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Least-squares inversion for density-matrix reconstruction
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We propose a method for reconstruction of the density matrix from measurable time-dependent~probability!
distributions of physical quantities. The applicability of the method based on least-squares inversion is—
compared with other methods—very universal. It can be used to reconstruct quantum states of various systems,
such as harmonic and anharmonic oscillators including molecular vibrations in vibronic transitions and damped
motion. It also enables one to take into account various specific features of experiments, such as limited sets of
data and data smearing owing to limited resolution. To illustrate the method, we consider a Morse oscillator
and give a comparison with other state-reconstruction methods suggested recently.@S1050-2947~97!07009-1#

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

During the last years the problem of quantum-state m
surement has been of increasing interest. Advances in ex
mental techniques, which have allowed physicists to mea
not only single observables of a quantum-mechanical sys
but—for certain systems—the quantum state as a wh
have stimulated both experimental and theoretical resea
A number of proposals for measuring quantum states h
been made, and various quantum-mechanical systems
been considered.

In quantum optics, balanced homodyning has been a v
fruitful method for tomographical reconstruction@1# of the
quantum state of optical fields. Measuring the quadratu
component statistics and applying inverse Radon transfo
on using in the numerical calculation the standard filte
back projection algorithm, the method was first applied
the determination of the Wigner function of single-mode s
nal fields @2#. The method~also called optical homodyn
tomography! has also been extended to direct sampling
the density matrix in a quadrature-component basis@3# and
in the Fock basis@4,5#. Tomographical methods can also b
used for reconstructing the quantum state of matter syste
such as molecular vibrations@6# or the transverse motion o
an atom beam@7#. In the case of molecular vibrations th
time- and frequency-resolved fluorescence spectrum of
molecule plays the role of the quadrature components,
vided that the vibrational frequencies in the two electro
states are almost equal to each other and the vibrational
tion is approximately harmonic. Further, tomographic
methods have been considered in the reconstruction of
~harmonic! center-of-mass motion of trapped atoms@8#.

Also including additional vacuum inputs in the balanc
detection scheme, the quantum state of optical fields ca
directly measured in terms of phase-space functions@9#.
Combining unbalanced homodyning with photon chopp

*Permanent address: Faculty of Natural Sciences, Palacky´ Uni-
versity, Svobody 26, 77146 Olomouc, Czech Republic.
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@10#, the displaced photon-number statistics of the sig
field can be measured, from which the quantum state ca
obtained in terms of phase-space functions@11# and the den-
sity matrix in the Fock basis@12#. The method also applies t
matter systems, and was used to reconstruct the quan
state of the~harmonic! center-of mass motion of trapped ion
@13#. In this case the coherent displacements are induced
rf fields that are resonant to the motional frequency.

The methods considered so far are restricted to undam
harmonic oscillators. However, in many physical systems
harmonic motions~modified by dampings! are observed. Re
cently, interesting nonclassical quantum states have b
prepared in systems that are typically anharmonic. Exam
are the generation of amplitude-squeezed states in molec
@6,14# and of Schro¨dinger catlike states in atomic Rydber
wave packets@15#. A first attempt has been made to reco
struct the quantum state of anharmonic molecular vibrati
using time-resolved fluorescence spectroscopy@16#. It has
been shown that the density matrix can be obtained by in
sion of high-dimensional systems of linear equations. An
proach was given in Ref.@17#, extending the pattern-function
formalism to potentials more general than harmonic, and
constructing the density matrix from the time-dependent
sition distribution. However, the quantities that are typica
measured in molecular spectroscopy are different from p
tion distributions in general. For example, the time-ga
fluorescence spectrum measured in experiments of the
described in Ref.@6# is determined by the Franck-Condo
overlap factors of the vibrational wave functions in two ele
tronic states. For anharmonic vibrations this spectrum can
be identified with distributions of the type of position distr
butions, and therefore it should be used directly in order
reconstruct the density matrix@18#.

In any case there have been a number of open quest
such as those concerning determination of suitable samp
functions mapping the measured data onto the density
trix, the choice of optimum observational times, and the
clusion into the scheme of damping effects and data sm
ing. The aim of the present paper is to offer possible answ
to some of these. For all the systems mentioned, the gen
1788 © 1997 The American Physical Society
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56 1789LEAST-SQUARES INVERSION FOR DENSITY-MATRIX . . .
problem to be solved is the inversion of linear equations t
relate the measured quantities to the density-matrix elem
of the system under study. This can be done in a very ef
tive way using the least-squares method, which dates bac
the eras of Legendre and Gauss@19#. Actually, the method
has been used in the context of quantum-state reconstru
problems, such as the reconstruction of the quantum sta
cavity fields by quantum-state endoscopy@20#, vibrations of
trapped ions@13#, and optical field by balanced@21# and
unbalanced@12# homodyning.

For comparison with previous work@17,22#, we will re-
strict attention to the reconstruction of the density mat
from the time-dependent position distribution of a partic
moving in an anharmonic potential. We show that the lea
squares method can advantageously be used in order t
duce the statistical error. We further show that the flexibil
of the method enables us to perform the reconstruction f
data recorded during shorter time intervals and to take
account typical experimental features, such as smeared
imperfect data. Finally, the method can also be used to
construct quantum states of damped systems. It is worth
ing that the applicability of the method only requires th
there are measurable quantities that are linear combina
of all the relevant density-matrix elements of the quant
state of the system under study.

The paper is organized as follows. In Sec. II the probl
of construction of sampling functions is considered. Secti
III and IV, respectively, are devoted to the questions of o
servational time and data smearing. Concluding remarks
given in Sec. V. Elements of the least-squares method
the statistical-error analysis are outlined in Appendixes
and B.

