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Spontaneous radiation of free electrons in a nonrelativistic collapse model

Qijia Fu*
Department of Physics, Hamilton College, Clinton, New York 13323
~Received 13 June 1996; revised manuscript received 2 June 1997!

One way to solve the long-standing ‘‘measurement’’problem in quantum mechanics is to modify Schro¨d-
inger’s equation so that the collapse of a state vector is the result of some intrinsic physical dynamics. The
introduction of such collapse dynamics often results in energy nonconservation. In this paper, we first derive a
general expression for the rate of change in the expectation value of energy in a general collapse model that
supports a linear evolution of the density matrix. In particular, we show, under certain plausible assumptions,
that energy nonconservation is an inevitable consequence of collapse. We then work with a specific model,
namely, the nonrelativistic continuous spontaneous localization~CSL! model, to derive further consequences
of collapse. In CSL, in a nonunitary evolution, a particle interacts with a fluctuating scalar field, leading to the
collapse of the state vector. One consequence of this interaction is that a free electron can radiate spontane-
ously. We calculate the spectrum of this radiation. The result is then compared with the observed upper bound
on spontaneous radiation in Ge and a constraint on the parameters of CSL is obtained.
@S1050-2947~97!08809-4#

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

The ‘‘measurement’’problem has long been a difficult u
resolved issue in the foundations of quantum mechanics
one hand, the theory states that the state vector corresp
ing to a closed physical system undergoes a continuous
tary evolution governed by Schro¨dinger’s equation; on the
other hand, in order to translate the theory into measura
results, the theory prescribes a sudden jump motion~gov-
erned by the well-known probability rule! to the state of a
physical system undergoing a measurement by an exte
device.

One way to solve the ‘‘measurement’’ problem, i.e.,
make a consistent theory from the two aforementioned c
ponents of the standard quantum mechanics, is to introdu
new physical dynamics that naturally collapses a state vec
In a nonrelativistic collapse model developed by Ghirar
Rimini, Weber@1,2# and Pearle@3,4#, namely, the continuous
spontaneous localization model~CSL!, the state vector un
dergoes a nonunitary evolution in which particles inter
with a fluctuating scalar field. Besides collapsing the st
vector towards the particle number density eigenstates in
sition space, this interaction increases the expectation v
of the particle’s energy. For a free charged particle such
an electron, this implies electromagnetic radiation. Su
spontaneous radiation by a free electron is a phenome
predicted by CSL but not by the standard quantum mech
ics.

In this paper, we investigate the spontaneous radiation
free electrons predicted by CSL and seek its observatio
consequences. This is of interest for several reasons. F
there have been other collapse models proposed to solv
‘‘measurement’’problem of the standard quantum mech
ics. An earlier proposal of a collapse model by Karolyha
for example, postulated that fluctuations in space-time ca
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a state vector to collapse@5#. However, Diosi and Lukacs
recently calculated the spectrum of the spontaneous radia
by free charged particles in Karolyhazy’s model and show
that the model produces an unreasonable amount of radia
in the x-ray range@6#. Thus, the plausibility of the CSL
model depends critically on whether it gives rise to a simi
unreasonable spectrum of spontaneous radiation by
charged particles. Second, such spontaneous radiation
free electrons is subject to an experimental test and may
verify or reject the CSL model. Third, even if present expe
ments are unable to provide conclusive evidence for
against the theory, the comparison between the theore
predictions and the experimental results will provide help
constraints on the parameters in the CSL model.

In Sec. II, we discuss the increase in the expectation va
of the energy of a single particle in the setting of a gene
collapse model that supports a linear evolution of the den
matrix. We show, under plausible assumptions, that prod
tion of energy is an unavoidable feature of collapse mod

In the third section, we investigate the radiation by a fr
electron predicted by the CSL model. In particular, we c
culate the spectrum of such radiation. This raises the po
bility of experimental tests for the theory.

