation points is, as we have already
are plotted versus the ratidR/B=R./R. The amplitudes of pointed out, unphysical and should be removed by a rigorous
the “+" orbit is always larger than that of the corresponding treatment of the orbit bifurcations. For strong fields, only
“—" orbit. At R.=R, where the “+" orbits change the cyclotron orbits and bouncing orbits with a great number of
topology (see Fig. 18 their amplitudes are zero, so that bounces exist. The amplitudes of the latter are proportional
these bifurcations do not lead to artifacts in the level densityto v =2, so that in very strong fields we expect that the
In stronger fields, the amplitudes diverge at the bifurcatiorcyclotron orbits dominate the level density. The gray lines in
points, indicating that the semiclassical approximationframe 3 of Fig. 16 show the corresponding oscillating t€rm
breaks down at these poirtsore exactly, one of the saddle- which, indeed, reproduces the main feature of the quantum-
point approximations in the derivation of the trace formulamechanical resul(solid black. The skipping orbits with
becomes invalid A rigorous treatment of these bifurcations greatest amplitudes are those close to their bifurcation points.
has been presented in a very general form for two-As can be seen in Fig. 17, all those orbits have nearly the
dimensional systems by Ozorio de Almeida and Hannayame value o6 = 7?R. Their contributions should therefore
[28]; more explicit calculations have been performed, forinterfere constructively, giving rise to small structures in the
example, by Ku®t al.[29] and Siebef30]. The main ideais level density of this period. Such structures can indeed be
always to replace the saddle-point approximation by a bettesbserved in a higher-resolution spectrum, as shown in Fig.
adapted uniform integration. An application to the disk bil-
liard has not been attempted here and will be the subject of ———
further studies. 1The G dependence df(G) also supports slightly this effect.

19 the 3D spherical cavity, the beat comes from the interference
of the triangle and the square orbisee Ref[15]).
3In pilliard systems, the whispering-gallery mode has the general ®The phases are, of course, adjusted.
property that, even in the presence of a magnetic fi€lds the YFor a simpler comparison, the amplitude is chosen to rise qua-
geometric orbit length. This is not true for the other orbits. dratically, as indicated by Eq4.6).
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11. The spacing of the small peaks between the Landau le¥ields, the interference between the diameter and the triangu-

els is, indeed, consistent with our simple picttfte. lar orbit dominates the level density. A quantitative semiclas-
Altogether we could show that this simple semiclassicalsical description is already possible including between 10

picture is able to explain the main features of the quite comand 20 orbits. Future studies will be aimed at a rigorous

plicated behavior of the level density for arbitrarily strong treatment of the orbit bifurcations and an implementation of

fields in terms of just 3 classical periodic orbits. We havediffractive effects.

here interpreted the dependence of the level density on the
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and Littlejohn and compared our findings with the quantum-

mechanical solution. In the weak-field domain, where the

classical cyclotron radiu&, is larger than the disk radius

R, the agreement is excellent and even a full quantization,

e.g., the resolution of the level density into individual energy The geometrica| |engthS, d, ands and the ang'e@,

levels, is possible. BZ and¢ sketched in Fig. 6 can be expressed in terms of the
I

In stronger fields, the quality of the standard semiclassica¢|assical cyclotron radiuR,, the disk radiug and the clas-
approximation is not satisfactory, even for the gross-shelkjfication paramete® = (v,w)™ as follows:

structure. We have identified boundary effects to be respon-
sible for the major part of the deviations. To implement these w

effects in the semiclassical trace formula, we have replaced 0= P

the (discrete Maslov index by a(continuoug reflection

phase. The latter was calculated in a simple one-dimensional R
approximation. With this correction, the semiclassical ap- y= arcsir(R—sin®),
proximation to the exact quantum-mechanical level density ¢
is good for all field strengths and energies. For a correction
of the remaining deviations it would be necessary to include

APPENDIX A: GEOMETRICAL QUANTITIES
OF THE POs

y—0+7/2 for (BY,R.>R)

diffractive orbits and the effects of the orbit bifurcations. The p={ —v+tO+7/2 for (B, R.<R)

orbit bifurcations at strong field strengths affect the shell y+@—m/2 for (87),

structure only to a small extent, their influence on the full

guantization is even smaller. The diffractive orbits do not c=Rcoss,

influence the shell structure but only the full quantization.