II. SAMPLING FUNCTIONS

Let us consider a quantum-mechanical system, and
sume that at some initial time it is prepared in a state w

density matrix%n,n85^nu%̂un8&, where un& are the energy
eigenstates of the system Hamiltonian. Further, let us ass
that there is a measurable time-dependent~probability! dis-
tribution p(x,t) of a quantityx that can be given by a linea
combination of all density-matrix elements%n,n8 that are ini-
tially excited, with linearly independent coefficient function
Sn,n8(x,t),

p~x,t !5 (
n,n8

Sn,n8~x,t !%n,n8 . ~1!

When we consider, e.g., a particle that moves in a poten
well and is initially prepared in a bound state~e.g., a molecu-
lar vibration in a vibronic system below the dissociati
level!, only the discrete part of the energy spectrum is
cited (n51,2,3,...). For thesake of transparency, in wha
follows we restrict attention to discrete spectra. Howev
replacing the sums with integrals~or combinations of sums
and integrals! in Eq. ~1!, excitations of continuous parts o
the spectrum can be treated accordingly. For any phys
state the density-matrix elements%n,n8 must eventually de-
crease indefinitely with increasingn(n8). Therefore it fol-
t
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lows that the expression on the right-hand side of Eq.~1! can
always be approximated to any desired degree of accu
by setting

%n,n8'0 for n~n8!.nmax, ~2!

if nmax is suitably large. From the assumptions made, it
clear that Eq.~1! can, in principle, be inverted in order t
obtain the quantum state from the measured functionp(x,t).

A powerful method for solving the problem is leas
squares inversion. To illustrate the method, let us supp
that p(x,t) is a ~one-dimensional! position probability of a
particle moving in a potential well. When during the tim
interval of observation the temporal evolution of the qua
tum state of the particle is only governed by the syst
Hamiltonian, then Eq.~1! together with Eq.~2! can be writ-
ten as

p~x,t !5 (
n,n8<nmax

Sn,n8~x,t !%n,n8 , ~3!

whereSn,n8(x,t) is given by

Sn,n8~x,t !5cn~x!cn8~x!e2 i ~vn2vn8!t. ~4!

Here vn2vn8 are the transition frequencies of the syste
the energy eigenfunctions in the position representation
ing given bycn(x).

A. Harmonic oscillators

The simplest system is an undamped harmonic oscilla
of frequency vo . The equidistant energy spectrum
vn2vn85(n2n8)vo , enables us to separate single diag
nals of the density matrix. Introducing the Fourier transfo

p~k!~x!5
1

T E
0

T

dt eivktp~x,t !, ~5!

wherevk5kvo , k50,1,2,..., andT52p, we can express
p(k)(x) in terms of%n,n1k as

p~k!~x!5 (
n50

nmax2k

cn1k~x!cn~x!%n1k,n ~6!

@cn(x)5(Ap2nn!) 21/2 exp(2x2/2)Hn(x), x being dimen-
sionless#. Using the least-squares method, Eq.~6! can easily
be inverted to obtain the density-matrix elements in terms
the measured quantities. Comparing Eq.~6! with Eq. ~A1!
and applying Eq.~A7!, the reconstructed density-matrix ele

ments%̃n1k,n are given by

%̃n1k,n5E dx Kn
~k!~x!p~k!~x!, ~7!

where

Kn
~k!~x!5 (

l 50

nmax2k

Fn,l
~k!Bl

~k!~x!. ~8!
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1790 56T. OPATRNÝ, D.-G. WELSCH, AND W. VOGEL
Here, the matrixF(k) is the inverse of the matrixG(k),
F(k)5(G(k))21, with the matrixG(k) being defined by

Gm,n
~k! 5E dx Bm

~k!~x!Bn
~k!~x! ~9!

(m,n50,1, . . .nmax2k), and

Bl
~k!~x!5c l 1k~x!c l~x!. ~10!

From Eqs.~8!–~10! it follows that

E dx Kn
~k!~x!Bn8

~k!
~x!5dn,n8 . ~11!

It was found @21# that whenn!nmax then the integral
kernels~8! are essentially identical to the sampling~pattern!
functions derived in Ref.@4#. Moreover, it can be shown tha
only for values ofn(n8) that are close tonmax, the two
methods yield substantially different sampling functions,
oscillating behavior of the least-squares sampling functi
being less pronounced than those in Ref.@4#. This suggests
that the statistical error of the reconstructed density-ma

elements%̃n,n8 with n(n8) close tonmax is smaller for the
least-squares method than for the method in Ref.@4#, because
the statistical fluctuation depends on the squares of the s
pling functions@see Eq.~B4!#. The decrease of the statistic
error can be understood as a consequence of thea priori
information on the state to be reconstructed: the rec

structed elements%̃n,n8 with n(n8) close tonmax cannot be
‘‘contaminated’’ by neighboring elements with indice
abovenmax. Clearly, when the probability of finding excite
levels abovenmax is not negligibly small, then the leas
squares method can cause a systematical error. Taking
account the complete set of density-matrix elements,
have, in place of Eq.~6!,

p~k!~x!5 (
n50

`

cn1k~x!cn~x!%n1k,n

5S (
n50

nmax2k

1 (
n5nmax2k11

` D
3cn1k~x!cn~x!%n1k,n . ~12!

Using Eqs.~7! and ~11!, we derive

%̃n,n1k5%n,n1k1 (
n85nmax2k11

`

%n81k,n8

3E dx Kn
~k!~x!cn81k~x!cn8~x!, ~13!

where the second term represents the systematical error

B. Anharmonic systems

In order to treat the more general case of nonequidis
energy levels, Eq.~6! can be generalized to
e
s

ix

m-

-

to
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p~k!~x!5 (
n,n8<nmax

vn2vn85vk

cn~x!cn8~x!%n,n8 , ~14!

wherep(k)(x) is defined by

p~k!~x!5 lim
T→`

1

T E
0

T

dt eivktp~x,t !. ~15!

