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Periodic orbit theory of a circular billiard in homogeneous magnetic fields

J. Blaschke and M. Brack
Institut für Theoretische Physik, Universita¨t Regensburg, 94040 Regensburg, Germany

~Received 14 March 1997!

We present a semiclassical description of the level density of a two-dimensional circular quantum dot in a
homogeneous magnetic field. We model the total potential~including electron-electron interaction! of the dot
containing many electrons by acircular billiard , i.e., a hard-wall potential. Using the extended approach of the
Gutzwiller theory developed by Creagh and Littlejohn, we derive an analytic semiclassical trace formula. For
its numerical evaluation we use a generalization of the common Gaussian smoothing technique. In strong fields
orbit bifurcations, boundary effects~grazing orbits! and diffractive effects~creeping orbits! come into play,
and the comparison with the exact quantum-mechanical result shows major deviations. We show that the
dominant corrections stem fromgrazing orbits, the other effects being much less important. We implement the
boundary effects, replacing the Maslov index by a quantum-mechanicalreflection phase, and obtain a good
agreement between the semiclassical and the quantum result for all field strengths. With this description, we
are able to explain the main features of the gross-shell structure in terms of just one or two classical periodic
orbits. @S1050-2947~97!05507-8#

PACS number~s!: 03.65.Sq, 73.20.Dx, 73.23.Ps
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I. INTRODUCTION

The two-dimensional free-electron gas~2DEG! that oc-
curs at the interface of suitably designed semiconductor
erojunctions~see, e.g.@1#! has attracted a lot of interest in th
last years. This is partly due to the two dimensionali
which gives rise to new physical effects~such as the quan
tum Hall effect! and partly to the extremely high mobility o
the electrons, which comes from the absence of~scattering!
donors or acceptors in the plane of the electron gas.
most attractive feature, however, is the great variability
these systems. With electron-beam lithography additio
lateral constraints of the 2DEG down to structures of so
10 nm can be realized. This length is well below the typi
phase coherence length and the electron mean free pat~in
GaAs both of them can be of the order of somemm!, and can
even be comparable to the Fermi wavelength of the elect
~typically 40 nm for GaAs!, so that in such structures qua
tum confinement effects play an important role. These s
tems are therefore accessible on a quantum scale, openin
tremendous new possibilities in device design.

Various approaches heave been used to model the 2D
with and without additional lateral confinement. Quantu
mechanical calculations tend to be rather involved and e
for the simplest systems numerically very demanding. C
sical approaches have the severe drawback that they ig
quantum interference effects, and are therefore applic
only if the system dimensions are long compared to the m
free path and the phase coherence length. In the resulting
of the theoretical description, semiclassical approaches
pear very promising. They approximate quantum mecha
in such a way that the quantities involved can be interpre
classically, often in terms of the classical orbits in the sy
tem. They combine the advantages of the classical des
tion, especially its limited numerical demands, with the ab
ity to reproduce quantum-mechanical interference effe
This makes semiclassical methods a very attractive tool
mesoscopicsystems, i.e., systems with dimensions com
561050-2947/97/56~1!/182~13!/$10.00
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rable to the phase coherence length and the mean free
One of the most striking successes in recent years has
the explanation of conductance oscillations in superlattic
the Weiss oscillations@2#.

In this paper, we consider the level density of a 2DE
confined by external electric fields to a circular domain, w
an additional homogeneous magnetic field perpendicula
the plane of the 2DEG. When this quantum dot conta
many electrons, the effective single-particle potential~i.e.,
the Kohn-Sham potential in the language of density fu
tional theory, which contains the electron-electron inter
tion in the local density approximation! is Wood-Saxon-like,
with a flat region in the interior and a rather steep surfac1

The level density is not too sensitive to details of the pot
tial edge, so that a circular disk with infinite reflecting wal
i.e., acircular billiard , is a realistic model.

The level density itself is hard to access experimenta
but it enters in many observable quantities. Perssonet al. @5#,
for example, consider a quantum dot that is connected
two point contacts to the surrounding 2DEG. They propo
an approximation in which the conductivity of this system
weak external magnetic fields is proportional to the le
density of the dot at the Fermi energy.2 Their measurements
on a circular dot with about 1000–1500 electrons in a hom
geneous magnetic field show characteristic conductance
cillations that could be well explained qualitatively in a pe
turbative approach by Reimannet al. @7#. They reproduce the
oscillations in a simple and intuitive way by a few classic
periodic orbits of the system and the flux enclosed by the
Because of its perturbative nature, this description only ho

1This has been shown in self-consistent calculations for quan
dots@3# and is analogous to the situation in three-dimensional m
clusters@4#.
2Recent exact quantum-mechanical calculations of the trans

properties, however, show that this approximation is only valid
contacts at the opposite sides of the dot@6#.
182 © 1997 The American Physical Society
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56 183PERIODIC ORBIT THEORY OF A CIRCULAR . . .
in weak fields. Another example where the level density
ters observable quantities is the magnetization@8,9#.

For the interpretation of experiments on circular quant
dots, a semiclassical approximation of the level density w
arbitrary field strength is desirable. Such a description
terms of classical orbits is also of theoretical interest. In
absence of a magnetic field the classical orbits consis
straight paths bouncing at the boundary~see Fig. 2!. They
have a one-dimensional degeneracy corresponding to th
tational symmetry of the system. In very strong fields,
confinement is negligible and the level density is domina
by the quantization of a free-electron gas, leading quan
mechanically to the Landau levels and described semicla
cally by closed cyclotron orbits. These orbits do not tou
the boundary and have a two-dimensional translational
generacy. A unified semiclassical description thus has to
clude the transition between these two limiting cases, wh
includes changes of the topology and the degeneracy o
classical orbits. Treating these is of conceptual interest s
both effects are well known to lead to divergences in se
classical theories.

We conclude this Introduction with a short outline of th
paper. As a reference, we first present in Sec. II the quant
mechanical solution for the circular billiard in homogeneo
magnetic fields. Section III gives a short introduction
semiclassical methods, and in Sec. IV we derive a semic
sical trace formula of the disk. We then compare its result
the quantum-mechanical ones for various field strengths.
agreement is good for very weak and for very strong fiel
but the semiclassical approach rather appears to fail in
intermediate regime. The deviations are due to bifurcati
of classical orbits, to diffraction effects, and to bounda
effects. The latter give the largest contributions, and in S
V we develop a simple approximation to include these
fects in the trace formula. This corrected trace formula gi
satisfactory results for all magnetic field strengths, and
give an intuitive interpretation of the the level density in t
variousB-field regimes. The paper closes with a summary
the results and an outlook to further investigations.