In the fourth section, we use this result to calculate
strength of such radiation by the valence electrons in Ge.
result is compared with the observed value of the up
bound on spontaneous radiation in Ge@7#. We see that the
CSL model, unlike Karolyhazy’s model, does not produce
unreasonable amount of x-ray radiation by free electrons
consistent with observations. We also note that the constr
on the parameters in the CSL model derived from this co
parison is less stringent than a previous constraint deri
from the consideration of the radiation due to spontane
excitations of bound electrons in Ge@8#, except if it is as-
sumed that the fluctuating field is coupled to the parti
mass density. If this assumption is made, then the spont
ous radiation of free electrons, while less than the curr
1806 © 1997 The American Physical Society
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56 1807SPONTANEOUS RADIATION OF FREE ELECTRONS IN . . .
observed upper bound, is responsible for the major amo
of spontaneous radiation in Ge.

II. ENERGY NONCONSERVATION IN A GENERAL
COLLAPSE MODEL

In this section, we investigate energy nonconservation
a single nonrelativistic particle in a general collapse mo
that supports a linear evolution of the density matrix. W
assume the collapse is towards the position basis of the
ticle. We shall see in particular that energy nonconserva
is an unavoidable feature of such collapse models.

The most general linear evolution of the density matrixr
~preserving its hermiticity, trace, and positivity! is given by
the Lindblad equation@9#:

ṙ5 i @r,H#2l(
n

~KnKn
†r1rKnKn

†22Kn
†rKn! ~l.0!,

~2.1!

whereH is the normal quantum mechanical Hamiltonian, t
Kn’s are arbitrary operators, andl is a non-negative con
stant. The first term on the right-hand side of Eq.~2.1! is the
usual Hamiltonian evolution; the additional term on the rig
as we shall see, causes collapse behavior. For simplicity
shall first consider the case where there is only oneK and it
is a function of the position operatorX, i.e.,K5K(X). @This
choice will be justified later. I shall useKx to meanK(x) in
the following calculation.# Letting H50 to concentrate on
the effect of the additional term, we have

^xuṙuy&52l~KxKx* 1KyKy* 22Kx* Ky!rxy .

Since KxKx* 1KyKy* 22KyKx* 5u(Kx2Ky)u21KxKy*
2Kx* Ky has a positive real part, the magnitudes of the o
diagonal elements inr are obviously shrinking. Thus th
additional term in the Lindblad equation effectively collaps
the off-diagonal elements ofr in K ’s eigenstate representa
tion. This also justifies our choice ofK as a function ofX,
since we have stated earlier that the collapse should be
ward the position basis of the particle.

Now, let us see the effect of this additional term on t
expectation value of the particle’s momentum.

^Ṗ&5E dx^xuPṙux&

5 ilE dx dy d~x2y!
]

]x
@~KxKx* 1KyKy*

22Kx* Ky!rxy#

5 ilE dx~Kx* ]JKx!rxx,

whereA]JB[A]xB2B]xA. If we require, due to consider
ation of space-rotation symmetry~or space-reflection sym
metry in one dimension!, that the expectation value of mo
mentum does not change, we should haveKx* ]JKx50. Hence
Kx* ]xKx is real for all x. This implies, lettingK5P1 iQ
whereP, Q are Hermitian, thatP(x)5cQ(x) wherec is a
constant. But since the choice ofK ’s phase factor in the
nt
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Lindblad equation is free, we can eliminate the imagina
part of K and thus requireK to be Hermitian.

The general form for the density matrix evolution~2.1!
for the case of only oneK is thus reduced to

ṙ5 i @r,H#2l†K,@K,r#‡. ~2.2!

If we generalize Eq.~2.2! to the case of multipleK ’s, we
have instead

ṙ5 i @r,H#2l(
n
†Kn ,@Kn ,r#‡. ~2.28!

Accordingly, we have for the energy

^Ḣ&5
1

2m E dx^xuP2ṙux&5
l

m (
n
E dxrxx@]xKn~x!#2.

~2.3!

Thus, assuming the density matrix follows a linear evolutio
we can conclude on general grounds that state-vector
lapse to the position basis in nonrelativistic quantum m
chanics entails a production of energy given by Eq.~2.3!.

