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Least-squares inversion for density-matrix reconstruction
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We propose a method for reconstruction of the density matrix from measurable time-degdenalesbility)
distributions of physical quantities. The applicability of the method based on least-squares inversion is—
compared with other methods—very universal. It can be used to reconstruct quantum states of various systems,
such as harmonic and anharmonic oscillators including molecular vibrations in vibronic transitions and damped
motion. It also enables one to take into account various specific features of experiments, such as limited sets of
data and data smearing owing to limited resolution. To illustrate the method, we consider a Morse oscillator
and give a comparison with other state-reconstruction methods suggested ré&t§0-2947@7)07009-1

PACS numbds): 03.65.Bz

[. INTRODUCTION [10], the displaced photon-number statistics of the signal
field can be measured, from which the quantum state can be

During the last years the problem of quantum-state meaebtained in terms of phase-space functiphs| and the den-
surement has been of increasing interest. Advances in expesity matrix in the Fock basikl2]. The method also applies to
mental techniques, which have allowed physicists to measunmatter systems, and was used to reconstruct the quantum
not only single observables of a quantum-mechanical systestate of thgharmoni¢ center-of mass motion of trapped ions
but—for certain systems—the quantum state as a whold13]. In this case the coherent displacements are induced by
have stimulated both experimental and theoretical researcht. fields that are resonant to the motional frequency.

A number of proposals for measuring quantum states have The methods considered so far are restricted to undamped
been made, and various quantum-mechanical systems hakarmonic oscillators. However, in many physical systems an-
been considered. harmonic motiongmodified by dampingsare observed. Re-

In quantum optics, balanced homodyning has been a vergently, interesting nonclassical quantum states have been
fruitful method for tomographical reconstructidt] of the  prepared in systems that are typically anharmonic. Examples
quantum state of optical fields. Measuring the quadratureare the generation of amplitude-squeezed states in molecules
component statistics and applying inverse Radon transfornig,14] and of Schrdinger catlike states in atomic Rydberg
on using in the numerical calculation the standard filteredvave packet$15]. A first attempt has been made to recon-
back projection algorithm, the method was first applied tostruct the quantum state of anharmonic molecular vibrations
the determination of the Wigner function of single-mode sig-using time-resolved fluorescence spectroscflg]. It has
nal fields[2]. The method(also called optical homodyne been shown that the density matrix can be obtained by inver-
tomography has also been extended to direct sampling ofsion of high-dimensional systems of linear equations. An ap-
the density matrix in a quadrature-component bf3]sand  proach was given in Ref17], extending the pattern-function
in the Fock basi$4,5]. Tomographical methods can also be formalism to potentials more general than harmonic, and re-
used for reconstructing the quantum state of matter systemspnstructing the density matrix from the time-dependent po-
such as molecular vibratiod§] or the transverse motion of sition distribution. However, the quantities that are typically
an atom beani7]. In the case of molecular vibrations the measured in molecular spectroscopy are different from posi-
time- and frequency-resolved fluorescence spectrum of thgon distributions in general. For example, the time-gated
molecule plays the role of the quadrature components, prcffuorescence spectrum measured in experiments of the type
vided that the vibrational frequencies in the two electronicdescribed in Ref[6] is determined by the Franck-Condon
states are almost equal to each other and the vibrational maverlap factors of the vibrational wave functions in two elec-
tion is approximately harmonic. Further, tomographicaltronic states. For anharmonic vibrations this spectrum cannot
methods have been considered in the reconstruction of thige identified with distributions of the type of position distri-
(harmonig center-of-mass motion of trapped atof8s. butions, and therefore it should be used directly in order to

Also including additional vacuum inputs in the balancedreconstruct the density matrjx8].
detection scheme, the quantum state of optical fields can be In any case there have been a number of open questions,
directly measured in terms of phase-space functifls such as those concerning determination of suitable sampling
Combining unbalanced homodyning with photon choppingfunctions mapping the measured data onto the density ma-

trix, the choice of optimum observational times, and the in-
clusion into the scheme of damping effects and data smear-
*Permanent address: Faculty of Natural Sciences, Paldicky  ing. The aim of the present paper is to offer possible answers
versity, Svobody 26, 77146 Olomouc, Czech Republic. to some of these. For all the systems mentioned, the general
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problem to be solved is the inversion of linear equations thatows that the expression on the right-hand side of @fcan

relate the measured quantities to the density-matrix elementdways be approximated to any desired degree of accuracy

of the system under study. This can be done in a very effedsy setting

tive way using the least-squares method, which dates back to

the eras of Legendre and Gay4$9)]. Actually, the method Onn=0 for n(n")>nga. 2

has been used in the context of quantum-state reconstruction

problems, such as the reconstruction of the quantum state iff n,,, is suitably large. From the assumptions made, it is

cavity fields by quantum-state endoscdi@@], vibrations of  clear that Eqg.1) can, in principle, be inverted in order to

trapped ions[13], and optical field by balancef?1] and  obtain the quantum state from the measured funqtiont).

unbalanced12] homodyning. A powerful method for solving the problem is least-
For comparison with previous workL7,22, we will re-  squares inversion. To illustrate the method, let us suppose

strict attention to the reconstruction of the density matrixthat p(x,t) is a (one-dimensionalposition probability of a

from the time-dependent position distribution of a particleparticle moving in a potential well. When during the time

moving in an anharmonic potential. We show that the leastinterval of observation the temporal evolution of the quan-

squares method can advantageously be used in order to netm state of the particle is only governed by the system

duce the statistical error. We further show that the flexibility Hamiltonian, then Eq(1) together with Eq(2) can be writ-

of the method enables us to perform the reconstruction fronfen as

data recorded during shorter time intervals and to take into

account typical experimental features, such as smeared and

imperfect data. Finally, the method can also be used to re- p(x,t)= 2 Shn (X1 @nnr s ()]

construct quantum states of damped systems. It is worth not- NN =Nmax

ing that the applicability of the method only requires that o

there are measurable quantities that are linear combinatiof41€r€Sh.n(x,t) is given by

of all the relevant density-matrix elements of the quantum oot

state of the system under study. Shonr (61 = (X) P (X) €™ En" 4)
The paper is organized as follows. In Sec. Il the problem N )

of construction of sampling functions is considered. Section§iere @, — w,. are the transition frequencies of the system,