II. THE QUANTUM-MECHANICAL SOLUTION

In the following, we will use normalized energiesẼ in
units of\2/2mR2 and normalized magnetic fieldsB̃ in units

FIG. 1. The quantum-mechanical eigenenergies of the circ
billiard in dependence of the magnetic field. The dashed lines
respond to the four lowest Landau levels.
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of \/eR2, whereR is the disk radius. In these units, we ha
AẼ5kR and with the classical cyclotron radiu
Rc5\k/eB, we getRc /R5kR/B̃.

The exact quantum-mechanical solution for the circu
billiard in homogeneous magnetic fields was presented
Geerinckx@10# and, using a different approach, by Klam
Land Röbler @11#. The eigenenergies are given by the zer
of the confluent hypergeometric function1F1 as

Ẽnl52B̃S anl1
11u l u
2

1
1

2D , ~2.1!

where

1F1S 2anl ;11u l u;
B̃

2
D 50. ~2.2!

Heren.0 denotes the radial andl the angular-momentum
quantum number. The zeros of1F1 were determined
numerically—which is conceptually easy but requires a
of numerical work. Figure 1 shows the well-known depe
dence of the eigenvaluesẼnl on B̃. One clearly sees how
with increasing magnetic field the different states conde
into the Landau levels~dashed lines!.

III. SEMICLASSICAL METHODS

For semiclassical approximations, a broad variety
methods is at hand. Some of them approximate directly
quantum-mechanical eigenvalues@12,13#, whereas others de
scribe the level densityg(E). For this purpose,g(E) is usu-
ally split up into a smooth part g̃(E), the ~extended!
Thomas-Fermi level density, and an oscillating partdg:

g~E!5 g̃~E!1dg~E!. ~3.1!

The latter can be expressed in terms of the periodic orbit
the corresponding classical system, which is therefore ca
periodic orbit theory~POT!. Such relations have been esta
lished by various approaches@14–18#, usually resulting in
so-calledtrace formulaeof the form

dg~E!5
1

p\(
G

AGsinSSG~E!

\
2sG

p

2
1

p

4 D . ~3.2!

HereG labels all classical periodic orbits of the system. Ea
orbit contributes to the level density via an oscillating te
that depends on the classical actionSG along the orbit and on
theMaslov indexsG depending on the orbit’s topology. Th
amplitudeAG is a slowly varying function of energy, deter
mined by classical properties of the orbit such as its deg
eracy and its stabilit.3 All semiclassical approaches hav
their individual merits and drawbacks@22#, and it is interest-
ing to note that for the simple integrable case of the circu
billiard without magnetic field, all applicable methods res
in the same trace formula@19–21#, which furthermore repro-
duces exactly@21# the EBK spectrum.4 Applying a homoge-
neous magnetic field, the system remains integrable, with

3Especially,A depends on\ only by a factor\2k/2, wherek is the
degree of degeneracy of the orbit family.
4EBK stands for the semiclassical approximation developed

Einstein, Brillouin, and Keller@13#.
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184 56J. BLASCHKE AND M. BRACK
energy and thez component of the conjugate angular m
mentum as constants of the motion. In weak fields, this s
tem was treated using a perturbative approach by Bogac
and Gogadze@20#, Ullmo et al. @8#, and by Reimannet al.
@7#. We have chosen the trace formula of Creagh and Lit
john @18# as a starting point for the description in arbitrari
strong fields.

IV. TRACE FORMULA FOR THE CIRCULAR BILLIARD

The trace formula of Creagh and Littlejohn@18# is well
suited for the semiclassical description of the circular b
liard, as it can deal with continuous symmetries. The m
idea of their approach is the separation into a symmetry-
system treated by usual semiclassical techniques and
symmetry, which is used to integrate over the orbit famili
The structure of the trace formula~3.2! remains essentially
unchanged by this procedure, but the definition ofA is dif-
ferent, reflecting the different classical structure of the d
namics. For the details we refer to the original publicati
@18#. In order to calculate the level density with this tra
formula, we have to classify the periodic orbits and calcul
their actions, amplitudes, and Maslov indices. These s
are presented in the following subsections.

A. Classification of the periodic orbits

The complete classification of the periodic orbits of o
system is straightforward. Let us first consider the case w
out magnetic field. In a circular billiard, the periodic orbi
~PO! are identical to those in a three-dimensional spher
cavity, whose complete classification has been given
Balian and Bloch@15#. All orbits have a one-dimensiona
degeneracy corresponding to the rotational symmetry of
system. Each family of degenerate orbits with a given act
~or length! can be represented by a regular polygon. The fi
few polygons are shown in Fig. 2. These orbit families a
classified@15# by b5(v,w), wherev denotes the number o
corners ~vertices!, and w is the winding number, i.e., i
counts how often an orbit winds around the center. W
v>2w.2 b5(v,w) uniquely describes all families of PO
of the system in the absence of a magnetic field. Becaus
the time-reversal symmetry, all orbits except the diame
(v52w) have an additional discrete twofold degenera
which has to be accounted for in the trace formula.

FIG. 2. The classical periodical orbits of the circular billiard
the absence of a magnetic field are the regular polygons. They
be classified with (v,w), wherev is the number of corners andw
indicates how often the trajectory winds round the center of
disk.
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Switching on the magnetic field causes the classical
jectories to bend, with the direction of the curvature depe
ing on the direction of motion with respect to the magne
field. This entails a breaking of time-reversal symmetry. F
weak fields, the orbits can still be classified byb if an addi-
tional index (6) is introduced. This situation is shown in th
upper row of diagrams in Fig. 3 for the orbitb5(4,1). Up to
a field strength where the classical cyclotron radiusRc equals
the disk radiusR, henceforth referred to as theweak-field
regime, the orbits do not change their topology and the cl
sification b6 holds. For the strong-field regimewith
B̃.kR, the structure of the POs is different. This situation
shown in the second row of diagrams in Fig. 3. Theb2

orbits change their shape continuously over the po
Rc5R, but theb1 orbits change their topology abruptly
However, since there is a one-to-one correspondence
tween orbits forRc*R and forRc&R, b6 still gives a com-
plete classification of allbouncing orbits, i.e., of orbits that
are reflected at the boundary. ForRc,R, there are additiona
cyclotron orbitsthat do not touch the boundary at all. The
have to be included separately in the sum over all orbits
the trace formula.

At field strengths whereRc<Rsin(pw/v), the (v,w)6 or-
bits no longer exist~see Fig. 4!. They vanish pairwise, which
is the simplest case of anorbit bifurcation. This imposes an
additional restriction on the sum over (v,w). Including this,
we now have a complete classification of all periodic orb
in the circular billiard at arbitrary field strengths.

an

e

FIG. 3. A magnetic field breaks the time-reversal symmetry,
that the orbits are no longer independent of the direction of mot
Introducing an additional index6, the orbits can be classified b
(v,w)6, both in weak (Rc.R) and in strong (Rc,R) fields. For
strong fields, there occurs an additional family of orbits that do
touch the boundary, the cyclotron orbits.