We see that it is impossible in general to separate sin
diagonals of the density matrix by integrating the positi
probability over some finite time interval. Actually, integra
tion over an infinite time interval needs doing in order
single out terms oscillating at chosen transition-frequenc
of the system exactly, which is of course illusory. We w
study this problem in Sec. III in more detail. Here we assu
that the terms are~approximately! singled out and the
density-matrix reconstruction can be performed inverting E
~14! in the same way as for the harmonic oscillator, i.e.,

%̃n,n85E dx Kn,n8~x!p~k!~x!, ~16!

where

Kn,n8~x!5 (
m,m8<nmax

vm2vm85vk

Fn,n8;m,m8Bm,m8~x!. ~17!

The double indicesn,n8 (m,m8) are to be chosen such tha
vn(m)2vn8(m8)5vk , andn,n8 (m,m8)<nmax. For chosenk
the matrixF is given byF5G21, where

Gn,n8;m,m85E dx Bn,n8~x!Bm,m8~x!, ~18!

Bn,n8~x!5cn~x!cm~x!. ~19!

To give an example, let us consider the bound motion
a particle in an anharmonic potential of the Morse type,

U~x!5
1

2a2 ~e2ax21!2 ~20!

(a.0). There are nM bound states, wherenM
5†@a2221/2#‡, with †@y#‡ being the integral part ofy.
Their wave functions are given by cn(x)
5Nne2z/2zb/2Ln

b(z) (n50,1,...,nM), where z52a22e2ax,
b52a2222n21, Nn

25abn!/G(n1b11) @23#. Restricting
attention to bound states we can work withnmax<nM . In Fig.
1 we plot examples of sampling functionsKn(x)[Kn,n(x)
that are required for the determination of the diago
density-matrix elements%nn @i.e., vk50 in Eqs. ~14! and
~15!#, including into the calculation all bound states~i.e.,
nmax5nM!, which exactly corresponds to the case conside
in Ref. @22# applying the irregular wave-function metho
~IWM ! given in Ref.@17#. Comparing the sampling function
with those of the IWM, from Fig. 1 we see that the latt
yields sampling functions that show substantially larger
cillations than those obtained by means of least-squares
version. A reconstruction based on least-squares inversio
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FIG. 1. Sampling functions for reconstructin
the diagonal density-matrix elements%n,n of a
Morse oscillator (a50.279) from the position
distribution forn52 ~a! andn511 ~b!; full line:
least-squares method; dashed line: the IWM.
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therefore expected to give rise to substantially smaller sta
tical fluctuations than the IWM.

To demonstrate this, we performed computer simulati
of measurements and reconstructed the diagonal den
matrix elements from a set of 53103 measured data, assum
ing that the system is initially prepared in a state^nuc&
}an(n!) 21/2. The exact density-matrix elements%nn and the
exact time-averaged position distribution are shown in F
2~a! and 2~b!, respectively. The position distribution revea
a structure of two peaks located at the turning points. T
peak on the side of weaker potential is broader than the p
in the region of strong repulsive force. Comparing Figs. 2~c!
and 2~d!, we see that the reconstruction based on le
squares inversion@Fig. 2~c!# yields much less fluctuating re
sults~especially for larger values of the quantum numbern!
than that using the IWM@Fig. 2~d!#. The reason is that, in th
relevantx interval, in which the position distribution is es
sentially nonzero, the least-squares sampling functions
come weakly oscillating around zero when the quant
numbern is increased, whereas larger values are attaine
suchx values for which the position probability is small@cf.
Figs. 1 and 2~b!#. Hence the least-squares method is sui
s-

s
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e
ak

t-

e-

at

d

for extracting information about the density-matrix eleme
from the position distribution even when the position dist
bution is not measured exactly. This is not the case when
IWM is used, since the associated pattern functions rap
oscillate with large amplitudes over the whole region
probable positions, so that the position distribution must
measured with high precision in order to extract from it t
relevant information on the density-matrix elements.

III. OBSERVATIONAL TIME

Let us now turn to the problem of measurement time.
the case of an undamped harmonic oscillator the situatio
simple. Since the motion is periodic, observation of the p
sition distribution over one periodT must yield all informa-
tion about the quantum state. Moreover, taking into acco
the symmetryp(x,t1T/2)5p(2x,t), we see that observa
tion over one half-period is already sufficient for th
quantum-state reconstruction, so thatT/2 can be chosen a
observational time. In general the excitation energies are
equidistant, and they are not discrete even for a bound
tem. Anharmonicities prevent the energy levels from be
l
r
a

i-
nts
-

d
a

FIG. 2. Reconstruction of the diagona
density-matrix elements of a Morse oscillato
(a50.279), which is assumed to be prepared in
state ^nuc&}ann! 21/2, a521.5, from
Ne553103 recorded events in a simulated pos
tion measurement: exact density-matrix eleme
%n,n ~a!; exact time-averaged position distribu

tion ~b!; density-matrix elements%̃n,n recon-
structed using least-squares inversion~c!; and the
IWM ~d!. The error bars indicate the predicte
statistical error~half-error bar corresponds to
single standard deviation!.
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equidistant, and dampings that accompany any motion g
rise to line broadenings.

In order to approximately apply the IWM to the densit
matrix reconstruction of an anharmonic bound system, it
been suggested to choose the observational timeT in Eq. ~5!
such that it is long compared with all inverse transition f
quencies@17#. For a Morse oscillator, observational time
that correspond to fractional revivals have been propo
@22#. To be more specific, the first fractional revival for
Morse oscillator appears forT152p(nM11/2)/V, where
V5(12a2/2). Since the proposed observational times c
be comparable to or even longer than the character
damping times, terms oscillating at discrete frequenc
could not be singled out in this way. The question raises a
whether or not it is possible to reconstruct the density ma
from data measured during a substantially shorter time in
val.