Il and 1V, respectively, are devoted to the questions of obthe energy eigenfunctions in the position representation be-

servational time and data smearing. Concluding remarks arf@9 given by ,(X).

given in Sec. V. Elements of the least-squares method and

the statistical-error analysis are outlined in Appendixes A A. Harmonic oscillators

and B. The simplest system is an undamped harmonic oscillator

of frequency w,. The equidistant energy spectrum,
Il. SAMPLING EUNCTIONS wp— o,y =(N—n")w,, enables us to separate single diago-
nals of the density matrix. Introducing the Fourier transform
Let us consider a quantum-mechanical system, and as-
sume that at some initial time it is prepared in a state with
density matrixgn,n,=<n|é|n’>, where |n) are the energy
eigenstates of the system Hamiltonian. Further, let us assume
that there is a measurable time-dependenbbability) dis-  where w,=kw,, k=0,1,2,.., andT=27, we can express
tribution p(x,t) of a quantityx that can be given by a linear p®(x) in terms ofg,, . as
combination of all density-matrix elemengs, ,, that are ini-
tially excited, with linearly independent coefficient functions Nmax— K

Sy (X1), PUOO=" 2 Y n(X) @k (6)

p<k>(x)=% font e p(x,1), ©

[n(X)= (V72 n!) ~ Y2 exp(—x%/2)H,(x), x being dimen-
p(x,t)= E Shn (X, 1) @nnr - (D) sionles3. Using the least-squares method, EB).can easily
mh be inverted to obtain the density-matrix elements in terms of
the measured quantities. Comparing E§). with Eq. (Al)
When we consider, e.g., a particle that moves in a potentiaand applying Eq(A7), the reconstructed density-matrix ele-
well and is initially prepared in a bound stdteg., a molecu-  mentsp,,,, ,, are given by
lar vibration in a vibronic system below the dissociation '
level), only the discrete part of the energy spectrum is ex- -
cited (n=1,2,3,..). For thesake of transparency, in what Qn+k,n:J’ dx K¥(x)p™®(x), (7)
follows we restrict attention to discrete spectra. However,
replacing the sums with integra{sr combinations of sums
and integralsin Eq. (1), excitations of continuous parts of
the spectrum can be treated accordingly. For any physical Nmax— K
state th_e dens_ity—ma’;rix _elemer_@%,n/ /must eventual_ly de- ng)(x): E Fﬁff,)Bfk)(X)- (8
crease indefinitely with increasing(n’). Therefore it fol- =0

where
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Here, the matrixF®) is the inverse of the matribxG®, ®
FW=(GM®) =1, with the matrixG® being defined by PRX= X (e, (14

!
NN’ <Npax
ﬂ)n_Ll)n/ :ﬂ)k

(k) — (k) (k)
Gmn fdx B (X)By(X) ©  \wherep®(x) is defined by

_ _ 1 (7T )
(m,n=0,1,.. Npa—k), and o0(x) = lim TJ dt &oxp(x.t). 15

T—oo 0
B¥(X)= k() #1(%). (10)
We see that it is impossible in general to separate single
From Eqs.(8)—(10) it follows that diagonals of the density matrix by integrating the position
probability over some finite time interval. Actually, integra-
tion over an infinite time interval needs doing in order to
J dx KF(x)BY ()= 6, - (1) single out terms oscillating at chosen transition-frequencies
of the system exactly, which is of course illusory. We will
study this problem in Sec. lll in more detail. Here we assume
that the terms argapproximately singled out and the
density-matrix reconstruction can be performed inverting Eq.
(14) in the same way as for the harmonic oscillator, i.e.,

It was found[21] that whenn<n,, then the integral
kernels(8) are essentially identical to the samplifgattern
functions derived in Ref4]. Moreover, it can be shown that,
only for values ofn(n’) that are close toa, the two
methods yield substantially different sampling functions, the
oscillating behavior of the least-squares sampling functions Agdn'n,zf dx Kn'n,(x)p(k)(x), (16)
being less pronounced than those in Rdi. This suggests
that the statistical error of the reconstructed density-matriX,are

elements'én,n, with n(n') close ton,,,, is smaller for the

least-squares method than for the method in Ref.because

the statistical fluctuation depends on the squares of the sam- K (X)= 2
pling functions[see Eq(B4)]. The decrease of the statistical
error can be understood as a consequence ofatipeiori
information on the state to be reconstructed: the reconThe double indices,n’ (m,m’) are to be chosen such that
structed elementﬁén,n/ with n(n’) close tony,, cannot be  @pm)— ©nr(my= @k, andn,n’ (m,m’)<np,,. For choserk
“contaminated” by neighboring elements with indices the matrixF is given byF=G~*!, where

aboven,,,,. Clearly, when the probability of finding excited

levels aboven,,,, is not negligibly small, then the least- _

squares method can cause a systematical error. Taking into G”'”';m'm/_f AX By () B, (X, (18)
account the complete set of density-matrix elements, we

I:n,n’;m,m’Bm,m’(X)- (17)
m,m’ <npax
wm* Wy :wk

have, in place of Eq(6), Bn,n' (X) = ¢hn(X) m(X). (19
% To give an example, let us consider the bound motion of
PR =2 Uik X)¥n(X)Cnskn a particle in an anharmonic potential of the Morse type,
n=0 '
n — 0 1 - 2
max UX)= z=(e"*-1) (20)

k
= E + 2a®
n=0 N=Npa kK+1
(a>0). There are ny,, bound states, whereny,

X+ k(X) n(X) @nkcn - (12 —[ra"2-1/2]], with [[y]] being the integral part of.