FIG. 4. At a field strength whereRc5Rsin(pw/v), the orbits
(v,w)6 vanish pairwise.
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56 185PERIODIC ORBIT THEORY OF A CIRCULAR . . .
B. The bouncing orbits

The action of a closed orbit in a magnetic field can
written as the sum of the kinetic part and the magnetic fl
enclosed by the orbit

Sb5E pdq5\kLb2eBFb. ~4.1!

The geometrical lengthsLb and the enclosed areasFb of the
periodic orbits discussed above~correctly counting those ar
eas that are enclosed several times, cf. Fig. 5! can be calcu-
lated by elementary geometry. In terms of the geometr
quantitiesRc ,R,g, andQ, explained in Fig. 6, we obtain

Sb~E!5p\kRch, ~4.2!

h55
g1

sin2g

2
2S RRc

D 2sin2Q2 for ~b1,Rc>R!

p2g2
sin2g

2
1S RRc

D 2sin2Q2 for ~b1,Rc<R!

g1
sin2g

2
1S RRc

D 2sin2Q2 for ~b2!.

.

According to the trace formula@18#, the orbit amplitudes are
composed of an integral over the symmetry group, which
the rotational U~1! symmetry of the disk just gives 2p/v, of
the period of the orbitL/\k, and of the Jacobian resultin
from the symmetry reductiondL/dC, whereC522nQ.
All these quantities can be calculated analytically, result
in

Ab5
1

E0

1

ARkp
1

Ap
Rc

R
Acd

sR
jb ,

jb5H ~p2g! for ~b1,Rc,R!

g otherwise,
, ~4.3!

wherec, d, and s are the geometrical lengths sketched
Fig. 6. The connection of these geometrical quantities to
classification parameterb6 and the cyclotron radiusRc is
given in Appendix A.

C. Cyclotron orbits

For magnetic fields stronger thanB̃5kR, the classical
cyclotron radiusRc is smaller than the disk radiusR. This
gives rise to a new class of periodic orbits, thecyclotron

FIG. 5. Calculating the magnetic flux enclosed by an orbit,
multiply enclosed areas~darker gray! have to be correctly ac
counted for.
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orbits, which do not touch the boundary at all~see Fig. 3!.
They form translationally degenerate families, whereas
bouncing orbits (v,w)6 considered above are degenera
with respect to rotations. For the translational case, the s
metry reduction can be performed directly, without need
the general procedure of Creagh and Littlejohn. We tra
form the phase-space coordinates according to

px :5
1

AueBu
S px1 eB

2
yD , Px :5pp1AueBux,

~4.4!

py :5
1

AueBu
S py2 eB

2
xD , Py :5px2AueBuy.

Apart from a factorAueBu, (px ,py) are the coordinates o
the motion relative to the center of gyration (Px ,Py), as
illustrated in Fig. 7. In these coordinates the Hamiltoni
reads

H5
eB

2m
~px

21py
2!. ~4.5!

As expected,H does not depend on the coordinates of t
center of gyration.Px and Py are canonically conjugate
variables, since@Px ,Py#5 i\. Because the relative and th
center-of-gyration coordinates commute, i.e.,@Px ,px#5
@Px ,py#5@Py ,px#5@Py ,py#50, the degeneracy of a cy
clotron orbit is simply the phase-space volumeV accessible
for (Px ,Py), which can be directly read off Fig. 7~shaded
area!. We therefore get for the degeneracy

N5
V

2p\
5
B̃

2S 12
Rc

R D 2. ~4.6!

e

FIG. 6. The actions and amplitudes of the classical period
orbits can be expressed purely in terms of the geometrical quan
shown here.
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186 56J. BLASCHKE AND M. BRACK
Now, the Hamiltonian Eq.~4.5! is identical to that of a one
dimensional harmonic oscillator. Using its analytica
known trace formula,5 the contribution of the cyclotron or
bits to the oscillating part of the level density is given by

dgc5
1

2E0
S 12

Rc

R D 2(
n51

`

cos~nkpRc2np!. ~4.7!

Heren is the winding number around the center of gyratio
Note that the frequency is again determined by the class
action along the orbit, which in this case is

S5n•\k/pRc . ~4.8!

Note that here exactly half of the kinetic contribution to t
action is canceled by the flux term.

D. Additional phases

For a discussion of the additional phases in the trace
mula ~3.2! we refer to Sec. VA. There we find that th
Maslov index for bouncing orbits iss53v, and for the cy-
clotron orbits it iss52. According to@18,24#, we have an
additional phase ofdp/2 stemming from the symmetry re
duction.d is found to be

d5H 0 for ~b1,Rc,R!

1 otherwise.
~4.9!

We have now analytic formulas for all quantities of the tra
formula. The numerical evaluation of this semiclassical le
density will be performed in Secs. IVF and IVG.

5The harmonic oscillator is one of the few cases that can
treatedexactlywithin standard POT@23#.

FIG. 7. The motion of a charged particle in a homogene
magnetic field can be expressed in the coordinates of the rela

motion (x̃ , ỹ )5ueBu21/2(2py ,px) and the coordinates of the cen
ter of gyration (X,Y)5ueBu21/2(Px ,2Py). The Hamiltonian is in-
dependent of (Px ,Py); all orbits with the center (X,Y) in the gray
shaded area are degenerate.
.
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E. The shell structure

In an experiment, the observed levels are always bro
ened due to temperature, lifetime, or impurity effects.
most systems the levels are not approximately equ
spaced, but occur in bunches, the so-calledshells, which are
separated by relatively wide energy gaps. Smoothing
level density over a width larger than the typical level spa
ing, but smaller than the distance of the bunches, reveals
(gross-) shell structureof the system. It contains in man
cases the dominating quantum effects. This folding pro
dure can easily be implemented in the semiclassical tr
formula. For pure billiard systems, i.e., systems where
S5kL with L independent ofk, a Gaussian folding of the
level density is equivalent to the multiplication of the orb
amplitudes in the trace formula with a Gaussian with rec
rocal width. In Appendix B we give a more general form
this relation, which is not restricted to pure billiard system
and to Gaussian smoothing, but can deal with general
tems and arbitrary smoothing functions. We will in the fo
lowing use this generalized approach, as in finite magn
fields we no longer have a pure billiard system. As this i
more technical point, we leave the discussion for Appen
B. There we also give detailed information about the nume
cal evaluation scheme and the smoothing function used.
latter is in the following characterized by a parameterg̃ ,
which corresponds to the variance of a Gauss
exp@21/2(kR/ g̃ )2# with the same half-width.

