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Reflection above potential steps

R. Côté,1 H. Friedrich,1,2 and J. Trost2
1Harvard-Smithsonian Center for Astrophysics, ITAMP, 60 Garden Street, Cambridge, Massachusetts 02138

2Physik-Department, Technische Universita¨t München, 85747 Garching, Germany
~Received 21 March 1997!

Classically forbidden reflection by a potential step is analyzed by matching WKB waves to solutions of a
Schrödinger equation involving the tail of the potential on the up side of the step. Analytic expressions for the
leading deviation of the reflection probability from unity and the phase of the reflection amplitude at the top of
the step are derived for potentials decaying as an inverse power of the coordinateV(x)}21/xa , a.2.
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I. INTRODUCTION

The first-order WKB approximation is a powerful tool fo
accurately approximating solutions to the Schro¨dinger equa-
tion in the case of small and slowly varying wavelengt
@1–3#. The probabilities for classically forbidden process
such as below-barrier tunneling or above-barrier reflect
are then generally exponentially small and the standard
cedures for treating such cases utilize the classical turn
points in the complex plane@1–4#. Such procedures are dif
ficult or impossible to implement if the turning-point stru
ture is not known or not simple or if the potential is n
analytic. An example for an alternative approach has b
presented recently by Maitra and Heller, who used the W
wave function without classically forbidden components
the input to a distorted-wave Born approximation and ac
rately reproduced the exact results for transmission well
low a barrier and for reflection well above a barrier or st
potential@5#.

It remains a challenge to find a general procedure
describing classically forbidden transmission or reflect
when the probabilities are large, which is typically the ca
for energies near the top of a barrier or step. Waves
become very long in such situations, which occur, e.g.
collisions of cold atoms, and the applicability of the WK
method in this regime recently has become a topic of so
interest@6–8#.

In this paper we study classically forbidden reflection b
potential step, in particular at energies close to the top of
step where the reflection probability approaches unity. T
treatment is based on straightforward matching of a W
wave function to an exact or good approximate solution
the Schro¨dinger equation at a real matching point, chos
such that the de Broglie wavelength varies sufficien
slowly in the entire domain extending from the matchi
point to the asymptotic region from which the incomin
wave originates. The purpose of this paper is twofold. F
we demonstrate that the probability for reflection by a su
ciently deep and smooth step is determined by the beha
of the tail of the potential on the up side of the step. Seco
we derive, for potentials decaying as21/xa with a.2, ana-
lytic expressions for the leading deviation of the reflecti
probability from unity and for the phase of the reflectio
amplitude at the top of the step.
561050-2947/97/56~3!/1781~7!/$10.00
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II. THE MATCHING PROCEDURE

In this section we explain our procedure, which is bas
on matching a superposition of incoming and reflected W
waves to an exact or accurate approximate solution of
Schrödinger equation bridging the region where the WK
approximation is inaccurate. Consider a particle of massm
incident fromx→2` with kinetic energy\2k1

2/2m, which
may be reflected by a potentialV(x) or transmitted to
x→1` with kinetic energy\2k2

2/2m5E; the potential is
taken to vanish forx→1` and to assume a constant neg
tive value2V052(k1

22k2
2)\2/2m for x→2`. The essen-

tial condition for applicability of the WKB method is that th
de Broglie wavelength l52p\/p(x), with p(x)
5A2m@E2V(x)#, varies sufficiently slowly,

1

2pUdl

dxU5\Um

p3

dV

dxU!1. ~1!

If Eq. ~1! is fulfilled in the entire regionx<xm , then the
exact wave function should be well approximated by t
WKB ansatz

cWKB5
1

Ap~x!
FexpS i

\Exm

x

p~x8!dx8D
1RWKBexpS 2

i

\Exm

x

p~x8!dx8D G , x<xm . ~2!

Requiring the WKB wave function~2! to asymptotically
(x→2`) match the exact wave function, assumed prop
tional to exp(ik1x)1Rexp(2ik1x) , leads to a relation be
tweenRWKB and the conventionally defined reflection amp
tudeR,

RWKB5R exp@ ih~xm!#. ~3!