] ) Their wave functions are given by ¢y(X)

Using Eqgs.(7) and(11), we derive :Nne—zlzzblng(Z) (n=0,1,..ny), where z=2a 2e

_ b=2a 2-2n-1, N3=abn!/T'(n+b+1) [23]. Restricting

~ _ attention to bound states we can work with,,=<n,, . In Fig.
Qn,n+k_Qn,n+k+ 2

@ntine 1 we plot examples of sampling functioi&,(x) =K 1(X)
that are required for the determination of the diagonal
® density-matrix element®,, [i.e., o,=0 in Egs.(14) and
Xf dx Ky (X) ¢ 1(X) ¢ (%), (13 (15)], including into the calculation all bound statése.,
Nmax=Nm), Which exactly corresponds to the case considered
where the second term represents the systematical error. in Ref. [22] applying the irregular wave-function method
(IWM) given in Ref[17]. Comparing the sampling functions
with those of the IWM, from Fig. 1 we see that the latter
yields sampling functions that show substantially larger os-
In order to treat the more general case of nonequidistartillations than those obtained by means of least-squares in-
energy levels, Eq(6) can be generalized to version. A reconstruction based on least-squares inversion is

n' =nNpaxk+1

B. Anharmonic systems
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(a) (b)
Ko(2)® Ko(2)®
2 2 FIG. 1. Sampling functions for reconstructing
1 1 the diagonal density-matrix elemengs, , of a
ok ok Morse oscillator §=0.279) from the position
distribution forn=2 (a) andn= 11 (b); full line:
- s least-squares method; dashed line: the WM.
-2 -2
s 0 5 10 15 20 o5 ) 5 10 15 20
X T

therefore expected to give rise to substantially smaller statisfor extracting information about the density-matrix elements
tical fluctuations than the IWM. from the position distribution even when the position distri-
To demonstrate this, we performed computer simulationdution is not measured exactly. This is not the case when the
of measurements and reconstructed the diagonal density/M is used, since the associated pattern functions rapidly
matrix elements from a set 0P510° measured data, assum- oscillate with large amplitudes over the whole region of
ing that the system is initially prepared in a stdtd ) probable positions, so that the position distribution must be
xa"(n!) “Y2. The exact density-matrix elements, and the ~ measured with high precision in order to extract from it the
exact time-averaged position distribution are shown in Figstelevant information on the density-matrix elements.
2(a) and 2b), respectively. The position distribution reveals
a structure of two peaks located at the turning points. The
peak on the side of weaker potential is broader than the peak
in the region of strong repulsive force. Comparing Figs) 2 Let us now turn to the problem of measurement time. In
and Zd), we see that the reconstruction based on leastthe case of an undamped harmonic oscillator the situation is
squares inversioffFig. 2(c)] yields much less fluctuating re- simple. Since the motion is periodic, observation of the po-
sults (especially for larger values of the quantum numbgr sition distribution over one perio@l must yield all informa-
than that using the IWNIFig. 2(d)]. The reason is that, in the tion about the quantum state. Moreover, taking into account
relevantx interval, in which the position distribution is es- the symmetryp(x,t+T/2)=p(—x,t), we see that observa-
sentially nonzero, the least-squares sampling functions bedion over one half-period is already sufficient for the
come weakly oscillating around zero when the gquantunguantum-state reconstruction, so tAd2 can be chosen as
numbern is increased, whereas larger values are attained atbservational time. In general the excitation energies are not
suchx values for which the position probability is smfdff.  equidistant, and they are not discrete even for a bound sys-
Figs. 1 and th)]. Hence the least-squares method is suitedem. Anharmonicities prevent the energy levels from being

Ill. OBSERVATIONAL TIME

(a) (b)
0.4
0.3
0.25 On,n 0.3 p(.?f)
0.2
0.2
0.15]
o1 01 FIG. 2. Reconstruction of the diagonal
0.05 ﬂ o density-matrix elements of a Morse oscillator
0 M= (a=0.279), which is assumed to be prepared in a
5 Nt —172 =-15, from
-0.0 0.1, T state  (n|¢g)eca™n! " a -5, .
A ” ° 2 ° N.=5x 10° recorded events in a simulated posi-
() (d) tion measurement: exact density-matrix elements
Onn (&); exact time-averaged position distribu-
03 03 N tion (b); density-matrix eIementsEmn recon-
025 Onn 0.25 Onn structed using least-squares inversfopn and the
02 02 IWM (d). The error bars indicate the predicted
' statistical error(half-error bar corresponds to a
0.15 0.15 . ..
single standard deviatigpn
0.1 0.1
O.OSJ,_‘ 0.05 m ’_h’_h
) M, o . theh | chebrh
00555 2 4 6 8 10 12 00555 2 4 6 8 10 12
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equidistant, and dampings that accompany any motion give - T

rise to line broadenings. Qn,n’:J dXJ dt Knn () f(t)p(x,t), (26)
In order to approximately apply the IWM to the density- 0

matrix reconstruction of an anharmonic _bound system, it hagith K, +(x) from Eq.(17).

been suggested to choose the observational TinmeEg. (5) ’

such that it is long compared with all inverse transition fre-

guencies[17]. For a Morse oscillator, observational times

that correspond to fractional revivals have been proposed The matrixG in Eq. (23) depends on the chosen time