The additional factor in the amplitudes stemming from t
smoothing strongly suppresses the longer periodic orbits,6 so
that usually only a few of them~2–10! contribute to the
gross-shell structure. This makes the POT a very conven
tool for the calculation of this quantity. The quantum
mechanical approach is in some sense complementary to
semiclassical one. It first gives the single eigenvalues,
which many have to be known to calculate the shell str
ture. On the other hand, afull semiclassical quantization, i.e.,
resolving the level density down to the single eigenenerg
involves in general an exponentially increasing number
orbits and thus is a very demanding task. Here we are ma
interested in the semiclassical calculation of the gross-s
structure, for which only a few of the shortest and mo
degenerate periodic orbits are required. We will, nevert
less, also try to go for a full quantization—mainly to verif
the quality of our semiclassical approximation.

F. Results in the weak-field regime

In the previous sections we have derived an analyt
trace formula for the circular billiard in homogeneous ma
netic fields of arbitrary strength. Presently we shall disc
the resulting level densities as a function of energy and m
netic field. Let us start with weak fields (Rc.R), for which
the topology of the classical periodic orbits is the same a
the absence of a magnetic field~see Sec. IVA!, so that we
expect the semiclassical approach to be of the same qu
as for zero field. The high-field regime, where we expect n
effects to arise, will be the topic of the next section.

e 6This holds of course only for pure billiard systems. The suita
generalization is again given in Appendix B.
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56 187PERIODIC ORBIT THEORY OF A CIRCULAR . . .
The case of the circular billiard in small homogeneo
magnetic fields has already been treated by Bogachek
Gogadze@20# and by Reimannet al. @7# using a perturbative
approach for weak fields. Replacing the amplitudes of
~4.3! by their asymptotic values forB̃→0 and expanding the
actions of Eq.~4.2! up to first order inB̃ reproduces, indeed
their results.

In Fig. 8 the semiclassical level density obtained w
g̃50.35 ~solid line! is plotted against the equivalentl
smoothed quantum result~dashed! for various values ofB̃.
The agreement is almost perfect—just as it is in the ze
field case, which has been extensively discussed by Reim
et al. @25#. Note that the calculation requires over 850 n
merically determined eigenvalues for the quantu
mechanical calculation~which then have to be smoothed!,
whereas the semiclassical calculation is analytical and
requires the most important orbits~the diameter and the two
triangle, square, pentagon, and hexagon orbits!.

Since we have a classification of all periodic orbits a
analytic expressions for their actions and amplitudes, we
attempt a full semiclassical quantization by summing up s

FIG. 8. The semiclassical level density of the disk billiard~solid
line! matches perfectly the equivalently smoothed quantu
mechanical result~dashed, and well hidden under the solid line!.

The smoothing width isg̃50.35.

FIG. 9. The semiclassical level density~solid! for a smoothing

width g̃50.025, which is small enough to resolve the sing
eigenenergies~‘‘full quantization’’ !. One can hardly distinguish thi
from the equivalently smoothed quantum-mechanical result~dashed
line underneath!. The positions of the quantum-mechanical eige

values in dependence ofB̃ are indicated by the gray lines.
s
nd
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-
nn
-
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st

n
f-

ficiently many of them. The result is shown in Fig. 9, whe
we display thetotal level densityg5 g̃1dg, averaged over a
width g̃50.025, which is smaller than the typical level spa
ing. As Tanaka has shown in@9#, the smooth part of the leve
density of the circular billiard does not depend on the m
netic field to leading order in\. We use the Thomas-Ferm
level density for zero field, which is identical to the familia
Weyl expansion@26#

g̃~k!5
1

4E0
S 12

1

kRD . ~4.10!

Both the semiclassical level density~solid! and the corre-
sponding quantum-mechanical one~dashed! in Fig. 9 exhibit
clearly separated peaks whose heights give the degener
of the individual levels. The two lines can hardly be disti
guished, thus the semiclassical approach gives almost pe
results even in this extreme case of full quantization.

G. Results in the strong-field regime

Figure 10 is the strong-field equivalent of Fig. 8. It di
plays again the semiclassical~solid! and the quantum-
mechanical ~dashed! level densities, obtained with a
equivalent averaging widthg̃ 5 0.35. The agreement fo
small fields (Rc,R) is good, as already shown in Sec. IVF
For stronger fields, the positions of the Landau levels~gray
lines in Fig. 10! are well reproduced, but their degenerac
are overestimated in the semiclassical approximation.

Figure 11 corresponds to Fig. 9 and displays the f
quantization of the system. The semiclassical approac
seen to fail for stronger fields. As already mentioned, this
due to the neglect of various effects. First, there are o
bifurcations where classical orbits vanish pairwise with
creasing magnetic field~see Figs. 4, 17 and 18!. The change
of the topology of theb1 orbits and the occurrence of cy
clotron orbits are also bifurcation effects. Those are kno
to lead to divergences in the trace formula. Second, we h
neglected boundary effects from grazing orbits and diffr
tion effects, which could be implemented in the trace fo

-

-

FIG. 10. The semiclassical level density (g̃50.35) of the disk
billiard ~solid! compared to the equivalently smoothed quantu
mechanical result~dashed!. The gray lines and the arrows indica
the positions of the first four Landau levels. For strong fie
(Rc,R), the agreement between the semiclassical and
quantum-mechanical results is not satisfactory.
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188 56J. BLASCHKE AND M. BRACK
mula by considering creeping orbits. A closer look at Fig.
gives some hints as to which of these effects dominate.
two most striking observations are as follows:~1! The trace
formula reproduces well the positions of the Landau leve7

but it overestimates the degeneracies of these states.
error becomes smaller with increasing field strength~see in-
sets in Fig. 11!. ~2! The levels that have energies slight
above the Landau levels are completely missed by the s
classical approach. These two observations suggest that
a boundary effect that causes the discrepancies. A sim
hand-waving argument might be useful to illustrate the
fect. Quantum mechanically, a particle moving on a cyc
tron orbit will feel the boundary even if classically not touc
ing it. Particles on cyclotron orbits close to the boundary th
feel an additional confinement. This restriction to a sma
volume will lead to a higher energy. In this picture, not
the cyclotron orbits are degenerate. The orbits close to
boundary will no longer have the energy of the Landau lev
but a slightly higher one. This is exactly what would corre
the observed defects of the semiclassical approximation
the next section we will present a simple way to incorpor
this boundary effect in the trace formula.

V. BOUNDARY CORRECTIONS
TO THE TRACE FORMULA

The observations of Sec. IV G suggest that boundary
fects are responsible for the failure of the semiclassical
proximation in strong fields. The only place where bound
properties enter the standard trace formula is the Maslov
dex. We therefore propose here to replace the Maslov in
by a more sophisticated quantity, which includes some qu
tum effects. Before doing this, let us give a brief summary
the origin of the Maslov index.

