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Spontaneous radiation of free electrons in a nonrelativistic collapse model
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One way to solve the long-standing “measurement”’problem in quantum mechanics is to modifyl-Schro
inger's equation so that the collapse of a state vector is the result of some intrinsic physical dynamics. The
introduction of such collapse dynamics often results in energy nonconservation. In this paper, we first derive a
general expression for the rate of change in the expectation value of energy in a general collapse model that
supports a linear evolution of the density matrix. In particular, we show, under certain plausible assumptions,
that energy nonconservation is an inevitable consequence of collapse. We then work with a specific model,
namely, the nonrelativistic continuous spontaneous localiz&@31) model, to derive further consequences
of collapse. In CSL, in a nonunitary evolution, a particle interacts with a fluctuating scalar field, leading to the
collapse of the state vector. One consequence of this interaction is that a free electron can radiate spontane-
ously. We calculate the spectrum of this radiation. The result is then compared with the observed upper bound
on spontaneous radiation in Ge and a constraint on the parameters of CSL is obtained.
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[. INTRODUCTION a state vector to collapgé]. However, Diosi and Lukacs
recently calculated the spectrum of the spontaneous radiation
The “measurement”’problem has long been a difficult un-by free charged patrticles in Karolyhazy’s model and showed
resolved issue in the foundations of quantum mechanics. Othat the model produces an unreasonable amount of radiation
one hand, the theory states that the state vector corresponid- the x-ray range6]. Thus, the plausibility of the CSL
ing to a closed physical system undergoes a continuous unmodel depends critically on whether it gives rise to a similar
tary evolution governed by Schiimger's equation; on the unreasonable spectrum of spontaneous radiation by free
other hand, in order to translate the theory into measurablegharged particles. Second, such spontaneous radiation by
results, the theory prescribes a sudden jump mot@mv-  free electrons is subject to an experimental test and may help
erned by the well-known probability ruldo the state of a yerify or reject the CSL model. Third, even if present experi-
physical system undergoing a measurement by an extemMglents are unable to provide conclusive evidence for or
device. _ against the theory, the comparison between the theoretical
One way to solve the “measurement” problem, i.e., 10 yragictions and the experimental results will provide helpful
make a consistent theory from the two aforementioned COMzonstraints on the parameters in the CSL model.
ponents of the standard quantum mechanics, is to introduce a In Sec. I, we discuss the increase in the expectation value

new physical dynamics that naturally collapses a state vector, . o .
In a nonrelativistic collapse model developed by Ghirardi,Of the energy of a single particle in the setting of a general

Rimini, Weber[1,2] and Pearl¢3,4], namely, the continuous collta.ps?Nmodr?I that s;ppolrts a_tl)llnear evoluttllon Ozr:h? der:jsny
spontaneous localization mod@LSL), the state vector un- matrix. e show, under plausibie assumptions, that produc-

dergoes a nonunitary evolution in which particles interact'o" of energy 1s an unavo_ldable_ feature of C‘?”?‘pse models.
with a fluctuating scalar field. Besides collapsing the state !N the third section, we investigate the radiation by a free
vector towards the particle number density eigenstates in pd!€ctron predicted by the CSL model. In particular, we cal-
sition space, this interaction increases the expectation valyg!late the spectrum of such radiation. This raises the possi-
of the particle’s energy. For a free charged particle such aBility of experimental tests for the theory.
an electron, this implies electromagnetic radiation. Such In the fourth section, we use this result to calculate the
spontaneous radiation by a free electron is a phenomendiirength of such radiation by the valence electrons in Ge. The
predicted by CSL but not by the standard quantum mecharresult is compared with the observed value of the upper
ics. bound on spontaneous radiation in 8. We see that the
In this paper, we investigate the spontaneous radiation b€SL model, unlike Karolyhazy’s model, does not produce an
free electrons predicted by CSL and seek its observationalnreasonable amount of x-ray radiation by free electrons in-
consequences. This is of interest for several reasons. Firstonsistent with observations. We also note that the constraint
there have been other collapse models proposed to solve toa the parameters in the CSL model derived from this com-
“measurement”problem of the standard quantum mechanparison is less stringent than a previous constraint derived
ics. An earlier proposal of a collapse model by Karolyhazy,from the consideration of the radiation due to spontaneous
for example, postulated that fluctuations in space-time causexcitations of bound electrons in G8], except if it is as-
sumed that the fluctuating field is coupled to the particle
mass density. If this assumption is made, then the spontane-
*Deceased. ous radiation of free electrons, while less than the current
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observed upper bound, is responsible for the major amourtindblad equation is free, we can eliminate the imaginary

of spontaneous radiation in Ge. part of K and thus requir& to be Hermitian.
The general form for the density matrix evoluti¢®.1)
Il. ENERGY NONCONSERVATION IN A GENERAL for the case of only on& is thus reduced to