The phase

h~xm!52 lim
x→2`

S 1

\Exm

x

p~x8!dx82k1xD ~4!
1781 © 1997 The American Physical Society
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1782 56R. CÔTÉ, H. FRIEDRICH, AND J. TROST
accounts for the fact that the matching pointxm is not at
x50 and that the local momentump may differ from its
asymptotic value\k1 at finite values ofx.

The reflection amplitude can be determined if we know
the pointxm fulfilling Eq. ~1!, an exact or accurate approx
mate wave functionc(x) corresponding to a purely outgoin
wave@proportional to exp (ik2x)# for x→1`. Matching the
logarithmic derivative of the WKB wave function~2! to the
logarithmic derivativez5c8(xm)/c(xm) at xm gives

RWKB52

z2
i

\
p~xm!1

p8~xm!

2p~xm!

z1
i

\
p~xm!1

p8~xm!

2p~xm!

. ~5!

The conventional reflection amplitudeR can be derived from
RWKB via the phase correction~3!.

Fulfillment of the condition~1! at xm means that the term
p8/2p in the numerator and the denominator on the rig
hand side of Eq.~5! are small compared top/\. Neglecting
these terms leads to the simplified expression

RWKB52

z2
i

\
p~xm!

z1
i

\
p~xm!

, ~6!

which actually corresponds to naı¨vely matching the wave
function c to a superposition exp@ip(xm!~x2xm)/\]
1RWKBexp@2ip(xm)(x2xm)/\# of incoming and reflected
plane waves with wave numbers given by the local class
momentum at the pointxm .

In the following section, we apply the straightforwa
matching procedure outlined above to a Woods-Saxon po
tial in order to illustrate that the reflection probability
solely determined by the tail of the potential on the up s
of the step, when the step is deep enough. In Sec. IV
apply the same procedure to derive reflection amplitudes
potentials asymptotically proportional to21/xa. For ener-
gies near the top of the step, we obtain, in Sec. V, anal
expressions for the leading deviation of the reflection pr
ability from unity and for the phase of the reflection amp
tude.

III. THE WOODS-SAXON STEP

Above-barrier reflection by a Woods-Saxon step

VWS~x!5
V0

11 exp~2x/a!
2V0 ~7!

is described in detail in@1#. The reflection probability is

uRu25@sinh p~k12k2!a#2/@sinh p~k11k2!a#2. ~8!

For any given large or small value ofk2a, Eq. ~8! reduces to

uRu2; exp~24pk2a! ~9!

in the limit of largek1a, which corresponds to the limit o
large values of the relative diffusenessar of the step
t

-

al

n-

e
e
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ar [aA2mV0/\5aAk1
22k2

2. The expression for the phas
of R involves several complexG functions@1#; for largek1a
and energies near the top of the step,k2→0, it becomes

arg~R!52
p

2
14k1aln2, for k1a@1 , k2→0. ~10!

This is the same phase as obtained for classically allow
reflection at energies approaching the top of the step fr
below. The term14k1aln2 in Eq. ~10! is just twice the
difference between the phases accumulated by the W
wave between2` and 1` and by a free wave with wave
numberk1 between2` and zero:

2 lim
x2→2`

S 1

\Ex2

`

p~x!dx1k1x2D 54k1aln2; ~11!

the additional term2p/2 in Eq. ~10! is the phase loss tha
the WKB wave undergoes, in the short-wave limit, wh
reflected at infinity@9#.

We shall now use the procedure outlined in Sec. II
demonstrate that the probability for reflection by the~suffi-
ciently deep! step is determined by the tail of the potenti
alone. The Woods-Saxon potential~7! approaches an expo
nential decay

VWS,as~x!52V0exp~2x/a! ~12!

for largex/a. At zero energy, the variation of the de Brogl
wavelength in this potential is given by

1

2pUdl

dxU5 exp~x/2a!