A. Factorable sampling functions

To answer the question, we recall that owing to the fin
value of nmax there is only a finite number of exponenti
functions

gk~ t !5e2 ivkt ~vk5vn2vn8! ~21!

that—as long as dampings can be neglected—govern
time evolution ofp(x,t) @cf. Eqs.~3! and ~4!#. We can then
construct sets of functions that are biorthonormal to th
exponentials in a chosen time interval in order to appro
ately decomposep(x,t) and extract from the decompositio
the density-matrix elements. In principle, any interval~small
compared with the damping times! can be used. Moreover
there are various possibilities of constructing a biorthon
mal system to a finite set of linearly independent functio
on a given interval. A possible way is to construct them
linear combinations of the exponentialsgk(t), where the ex-
pansion coefficients can be calculated using least-square
version. In Appendix A@see Eqs.~A1! and ~A7!#, in a very
similar way to that in Sec. II, the orthonormal set of fun
tions can be given by

f k~ t !5(
l

Fk,lgl* ~ t !, ~22!

whereF5G21, and the matrixG reads as

Gk,l5E
0

T

dt gk* ~ t !gl~ t !, ~23!

with T being the length of the chosen time interval. From t
construction of the functionsf k(t), it is clear that

E
0

T

dt fk~ t !gk8~ t !5dk,k8 . ~24!

In place of Eq.~15!, we have

p~k!~x!5E
0

T

dt fk~ t !p~x,t !, ~25!

and the reconstructed density matrix is then
e
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e
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%̃n,n85E dxE
0

T

dt Kn,n8~x! f k~ t !p~x,t !, ~26!

with Kn,n8(x) from Eq. ~17!.

B. Nonfactorable sampling functions

The matrix G in Eq. ~23! depends on the chosen tim
interval. When the time interval is too short, then the fun
tions gk(t) tend to linearly dependent functions. The fun
tions f k(t) become strongly oscillating with large ampl
tudes, so that even small experimental inaccuracies can
rise to large errors. To obtain reasonable values of the st
tical fluctuations, the required interval of time integratio
may be too large. The observational time, however, can
drastically reduced when the inversion of Eq.~3! is per-
formed in time and space simultaneously. Direct applicat
of least-squares inversion to Eq.~3! yields

%̃n,n85E dxE
0

T

dt Kn,n8~x,t !p~x,t !, ~27!

where the time- and position-dependent~nonfactorable! sam-
pling functions are given by

Kn,n8~x,t !5 (
m,m8<nmax

Fn,n8;m,m8Sm,m8
* ~x,t !, ~28!

andF5G21, with the matrixG being now defined by

Gm,m8;n,n85E dxE
0

T

dt Sm,m8
* ~x,t !Sn,n8~x,t !, ~29!

where the functionsSn,n8(x,t) are given by Eq.~4!.
Results of reconstruction of the density matrix within t

framework of Eqs.~27!–~29! are plotted in Fig. 3 for the
same system as in Fig. 2. In our computer experiments
have assumed that measurements atNt5120 times in a~rela-
tively small! time intervalT56p/(v12v0) are performed
andNe553103 events at each time are recorded. The g
of measurement points is chosen such that the systema
error owing to discretization is reduced below the statisti
one. It should be noted that for chosen value ofNt both the
systematical and statistical errors of the off-diagonal dens
matrix elements increase with the ‘‘distance’’ from the dia
onal elements@for the statistical error, see Fig. 3~c!#. From
Figs. 3~a!–3~d! we see that least-squares reconstruct
yields a good estimation of the density-matrix elements e
for measurement times much shorter than the~first!
fractional-revival time'24p/(v12v0). In particular, Fig.
3~d! reveals that the accuracy of the reconstruction is co
parable with the accuracy that can be achieved—for a c
parable number of total events—in the case when the ob
vational time is extended to infinity.

It should be mentioned that the reconstruction scheme
nonfactorable sampling functions may also be advan
geously applied to harmonic oscillators. An example may
balanced homodyne detection of radiation-field modes. H
the phase interval in which the quadrature-component dis
butions are measured can be reduced below ap interval.
Recently it was suggested to transfer the formalism
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FIG. 3. Reconstruction of the density-matr
elements of the same system as in Fig. 2 from
data of a simulated position measurement,
which at each of Nt5120 equidistant times
Ne553103 events are recorded, the overall tim
interval beingT56p/(v12v0): exact density-
matrix elements%n,m ~a!; reconstructed~real

parts of the! density-matrix elements%̃n,m ~b!;
predicted statistical errord%n,m ~c!; and compari-
son of the diagonal elements obtained from t
data recorded during the actual measurement t
T ~full lines! with the diagonal elements obtaine
~for the same total number of events! in the case
whenT→` ~dashed lines! ~d!.
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density-matrix reconstruction of quantum harmonic osci
tors to classical tomographical reconstruction of objects w
space-varying transparencies@24#. This can be advantageou
when the probing beam is very weak and a relatively sm
number of data are available. Application of the least-squa
inversion with shorter intervals of the angular variable c
make the method also suitable for tomographical reconst
tion of objects whose projections on some directions are
available.

It is worth noting that the assumption that the measu
ments are performed over the wholex axis may also be
dropped. When the availablex interval is limited, then—in
close analogy to limited time intervals—thex integrals in the
reconstruction formulas can be reduced to this interv
Hence the least-squares inversion method also enables o
reconstruct the density matrix in cases when the time
‘‘position’’ intervals are smaller than the theoretically a
lowed ones.