COLLAPSE MODEL

p=i[p,H]—\[K,[K,p]] 2.2
In this section, we investigate energy nonconservation for p=ilp.HI=MK.[Kpl] 22

a single nonrelativistic particle in a general collapse mode : e

that supports a linear evolution of the density matrix. Wekav\\//: i%(;Pee;gllze Ea(2.2) to the case of multipl&’s, we

assume the collapse is towards the position basis of the par-

ticle. We shall see in particular that energy nonconservation

is an unavoidable feature of such collapse models. b=i[P,H]—>\E Ky, [Kn.p]l (2.2)
The most general linear evolution of the density magrix n

(preserving its hermiticity, trace, and positivitis given by

the Lindblad equatiof9]: Accordingly, we have for the energy

- t t t : 1 : A
pilp HITAZ (KiKiptpKakA=2KipKe) - 0200, ()= [ ax(xlPopl = S [ dxpul ko0
2.2) 2.3

whereH is the normal quantum mechanical Hamiltonian, the
K,'s are arbitrary operators, and is a non-negative con-
stant. The first term on the right-hand side of E2}1) is the
usual Hamiltonian evolution; the additional term on the righ
as we shall see, causes collapse behavior. For simplicity,
shall first consider the case where there is only Knend it
is a function of the position operatd, i.e.,K=K(X). [This
choice will be justified later. | shall us¢, to meanK(x) in
the following calculation]. Letting H=0 to concentrate on
the effect of the additional term, we have

Thus, assuming the density matrix follows a linear evolution,
we can conclude on general grounds that state-vector col-
tIap:se to the position basis in nonrelativistic quantum me-
V;;éhanics entails a production of energy given by Ex3).

It is worth noting that Eq(2.3) remains valid even when
the particle is coupled with the electromagnetic potential,
i.e., if we addH¢,,=J*A,, whereJ* is the four-current of
the charged particle andl,, is the electromagnetic potential.

In this case the additional change of energy is

: — * * _ * . .
(Xlply) == NKKZ +KKG = 2KZKy ) pyy - (Hom =tr(J*A,,p)=tr

—RAuJ“; [Kn-[Knap]])
Since KK} + K Ky — 2K K3 = | (K= Ky) [+ KK

—K3 Ky has a positive real part, the magnitudes of the off-
diagonal elements ip are obviously shrinking. Thus the
additional term in the Lindblad equation effectively collapses
the off-diagonal elements gf in K's eigenstate representa- gyt [K, [K,,J*]]=0 since[K,,J*] is a function of the
tion. This also justifies our choice & as a function ofX,  posjtionX. Thus, Eq.(2.4) vanishes.

=tr< —\ALp Y [Kn [K, ,J“]]). (2.4)

ward the position basis of the particle. space-rotation symmetry that the rate of energy production
Now, let us see the effect of this additional term on the(2 3) must be a constant. The argument is the following. We
expectation value of the particle’s momentum. start by considering a particle at re$(0)=|p=0)). After
a while, due to collapse, the particle will gain a distribution
<p>= J dx(x|Pp|x) of momentum symmetric over all orientations. If we do mea-
surements of energy at this moment, we will get a certain
9 mean value of the change in energy given RE
=i)\f dx dy 8(x—vy) x [(KKX + KK =(p?/2m). Now, suppose we start with a particle with mo-
mentump,# 0. If we move with the particle, we will see
—2KEK,)pyy] exactly the same situation described earlier. But in the rest

frame we will see the symmetric distribution of momentum
- not centered gv=0 but atp,, i.e.,P'=P+p;, whereP’ is
=i>\f dx(K¥ 9Ky) pyso the momentum of the moving particle observed from the rest
frame. Therefore

whereAaHBEAaXB—BaXA. If we require, due to consider-
. . . 12 2 2
ation of space-rotation symmetfpr space-reflection sym- AE' = P L _AE
metry in one dimension that the expectation value of mo- “\2m/ 2m \2m/ °—
mentum does not change, we should hEjeK,=0. Hence
K 0Ky is real for all x. This implies, lettingk=P+iQ  Thus the change in the expectation value of the energy over
whereP, Q are Hermitian, thaP(x)=cQ(x) wherec is a  a fixed interval of time is the same whether or not the par-
constant. But since the choice &fs phase factor in the ticle is moving; i.e., it is a constant.
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Ill. SPONTANEOUS RADIATION BY FREE ELECTRONS o
IN CSL K(x,t)=j dz(ma?) 3 (VRIEZXN(Z1).