[22]. To be more specific, the first fractional revival for a interval. When the time interval is too short, then the func-

Morse oscillator appears fof,=2m(ny+1/2)/Q, where tions gy(t) tend to linearly dependent functions. The func-

Q=(1-a%?2). Since the proposed observational times cartions f(t) become strongly oscillating with large ampli-

be comparable to or even longer than the characteristitudes, so that even small experimental inaccuracies can give

damping times, terms oscillating at discrete frequenciesise to large errors. To obtain reasonable values of the statis-

could not be singled out in this way. The question raises as ttical fluctuations, the required interval of time integration

whether or not it is possible to reconstruct the density matrixnay be too large. The observational time, however, can be

from data measured during a substantially shorter time interdrastically reduced when the inversion of E®) is per-

val. formed in time and space simultaneously. Direct application

of least-squares inversion to E@) yields

B. Nonfactorable sampling functions

A. Factorable sampling functions

- T
To answer the question, we recall that owing to the finite Qn,nfzf dxfo dt Knn/ (X, )p(x,t), (27)
value of n,,, there is only a finite humber of exponential
functions where the time- and position-dependéminfactorablgsam-
g =e" ' (w=w,—wy) 1) pling functions are given by
that—as long as dampings can be neglected—govern the Ky or(X,1) = Foo 0S5 (x1) (29)
time evolution ofp(x,t) [cf. Egs.(3) and(4)]. We can then o m,mznmax v’ S

construct sets of functions that are biorthonormal to these

exponentials in a chosen time interval in order to appropriand F=G™?, with the matrixG being now defined by

ately decompose(x,t) and extract from the decomposition ;

the density-matrix elements. In principle, any interahall _

comparedywith the damping timF))esanpbe usgd. Moreover, Gm'm’;”'“'_J’ dXJO dt S*‘mvm’(x’t)s"'“'(x’t)’ 29
there are various possibilities of constructing a biorthonor-

mal system to a finite set of linearly independent functionswhere the functions, ,/(x,t) are given by Eq(4).

on a given interval. A possible way is to construct them as Results of reconstruction of the density matrix within the
linear combinations of the exponentigg(t), where the ex- framework of Eqs.(27)—(29) are plotted in Fig. 3 for the
pansion coefficients can be calculated using least-squares isame system as in Fig. 2. In our computer experiments we
version. In Appendix A'see Eqs(Al) and(A7)], in a very  have assumed that measurements,at120 times in grela-
similar way to that in Sec. Il, the orthonormal set of func- tively smal) time interval T=6m/(w;— w,) are performed

tions can be given by andN,=5x10° events at each time are recorded. The grid
of measurement points is chosen such that the systematical
f()=> Fy gr (1) (22)  eror owing to discretization is reduced below the statistical
| , )

one. It should be noted that for chosen valueNpfboth the
systematical and statistical errors of the off-diagonal density-

whereF=G™', and the matrbG reads as matrix elements increase with the “distance” from the diag-
onal elementgfor the statistical error, see Fig(c3]. From
T * Figs. 3a)—3(d) we see that least-squares reconstruction
Gk,|:f dt gi (1)gi(t), (23 o o . :
0 yields a good estimation of the density-matrix elements even

. _ o for measurement times much shorter than tffest)
with T being the length of the chosen time interval. From thefractional-revival time~24=x/(w,— wy). In particular, Fig.

construction of the function§(t), it is clear that 3(d) reveals that the accuracy of the reconstruction is com-
parable with the accuracy that can be achieved—for a com-
det F (D) ()= S (24) parable number of total events—in the case when the obser-

o Ik Kok - vational time is extended to infinity.

It should be mentioned that the reconstruction scheme of
In place of Eq.(15), we have nonfactorable sampling functions may also be advanta-
geously applied to harmonic oscillators. An example may be
balanced homodyne detection of radiation-field modes. Here
the phase interval in which the quadrature-component distri-
butions are measured can be reduced below mterval.
and the reconstructed density matrix is then Recently it was suggested to transfer the formalism of

.
pM(x)= JO dt f(t)p(x,t), (25
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data of a simulated position measurement, in
which at each ofN;=120 equidistant times
Ng=5X 10 events are recorded, the overall time
interval beingT=6m/(w,— wp): exact density-
(d) matrix elementsg,, (a); reconstructed(real
parts of the density-matrix element@‘n,m (b);
predicted statistical errafo, , (c); and compari-
il son of the diagonal elements obtained from the
02 dhm data recorded during the actual measurement time
| : T (full lines) with the diagonal elements obtained

ol | s (for the same total number of events the case

: n 1A H: whenT— o (dashed lines(d).
o085t | (1 (1]

(a) (b)
Qn,m
0.2
e . Y N WA
S
0.2 f?—i{gi“é‘ﬁf = ; ; :
“"ll‘l J‘F FIG. 3. Reconstruction of the density-matrix
m 10 'bilﬂ' |l | = elements of the same system as in Fig. 2 from the
gl

nis

én,n 0.25

0.15

0 2 4 6 8 10 12

density-matrix reconstruction of quantum harmonic oscilla-impossible. Whereas attempts have been made to compen-
tors to classical tomographical reconstruction of objects wittsate for nonperfect detection in optical homodyne tomogra-
space-varying transparencieg!]. This can be advantageous phy [4,25], an open problem has been the inclusion of data
when the probing beam is very weak and a relatively smalkmearing in quantum-state reconstruction for more general
number of data are available. Application of the least-squaresystems. Smearing can also be inherent in the system evolu-
inversion with shorter intervals of the angular variable cantion. Open systems interacting with a reservoir are damped,
make the method also suitable for tomographical reconstruand fine structures that can be observed in the unperturbed
tion of objects whose projections on some directions are nadistribution are smeared out with increasing time. In this
available. section we will discuss both effects—smearing due to impre-

It is worth noting that the assumption that the measurecise measurement and system damping.
ments are performed over the whakeaxis may also be
dropped. When the availableinterval is limited, then—in A. Imprecise measurement
close analogy to limited time intervals—tlentegrals in the
reconstruction formulas can be reduced to this interval. )
Hence the least-squares inversion method also enables onesttt?ad ofp(x,t) a convolution
reconstruct the density matrix in cases when the time and
“position” intervals are smaller than the theoretically al- Hx,t)=f dx’f dt’'V(t'—t)W(x' —x)p(x’',t") (30
lowed ones.