It is worth noting that Eq.~2.3! remains valid even when
the particle is coupled with the electromagnetic potent
i.e., if we addHem5JmAm , whereJm is the four-current of
the charged particle andAm is the electromagnetic potentia
In this case the additional change of energy is

^Ḣem&5tr~JmAmṙ !5trS 2lAmJm(
n
†Kn ,@Kn ,r#‡D

5trS 2lAmr(
n
†Kn ,@Kn ,Jm#‡D . ~2.4!

But †Kn ,@Kn ,Jm#‡50 since @Kn ,Jm# is a function of the
positionX. Thus, Eq.~2.4! vanishes.

Furthermore, for free particles, we can also argue fr
space-rotation symmetry that the rate of energy produc
~2.3! must be a constant. The argument is the following. W
start by considering a particle at rest (uC,0&5up50&). After
a while, due to collapse, the particle will gain a distributio
of momentum symmetric over all orientations. If we do me
surements of energy at this moment, we will get a cert
mean value of the change in energy given byDE
5^p2/2m&. Now, suppose we start with a particle with m
mentump1Þ0. If we move with the particle, we will see
exactly the same situation described earlier. But in the
frame we will see the symmetric distribution of momentu
not centered atp50 but atp1 , i.e., P85P1p1 , whereP8 is
the momentum of the moving particle observed from the r
frame. Therefore

DE85 K P82

2mL 2
p1

2

2m
5 K P2

2mL 5DE.

Thus the change in the expectation value of the energy o
a fixed interval of time is the same whether or not the p
ticle is moving; i.e., it is a constant.
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III. SPONTANEOUS RADIATION BY FREE ELECTRONS
IN CSL

Ghirardi, Rimini, and Weber~GRW! originally proposed
a collapse model in which the state vector is occasion
multiplied by a Gaussian centered at an arbitrary locat
with a prescribed probability@1,2#. From that, Pearle furthe
developed a model~CSL! in which a non-Hermitian interac
tion between a fluctuating scalar field and the particle w
introduced in the Hamiltonian to cause collapse@3#. In our
calculations, we shall use the CSL model.

For now, we shall use the interaction picture in whi
operators evolve according to the conventional Hamilton
~the free field Hamiltonian plus the normal quantum fie
interaction terms! and the state vector evolves according
the collapse term. In CSL, the state vector evolves accord
to the modified Schro¨dinger equation

duC,t&
dt

52
1

4l E dx@W~x,t !22lK~x,t !#2uC,t&,

~3.1!

where
e

ro
ns
ph
w

th
qu
e

tin
,

ly
n

s

n

g

K~x,t !5E dz~pa2!23/4e2~1/2a2!~z2x!2
N~z,t !.

Here W(x,t) is a fluctuating scalar field andN(z,t)
5c†(z,t)c(z,t) is the particle number operator of a nonre
ativistic quantum field. The values forl anda suggested by
GRW arel510216 s21 anda51027 m.

The probability density ofW(t) is given by

Prob„W~x,t !…5W^C,tuC,t&W ~3.2!

~the subscriptW has been attached to the state vector
added emphasis!. The solution of Eq.~3.1! is given by

uC,t&W5Te2~1/4l!*0
t dtdx@W~x,t !22lK~x,t !#2

uC,0&, ~3.3!

whereT is the time ordering operator.†See Ref.@3# for a
discussion of how the evolution in Eq.~3.1! causes state
vectors to collapse toward particle number operator eig
states in position space.‡

The density matrix corresponding to Eq.~3.1! is given by
r5E DW Prob„W~x,t !…
uC,t&W Ŵ C,tu

W^C,tuC,t&W
5E DWTe2~1/4l!*0

t dt dx@W~x,t !22lK~x,t !#2
uC,0&^C,0ue2~1/4l!*0

t dt dx@W~x,t !22lK~x,t !#2

5Te2l/2*0
t dt dx dx8@N~x,t ! ^ 121^ N~x,t !#e2~x2x8!2/4a2

@N~x8,t ! ^ 121^ N~x8,t !#r~0! , ~3.4!
on.
f

d
se

-

c-

etic
where the functional integration elementDW
5Px,tdW(x,t)/A2pl/dx dt, (A^ B)C[ACB, and it is un-
derstood thatT implies time reversal for operators to th
right of r. The last step in Eq.~3.4! involves the functional
integration ofW(x,t).