2ar
. ~13!

For E.0 the variation of the de Broglie wavelength is
monotonically decreasing function of energy. For a su
ciently large relative diffusenessar the right-hand side of Eq
~13! can be much smaller than unity, even for values of
coordinate that are so much larger thana, that the asymptotic
form ~12! is a good approximation of the potential. In such
situation, we may use the exact solution of the Schro¨dinger
equation with the potential~12!, namely@10#,

c~x!5Jn~y!, ~14!

to match the WKB wave function Eq.~2!. In ~14! Jn(y) is
the Bessel function of ordern522ik2a and its argument is
y52arexp(2x/2a), which is equal to the inverse of th
right-hand side of Eq.~13!.

At a fixed value ofk2, the asymptotic situationx→1`
corresponds to small values of the argumenty, for which the
Bessel function~14! approaches exp(1ik2x), corresponding
to a rightward-traveling transmitted wave. On the other ha
a small value of Eq.~13! means a large value ofy, so at an
appropriate matching pointxm with the corresponding large
ym we may use the large argument expansion of the Be
function,

c~xm!'A 2

pym
cos~ym1 ipk2a2p/4!, ~15!

whereby the logarithmic derivativez at xm becomes
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56 1783REFLECTION ABOVE POTENTIAL STEPS
z5
1

2a
@ymtan~ym1 ipk2a2p/4!1O~1!#. ~16!

Inserting this value ofz into the matching equation~6! and
usingym@2k2a leads to

RWKB5 exp~22pk2a! exp~2iym2 ip/2!. ~17!

The reflection probabilityuRWKBu25uRu25 exp(24pk2a) is
precisely the expression~9!, valid for large relative diffuse-
ness. The phase ofRWKB contains the term2p/2 as in Eq.
~10! and the contribution 2ym ; at the top of the step,k2→0,
2ym is twice the action integral (1/\)*xm

` p(x)dx. With Eq.

~11! we see that the expression~17! yields the correct phas
~10! for the conventionally defined reflection amplitudeR
via Eqs.~3! and ~4! at the top of the step.

The derivation above shows that the probability for refle
tion by a sufficiently deep Woods-Saxon step is determi
by the asymptotic tail of the potential alone; the shape of
step itself and its depth are irrelevant for the derivation. T
shape and the precise value of the depth do, however, e
crucially into the WKB wave function~2!, which now offers
an accurate approximation to the exact wave function in
entire rangex<xm . These features of reflection are chara
teristic of any sufficiently smooth step potential for whic
the variation of the de Broglie wavelength is small eve
where except in the tail region of the potential. The exam
of potentials decaying as an inverse power of the coordin
is treated in the next section.

IV. POTENTIAL ASYMPTOTICALLY PROPORTIONAL
TO 21/xa

Consider a step potentialV(x) that behaves asymptot
cally, x→1`, as

Va~x!52
\2

2m

ba22

xa
. ~18!

The variation~1! of the de Broglie wavelength at energy ze
is

1

2p Udl

dxU5 a

2S x

b D a/221

. ~19!

The properties of the Schro¨dinger equation with the homo
geneous potential~18! depend only on the dimensionles
‘‘reduced wave number’’k2b. For energies near zero th
wavelengths become arbitrarily large asymptotically, but
~19! shows that the WKB condition~1! is fulfilled if

S x

b D ~a22!/2

!
2

a
, ~20!

which can be achieved for sufficiently small values ofx/b,
as long asa.2.
-
d
e
e
ter

e
-

-
e
te

.

For finite values ofk2b the quantitydl/dx has a maxi-
mum at (b/x)a52(a11)(k2b)2/(a22) and decrease
monotonically towards lower and higher values ofx/b. Its
maximum value becomes equal to 323/2a/k2b for large a
and is arbitrarily large for sufficiently smallk2b. The depen-
dence of (1/2p)dl/dx on x/b5k2x/k2b is illustrated in
Fig. 1 for the casea58 and various values of the reduce
wave numberk2b. The localized peak grows and moves t
wards larger values ofx/b ask2b approaches zero. Note tha
(1/2p)dl/dx at any given pointx is a monotonically de-
creasing function of energy as long asE.V(x).