It should be pointed out that in some cases it may happe
that theG matrix is quasisingular, so that it cannot be in-

verted in the usual way. Physically this means that the ava”fime window and the window for the quantity Recalling

able Fiata do_not carry enough _information abo.ut some of .th%qs.(3) and(4), p(x,t) can be related to the density-matrix
density-matrix elements. In this case regularized INVersion, aments as ' '

can be used, as discussed in AppendiksAe Eqs(A9) and
(A10)].

Mathematically, imprecise measurement means that in-

3 typically measured, wher€(t) and W(x), respectively,
are single-peak function&centered at zepodescribing the

px,= X Sun(xtenn, (31)
IV. DATA SMEARING n,n’ <Nmax

In general, arx measurement can only be performed with where
finite accuracy and the time cannot be controlled precisely, _
so that in practice one always deals with more or less Snn (X, 8)=Vp (D)W 1/ (X), (32
smeared data. For example, in optical homodyne tomography
nonperfect detection yields smeared quadrature-componewtth
distributions. In molecular emission tomogragley18] time-
resolved fluorescence spectra are measured, which necessar-
ily implies that a perfect resolution of frequency and time is

Vn’n,(t)=J' dt’ e (@n—en)t'y/(t —t) (33
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0 0.2 0.4 0.6 0.8 1
o.fl'

integrals ovex andt in Eq. (35) (and the integrals determin-
ing the G matrix) are replaced with sums.

It should be noted that due to data smearing it may be
necessary to perform a regularized inversion as mentioned
above. For example, when the measured data are relatively
insensitive to temporal changes of the quantum state, then it
may be better to set some reconstructed density-matrix ele-
ments close to zero rather than to let them become very
large, “trying to fit the data” as close as possible. Clearly,
one must correctly interpret the result—instead of claiming
that the elements are measured to be zero, one should say
that there is not enough evidence for nonzero values.

To illustrate the effect of imprecise data, let us restrict

FIG. 4. Effect of imperfect position measurement on the recon-2tt€ntion to an imperfect measuremenkofind consider the
struction of the diagonal density-matrix elements of a Morse oscilfe€construction of the diagonal density-matrix elements of a

lator as in Fig. 2. The number of measurement evBhteecessary

Morse oscillator as in Fig. 2, but with the true position dis-

for reconstructing the diagonal density-matrix elements with thetribution being convolved with a Gaussiaw/(x)exp
same precision as in the case of perfect detection is shown as[a—XZ/(Zof)L With increasing smearing parametet, the

function of the smearing parametey, .

and

Wn,n’(x):f dX ¢ (X") ghy (X )W(X' =X).  (34)

The inversion of Eq(31) can be done in the same way,
leading to Eqs(27)—(29), i.e.,

En,n’: j dXJ' dt ?n,n'(X,t)HX.t), (35

where K, ,/(x,t) is calculated according to Ed28) [to-
gether with Eq.(29)], but with S, ./(x,t) in place of
Sh.nv(X,t). The limits of integration in Eq(35) are given by
the chosen intervals of measurement. In pracfi€e,t) is
usually measured on a grid of poin{x,t,}, so that the

functions S,(x)=S;, n(x,t) are more and more broadened.
Since the difference between them for differenbecomes
less pronounced, the resulting sampling functions in(B§).
become oscillating to larger values, so that for chosen num-
ber of measurement events the statistical error increases. To
keep it comparably small, the number of events must be
increased accordingly. In Fig. 4 we plot the dependence on
the smearing parametet, of the numbeN, of measurement
events that are necessarily required such that the maximum
statistical error does not exceed the statistical error observed
for perfect detectionfFig. 2(c)]. As expected, the necessary
number of measurement events can increase drastically with
oy . It should be pointed out that sineg~0.73 corresponds

to the half-width of the ground-state position distribution of
the Morse oscillator, this value just corresponds to a detec-

tion efficiency ofp= 1 in balanced optical homodyning. This
detection efficiency is often regarded as a critical value be-

FIG. 5. Reconstruction of the density-matrix
elements of the same system as in Fig. 2 from a
simulated measurement of the smeared distribu-
tion p(x,t) [0y=0.27/(w;— wy), 0,=0.3] at
N,=30 equidistant timedduring the observa-
tional time T=67/(w,— wp)] andN,= 15 equi-
distant positiongin the interval—2=<x<10) for
a total number of events oN=10°, using
Tikhonov regularization with\=2x10"3: re-
constructedreal parts of thedensity-matrix ele-

850n,m T
0.05 Pnn 025 " “ !
o |

0.2

0.15;

0L [T L
H 1
Al

ments’én,m (a); predicted statistical errofe, n

(b); systematical errob.0,, , due to regulariza-
tion (¢); and comparison of the diagonal elements
obtained from the smeared data recorded during
the actual measurement tine (full lines) with

the diagonal elements obtainéfdr the same total
number of eveniswithout data smearing, and
T—co (dashed lines(d).
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(31), becomes insensitive to off-diagonal density-matrix ele-

e 1Anl ments that are far from the diagonal. To obtain reasonable
4 results, a regularized inversion of E®1) is necessary. Us-
s ing the Tikhonov regularizatiofsee Appendix A the regu-
’ larization parameter used in Fig. 5Ns=2x 10" 3. It should
5 be noted that with increasing value bfthe statistical error
[Fig. 5(b)] decreases, but the systematical efig. 5(c)]
55 increases. Suitable values ®fcan be obtained from the
) curve (see Appendix A of the problem which is plotted in
& Fig. 6. The best values of correspond to points near the
corner. Using singular-value decomposition in place of
65 . o : - ) Tikhonov regularization, similar results can be obtained.