Ghirardi, Rimini, and Webe(GRW) originally proposed
a collapse model in which the state vector is occasionallyiere W(x,t) is a fluctuating scalar field andN(zt)
multiplied by a Gaussian centered at an arbitrary locatior #'(z,t) #/(zt) is the particle number operator of a nonrel-
with a prescribed probabilityl,2]. From that, Pearle further ativistic quantum field. The values faranda suggested by
developed a modd[CSL) in which a non-Hermitian interac- GRW arex=10'®s ' anda=10"" m.
tion between a fluctuating scalar field and the particle was The probability density otW(t) is given by
introduced in the Hamiltonian to cause collag8é In our
calculations, we shall use the CSL model. Prob(W(x,t))=u{ ¥ ,t|¥,t)y (3.2
For now, we shall use the interaction picture in which
operators evolve according to the conventional Hamiltonianthe subscriptW has been attached to the state vector for
(the free field Hamiltonian plus the normal quantum fieldadded emphasisThe solution of Eq(3.1) is given by
interaction termpand the state vector evolves according to

the collapse term. In CSL, the state vector evolves according e (1A L XWX D) — 20K (1) ]2
to the modified Schidinger equation V. Hw="Te ° .0, (33
d|w,t) where 7 is the time ordering operatofSee Ref[3] for a

1
g I f dX[W(x,t) = 2NK(x,1) 2| W, t), discussion of how the evolution in E43.1) causes state
(3.1) vectors to collapse toward particle number operator eigen-
states in position spade.
where The density matrix corresponding to E.1) is given by

p:f DW PrOt(W(X,t)) |\P,t>w W<\P’t| _j DW’]—e_(lM}\)IBdt dX[W(X,t)—Z)\K(X,t)]2|\P'0><\I,,0|e—(1/4)\)ft)dt dX[W(x,t) — 2\ K (x,1)]?

WA,y
— To~M2lhdt de ' [N(x @ 1- 10 N(x,t)]e‘<x‘x’)2’432[N(x',t>®1—1®N(x’,t)]p(o) , (3.9
|
where the functional integration elementDW d|w,t) _
=11, dW(x,t)/\27/dx dt, (A® B)C=ACB, and it is un- T :—'f dx2ANCCH (|1, (3.7

derstood that7 implies time reversal for operators to the
right of p. The last step in E(3.4) involves the functional  The solution of Eq(3.6) is
integration ofW(x,t).
From our earlier discussion, we know that a collapse pro- k2 t>:7—efi2>\f5dtdx CONCO | ) (3.9
cess as in Eq(3.4) inevitably produces energy. This means ' ’

that a free elegtron can radiate spontaneously—a new PheHe corresponding density matrhD 7|V, t)( W t| is readily
nomenon predicted by CSL. In the rest of this section W&q,nd from Eqs{(3.4) and(3.7) to be the same as E(B.4).
calculate the spectrum of this radiation. o We emphasize that E¢3.6) doesnot produce collapse for
To aid our calculation of th& matrix for the radiation by ingividual state vectors since it describes a unitary evolution.
a free electron, we first notice an alternative equation for therp s even though E@3.7) results in the same evolution of
state-vector evolution that produces the same evolution equgse density matrix as Eq3.1), only Eq. (3.1 is a real col-
tion for the density matrix. In this alternative model, we lapse theory. We nevertheless may use Bd) as a tool to
assume the particle is under the influence of a fluctuating|cyjate theS matrix of the radiation of an electron and
potential field(x,t) with Gaussian probability distribution, gerive from it the theoretical prediction of the real collapse
whose statistical property is given Ky;(x,t))=0 and model.
1 Since the CSL model is not relativistic, we shall for sim-
(Xt (X' t'))y=— e7<xf><’)2/4a25(t_tr)_ (3.5)  Pplicity treat electrons as spinless Sb@iruger particles and
RN use the following form for the interaction between the elec-

tron’s field and the photon’s field:
In momentum space, the latter becomes

e o
- _p2a2 L , — | dxT () Vip(x,1)- AT(xt 3.9
(n(pw)7* (p" W)= (4mal) e P* - 5(p—p’) omi | SV RDVUED-ALXD, (39
X S(W—w"). (3.6) whereAT denotes the transverse mode of the electromagnetic

potential.(We only care about radiationThus the complete
The state vector evolves according to interaction Hamiltonian in our tool model becomes
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e o~ &)
A= omi J dxy"(x, ) Vr(x,t) - AT(x,1) ! [ (
2mi
+2)\j dxy (1) g(x,t) p(x,1), (3.10 ®
where e o fene)
1 . L2 (Pn,On)
— ip-x—i(p“/2m)t
P(x,t) mjdpbpe
and Po=0 (Py. () D=0
€ : : FIG. 1. Feynman diagrams for the lowest-order spontaneous ra-
T_ K k-x—ikt Y| g p
A(x,t) = 2n" 721 ) f dk 2K (age™ diative processes by a free electron.