7This is no surprise since the Landau levels are due to the
cyclotron motion of the electrons, which is equivalent to that o
1D harmonic oscillator. The latter is known to be exact in the se
classical approximation.

FIG. 11. The semiclassical level density resolved up to
single eigenenergies~solid! compared to the equivalently smoothe
quantum-mechanical levels~dashed!. The gray lines indicate the

positions of the eigenenergies as functions ofB̃. For strong fields
(Rc,R) the agreement between semiclassical and quant
mechanical calculation is bad. Note especially the large discre
cies in the degeneracies of the Landau levels, and the compl
missing states slightly above the Landau levels~see insets!.
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A. The Maslov index

The origin of the Maslov index can most easily be unde
stood in the one-dimensional case. Semiclassically, one
proximates the wave functions to lowest order by pla
waves with the local wave numberk(x)5A2m@E2V(x)#.
This approximation obviously breaks down at the classic
turning points whereE5V(x) and the wavelength diverges
Expanding the wave function around the classical turni
points and matching the solutions to the plane-wave so
tions far from the turning points leads to additional phases
the semiclassical quantization@12#. In the limit \→0 these
are independent of the detailed shape of the potential. E
reflection at a soft8 turning point gives a phase of2p/2,
whereas each reflection at an infinitely steep wall gives
phase of2p. Writing this phase as2sp/2, one usually
callss theMaslov index.

In the case of the circular disk, the Maslov index can
obtained simply by counting the classical turning points
the one-dimensional effective potential in the radial variab
r . For skipping orbits, the Maslov index per bounce is
including one soft reflection at the centrifugal barrier and o
hard-wall reflection. For the cyclotron orbits, the effectiv
potential is a one-dimensional harmonic oscillator~see Sec.
IVC! with two soft turning points, and thus their Maslo
index per period is 2.

B. Reflection phases

For finite\ the additional phase stemming from classic
turning points will depend on the shape of the potential. L
us consider a cyclotron orbit at a distancexW to the billiard
boundary. Neglecting the curvature of the boundary~which
corresponds to the strong-field limit!, we can reduce the mo-
tion in the presence of the wall to an effective 1D motion ju
as in the unbounded case presented in Sec. IVC. This
shown in Fig. 12. The upper row of diagrams shows the 2
motion, the lower row gives the reduction to the on
dimensional motion in an effective potential. Figure 12~a!
shows the unbounded case, in 12~b! the orbit is near the
boundary, and 12~c! and 12~d! illustrate skipping orbits.

A particle in the potential sketched in Fig. 12~b! is clas-
sically not influenced by the additional wall, since it wi
e

i- 8‘‘Soft’’ here means that the slopes of the potential at the classi
turning points are finite.

e

-
n-
ly

FIG. 12. The planar cyclotron orbit is equivalent to the motio
in a one-dimensional harmonic oscillator~a!. Neglecting its curva-
ture, the billiard boundary can be implemented in the effective on
dimensional motion~b!–~d!.
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56 189PERIODIC ORBIT THEORY OF A CIRCULAR . . .
never touch it. Quantum mechanically, however, the wa
function enters the classically forbidden region and thus fe
the boundary even forxW.Rc . This leads to a smooth tran
sition of the quantum-mechanical reflection phasewR over
the pointxW5Rc , whereas the semiclassical Maslov pha
is discontinuous at this point; as we have just seen in S
VA above, it is2p for xW.Rc and23/2p for xW,Rc .
Our way to implement these quantum effects at the bound
in the semiclassical trace formula is therefore to replace
Maslov index by the quantum-mechanical reflection ph
wR of the corresponding one-dimensional motion. Th
smooth version of the Maslov phase will also remove
former clear separation between cyclotron orbits and s
ping orbits. These two limiting cases are now continuou
linked, with wR ranging between2p and23/2p. We will
refer to the orbits in the transition region, which are close
the boundary within\, as to thegrazing orbits.

The calculation of the reflection phases is in this appro
mation reduced to the problem of the one-dimensional h
monic oscillator in an additional square-well potential. Th
system was approached by Isihara and Ebina@27# who used
local expansions in terms of Airy functions. We use a diffe
ent approach and integrate the quantum-mechanical prob
numerically. From the solutions we calculate the reflect
phaseswR , which is displayed in Fig. 13. As expected, th
show a smooth transition from2p at xW@Rc to 23/2p at
xW!Rc . The transition gets sharper if (kR)2/B̃ increases.
For (kR)2/B̃→`, which corresponds to the semiclassic
limit \→0, the standard Maslov phase~thick line! is repro-
duced. Quantum corrections are seen to have the gre
influence on the grazing orbits (xW'Rc) and on orbits with
xW*2Rc . These are known as thewhispering galleryor-
bits, as they move in a narrow region along the boundar

C. Comparison to the quantum-mechanical result

Figures 14 and 15 show the coarse-grained level den
and the full quantization of the spectrum, respectively, b
calculated with the reflection phases of Sect. VB. A co
parison with the corresponding diagrams in Figs. 10 and
which display the result obtained with the standard Mas
indices, immediately shows that the situation is drastica

FIG. 13. The reflection phasewR in dependence of the distanc
of the center of gyration from the boundaryxW . The transition from
xW,1 to xW.1 is continuous and gets sharper for increas

(kR)2/B̃. In the limit (kR)2/B̃→`, which corresponds to the sem
classical limit\→0, the Maslov phase~thick line! is recovered.
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improved when using reflection phases. The coarse-gra
level density now is good at all magnetic field strengths. T
full quantization displayed in Fig. 15 is not perfect, but t
most striking error in standard POT, giving the wrong dege
eracies of the Landau levels, is now corrected. This is d
played in detail in the insets 1 and 2 in Figs. 11 and
respectively. The single states between the Landau lev
however, are still not reproduced correctly. This is due to
simple approximation, which only includes boundary effe
via the reflection phase. The classical orbits are not chan
so that in our approximation the center of gyration of t
cyclotron orbits (xW.Rc) is fixed, whereas for bouncing or
bits (xW,Rc) it moves around the disk. Modeling the ex
pected smooth transition fromxW.Rc to xW,Rc semiclas-
sically would require including diffractive orbits that w
have neglected here. The resulting error can be understoo
follows: a generic two-dimensional system has two quant
numbers, thus requiring two semiclassical quantization

FIG. 14. The semiclassical coarse-grained level density of
disk calculated with reflection phases~solid! compared to the
equivalently smoothed quantum-mechanical result~dashed!. The
gray lines and the arrows indicate the positions of the lowest L
dau levels. The agreement is considerably better than with the
of the Maslov indices as displayed in Fig. 10.