1 o A comparison with results based on precise measurements
on the whole time and position scales is shown in Figl) 5

for the diagonal density-matrix elements. We see that for
smaller values of the results are almost equally good; how-
ever, with increasing the statistical error of the density-

low which a reconstruction of the density matrix is problem-Matrix elements reconstructed from the smeared data
atic. From Fig. 4, we see that this value does not play am$trongly increases. This can be understood from the fact that

particular role when least-squares inversion can be usedypical featuregsuch as rapid oscillations and larger values
This is a consequence of the fact that only a finite number o®f X) of higher-excited state contributions p¢x,t) are less
states is taken into account. available from the smeared data confined to a limited inter-
The application of the method to imprecise measuremenrital.
of both time and position is illustrated in Fig. 5 for the same  In the examples given above, we included in the recon-
system as in Fig. 3. In the computer simulations of measurestruction of the density matrix all bound states of the anhar-
ments the data are assumed to be smeared over Gaussiaonic oscillator @,,,=ny)- If there is some priori knowl-
windows, V(t)zexp[—tZ/(ZUtz)] and W(x)=exd—x¥  edge on the quantum state of the system, it may be possible
(202)], with 0,=0.27/(w,— wo) ando,=0.3. Itis further  to choosen ,,, such thatn,,<ny. In this way the dimen-
assumed that during an observational time67/(w,— wq) sion of the matrix that must be inverted can be reduced. An
measurements are performedNyt=30 (equidistant times  advantage is that the statistical error can also be reduced. To
and N,=15 (equidistant positions in an interval illustrate such a case, in Fig. 7 we apply the reconstruction
—2=<x=<10, the total number of recorded events beingscheme to a Morse oscillator whose anharmonicity
Nir=10°. Hence, at a given poink(,t,) of the chosen grid, (a=0.15) is smaller than that in Figs. 2—5, so that=43.
the number of recorded events is approximately given by Assuming that the system is again prepared in a state of the
form considered in Figs. 2-5, with the same parameter
Niot a=—1.5, we seh,=9. With increasingn ., the system-
M= f dxf dt Wx=x)V(t=t)p(x,t). (36  atical error(owing to truncatioh can be decreased, but the
statistical error is increased. Therefore, for a given number of
Since owing to time smearing fast oscillating terms canavailable datgand given stafeone expects
hardly be resolved, the measured distributiofx,t), Eq.

FIG. 6. TheL curve for the problem considered in Fig. 5;
A=10"%(0), 2x10 3 (+), 5x 1073 (*), 5X10 2 (X).

\
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FIG. 7. Reconstruction of the density-matrix elements of a system of the type considered in Fig. 2, but with smaller anharmonicity,

a=0.15, and a truncation parameter smaller than the number of bound stgigs9, from a simulated measurement of the smeared
distribution p(x,t) [oy=0.27/(w;— wy), o,=0.3] at N,=30 equidistant time§during the observational tim&=4/(w;— wg)] and

N, =15 equidistant positionéin the interval—2<x=<10) for a total number of events df,,,=10°, using Tikhonov regularization with
A=10"3: reconstructedreal parts of thedensity-matrix eIementEn'm (@), and predicted statistical erréip, n, (b).
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FIG. 8. Sampling functiorK, 4(x,t) for re-
constructing the real part of the density-matrix
elementg , (at timet=0) of a damped harmonic
oscillator for n,,,,=12 and two values of the
damping constar{t3=0.03 (a), 8=0.08 (b)].

that there is an optimum value of,,, for which the system-
atical error is just below the statistical one. Sn,n’(x’t):n%, Pn(X) Y ) Uy (1) (40)

B. Damped motion To demonstrate the method, let us return to the harmonic
oscillator considered in Sec. Il A, and assume that it does not

As already mentioned, the method can also be extended :
damped systems. Compared to a freely moving system, thﬁove freely but undergogs energy relaxati@]. In this

temporal evolution ofp(x,t) is now smeared owing to the Case the damping operaty acts as
coupling of the system to a reservoir. In this case the depen-
dence on time of the coefficient functios - (x,t) in Eq.

(4) is given by appropriately decaying functions in place ofhere g is a damping constant. Solving the master equation
purely oscillating exponentials ekpi(w,—wy)t]. Suppose yields

that the density matrix evolves according to some master

Ro=—pB(a’ap+pa’a—2apal), (42)

equation *
N Um,m’;n,n’(t):kéo §m+k,m’5m+|,n5m’+l,n’Um,k,l(t)
e=Le, (37 “2)
whereZ is a linear superoperator, for m’=m, where
SO R L[(m+Di(m+l+k)HY2
_ = _ - B(2m+Kk)t
Le=plHel+re, 39 Unit =1 " mimeir | ©°°
X (1—e 2! (43)

with R describing the effect ofMarkovian damping. Since
the solution of a master equati@¢B7) can always be repre-

sented in the form and Uy mnr n(t)=U> (t). Note that for the system

m,m’;n,n’
under study the effect of damping can be treated by rescaling
x and convolving(with respect to the rescaled variaptae
Cmm (=2 Unmnn(t)@nn (39) freely evolving position distribution with a Gaussian the
' ' ' time-dependent width of which increases with time.