The behavior of (1/2p)dl/dx is qualitatively similar to
that shown in Fig. 1 for any negative potential vanishi
faster than 1/x2 asymptotically. At small but finite energie
the condition~1! is fulfilled in the limits x→` and, for the
inverse power-law potentials~18! with a.2, also forx→0,
but there are ‘‘badlands’’ in between, where the WKB a
proximation breaks down.

The efficacy of the matching equations~5! and ~6! for
obtaining the reflection probability is illustrated in Fig. 2 fo
the powera58 and the reduced momentumk2b50.1. Fig-
ure 2~a! shows two linearly independent solutions of th
Schrödinger equation,cc(x) and cs(x), which evolve into
cosk2x and sink2x, respectively, in the asymptotic regio
x→1`. The wave functionc(x)5cc(x)1 ics(x) corre-
sponds to a rightward-traveling outgoing wave asympto
cally. The acceleration of the particle asx approaches zero is
indicated by decreasing wavelengths and amplitudes of
oscillations. Figure 2~c! shows the reflection probabilities a
derived by matching incoming and reflected WKB waves
c(x) via Eqs.~5! and~6! as functions of the matching poin
xm . After violent variations asxm passes through the bad
lands @Fig. 2~b!#, uRWKBu2 settles down and oscillates wit
rapidly diminishing amplitude to a well-defined limitin
value asxm approaches zero. Note that the full WKB matc
ing condition ~5! ~dotted line! leads to more rapid conver
gence than the truncated condition~6! ~solid line!. If uRWKBu2

as calculated from the tail part of the potential has conver
to a given number at a pointxm , then this number defines th
reflection probability for any step potential obtained by co
tinuing the potential sufficiently smoothly into the regio
x,xm .

FIG. 1. Variation (1/2p)udl/dxu of the de Broglie wavelength
for the attractive inverse power-law potential~18! for a58 and
various values of the reduced momentumk2b.
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In order to demonstrate this in a concrete example,
have calculated the reflection probabilities in the potentia

V~x!52
V0

11$ ln@11 exp~x/a!#%a
. ~21!

For x→1` this potential has the form~18! with

ba225
2m

\2 V0aa; ~22!

for x→2` we have

V~x!;2V0F12 expS 2
auxu

a D G , ~23!

i.e.,V(x) approaches2V0 exponentially on the down side o
the step.

We fixed the scale for the reduced momentum by cho
ing b51 and calculated the reflection probability by nume
cally integrating the Schro¨dinger equation with the potentia
~21! for various values of the parametera, which defines the

FIG. 2. ~a! Real and imaginary parts of the solution of th
Schrödinger equation with the potential~18!, which asymptotically
(x→1`) corresponds to a rightward-traveling outgoing wa
exp(ik2x). Herea58 and the reduced momentum isk2b50.1. The
potential and the variation of the de Broglie wavelength for t
case are shown in~b!. ~c! Reflection probabilityuRWKBu2 derived by
matching incoming and reflected WKB wave functions to the ex
solutionc @~a!# according to the full matching condition~5! ~dotted
line! and to the truncated matching condition~6! ~solid line! as
functions of the matching pointxm . As xm approaches zero, th
reflection probability converges to a well-defined value, which
0.8747 . . . in this case.
e

s-

range over whichV(x) differs from its asymptotic forms and
is related to the depth of the potential via Eq.~22!. The
results are shown in Fig. 3 fora58 and in Fig. 4 fora53.
As a is decreased, the reflection probabilities converge r
idly, not necessarily monotonically, to the limiting cas
a50, where the potential becomes infinitely deep, and
homogeneous tail~18! solely determines the reflection prob

t

FIG. 3. Probability for reflection by the potential step~21! as a
function of the asymptotic (x→1`) momentumk2 (b51) for
a58 and various values of the parametera.