It should be pointed out that in some cases it may hap
that theG matrix is quasisingular, so that it cannot be i
verted in the usual way. Physically this means that the av
able data do not carry enough information about some of
density-matrix elements. In this case regularized invers
can be used, as discussed in Appendix A@see Eqs.~A9! and
~A10!#.

IV. DATA SMEARING

In general, anx measurement can only be performed w
finite accuracy and the time cannot be controlled precis
so that in practice one always deals with more or l
smeared data. For example, in optical homodyne tomogra
nonperfect detection yields smeared quadrature-compo
distributions. In molecular emission tomography@6,18# time-
resolved fluorescence spectra are measured, which nece
ily implies that a perfect resolution of frequency and time
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impossible. Whereas attempts have been made to com
sate for nonperfect detection in optical homodyne tomog
phy @4,25#, an open problem has been the inclusion of d
smearing in quantum-state reconstruction for more gen
systems. Smearing can also be inherent in the system ev
tion. Open systems interacting with a reservoir are damp
and fine structures that can be observed in the unpertu
distribution are smeared out with increasing time. In th
section we will discuss both effects—smearing due to imp
cise measurement and system damping.

A. Imprecise measurement

Mathematically, imprecise measurement means that
stead ofp(x,t) a convolution

p̄~x,t !5E dx8E dt8V~ t82t !W~x82x!p~x8,t8! ~30!

is typically measured, whereV(t) and W(x), respectively,
are single-peak functions~centered at zero! describing the
time window and the window for the quantityx. Recalling
Eqs.~3! and ~4!, p̄(x,t) can be related to the density-matr
elements as

p̄~x,t !5 (
n,n8<nmax

S̄n,n8~x,t !%n,n8 , ~31!

where

S̄n,n8~x,t !5Vn,n8~ t !Wn,n8~x!, ~32!

with

Vn,n8~ t !5E dt8e2 i ~vn2vn8!t8V~ t82t ! ~33!
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and

Wn,n8~x!5E dx8cn~x8!cn8~x8!W~x82x!. ~34!

The inversion of Eq.~31! can be done in the same wa
leading to Eqs.~27!–~29!, i.e.,

%̃n,n85E dxE dt K̄n,n8~x,t ! p̄~x,t !, ~35!

where K̄n,n8(x,t) is calculated according to Eq.~28! @to-
gether with Eq. ~29!#, but with S̄n,n8(x,t) in place of
Sn,n8(x,t). The limits of integration in Eq.~35! are given by
the chosen intervals of measurement. In practicep̄(x,t) is
usually measured on a grid of points$xl ,tk%, so that the

FIG. 4. Effect of imperfect position measurement on the rec
struction of the diagonal density-matrix elements of a Morse os
lator as in Fig. 2. The number of measurement eventsNe necessary
for reconstructing the diagonal density-matrix elements with
same precision as in the case of perfect detection is shown
function of the smearing parametersx .
integrals overx andt in Eq. ~35! ~and the integrals determin
ing theG matrix! are replaced with sums.

It should be noted that due to data smearing it may
necessary to perform a regularized inversion as mentio
above. For example, when the measured data are relat
insensitive to temporal changes of the quantum state, the
may be better to set some reconstructed density-matrix
ments close to zero rather than to let them become v
large, ‘‘trying to fit the data’’ as close as possible. Clear
one must correctly interpret the result—instead of claim
that the elements are measured to be zero, one should
that there is not enough evidence for nonzero values.

To illustrate the effect of imprecise data, let us restr
attention to an imperfect measurement ofx, and consider the
reconstruction of the diagonal density-matrix elements o
Morse oscillator as in Fig. 2, but with the true position d
tribution being convolved with a GaussianW(x)}exp
@2x2/(2sx

2)#. With increasing smearing parametersx the
functions S̄n(x)[S̄n,n(x,t) are more and more broadene
Since the difference between them for differentn becomes
less pronounced, the resulting sampling functions in Eq.~35!
become oscillating to larger values, so that for chosen nu
ber of measurement events the statistical error increases
keep it comparably small, the number of events must
increased accordingly. In Fig. 4 we plot the dependence
the smearing parametersx of the numberNe of measurement
events that are necessarily required such that the maxim
statistical error does not exceed the statistical error obse
for perfect detection@Fig. 2~c!#. As expected, the necessa
number of measurement events can increase drastically
sx . It should be pointed out that sincesx'0.73 corresponds
to the half-width of the ground-state position distribution
the Morse oscillator, this value just corresponds to a de

tion efficiency ofh5 1
2 in balanced optical homodyning. Thi

detection efficiency is often regarded as a critical value

-
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ing
FIG. 5. Reconstruction of the density-matr
elements of the same system as in Fig. 2 from
simulated measurement of the smeared distri
tion p̄(x,t) @s t50.2p/(v12v0), sx50.3# at
Nt530 equidistant times@during the observa-
tional time T56p/(v12v0)# and Nx515 equi-
distant positions~in the interval22<x<10! for
a total number of events ofNtot5105, using
Tikhonov regularization withl5231023: re-
constructed~real parts of the! density-matrix ele-

ments%̃n,m ~a!; predicted statistical errord%n,m

~b!; systematical errords%n,m due to regulariza-
tion ~c!; and comparison of the diagonal elemen
obtained from the smeared data recorded dur
the actual measurement timeT ~full lines! with
the diagonal elements obtained~for the same total
number of events! without data smearing, and
T→` ~dashed lines! ~d!.
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low which a reconstruction of the density matrix is proble
atic. From Fig. 4, we see that this value does not play
particular role when least-squares inversion can be u
This is a consequence of the fact that only a finite numbe
states is taken into account.