From our earlier discussion, we know that a collapse p
cess as in Eq.~3.4! inevitably produces energy. This mea
that a free electron can radiate spontaneously—a new
nomenon predicted by CSL. In the rest of this section
calculate the spectrum of this radiation.

To aid our calculation of theS matrix for the radiation by
a free electron, we first notice an alternative equation for
state-vector evolution that produces the same evolution e
tion for the density matrix. In this alternative model, w
assume the particle is under the influence of a fluctua
potential fieldh(x,t) with Gaussian probability distribution
whose statistical property is given by^h(x,t)&50 and

^h~x,t !h~x8,t8!&5
1

4l
e2~x2x8!2/4a2

d~ t2t8!. ~3.5!

In momentum space, the latter becomes

^h~p,w!h* ~p8,w8!&5~4pa2!3/2e2p2a2 1

4l
d~p2p8!

3d~w2w8!. ~3.6!

The state vector evolves according to
-

e-
e

e
a-

g

duC,t&
dt

52 i E dx2lN~x,t !h~x,t !uC,t&. ~3.7!

The solution of Eq.~3.6! is

uC,t&5Te2 i2l*0
t dt dx h~x,t !N~x,t !uC,0&. ~3.8!

The corresponding density matrix*DhuC,t&^C,tu is readily
found from Eqs.~3.4! and ~3.7! to be the same as Eq.~3.4!.
We emphasize that Eq.~3.6! doesnot produce collapse for
individual state vectors since it describes a unitary evoluti
Thus, even though Eq.~3.7! results in the same evolution o
the density matrix as Eq.~3.1!, only Eq. ~3.1! is a real col-
lapse theory. We nevertheless may use Eq.~3.7! as a tool to
calculate theS matrix of the radiation of an electron an
derive from it the theoretical prediction of the real collap
model.

Since the CSL model is not relativistic, we shall for sim
plicity treat electrons as spinless Schro¨dinger particles and
use the following form for the interaction between the ele
tron’s field and the photon’s field:

e

2mi E dxc†~x,t !¹Jc~x,t !•AT~x,t !, ~3.9!

whereAT denotes the transverse mode of the electromagn
potential.~We only care about radiation.! Thus the complete
interaction Hamiltonian in our tool model becomes
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H5
e

2mi E dxc†~x,t !¹Jc~x,t !•AT~x,t !

12lE dxc†~x,t !c~x,t !h~x,t !, ~3.10!

where

c~x,t !5
1

~2p!3/2 E dp bpe
ip•x2 i ~p2/2m!t

and

A~x,t !T5
1

~2p!3/2 (
g51,2

E dk
ek

g

A2k
~ak

geik•x2 ikt

1ak
†ge2 ik•x1 ikt!,

wherek5uku andp5upu. Herebp is the annihilation opera
tor for the Schro¨dinger particle of momentump andak

g and
ak

†g are the annihilation and creation operators for photon
momentum k and polarizationg. For the nonrelativistic
Schrödinger field, the Feynman propagator is

DF~x,t !5
i

~2p!4 E dp dp0
eip•x2 ip0t

p02p2/2m1 i e
.

The initial state is an electron at rest,uC,0&5up050&.
~The normalization of this initial state vector will be carrie
out at the end of the calculation.! Also, in the natural unit
th
f

system, we require the momentum of the electron in a
stage be much less thanm5512 keV52.5931012 m21, in
order to apply our nonrelativistic calculation.