FIG. 15. The semiclassical level density with corrected refl
tion phases resolved up to the single eigenenergies of the bil
~solid! compared to the equivalently smoothed quantum-mechan
result~dashed!. The gray lines indicate the positions of the eigene

ergies in dependence ofB̃. The agreement is much better than in t
case of the Maslov indices in Fig. 11. The degeneracies of
Landau levels are correctly reproduced, only the levels that
close to condensing on the Landau levels show deviations~insets!.
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190 56J. BLASCHKE AND M. BRACK
ditions. The free 2D electron gas in a homogeneous magn
field has an additional dynamical symmetry and only o
quantum number~labeling the Landau level!. This additional
symmetry is broken by the presence of a curved bounda9

This implies that the semiclassical description in terms
cyclotron orbits near the boundary misses one quantiza
condition, which is hidden in the broken dynamical symm
try. Therefore these orbits give rise to a continuous semic
sical ~sub! spectrum. Bouncing orbits, however, have t
correct symmetry and lead to a discrete subspectrum.
transition can be seen in Fig. 15. On the low-energy side
inset 3, the semiclassical level density shows a continu
spectrum stemming from the grazing orbits, whereas
quantum-mechanical result gives quantized levels. This e
affects mainly the fully quantized spectrum; the influence
the gross-shell structure is negligible.

Figure 16 shows once again the semiclassical level d
sity calculated with reflection phases, now in the who

9A straight boundary does not break the symmetry. This is
reason why in this case it is possible to reduce the system to
dimension, which we have exploited in Sec. VI for the calculat
of the reflection phase.

FIG. 16. The semiclassical coarse-grained level density of
disk billiard with corrected reflection phases~black! compared to
the equivalently smoothed quantum-mechanical result~gray!. The
agreement is acceptable in the whole range of energies, disk r
and magnetic fields. The vertical lines indicate the bifurcat
points of the most important orbits. The shaded regions are enla
in the figures below. There the thick lines show the interpretation
the level density as given in the text.
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range from zero field to full Landau quantization~solid!. The
comparison with the exact quantum result~dashed! shows
that the semiclassical approximation is in fact valid forarbi-
trarily strong fields. Small deviations occur only at the bifu
cation points of the dominating orbits. As already mention
we did not include the effects of the bifurcations in our c
culation. The resulting errors are much smaller than the
fect of the reflection phase, and they are seen to be m
important for the gross-shell structure than for the f
quantization.10

D. Semiclassical interpretation of the shell structure

In Sec. V C we have shown that the semiclassical
proximation for the level density is valid for arbitraril
strong fields. It reproduces the exact quantum-mechan
result with a remarkably reduced numerical effort. For t
quantum-mechanical calculation shown in Fig. 16 ab
2500 eigenvalues had to be calculated and numeric
smoothed for each value ofB̃, whereas the semiclassica
result is obtained summing the contributions of just
orbits.11 The most attractive feature of the semiclassical
proximation, however, is the simple, intuitive picture
gives. Let us now exploit this to explain the behavior of t
shell structure of the disk billiard in terms of classical qua
tities. According to the trace formula Eq.~3.2!, each periodic
orbit b contributes an oscillating term todg. Its frequency is
determined by the classical actionSb along this path, which
can be locally approximated by

Sb~k!5Sb~k0!1\Gb~k!~k2k0!, ~5.1!

with the quasiperiod\G. The amplitudes of the oscillating
terms areAbF(Gb), whereF is the window function that
depends on the desired smoothing of the level density~see
Appendix B!. Before we interpret the contributions of th
various orbits todg, let us discuss the behavior ofGb and
Ab .

Figure 17 shows the dependence12 of G on the ratio
Rc /R. Note that forRc.R ~see right diagram of Fig. 17!
G is independent of the direction of motion6, even if the
classical action depends on it. In the limit of weak fiel

e
ne

10This implies that even though the amplitudes are diverging,
trace formula can still be used. Note, however, that near the bi
cation points the numerical evaluation of the trace formula has to
performed with special care, as described in Appendix B.
11For Rc.R even 10 orbits are sufficient.
12The explicit formula forG is given in Appendix B.

e

ii,

ed
f

FIG. 17. The quasiperiodsG of the most important orbits in
dependence ofRc /R. For Rc.R G is independent of the index
6. In the limit of small fields (Rc /R→`), the geometric orbit
lengths are reproduced. The orbit bifurcation points in strong fie
~vertical lines! can be clearly seen.
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56 191PERIODIC ORBIT THEORY OF A CIRCULAR . . .
(Rc /R→`), we have a pure billiard system andG ap-
proaches the geometrical orbit length. AtR5Rc all orbits are
creeping along the boundary, forming thewhispering-gallery
mode. There G is again the geometrical orbit length13

2pR. In strong fields (Rc,R, left diagram! G is different
for the ‘‘1’’ and the ‘‘2’’ orbits. Only at the bifurcation
points, where the two orbits coincide, they have identi
G. For strong fields, the value ofG at the bifurcation points
converges top2R.

In Fig. 18 the amplitudes of the orbits relative to th
B50 values,

Ab
05

sin3/2Q

Ap
~5.2!

are plotted versus the ratiokR/B̃5Rc /R. The amplitudes of
the ‘‘1’’ orbit is always larger than that of the correspondin
‘‘ 2’’ orbit. At Rc5R, where the ‘‘1’’ orbits change the
topology ~see Fig. 18!, their amplitudes are zero, so th
these bifurcations do not lead to artifacts in the level dens
In stronger fields, the amplitudes diverge at the bifurcat
points, indicating that the semiclassical approximat
breaks down at these points~more exactly, one of the saddle
point approximations in the derivation of the trace formu
becomes invalid!. A rigorous treatment of these bifurcation
has been presented in a very general form for tw
dimensional systems by Ozorio de Almeida and Hann
@28#; more explicit calculations have been performed,
example, by Kuset al. @29# and Sieber@30#. The main idea is
always to replace the saddle-point approximation by a be
adapted uniform integration. An application to the disk b
liard has not been attempted here and will be the subjec
further studies.

13In billiard systems, the whispering-gallery mode has the gen
property that, even in the presence of a magnetic field,G is the
geometric orbit length. This is not true for the other orbits.