+al*/e—ik~><+ikt), system, we require the momentum of the electron in any
stage be much less than=512 keV=2.59x10*?m™?, in
wherek= k| andp=|p|. Hereb, is the annihilation opera- order to apply our nonrelativistic calculation.
tor for the Schrdinger particle of momenturp anda) and The lowest order of approximation of the radiation pro-
a}” are the annihilation and creation operators for photons o¢ess yields the two diagrams in Fig. 1. Here we demmte
momentumk and polarizationy. For the nonrelativistic =0 as the electron’s initial momenturp, as the electron’s

Schralinger field, the Feynman propagator is final momentumk and vy as the radiated photon’s momen-
' - tum and polarizationp, andw; as the off-mass-shell elec-

i 0 glP-x-ipt tron’s momentum and energy,, andw, as the n-field’s

DF(Xat):W f dp dp p'—pZ2m+ie’ momentum and energy. Notice that diagréii) gives no

contribution to theS matrix since it involves the factor
The initial state is an electron at re$¥,0)=|py=0).  €-(P1tPo)=¢€-(—k)=0.
(The normalization of this initial state vector will be carried We have for diagram (& the contribution, using the
out at the end of the calculatignAlso, in the natural unit usual Feynman rules,

_( 1 )3 1 1 . L (—ie) y
<k,’)/,p|S|\P,0>— (277.)3/2 (271_)2 \@(277) (_IZ)\)n(pn!Wn)(Zﬂ-) W(p—'—p—’—k)ek

1 i
27)% k+ p?l2m—(k+p)?/2m+ie

><( o(pt+k—p,)é om

2
p
Wi+ ——w,,)

2en 1 p-€ i

2
_ p
@™k m P kCims (ke pyimie QPRI O Wit o W")'
3.1)
|
Thus, we have for the ratél’(k,v,p) (i.e., probability per Note that because of the Gaussian factor in 8412,
unit time) of radiation of a photon of momentuknand po- only when|p+k|<1/a do we get a considerable contribu-
larization y while the electron leaves with momentym tion. For the radiation of a photon with much higher energy
than 14, this impliesp~ —Kk, i.e., the electron and the pho-
dr' (k. 7.p) B (47a?)¥2 e\ 1 (p- eg)z ton recoil “back to back” after the radiation. For our non-

relativistic calculation, k dominates the denominatok

dkdp — (2m°® m? 2k (k—k*2m—(k-p)/m)? —k2/2m— (k- p)/m. Upon integrating Eq(3.12 overp and
« o (k+p)2a? 31 summing overy, we have for the rate of radiation of photons
€ ' (312 of momentumk:
where ther-field ensemble has been integrated over with the d'(k) _ (4ma®)%?e’\ 1 1 %2 e\

help of Eq.(3.6) [the volume facto&(0) has been gotten rid dk 2T 2m M 2kK2 285 167°K3aZm?”
of by the normalization of the initial state vector (3.13
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Integrating over solid angle yields the rate of radiation of TABLE I. Experimental upper bounds and theoretical predic-
photons of energk: tions of the spontaneous radiation by free electrons in Ge for a
range of photon energy values.

dr'(k) i N e\ (3.14
—— =4 T3 5= 3 7 o - . Expt. upper bound Theory
dk 16m°k*am 4m*a'm’k Energy(keV) (counts/keVikg/day  (counts/keV/kg/day
The apparent infrared divergence of E8.14) can be treated 11 0.049 0.071
in the standard way. Now, if we use the GRW values Xor 101 0.031 0.0073
anda, we have for the predicted number of photons radiated 201 0.030 0.0037
per second per keV per free electron: 301 0.024 0.0028
401 0.017 0.0019
R(k)=2.74x 103 counts/s keV  (3.15 501 0.014 0.0015
k keV
or in terms of energy distribution, keV, the theory predicts 45% more radiation than the ob-
served upper bound, is forced to be at least 45% lower than
E(k)=2.74x 1073 keV/s keV. (3.1  the GRW suggested value.