The lowest order of approximation of the radiation pr
cess yields the two diagrams in Fig. 1. Here we denotep0
50 as the electron’s initial momentum,p as the electron’s
final momentum,k and g as the radiated photon’s momen
tum and polarization,p1 and w1 as the off-mass-shell elec
tron’s momentum and energy,ph and wh as theh-field’s
momentum and energy. Notice that diagram~1b! gives no
contribution to theS matrix since it involves the facto
ek

g
•(p11p0)5ek

g
•(2k)50.

We have for diagram 1~a! the contribution, using the
usual Feynman rules,

FIG. 1. Feynman diagrams for the lowest-order spontaneous
diative processes by a free electron.
^k,g,puSuC,0&5S 1

~2p!3/2D 3 1

~2p!2

1

A2k
~2p!4~2 i2l!h~ph ,wh!~2p!4

~2 ie!

2m
~p1p1k!•ek

g

3
1

~2p!4

i

k1p2/2m2~k1p!2/2m1 i e
d~p1k2ph!dS wk1

p2

2m
2whD

52
2el

~2p!5/2

1

A2k

p•ek
g

m
h~ph ,wh!

i

k2k2/2m2~k•p!/m1 i e
d~p1k2ph!dS wk1

p2

2m
2whD .

~3.11!
-
gy
-
-

s

Thus, we have for the ratedG(k,g,p) ~i.e., probability per
unit time! of radiation of a photon of momentumk and po-
larizationg while the electron leaves with momentump:

dG~k,g,p!

dk dp
5

~4pa2!3/2

~2p!6

e2l

m2

1

2k

~p•ek
g!2

~k2k2/2m2~k•p!/m!2

3e2~k1p!2a2
, ~3.12!

where theh-field ensemble has been integrated over with
help of Eq.~3.6! @the volume factord~0! has been gotten rid
of by the normalization of the initial state vector#.
e

Note that because of the Gaussian factor in Eq.~3.12!,
only when up1ku,1/a do we get a considerable contribu
tion. For the radiation of a photon with much higher ener
than 1/a, this impliesp'2k, i.e., the electron and the pho
ton recoil ‘‘back to back’’ after the radiation. For our non
relativistic calculation, k dominates the denominatork
2k2/2m2(k•p)/m. Upon integrating Eq.~3.12! over p and
summing overg, we have for the rate of radiation of photon
of momentumk:

dG~k!

dk
'23

~4pa2!3/2

~2p!6

e2l

m2

1

2k

1

k2

p3/2

2a5 5
e2l

16p3k3a2m2 .

~3.13!
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1810 56QIJIA FU
Integrating over solid angle yields the rate of radiation
photons of energyk:

dG~k!

dk
54pk2

e2l

16p3k3a2m2 5
e2l

4p2a2m2k
. ~3.14!

The apparent infrared divergence of Eq.~3.14! can be treated
in the standard way. Now, if we use the GRW values fol
anda, we have for the predicted number of photons radia
per second per keV per free electron:

R~k!52.74310231S 1

k keVD counts/s keV ~3.15!

or in terms of energy distribution,

E~k!52.74310231 keV/s keV. ~3.16!

IV. COMPARISON WITH EXPERIMENT

We now investigate an experimental consequence of
result. A measurement has been done on the radiation
pearing in an isolated slab of Ge@7#. The experiment may be
regarded as establishing an upper bound for the rate of s
taneous radiation in different energy ranges, as shown
Table I. ~We emphasize that this is raw data, without su
traction of radiation appearing due to known processes.
ture analysis of data from this and other experiments n
being undertaken can be expected to improve these u
bounds considerably.! For a later comparison, we note that
k511.1 keV,Rexpt50.049 counts/~keV kg d!.

For the theoretical prediction of such radiation, we co
sider the outermost four electrons in a Ge atom. They
very weakly bound so that we can treat them as free e
trons for the consideration of the radiation of energetic p
tons in the range of 1 keV or larger. According to our res
~3.15! on the radiation rate per free electron, usi
8.2931024 atoms/kg as the particle density of Ge, the the
retical prediction ofR at 11.1 keV is then

Rtheory5~2.74310231!343~8.2931024!3~8.63104!