FIG. 18. The amplitudes of the dominating orbitsb5(v,1)6

with v52, . . . ,5relative to theirB50 value.~The amplitude of the
cyclotron orbit is in arbitrary units.! At the bifurcation points
Rc5sin(pv/w) indicated by vertical lines, the amplitudes diverg
For Rc.R the amplitudes of the bouncing orbits quickly approa
their asymptotic~zero-field! value. The inset shows this conve

gence in a wider range ofB̃.
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For the interpretation of the shell structure, let us fi
look at the weak-field regime (Rc.R). The amplitudes for
zero field given in Eq.~5.2! are proportional tov21/2, favor-
ing orbits with a small number of bouncesv. The depen-
dence of the amplitudes on the magnetic field as shown
Fig. 18 indicates that in the region where the ‘‘2’’ orbits
differ significantly from the ‘‘1’’ orbits, the latter are negli-
gible. These effects14 together strongly favor the (2,1) an
the (3,1)2 orbits. They end up with comparable amplitude
From this picture we expect as the dominating feature of
level density a pronounced beating pattern from the inter
ence of the diameter and the triangular orbit. This beat
pattern is well known for the zero-field case. In thre
dimensional metal clusters, it is usually referred to assuper-
shell oscillations@31#.15 Our description suggests that th
beating will survive in homogeneous magnetic fields up t
strength ofB̃5kR. This is indeed observed, as seen in F
16. The thick lines in the frames~1a! and~1b! correspond to
a function16

sin~kG~1,2!!1sin~kG~1,3!2!5sinS kDG

2 D sinS k Ḡ2 D .
~5.3!

It predicts correctly the structure of the level density in th
regime.

Approaching the field strength whereRc5R, all orbits
changeG sharply to 2p, so that they interfere coherently
forming the whispering gallery mode. We therefore exp
that the beating behavior will disappear, leaving just a sim
oscillation with the common frequency. In Fig. 16 this su
den stop of the beat atRc5R can be clearly seen. The soli
line in frame 2 shows that the frequency of the remain
single oscillation is predicted correctly.

ForRc,R, the influence of the cyclotron orbits increas
with stronger fields. The large amplitudes of the bounc
orbits near the bifurcation points is, as we have alrea
pointed out, unphysical and should be removed by a rigor
treatment of the orbit bifurcations. For strong fields, on
cyclotron orbits and bouncing orbits with a great number
bouncesv exist. The amplitudes of the latter are proportion
to v21/2, so that in very strong fields we expect that t
cyclotron orbits dominate the level density. The gray lines
frame 3 of Fig. 16 show the corresponding oscillating term17

which, indeed, reproduces the main feature of the quant
mechanical result~solid black!. The skipping orbits with
greatest amplitudes are those close to their bifurcation po
As can be seen in Fig. 17, all those orbits have nearly
same value ofG5p2R. Their contributions should therefor
interfere constructively, giving rise to small structures in t
level density of this period. Such structures can indeed
observed in a higher-resolution spectrum, as shown in

al

14TheG dependence ofF(G) also supports slightly this effect.
15In the 3D spherical cavity, the beat comes from the interfere

of the triangle and the square orbits~see Ref.@15#!.
16The phases are, of course, adjusted.
17For a simpler comparison, the amplitude is chosen to rise q

dratically, as indicated by Eq.~4.6!.



le

ca
m
g
ve
t
pe

o
g
a
m
th
s
io
g

ic
e
o
s
ce

on
p
sit
tio
d
he
e
ul
o
n
ic
se
e

a
th
ic
s-
er
in
la
us
n
te
o
ch

ch
a

gu-
as-
10
us
of

his
he
ions,
also
his
ro-

the

ith
be
ian
vel
ere

d to

ar-
lso
be

e
n
n

192 56J. BLASCHKE AND M. BRACK
11. The spacing of the small peaks between the Landau
els is, indeed, consistent with our simple picture.18

Altogether we could show that this simple semiclassi
picture is able to explain the main features of the quite co
plicated behavior of the level density for arbitrarily stron
fields in terms of just 3 classical periodic orbits. We ha
here interpreted the dependence of the level density on
energy, but a completely analogous approach for the de
dence on the magnetic field is possible.

VI. SUMMARY

We have derived a trace formula for the oscillating part
the level density of a circular billiard in homogeneous ma
netic fields. We have used the general approach of Cre
and Littlejohn and compared our findings with the quantu
mechanical solution. In the weak-field domain, where
classical cyclotron radiusRc is larger than the disk radiu
R, the agreement is excellent and even a full quantizat
e.g., the resolution of the level density into individual ener
levels, is possible.

In stronger fields, the quality of the standard semiclass
approximation is not satisfactory, even for the gross-sh
structure. We have identified boundary effects to be resp
sible for the major part of the deviations. To implement the
effects in the semiclassical trace formula, we have repla
the ~discrete! Maslov index by a~continuous! reflection
phase. The latter was calculated in a simple one-dimensi
approximation. With this correction, the semiclassical a
proximation to the exact quantum-mechanical level den
is good for all field strengths and energies. For a correc
of the remaining deviations it would be necessary to inclu
diffractive orbits and the effects of the orbit bifurcations. T
orbit bifurcations at strong field strengths affect the sh
structure only to a small extent, their influence on the f
quantization is even smaller. The diffractive orbits do n
influence the shell structure but only the full quantizatio
Both effects can therefore be neglected for the semiclass
description of the gross-shell structure. The reflection pha
however, are a crucial correction for both the gross-sh
structure and the full quantization.

One advantage of the semiclassical description is its e
numerical evaluation. Much more attractive, however, is
simple, intuitive picture gained from it. Quantum mechan
readily gives information on individual levels or level stati
tics, which are hard to derive semiclassically. But the exp
mentally important long-range correlations of levels, lead
to shells and supershells, are very easy to explain semic
sically. For a qualitative description of the shell structure j
one or two classical periodic orbits are sufficient. In stro
fields the single oscillation of the cyclotron orbits domina
and the coherent superposition of the strongest skipping
bits gives rise to additional small structures with mu
smaller spacing. For field strengths withRc&R the skipping
orbits form coherently the whispering gallery mode, whi
gives rise to a single oscillation of the level density. In we

18This holds for the spacing of levels that ‘‘belong’’ to the sam
Landau level, and as long as we still have skipping orbits and do
enter the grazing orbit regime, where the reflection phases cha
v-
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fields, the interference between the diameter and the trian
lar orbit dominates the level density. A quantitative semicl
sical description is already possible including between
and 20 orbits. Future studies will be aimed at a rigoro
treatment of the orbit bifurcations and an implementation
diffractive effects.
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APPENDIX A: GEOMETRICAL QUANTITIES
OF THE POs

The geometrical lengthsc, d, and s and the anglesQ,
g, andw sketched in Fig. 6 can be expressed in terms of
classical cyclotron radiusRc , the disk radiusR and the clas-
sification parameterb65(v,w)6 as follows:

Q5
w

v
p,

g5arcsinS RRc
sinQ D ,

w5H g2Q1p/2 for ~b1,Rc.R!

2g1Q1p/2 for ~b1,Rc,R!

g1Q2p/2 for ~b2!,

c5Rcosf,

s5ARc
22R2sin2Q,

d5H us2RcosQu for b1

s1RcosQ for b2.
~A1!