A previous calculation has been done on the CSL rate of
spontaneous radiation due to a fiound electron in GE8].
IV. COMPARISON WITH EXPERIMENT Such radiation occurs when as lelectron in the atom

We now investigate an experimental consequence of thils €xcited by collapse to an ionized state and then the
result. A measurement has been done on the radiation afto™ decays back_to th_e ground state. The bound state raia-
pearing in an isolated slab of G&]. The experiment may be UON raté expression is larger than :é” ra@.13 for
regarded as establishing an upper bound for the rate of spofi€€ €lectrons, mainly because our facesfsc is missing

taneous radiation in different energy ranges, as shown iAd because our factof (h/mc)/a)® is replaced by

Table I. (We emphasize that this is raw data, without sub-|(1S radius)a]®. It was shown that, with the GRW param-
traction of radiation appearing due to known processes. FUE€rS, the rate of such radiation at the électron ionization
ture analysis of data from this and other experiments novgnergy of 11.1 keVis about 5500 counts/keV kgthe pre-
being undertaken can be expected to improve these upp_gfcted radiation rate falls off rapidly at higher eneng¥his

bounds considerablyFor a later comparison, we note that at 'S 10° times larger than the observed upper bouRdy
k=11.1 keV, Rex,=0.049 countgkeV kg d). guoted above. If we keep the GRW valueagfthen\ (the

For the theoretical prediction of such radiation, we con-collapse rate for an electrphas to be at least faimes less
sider the outermost four electrons in a Ge atom. They aré1an the GRW suggested value, making it less than approxi-
very weakly bound so that we can treat them as free eledhately 102 s™. Thus, at 11.1 keV, the discrepancy due to
trons for the consideration of the radiation of energetic pholadiation by free electrons in Ge is considerably less severe
tons in the range of 1 keV or larger. According to our resultthan that due to excitation of thesElectrons.

(3.15 on the radiation rate per free electron, using !N Ref.[8] the authors argue that comparison of theory
8.29x 107* atoms/kg as the particle density of Ge, the theo-With experiment suggests that the fluctuating field is coupled

retical prediction ofR at 11.1 keV is then to the particle mass density, so thatifis the collapse rate

for protons, theme:(me/mp)z)\ (me andm,, are the elec-

Rineon= (2.74X 10731 X 4 (8.29 1074 X (8.6x 10%) tron and proton massgsin this case, it turns out that the
bound state radiation rate vanishes identically to osde,
1 and the predicted rate i@)\(me/mp)z[(ls radius) a]*

111 ~10 19 countsfkeV kg d. However, the free-particle radia-

tion rate at 11.1 keV is r(le/mp)2 times smaller than Eq.

=0.071 countgkeV kg d). (4.) (4.1, or 2.1 10" 8 counts(keV kg d). That is, the spontane-

. o o ous radiation from free electrons is expected to be the domi-
The theoretical predictions of the rate of radiation for othernant radiation. We may then express the experimental con-
energy ranges follow similar calculations and are shown irstraint at 11.1 keV as

Table I. (Note that the theoretical predictions are only valid

in the energy range much less them=512 keV, due to (Na?)

nonrelativistic constraint of the CSL model. The theoretical (Ma?)grw'

values near 512 keV are shown nevertheless as rough pro-

jections) We note that there is n@ priori or experimental reason why,
Several observations result from comparing the theoretie.g., A may not be much larger thangry. SO EQ.(4.2)

cal predictions and the experimental upperbounds. Althoughepresents an interesting upper limit. Moreover, the experi-

in the range between 100 and 500 keV it appears that thenental upper bound on the spontaneous radiation rate cited

theory would seem to nicely account for the observations ihere is expected to be substantially improved in the future,

we increase\ by roughly a factor of 10, such a conclusion is resulting in a substantial improvement ovdr2—or even,

unwarrented.(The major portion of this radiation is most possibly, observation of spontaneous radiation by free elec-

likely due to radiation arising in the lead shigl&ince, at 11  trons.

2.3x10P> 4.2
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V. SUMMARY Note addedFollowing the author’'s untimely death, this

In the preceding sections we have followed the cgPaper has been revised by P. Pearle in light of referee re-

model of collapse, and investigated one of its significamports'
consequences—a free charged particle radiates. We calcu-
lated the spectrum of this radiation and showed that the CSL
model does not lead to an unreasonable level of ultraviolet
radiation by free charged particles, unlike Karolyhazy's
model. We then examined whether such radiation could be | would like to thank Professor P. Pearle, for the help |
observed in the Ge experiment. The experiment provideseceived in writing this paper, and for the gift of four years
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