Both effects can therefore be neglected for the semiclassical s—

description of the gross-shell structure. The reflection phases, ¢ '

however, are a crucial correction for both the gross-shell |s—Rco®d| for B*

structure and the full quantization. = i (A1)
One advantage of the semiclassical description is its easy s+Rco® for B~.

numerical evaluation. Much more attractive, however, is the

simple, intuitive picture gained from it. Quantum mechanics APPENDIX B: EVALUATING THE PO SUM

readily gives information on individual levels or level statis-

tics, which are hard to derive semiclassically. But the experi- Semiclassical trace formulas are asymptotic series with
mentally important long-range correlations of levels, leadinghontrivial convergence properties, so that they cannot be
to shells and supershells, are very easy to explain semiclagimmed up straightforwardly. Frequently the Gaussian
sically. For a qualitative description of the shell structure justsmoothing technique is used, which approximates the level
one or two classical periodic orbits are sufficient. In strongdensity folded with a Gaussian by the trace formula where
fields the single oscillation of the cyclotron orbits dominatesthe amplitudes are damped by an additiof@hussiai fac-

and the coherent superposition of the strongest skipping ofor- This approach is limited to Gaussian line shapes and to
bits gives rise to additional small structures with muchSmoothing of the level density ik. In this Appendix we
smaller spacing. For field strengths wih<R the skipping introduce a more general approach, which can deal with ar-
orbits form coherently the whispering gallery mode, whichbitrary line shapes and smoothing variables. We will also

gives rise to a single oscillation of the level density. In weakSthI‘_tg explicitly the conditions for the approximation to be
valid.

The general form of a trace formula is given by

8This holds for the spacing of levels that “belong” to the same
Landau level, and as long as we still have skipping orbits and do not 59= 2 Ar( E)eiSF(E)/h—iarw/Z (B1)
enter the grazing orbit regime, where the reflection phases change. T
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whereI" is a one-dimensional classification of the classical S S(ep) )
periodic orbits. If there is a generalized enem(E), and 7= TG(e)(e—&)+0O(e—g)  (B1O)
functionsG(I",E) anda(G), which fulfill
If this approximation is good in a region mwider than the
Sr(E) T eG-3(G) (B2  pical width y of the smoothing function, Eq(B8) stil
) I9ry LSh holds. In the general cage is therefore given by the first

] derivative of the classical action with respecteto
we can rewrite the trace formula as

1ds

8g=2, Aqe,G)e"C. (B3) CE= 7 de E -

With e=E, A G is the periodT of the orbit, so that we refer

to AG as thequasiperiod Putting all approximations to-
ether, we have shown that damping the amplitudes in the
race formula with a window function depending Gngives

an approximation for the level density folded with the Fou-

Ay(e,G)=Ag(G)Ae). (B4) rier transform of the window function used:

RescalingG we can always obtaifs € N; the rescaling fac-
tors should be included iA,(e,G). Let us first assume that
A, factorizes in terms that only depend on the generalize
energye and the classification variabl@:

Approximating Eq.(B3) by an integral sgF~f(e)* &9. (B12)

_ This is the main result of this Appendix. The approximation
5g~Ae(e)f Ac(G)e*CdG. (B5  holds if in a region wider than the typical width of the
¢ smoothing function the conditions

gives (apart from normalization constantshe oscillating

part of the level densitydg as the Fourier transform of S~S(ep) + G(eg)(e—e) (B13
Ac(G): and
og(e)~2mAs(e)FAs(G)]. (B6) A,(e,G)~const (B14)
For an arbitrarywindow function RG) we get, using the gre fulfilled. These conditions depend mainly on the behavior
well-known folding theorem, of the actions and amplitudes. In order to match them, a
well-adapted choice of the generalized energy is essential.
J F(G)A,(e,T)e®CdG~ sg(e)* f(e). (B7) Note that for narrow smoothing functiofsmall ), the con-
G ditions are less restrictive. Therefore for a full quantization