3
1

11.1

50.071 counts/~keV kg d). ~4.1!

The theoretical predictions of the rate of radiation for oth
energy ranges follow similar calculations and are shown
Table I. ~Note that the theoretical predictions are only va
in the energy range much less thanme5512 keV, due to
nonrelativistic constraint of the CSL model. The theoreti
values near 512 keV are shown nevertheless as rough
jections.!

Several observations result from comparing the theor
cal predictions and the experimental upperbounds. Altho
in the range between 100 and 500 keV it appears that
theory would seem to nicely account for the observation
we increasel by roughly a factor of 10, such a conclusion
unwarrented.~The major portion of this radiation is mos
likely due to radiation arising in the lead shield.! Since, at 11
f

d
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keV, the theory predicts 45% more radiation than the o
served upper bound,l is forced to be at least 45% lower tha
the GRW suggested value.

A previous calculation has been done on the CSL rate
spontaneous radiation due to a 1s bound electron in Ge@8#.
Such radiation occurs when a 1s electron in the atom
is excited by collapse to an ionized state and then
atom decays back to the ground state. The bound state ra
tion rate expression is larger than our rate~3.13! for
free electrons, mainly because our factore2/\c is missing
and because our factor@(\/mc)/a#2 is replaced by
@(1s radius)/a#2. It was shown that, with the GRW param
eters, the rate of such radiation at the 1s electron ionization
energy of 11.1 keV is about 5500 counts/keV kg d.~The pre-
dicted radiation rate falls off rapidly at higher energy.! This
is 105 times larger than the observed upper boundRexpt
quoted above. If we keep the GRW value ofa, thenle ~the
collapse rate for an electron! has to be at least 105 times less
than the GRW suggested value, making it less than appr
mately 10221 s21. Thus, at 11.1 keV, the discrepancy due
radiation by free electrons in Ge is considerably less sev
than that due to excitation of the 1s electrons.

In Ref. @8#, the authors argue that comparison of theo
with experiment suggests that the fluctuating field is coup
to the particle mass density, so that ifl is the collapse rate
for protons, thenle5(me /mp)2l ~me andmp are the elec-
tron and proton masses!. In this case, it turns out that th
bound state radiation rate vanishes identically to ordera22,
and the predicted rate is'l(me /mp)2@(1s radius)/a#4

'10210 counts/~keV kg d!. However, the free-particle radia
tion rate at 11.1 keV is (me /mp)2 times smaller than Eq
~4.1!, or 2.131028 counts/~keV kg d!. That is, the spontane
ous radiation from free electrons is expected to be the do
nant radiation. We may then express the experimental c
straint at 11.1 keV as

2.33106.
~l/a2!

~l/a2!GRW
. ~4.2!

We note that there is noa priori or experimental reason why
e.g., l may not be much larger thanlGRW, so Eq. ~4.2!
represents an interesting upper limit. Moreover, the exp
mental upper bound on the spontaneous radiation rate c
here is expected to be substantially improved in the futu
resulting in a substantial improvement over~4.2!—or even,
possibly, observation of spontaneous radiation by free e
trons.

TABLE I. Experimental upper bounds and theoretical pred
tions of the spontaneous radiation by free electrons in Ge fo
range of photon energy values.

Energy~keV!
Expt. upper bound

~counts/keV/kg/day!
Theory

~counts/keV/kg/day!

11 0.049 0.071
101 0.031 0.0073
201 0.030 0.0037
301 0.024 0.0028
401 0.017 0.0019
501 0.014 0.0015
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V. SUMMARY

In the preceding sections we have followed the C
model of collapse, and investigated one of its signific
consequences—a free charged particle radiates. We c
lated the spectrum of this radiation and showed that the C
model does not lead to an unreasonable level of ultravi
radiation by free charged particles, unlike Karolyhazy
model. We then examined whether such radiation could
observed in the Ge experiment. The experiment provi
some constraints on the CSL parameters.
-
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Note added.Following the author’s untimely death, thi
paper has been revised by P. Pearle in light of referee
ports.
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