The application of the method to imprecise measurem
of both time and position is illustrated in Fig. 5 for the sam
system as in Fig. 3. In the computer simulations of meas
ments the data are assumed to be smeared over Gau
windows, V(t)5exp@2t2/(2st

2)# and W(x)5exp@2x2/
(2sx

2)], with s t50.2p/(v12v0) andsx50.3. It is further
assumed that during an observational timeT56p/(v12v0)
measurements are performed atNt530 ~equidistant! times
and Nx515 ~equidistant! positions in an interval
22<x<10, the total number of recorded events bei
Ntot5105. Hence, at a given point (xl ,tk) of the chosen grid,
the number of recorded events is approximately given by

nl ,k5
Ntot

T E dxE dt W~x2xl !V~ t2tk!p~x,t !. ~36!

Since owing to time smearing fast oscillating terms c
hardly be resolved, the measured distributionp̄(x,t), Eq.

FIG. 6. The L curve for the problem considered in Fig. 5
l51024 ~s!, 231023 ~1!, 531023 (* ), 531022 ~3!.
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~31!, becomes insensitive to off-diagonal density-matrix e
ments that are far from the diagonal. To obtain reasona
results, a regularized inversion of Eq.~31! is necessary. Us-
ing the Tikhonov regularization~see Appendix A!, the regu-
larization parameter used in Fig. 5 isl5231023. It should
be noted that with increasing value ofl the statistical error
@Fig. 5~b!# decreases, but the systematical error@Fig. 5~c!#
increases. Suitable values ofl can be obtained from theL
curve ~see Appendix A! of the problem which is plotted in
Fig. 6. The best values ofl correspond to points near th
corner. Using singular-value decomposition in place
Tikhonov regularization, similar results can be obtained.

A comparison with results based on precise measurem
on the whole time and position scales is shown in Fig. 5~d!
for the diagonal density-matrix elements. We see that
smaller values ofn the results are almost equally good; how
ever, with increasingn the statistical error of the density
matrix elements reconstructed from the smeared d
strongly increases. This can be understood from the fact
typical features~such as rapid oscillations and larger valu
of x! of higher-excited state contributions top(x,t) are less
available from the smeared data confined to a limited in
val.

In the examples given above, we included in the rec
struction of the density matrix all bound states of the anh
monic oscillator (nmax5nM). If there is somea priori knowl-
edge on the quantum state of the system, it may be poss
to choosenmax such thatnmax,nM . In this way the dimen-
sion of the matrix that must be inverted can be reduced.
advantage is that the statistical error can also be reduced
illustrate such a case, in Fig. 7 we apply the reconstruc
scheme to a Morse oscillator whose anharmonic
(a50.15) is smaller than that in Figs. 2–5, so thatnM543.
Assuming that the system is again prepared in a state of
form considered in Figs. 2–5, with the same parame
a521.5, we setnmax59. With increasingnmax the system-
atical error~owing to truncation! can be decreased, but th
statistical error is increased. Therefore, for a given numbe
available data~and given state! one expects
onicity,
red
FIG. 7. Reconstruction of the density-matrix elements of a system of the type considered in Fig. 2, but with smaller anharm
a50.15, and a truncation parameter smaller than the number of bound states,nmax59, from a simulated measurement of the smea
distribution p̄(x,t) @s t50.2p/(v12v0), sx50.3# at Nt530 equidistant times@during the observational timeT54p/(v12v0)# and
Nx515 equidistant positions~in the interval22<x<10! for a total number of events ofNtot5106, using Tikhonov regularization with

l51023: reconstructed~real parts of the! density-matrix elements%̃n,m ~a!, and predicted statistical errord%n,m ~b!.
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FIG. 8. Sampling functionK0,1(x,t) for re-
constructing the real part of the density-matr
element%0,1 ~at timet50! of a damped harmonic
oscillator for nmax512 and two values of the
damping constant@b50.03 ~a!, b50.08 ~b!#.
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that there is an optimum value ofnmax for which the system-
atical error is just below the statistical one.

B. Damped motion

As already mentioned, the method can also be extende
damped systems. Compared to a freely moving system,
temporal evolution ofp(x,t) is now smeared owing to th
coupling of the system to a reservoir. In this case the dep
dence on time of the coefficient functionsSn,n8(x,t) in Eq.
~4! is given by appropriately decaying functions in place
purely oscillating exponentials exp@2i(vn2vn8)t#. Suppose
that the density matrix evolves according to some ma
equation

%̇̂5L̂%̂, ~37!

whereL̂ is a linear superoperator,

L̂%̂5
1

i\
@Ĥ,%̂#1R̂%̂, ~38!

with R̂ describing the effect of~Markovian! damping. Since
the solution of a master equation~37! can always be repre
sented in the form

%m,m8~ t !5 (
n,n8

Um,m8;n,n8~ t !%n,n8 , ~39!

%n,n8[%n,n8(0), the above given reconstruction formula
such as Eqs.~27!–~29!, remain valid when the function
Sn,n8(x,t) given in Eq.~4! are replaced with
to
he

n-

f

er

Sn,n8~x,t !5 (
m,m8

cm~x!cm8~x!Um,m8;n,n8~ t !. ~40!

To demonstrate the method, let us return to the harmo
oscillator considered in Sec. II A, and assume that it does
move freely but undergoes energy relaxation@26#. In this
case the damping operatorR̂ acts as

R̂%̂52b~a†a%1%a†a22a%a†!, ~41!

whereb is a damping constant. Solving the master equat
yields

Um,m8;n,n8~ t !5 (
k,l 50

`

dm1k,m8dm1 l ,ndm81 l ,n8Um,k,l~ t !

~42!

for m8>m, where

Um,k,l~ t !5
1

l ! F ~m1 l !! ~m1 l 1k!!

m! ~m1k!! G1/2

eikte2b~2m1k!t

3~12e22bt! l , ~43!

and Um8,m;n8,n(t)5Um,m8;n,n8
* (t). Note that for the system

under study the effect of damping can be treated by resca
x and convolving~with respect to the rescaled variable! the
freely evolving position distribution with a Gaussian th
time-dependent width of which increases with time.