Examples of the resulting sampling functions are plotted

2nn=0nn(0), the above given reconstruction formulas, in Fig. 8, and results of the density-matrix reconstruction are

such as Eqs(27)—(29), remain valid when the functions shown in Fig 9. In our computer experiments we assumed

Shnv(X,1) given in Eq.(4) are replaced with that 18 events are recorded at each of 42 times equidistantly

()

0.4
&nm

0.3

0.2

01 ; H
o . : P

FIG. 9. Reconstruction of the density-matrix elements of a damped harmonic oscifatd.(8), which is initially prepared in a state
|y=A(la)—|—a)) (e=1.5), from the data in a simulated position measuremenT foR: (a) reconstructed density matrixeal parj,
and (b) comparison of the reconstructed diagonal elements of darffpdines) and undampeddashed linesoscillators. The error bars
indicate the statistical error.
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distributed over a 2 interval. For small dampinfFig. 8a@]  structed. That is to say, the reconstructed values of those
the sampling functions are essentially the same as the andensity-matrix elements are set close to zero instead of deal-
lytical results for an undamped oscillat@ee, e.g., Ref4]). ing with strongly fluctuating values. Regularization de-
With increasing damping they reach larger absolute valuesireases the statistical error of the reconstructed density-
which (for chosen number of eventsnplies an increase of matrix elements, but simultaneously causes a systematical
the statistical error. Whereas for short times they can berror. It is therefore necessary to optimize the regularization
highly structurized, for long times they become more andsuch that the introduced systematical error is below the sta-
more structureless due to dampifigig. 8(b)]. As expected, tistical one.

for larger damping a larger number of events must be re- (vi) The method is essentially based on the fact that for
corded to keep the statistical error sufficiently small. Usingany physical quantum state the density-matrix elements

the same amount of data for an undamped oscillator reducesust eventually decrease indefinitely with increasirign),

the error such that it cannot be resolved on the scale used 8o that the density matrix can effectively be truncated at

Fig. Ab). Note that the reconstructed elememts, with ~ some large(but finite) value of n(m). Clearly, truncation
largern suffer from larger statistical errors, which of course always introduces a systematical error. In practice it is suf-
results from the fact that the damping is faster for h|gherf|C|ent to choose a truncation parameter for which—similar
excitations[see Eqs(42) and (43)]. to regularization—the systematical error is smaller than the
statistical one.
Finally, it should be mentioned that there have been other
V. SUMMARY AND CONCLUSIONS approaches to the problem of reconstruction of the quantum

We have considered the problem of reconstruction of thstate from finite sets of measured quantities and recorded
density matrix of a quantum-mechanical system from theda;a [27-29. In part]lcular, the entropic reconstruction
data available in realistic experiments. The system can be eme StUd'ed n Re 527’28] may be l_Jsed to reconstruct
linear oscillator as well as a more general system with gne d‘?ﬂs'ty matrix systemancal_ly, starting from only a few
nonequidistant energy spectrum. To obtain the completguam't'es and data and extending the scheme to larger sets.

quantum state, the measured quantities must be related to 41 the method suggested in Rg29], conditions are imposed

(nonvanishingdensity-matrix elements that must necessarilyon the reconstruction procedure such that the reconstructed

be known for characterizing the state. Then the problem t&PI€ct iS rgally a density dmitrléc.e., the dlagolnal elements

be solved is the inversion of sets of linear equations. HavingnUSt not be negative and the trace is equal to iinlipte
enough experimental data, such a system of linear equatio bgat tdhe Ielgst-squaresf metho?—and Otze; methods thaé are
can be overdetermined with respect to the density-matrix e[?25€d on linear transforms of measured data—can produce
ements sought. This enables one to perform the inversion i egatwe probabilities r_esultlng from e_xperlmental ihaccu-
different ways. Here we have applied the least-squarel@Cies: The reconstruction schemes in R¢&-29 are
method. The density-matrix elements are obtained as lineat2S€d on the solution of sets of nonlinear equations whose
combinations of the observed quantities, so that they fit th°lution may become extremely difficult when large sets of

measured data as close as possible. The main features of f{at@ must be processed. In contrast, the least-squares method
method can be summarized as follows enables one to reconstruct the density-matrix elements in real

(i) The application of the method is not restricted to theliMe in & very straightforward way. Such excesses as “nega-
reconstruction of the density matrix from certain specificiVé Probabilities” can be kept within the statistical error
quantities, such as the time-dependent position distributiogars whose magnitude can easily be estimated and eventually
considered in the IWM. Least-squares inversion can alway§ecreased by increasing the number of measurements.
be applied when there are measurable quantities that can be
related to all density-matrix elements that significantly con- ACKNOWLEDGMENTS
tribute to the quantum state of the system. .

(i) The flexibility of the method enables one to take into  1hiS Work was supported by the Deutsche Forschungsge-
account typical experimental effects and necessities, such emscr_\aft. One of ugT.O) is grqteful to U. Leonhardt for
data smearing owing to imprecise measurements and/giScussion about the Morse-oscillator problem and to S.M.
damped motion of the system and restrictions that limit thel @n .and S. Wallentowitz for advice about least-squares in-
size of measurement intervals and the amount of availablé€"S!on-
data. For example, using least-squares inversion and recon-

structing the density matrix of a particle moving in a Morse APPENDIX A: ELEMENTS

potential from the time-dependent position distribution, the OF LEAST-SQUARES INVERSION
measurement time can be substantially shorter than in the , ,