APPENDIX B: EVALUATING THE PO SUM

Semiclassical trace formulas are asymptotic series w
nontrivial convergence properties, so that they cannot
summed up straightforwardly. Frequently the Gauss
smoothing technique is used, which approximates the le
density folded with a Gaussian by the trace formula wh
the amplitudes are damped by an additional~Gaussian! fac-
tor. This approach is limited to Gaussian line shapes an
smoothing of the level density ink. In this Appendix we
introduce a more general approach, which can deal with
bitrary line shapes and smoothing variables. We will a
state explicitly the conditions for the approximation to
valid.

The general form of a trace formula is given by

dg5(
G

AG~E!eiSG~E!/\2 isGp/2, ~B1!ot
ge.
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56 193PERIODIC ORBIT THEORY OF A CIRCULAR . . .
whereG is a one-dimensional classification of the classi
periodic orbits. If there is a generalized energye(E), and
functionsG(G,E) and s̃(G), which fulfill

SG~E!

\
2sG

p

2
5eG2s̃~G!, ~B2!

we can rewrite the trace formula as

dg5(
G

A2~e,G!eieG. ~B3!

RescalingG we can always obtainGPN; the rescaling fac-
tors should be included inA2(e,G). Let us first assume tha
A2 factorizes in terms that only depend on the generali
energye and the classification variableG:

A2~e,G!5AG~G!Ae~e!. ~B4!

Approximating Eq.~B3! by an integral

dg'Ae~e!E
G
AG~G!eieGdG. ~B5!

gives ~apart from normalization constants! the oscillating
part of the level densitydg as the Fourier transform o
AG(G):

dg~e!'A2pAe~e!F@AG~G!#. ~B6!

For an arbitrarywindow function F(G) we get, using the
well-known folding theorem,

E
G
F~G!A2~e,T!eieGdG'dg~e!* f ~e!. ~B7!

Here f (e) denotes the Fourier transform ofF(G) and ‘‘* ’’
stands for the correlation integral. Therefore we have

dgF:5(
G

F~G!AG~E!eiSG~E!/\2 isGp/2'dg~e!* f ~e!,

~B8!

where dgF denotes the trace formula with damped amp
tudes. This relation shows that folding the semiclassical le
density with asmoothing function f(e) is equivalent to a
multiplication of the amplitudes with a window functio
F(G). Unfortunately the restrictions of Eqs.~B2! and ~B4!
are quite severe and often prevent the application of
~B8!. With two additional approximations we can relax the
restrictions. In the general case Eq.~B4! is violated and we
may just separate out a common dependence of the am
tudes one:

A2~e,G!5AG~e,G!Ae~e!. ~B9!

In this case Eq.~B8! is still a good approximation if
AG(e,G) is sufficiently slowly varying ine. If we denote the
characteristic width of f (e) with g, this means that
AG(e,G) has to be nearly constant over a regiong in e. If,
on the other hand, there are no functionse(E) andG(E,G)
that fulfill Eq. ~B2!, a local expansion of the actionS in
powers ofe can be used:
l

d

-
el

q.

li-

S

\
5
S~e0!

\
1G~e0!~e2e0!1O~e2e0!

2. ~B10!

If this approximation is good in a region ine wider than the
typical width g of the smoothing function, Eq.~B8! still
holds. In the general caseG is therefore given by the firs
derivative of the classical action with respect toe:

G~E!5
1

\

dS

deU
E

. ~B11!

With e5E, \G is the periodT of the orbit, so that we refer
to \G as thequasiperiod. Putting all approximations to-
gether, we have shown that damping the amplitudes in
trace formula with a window function depending onG gives
an approximation for the level density folded with the Fo
rier transform of the window function used:

dgF' f ~e!* dg. ~B12!

This is the main result of this Appendix. The approximati
holds if in a region wider than the typical widthg of the
smoothing function the conditions

S'S~e0!1G~e0!~e2e0! ~B13!

and

A2~e,G!'const ~B14!

are fulfilled. These conditions depend mainly on the behav
of the actions and amplitudes. In order to match them
well-adapted choice of the generalized energy is essen
Note that for narrow smoothing functions~smallg), the con-
ditions are less restrictive. Therefore for a full quantizati
the use of Eq.~B12! is often justified, whereas for the calcu
lation of the gross-shell structure the conditions Eqs.~B13!
and~B14! put tight limits on the use of the amplitude dam
ing ansatz—which might seem counterintuitive at first sig

We now illustrate the result with a simple example. Pu
billiard systems are those where the the action along
orbits scales with the wave number:S5\k•L, and L, the
geometric orbit length, is independent of the energy. Set

e~E!5k5A2mE

\2 and G~G!5L, ~B15!

Eq. ~B13! is fulfilled trivially. If Eq. ~B14! is also matched,
then the use of a window functionF depending on the orbi
lengthL is equivalent to a folding of the level density ink.
Using a Gaussian window function we get a Gauss
smoothing of the level density ink space. This is the tech
nique frequently applied when evaluating trace formulas
billiard systems. Equation~B12! is somewhat more genera
as it is not restricted to billiard systems nor to special w
dow functions. It makes~at least in principle! the calculation
of arbitrary line shapes within the POT possible. It can a
be used for an estimation of the effects of a~numerical!
truncation of the trace formula, which can be thought of a
special window function. More important, however, are E
~B13! and ~B14!, which give the limits of validity of the
amplitude damping formula~B12!.
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1. Evaluation for the circular billiard

We want to apply the considerations of the last section on the circular billiard. In the absence of a magnetic field w
a pure billiard system; the natural choice for the generalized energy is thereforek. Using e5k also in the presence of a
magnetic field, we get for the generalized period

G5H 2p22g2sin~2g!1
sinQ

s
@11cos~2g!# for~b1,Rc.R!

2g1sin~2g!2
sinQ

s
@11cos~2g!# otherwise.

~B16!

Note that forRc.R ~weak fields! G is independent of the direction of motion6.
For computing the trace formula we have to choose an appropriate window function. As we want to compare th

classical result with the exact quantum-mechanical one, we look for a window function that can be Fourier trans
analytically. The usual Gaussian is nonzero for allG and has to be truncated, being thus no longer analytically Fou
transformable. We used a triangular window instead, which matches all our demands. In order to make our results co
with the usual Gaussian smoothing, we characterize the window function with a parameterg̃ , which corresponds to the
variance of a Gaussian exp@21/2(k/ g̃ )2# with the same half-width.

We still have to check if the conditions~B13! and ~B14! hold. They depend on the behavior of the amplitudes that
plotted in Fig. 18. At the bifurcation points the orbit amplitudes diverge, so that Eq.~B13! is violated. For the evaluation in the
corresponding regions we have therefore used a numerical folding procedure and evaluated directly the right-hand si
~B12!. For the cyclotron orbits discussed in Sec. IVC we getG52pRc andA5(2E0)

21(12Rc /R)
2, which is slowly varying

in the whole energy range. For the cyclotron orbits, approximation~B12! is therefore justified for allẼ and B̃.
.
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