Examples of the resulting sampling functions are plot
in Fig. 8, and results of the density-matrix reconstruction
shown in Fig 9. In our computer experiments we assum
that 106 events are recorded at each of 42 times equidista
e
FIG. 9. Reconstruction of the density-matrix elements of a damped harmonic oscillator (b50.08), which is initially prepared in a stat
uc&5A(ua&2u2a&) (a51.5), from the data in a simulated position measurement forT52p: ~a! reconstructed density matrix~real part!,
and ~b! comparison of the reconstructed diagonal elements of damped~full lines! and undamped~dashed lines! oscillators. The error bars
indicate the statistical error.
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distributed over a 2p interval. For small damping@Fig. 8~a!#
the sampling functions are essentially the same as the
lytical results for an undamped oscillator~see, e.g., Ref.@4#!.
With increasing damping they reach larger absolute valu
which ~for chosen number of events! implies an increase o
the statistical error. Whereas for short times they can
highly structurized, for long times they become more a
more structureless due to damping@Fig. 8~b!#. As expected,
for larger damping a larger number of events must be
corded to keep the statistical error sufficiently small. Us
the same amount of data for an undamped oscillator red
the error such that it cannot be resolved on the scale use

Fig. 9~b!. Note that the reconstructed elements%̃n,n with
largern suffer from larger statistical errors, which of cour
results from the fact that the damping is faster for high
excitations@see Eqs.~42! and ~43!#.

V. SUMMARY AND CONCLUSIONS

We have considered the problem of reconstruction of
density matrix of a quantum-mechanical system from
data available in realistic experiments. The system can b
linear oscillator as well as a more general system with
nonequidistant energy spectrum. To obtain the comp
quantum state, the measured quantities must be related
~nonvanishing! density-matrix elements that must necessa
be known for characterizing the state. Then the problem
be solved is the inversion of sets of linear equations. Hav
enough experimental data, such a system of linear equa
can be overdetermined with respect to the density-matrix
ements sought. This enables one to perform the inversio
different ways. Here we have applied the least-squa
method. The density-matrix elements are obtained as lin
combinations of the observed quantities, so that they fit
measured data as close as possible. The main features o
method can be summarized as follows.

~i! The application of the method is not restricted to t
reconstruction of the density matrix from certain spec
quantities, such as the time-dependent position distribu
considered in the IWM. Least-squares inversion can alw
be applied when there are measurable quantities that ca
related to all density-matrix elements that significantly co
tribute to the quantum state of the system.

~ii ! The flexibility of the method enables one to take in
account typical experimental effects and necessities, suc
data smearing owing to imprecise measurements an
damped motion of the system and restrictions that limit
size of measurement intervals and the amount of availa
data. For example, using least-squares inversion and re
structing the density matrix of a particle moving in a Mor
potential from the time-dependent position distribution, t
measurement time can be substantially shorter than in
IWM method.

~iii ! Both the reconstruction of the density matrix and t
estimation of the statistical error can be performed in r
time. It is worth noting that least-squares inversion can
used advantageously in order to reduce the statistical e
below the level given by the IWM for a comparable amou
of data.

~v! If the measured data are insensitive to certain dens
matrix elements, so-called regularized solutions can be c
a-
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structed. That is to say, the reconstructed values of th
density-matrix elements are set close to zero instead of d
ing with strongly fluctuating values. Regularization d
creases the statistical error of the reconstructed den
matrix elements, but simultaneously causes a systema
error. It is therefore necessary to optimize the regularizat
such that the introduced systematical error is below the
tistical one.

~vi! The method is essentially based on the fact that
any physical quantum state the density-matrix elements%n,m
must eventually decrease indefinitely with increasingn(m),
so that the density matrix can effectively be truncated
some large~but finite! value of n(m). Clearly, truncation
always introduces a systematical error. In practice it is s
ficient to choose a truncation parameter for which—simi
to regularization—the systematical error is smaller than
statistical one.

Finally, it should be mentioned that there have been ot
approaches to the problem of reconstruction of the quan
state from finite sets of measured quantities and recor
data @27–29#. In particular, the entropic reconstructio
scheme studied in Refs.@27,28# may be used to reconstruc
the density matrix systematically, starting from only a fe
quantities and data and extending the scheme to larger
In the method suggested in Ref.@29#, conditions are imposed
on the reconstruction procedure such that the reconstru
object is really a density matrix~i.e., the diagonal element
must not be negative and the trace is equal to unity!. Note
that the least-squares method—and other methods tha
based on linear transforms of measured data—can prod
‘‘negative probabilities’’ resulting from experimental inaccu
racies. The reconstruction schemes in Refs.@27–29# are
based on the solution of sets of nonlinear equations wh
solution may become extremely difficult when large sets
data must be processed. In contrast, the least-squares m
enables one to reconstruct the density-matrix elements in
time in a very straightforward way. Such excesses as ‘‘ne
tive probabilities’’ can be kept within the statistical erro
bars whose magnitude can easily be estimated and event
decreased by increasing the number of measurements.
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APPENDIX A: ELEMENTS
OF LEAST-SQUARES INVERSION

To give a summary of least-squares inversion@30,21#, let
us consider a~possibly unknown! n0 dimensional ‘‘state’’
vector f and a stochastic linear transform

y5Af1n ~A1!

yielding anm0 dimensional (m0>n0) ‘‘data’’ vector y avail-
able from measurements. HereA is a givenm03n0 matrix,
andn is anm0-dimensional vector whose random elemen
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with zero means and covariance matrixW21 describe the
noise associated with realistic measurements. The task
infer f from y.