FIG. 4. Probability for reflection by the potential step~21! as a
function of the asymptotic (x→1`) momentumk2 (b51) for
a53 and various values of the parametera.
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56 1785REFLECTION ABOVE POTENTIAL STEPS
ability. The convergence of the reflection probability
a→0 is demonstrated in detail in Fig. 5 fork250.01. The
crosses on the ordinate indicate the limiting values calcula
with the limiting form~18! of the potential~21! via Eq.~5! as
described above.

V. ANALYTIC RESULTS

There are no known analytic solutions for step potent
with the asymptotic behavior~18!, but the Schro¨dinger equa-
tion with this potential alone can be solved in terms of Bes
functions atE50 @10#, and this is sufficient to deduce th
leading behavior of the reflection amplitude at the top of
step. Two linearly independent solutions are

c1~x!5Ax Jn~y!, c2~x!5Ax J2n~y!, ~24!

with

n5
1

a22
, y5

2

a22 S b

x D a/221

. ~25!

Asymptotically,x→1`, the solutions~24! behave as

c1~x!;c11O~x22a! , c2~x!;c2x1O~x32a!, ~26!

with

c15S 1

a22D 1/~a22! Ab

GS 11
1

a22D ,

c25
1

Ab

~a22!1/~a22!

GS 12
1

a22D . ~27!

For small wave numbersk2, the wave function

FIG. 5. Convergence of the probability for reflection by t
potential~21! with a decreasing value of the parametera ~increas-
ing depth of the potential!. The results are forb51 and the reduced
momentumk2b50.01. The crosses on the ordinate mark the
spective limiting values fora→0.
d

ls

l

e

c~x!5
1

c1
c1~x!1

ik2

c2
c2~x! ~28!

is a solution of the Schro¨dinger equation in the regionx.0
up to O(k2

2) and its asymptotic (x→1`) behavior

c~x!;11 ik2x ~29!

corresponds to a rightward-traveling outgoing wave. F
small values ofx/b the argumenty of the Bessel functions in
Eq. ~24! is large, giving@10#

c~x!}Ax

yFcosS y2
p

4
2

np

2 D1 ik2B cosS y2
p

4
1

np

2 D G ,
~30!

with

B5
c1

c2

5S 1

a22D 2/~a22! pb

GS 1

a22DGS 11
1

a22D sinS p

a22D .

~31!

-
FIG. 6. CoefficientC(a) of the leading deviation of the reflec

tion probability from unity for reflection by a sufficiently deep an
smooth potential step decaying asymptotically as21/xa; cf. Eq.
~36!.
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At an appropriate matching pointxm fulfilling Eq. ~20! the logarithmic derivative of the wave function~30! is

z5
a22

2xm F ym

sinS ym2
p

4
2

np

2 D1 ik2B sinS ym2
p

4
1

np

2 D
cosS ym2

p

4
2

np

2 D1 ik2B cosS ym2
p

4
1

np

2 D 1
a

2~a22!G . ~32!
c
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The constant term in the square brackets can be negle
since the value ofym , which is related toxm by Eq. ~25!, is
large. Insertingz into the matching condition~6! yields the
expressions for modulus and phase of the reflection am
tudeRWKB ,

uRWKBu25124k2BsinS p

a22D , ~33!

argRWKB5
4

a22S b

xm
D ~a/2!21

2 S p

2
1

p

a22D . ~34!

Note that the factor sin@p/(a22)# in Eq. ~33! cancels the
corresponding factor in the denominator of the express
~31! for B, so that Eq.~33! is continuous ina and has no
singularity at the valuesa5211/n, n51,2,3, . . . , where the
sine vanishes. Corrections to the formulas~33! and ~34! are
of the order (k2b)2 for a>3 and of order (k2b)a21 for
a<3. This can be seen by estimating the corrections to
approximation~29! for finite momenta@11#. The matching-
point-dependent contribution to the phase~34! again has the
form (2/\)*xm

` p(x) dx , so the phase of the conventional

defined reflection amplitude consists of the standard con
bution as on the left-hand side of Eq.~11! minus a term that
may be interpreted as the phase loss in the WKB wave fu
tion due to the reflection at infinity@9#.