the use of Eq(B12) is often justified, whereas for the calcu-
lation of the gross-shell structure the conditions E&3)
and(B14) put tight limits on the use of the amplitude damp-
ing ansatz—which might seem counterintuitive at first sight.
59 =2, F(G)AR(E)e'Sr(®/i-iorm2e sq(e)*f(e), We now illustrate the result with a simple example. Pure
r billiard systems are those where the the action along the
(B8) orbits scales with the wave numbe3=7%k-L, andL, the

where 5gF denotes the trace formula with damped amp"_geometric orbit length, is independent of the energy. Setting

tudes. This relation shows that folding the semiclassical level >mE
density with asmoothing function (fe) is equivalent to a e(E)=k= 1 /_mz_ and G(I')=L, (B15)
multiplication of the amplitudes with a window function fi

F(G). Unfortunately the restrictions of Eq&B2) and (B4) . ) . .

are quite severe and often prevent the application of qu_Eq. (B13) is fulfilled _tr|V|aIIy. If Eg. (B14) is also matched_,
(B8). With two additional approximations we can relax thesetn€n the use of a window functidh depending on the orbit
restrictions. In the general case HB4) is violated and we |e€ngthL is equivalent to a folding of the level density kn

may just separate out a common dependence of the ampli/Sing & Gaussian window function we get a Gaussian
tudes one: smoothing of the level density ik space. This is the tech-

nigue frequently applied when evaluating trace formulas for
As(e,G)=Ag(e,G)A(e). (B9) billiard systems. EquatiofB12) is somewhat more general,

as it is not restricted to billiard systems nor to special win-
In this case Eq.(B8) is still a good approximation if dow functions. It makesat least in principlgthe calculation
Ag(e,G) is sufficiently slowly varying ire. If we denote the of arbitrary line shapes within the POT possible. It can also
characteristic width off(e) with v, this means that be used for an estimation of the effects of(rmumerical
Ac(e,G) has to be nearly constant over a regipiin e. If, truncation of the trace formula, which can be thought of as a
on the other hand, there are no functi@{&) andG(E,T") special window function. More important, however, are Egs.
that fulfill Eq. (B2), a local expansion of the actio8 in (B13) and (B14), which give the limits of validity of the
powers ofe can be used: amplitude damping formuléB12).

Here f(e) denotes the Fourier transform B{G) and “*”
stands for the correlation integral. Therefore we have
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1. Evaluation for the circular billiard

We want to apply the considerations of the last section on the circular billiard. In the absence of a magnetic field we have
a pure billiard system; the natural choice for the generalized energy is theteftdsing e=k also in the presence of a
magnetic field, we get for the generalized period

sin®
27r—2y—sin(27)+T[1+cos(2y)] for(8*,R.>R)
G= | Sin® | (B16)
2y+sin(2vy) _T[l+ cog2vy)] otherwise.

Note that forR.>R (weak field$ G is independent of the direction of motian.

For computing the trace formula we have to choose an appropriate window function. As we want to compare the semi-
classical result with the exact quantum-mechanical one, we look for a window function that can be Fourier transformed
analytically. The usual Gaussian is nonzero for @lland has to be truncated, being thus no longer analytically Fourier
transformable. We used a triangular window instead, which matches all our demands. In order to make our results comparable
with the usual Gaussian smoothing, we characterize the window function with a parapmetétich corresponds to the
variance of a Gaussian gxp1/2(k/y)?] with the same half-width.

We still have to check if the condition®13) and (B14) hold. They depend on the behavior of the amplitudes that are
plotted in Fig. 18. At the bifurcation points the orbit amplitudes diverge, so thatBEa®) is violated. For the evaluation in the
corresponding regions we have therefore used a numerical folding procedure and evaluated directly the right-hand side of Eq.
(B12). For the cyclotron orbits discussed in Sec. IV C we@et27R, andA=(2E,) “(1—R./R)?, which is slowly varying

in the whole energy range. For the cyclotron orbits, approxima@i®) is therefore justified for alE andB.
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