WM method. To give a summary of least-squares inverdid,21], let

(i) Both the reconstruction of the density matrix and theUS consider apossibly unknown n, dimensional “state”
estimation of the statistical error can be performed in real€ctorf and a stochastic linear transform
time. It is worth noting that least-squares inversion can be

used advantageously in order to reduce the statistical error y=Af+n (A1)
below the level given by the IWM for a comparable amount
of data. yielding anmg dimensional (ng=ng) “data” vectory avail-

(v) If the measured data are insensitive to certain densityable from measurements. Hefeis a givenmgXx ny matrix,
matrix elements, so-called regularized solutions can be corandn is an mg-dimensional vector whose random elements
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with zero means and covariance matihk ! describe the ability P(f). Assuming a Gaussian distribution and prefer-
noise associated with realistic measurements. The task is tihg the components close to zgibinformation about them

infer f fromy. is lacking, we may write
From the point of view of Bayesian inference, probability
distributions fory andf can be introduced, and the probabil- P(f)ecexp — 3 \%ff), (A8)
ity for a state vectof under the condition that there is a date
vectory can be given by where the(positive) parametei is a measure of the strength
of regularization. Maximization oP(f|y) then yields, on
P(fly)<P(y|f)P(f), (A2)  recalling Eqs(A2) and(A3),
whereP(y|f) is the corresponding conditional probability for f= (N2 +ATA) ATy, (A9)

the date vectoy, andP(f) is ana priori probability for the
state vectof. We then look for the state vectérfor which ~ Note that §21+ATA) has only positive eigenvalues and is
P(f|ly) is maximum. Assuming that the noise is Gaussian, weghus always invertible. A possible choicefs based on the
have so-calledL curve, which is a log-log plot oflf|| versus
[[Ay||, Ay=y—Af, for different values of\. The points on
P(y|f)cexd — 3(y— Af)TW(y—Af)]. (A3)  the horizontal branch correspond to large noise, whereas the
points on the vertical branch correspond to large data misfit.
The a priori probability P(f) represents our knowledge of Optimum choice ofa corresponds to points near the corner
the state when no data are available. HeR¢B can be set ©Of thelL curve. N _ _
constant if no state is to be preferred. Under the conditions APPlying singular-value decomposition, the inversion of
made, maximization oP(fly) is equivalent to minimization the matrix @A) is performed such that their eigenvalues

of whose absolute values are smaller than(ffasitive) param-
eter of regularizatiorr are treated as zeros, but the inver-
C(f)=(y—Af)TW(y—Af), (A4) sions are set zerginstead to infinity. This operation is
called “pseudoinverse” of a matrix,
from which we see that the minimum is attained aff sat- ~ ] + £
ATWA?:ATWy (A5) For o close to zero the result of EGA10) is similar to that

of Eq. (A7). With increasingo, smaller absolute values of

If W is diagonal(i.e., the noise is uncorrelatedhen Eq. COMponents of are preferred. .
(A4) represents a sum of weighted squares of the differences '€ effect of the regularization parametérsand o is
between the components of the data vegtand the com- similar. The statistical error of the reconstructed state vector

ponents of the transformed vectaf, each term of the sum f is decreased, but simultaneously bias toward zero is pro-
being multiplied by a weight given by the correspondingduced- Hence optimum parameters are those for which the

element oM. Provided thatATWA is not singular, from Eq. bias is just below the statistical fluctuation. The bias can be
(A5) we obtain ’ estimated, e.g., by Monte Carlo generating new sets of “syn-

thetic” data from the reconstructed state. From these sets one
?:( ATWA) 1AWy . (A6) can again reconstruct new setsfofThe difference between '
the mean value of the states reconstructed from the synthetic

Otherwise, the inversion of EGA5) is not unique and fur- data and the originally reconstructed state estimates the bias.

ther criteria must be used to select a solution. When the

matrix W is not known, then it may be set a multiple of a APPENDIX B: CALCULATION

unity matrix, so that Eq(A6) reduces to OF THE STATISTICAL ERROR
~ Let us suppose that the probabilities for observing a
f=(ATA) 1Ay, (A7) PR P g

physical quantityp,(s), can be related to quantitidg as

provided thatATA is not singular. EquatiofA7) still gives
the correct averaged inversion, but the statistical fluctuation p.(s)=2 Al (), (B1)
of the result may béslightly) enhanced. K

If the data are not sensitive enough to some state—vectorherel refers 1o the values of the quantity to be observed
components, then these components can hardly be detel’: 4 Y '

mined with reasonable accuracy. Mathematical{\WA be- and s is some parameter that can be changed during the

comes(quas)singular, and regularizations, such as Tikhonovf)bservat'on' Measuring;(s) for all | ands values, we may

ot ; - dentify the measured valugs(s) with a data vector, from
regularization and singular-value decomposition, are reld®! !
quired to solve approximately E6A5). For simplicity let us ~ Whicl—according to EqA7) or (A9) or (A10)—the quan-

setW=1, wherel is the unity matrix. tities f, can be reconstructed,

Using Tikhonov regularization, it is assumed that in the
absence of significant data some components _of the state f=> Ki(S)Bi(s). (B2)
vector can be preferred by a properly chosepriori prob- s
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The measured probabiliies can be given py(s) and

=n,(s)/N(s), where(for chosens) N(s) andn(s), respec-

tively, are the total number of events and the number of - , vain(s)]
events yielding the result. Assuming thatn,(s) has ap- Var(Refk)—% REKii(8)] NZ(s)
proximately a Poissonian distribution with mean and vari-

ance equal taN(s)p,(s), the mean and variance &f can
easily be calculated, namely,

_ pi(s)
—% RE K (s)]? NS (B4)

=~ (ni(s)) and for the imaginary part accordingly. In practice, the un-
<Refk>_% REKi(S)] N(s) _% REK(SIPIS) | hown exact probabilitiep,(s) are replaced with the esti-
(B3)  matesp(s).
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