From the point of view of Bayesian inference, probabil
distributions fory andf can be introduced, and the probab
ity for a state vectorf under the condition that there is a da
vectory can be given by

P~ fuy!}P~yuf!P~ f!, ~A2!

whereP(yuf) is the corresponding conditional probability fo
the date vectory, andP(f) is ana priori probability for the
state vectorf. We then look for the state vectorf for which
P(fuy) is maximum. Assuming that the noise is Gaussian,
have

P~yuf!}exp@2 1
2 ~y2Af !†W~y2Af !#. ~A3!

The a priori probability P(f) represents our knowledge o
the state when no data are available. HenceP(f) can be set
constant if no state is to be preferred. Under the conditi
made, maximization ofP(fuy) is equivalent to minimization
of

C~ f!5~y2Af !†W~y2Af !, ~A4!

from which we see that the minimum is attained atf5 f̃ sat-
isfying the equation

A†WAf̃ 5A†Wy. ~A5!

If W is diagonal~i.e., the noise is uncorrelated!, then Eq.
~A4! represents a sum of weighted squares of the differen
between the components of the data vectory and the com-
ponents of the transformed vectorAf , each term of the sum
being multiplied by a weight given by the correspondi
element ofW. Provided thatA†WA is not singular, from Eq.
~A5! we obtain

f̃5~A†WA !21A†Wy. ~A6!

Otherwise, the inversion of Eq.~A5! is not unique and fur-
ther criteria must be used to select a solution. When
matrix W is not known, then it may be set a multiple of
unity matrix, so that Eq.~A6! reduces to

f̃5~A†A!21A†y, ~A7!

provided thatA†A is not singular. Equation~A7! still gives
the correct averaged inversion, but the statistical fluctua
of the result may be~slightly! enhanced.

If the data are not sensitive enough to some state-ve
components, then these components can hardly be d
mined with reasonable accuracy. Mathematically,A†WA be-
comes~quasi!singular, and regularizations, such as Tikhon
regularization and singular-value decomposition, are
quired to solve approximately Eq.~A5!. For simplicity let us
setW5I , whereI is the unity matrix.

Using Tikhonov regularization, it is assumed that in t
absence of significant data some components of the s
vector can be preferred by a properly chosena priori prob-
to

e

s

es

e

n

or
er-

-

te

ability P(f). Assuming a Gaussian distribution and prefe
ring the components close to zero~if information about them
is lacking!, we may write

P~ f!}exp~2 1
2 l2f†f!, ~A8!

where the~positive! parameterl is a measure of the strengt
of regularization. Maximization ofP(fuy) then yields, on
recalling Eqs.~A2! and ~A3!,

f̃5~l2I1A†A!21A†y. ~A9!

Note that (l2I1A†A) has only positive eigenvalues and
thus always invertible. A possible choice ofl is based on the
so-calledL curve, which is a log-log plot ofzufuz versus
zuDyuz, Dy5y2Af , for different values ofl. The points on
the horizontal branch correspond to large noise, whereas
points on the vertical branch correspond to large data mi
Optimum choice ofl corresponds to points near the corn
of the L curve.

Applying singular-value decomposition, the inversion
the matrix (A†A) is performed such that their eigenvalu
whose absolute values are smaller than the~positive! param-
eter of regularizations0 are treated as zeros, but the inve
sions are set zero~instead to infinity!. This operation is
called ‘‘pseudoinverse’’ of a matrix,

f̃5Pseudoinverse~A†A;s0!A†y. ~A10!

For s0 close to zero the result of Eq.~A10! is similar to that
of Eq. ~A7!. With increasings0 smaller absolute values o
components off̃ are preferred.

The effect of the regularization parametersl and s0 is
similar. The statistical error of the reconstructed state vec
f̃ is decreased, but simultaneously bias toward zero is p
duced. Hence optimum parameters are those for which
bias is just below the statistical fluctuation. The bias can
estimated, e.g., by Monte Carlo generating new sets of ‘‘s
thetic’’ data from the reconstructed state. From these sets
can again reconstruct new sets off̃. The difference between
the mean value of the states reconstructed from the synth
data and the originally reconstructed state estimates the

APPENDIX B: CALCULATION
OF THE STATISTICAL ERROR

Let us suppose that the probabilities for observing
physical quantity,pl(s), can be related to quantitiesf k as

pl~s!5(
k

Al ,k~s! f k , ~B1!

where l refers to the values of the quantity to be observ
and s is some parameter that can be changed during
observation. Measuringpl(s) for all l ands values, we may
identify the measured valuesp̃l(s) with a data vector, from
which—according to Eqs.~A7! or ~A9! or ~A10!—the quan-
tities f̃ k can be reconstructed,

f̃ k5(
l ,s

Kk,l~s! p̃l~s!. ~B2!
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The measured probabilities can be given byp̃l(s)
5nl(s)/N(s), where~for chosens! N(s) andnl(s), respec-
tively, are the total number of events and the number
events yielding the resultl . Assuming thatnl(s) has ap-
proximately a Poissonian distribution with mean and va
ance equal toN(s)pl(s), the mean and variance off̃ k can
easily be calculated, namely,

^Re f̃ k&5(
l ,s

Re@Kk,l~s!#
^nl~s!&
N~s!

5(
l ,s

Re@Kk,l~s!#pl~s!

~B3!
s

s.
-

-

tt

tt.

e

r-

J.
f

-

and

Var~Re f̃ k!5(
l ,s

Re@Kk,l~s!#2
Var@nl~s!#

N2~s!

5(
l ,s

Re@Kk,l~s!#2
pl~s!

N~s!
, ~B4!

and for the imaginary part accordingly. In practice, the u
known exact probabilitiespl(s) are replaced with the esti
matesp̃l(s).
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