The individual steps in the derivation above are ess
tially the same as those used for deriving scattering leng
as in Sec. 4.3. of@2# and in@8,12#, where real superposition
of the solutions~24! are used. Their coefficients are dete
mined by matching to WKB approximations of the regu
solutions fors-wave scattering. In the present approach
use afixedsuperposition~28! to determineRWKB by match-
ing it to Eq. ~2! at xm .

From the above derivation it follows that for a sufficient
deep and smooth step potential behaving asymptoticall
Eq. ~18!, the reflection probabilityuRu2 near the top of the
step is given to leading order by

uRu2512C~a!k2b ~35!

and the coefficient of the term linear in the reduced mom
tum is

C~a!5S 1

a22D 2/~a22! 4p

GS 1

a22DGS 11
1

a22D . ~36!

This result holds for any real value of the powera as long as
a.2. The behavior ofC(a) is illustrated in Fig. 6.
ted

li-
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e

i-

c-

-
s
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-

The phase of the conventionally defined reflection am
tudeR at the top of the step can be derived from Eq.~34! via
Eqs.~3! and ~4!,

arg R52 lim
x→2`

S 1

\Ex

`

p~x8! dx81k1xD 2f, ~37!

with

f5
p

2
1

p

a22
. ~38!

The first term on the right-hand side of Eq.~37! is just twice
the difference between the phase accumulated by the W
wave function between2` and1` and the phase accumu
lated by the free wave with wave numberk1 between2`
andx50. This term depends of course on the precise sh
of the whole potential and not only on the decaying tail. T
second term on the right-hand side of Eq.~37! describes the
phase lossf in the WKB wave due to the reflection at1`,
being the classical turning point at the top of the step. F
large powersa this phase loss~38! approachesp/2 as for the
Woods-Saxon step with large relative diffuseness@9#. For
inverse power-law potentials witha.2, vanishing reduced
momentum corresponds to the anticlassical limit of t
Schrödinger equation, and WKB waves reflected by rep
sive inverse power-law potentials acquire a phase lossp in
this limit @13#. For the attractive inverse power-law pote
tials studied in this section, the phase loss for vanishing
duced momentum depends on the powera; it increases
monotonically from the valuep/2 for a→`, passesp at
a54, and grows beyond bound asa approaches the value 2
where the present theory breaks down.

VI. CONCLUSION

We have studied classically forbidden reflection by a p
tential step that is sufficiently deep and smooth, so that
variation of the de Broglie wavelength is small except in t
tail region of the potential. The probability for reflection
then determined by the decaying tail of the potential on
up side and is independent of the precise shape and dep
the potential step.

For potentials decaying asymptotically (x→1`) as an
inverse power of the coordinateV(x);2ba22/xa , a.2,
we have derived analytic expressions for the leading de
tion of the reflection probability from unity and for the pha
of the reflection amplitude at the top of the step. The d
crease of the reflection probability from unity is linear in th
reduced momentumk2b, and the coefficient~36! of this lin-
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56 1787REFLECTION ABOVE POTENTIAL STEPS
ear dependence increases monotonically from zero to infi
asa varies from` to 2, according to Eq.~36! ~Fig. 6!. The
phase~37! of the reflection amplitude contains a general co
tribution describing the accumulated phase difference of
incoming and reflected WKB waves in comparison with fr
waves and an additional contribution describing the ph
lossf of the WKB wave due to reflection. At the top of th
step, the phase lossf increases monotonically from th
value p/2 in the limit of large powersa to 1` as a ap-
proaches 2; see Eq.~38!. The result~35! with Eq. ~36! and
the result~37! with Eq. ~38! are valid for any sufficiently
-

40

.

l.
ty

-
e

e

deep and smooth step potential decaying asymptotically
Eq. ~18! with any real powera.2.
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