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Reflection above potential steps
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Classically forbidden reflection by a potential step is analyzed by matching WKB waves to solutions of a
Schralinger equation involving the tail of the potential on the up side of the step. Analytic expressions for the
leading deviation of the reflection probability from unity and the phase of the reflection amplitude at the top of
the step are derived for potentials decaying as an inverse power of the coord{pate— 1/x*, a>2.
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I. INTRODUCTION Il. THE MATCHING PROCEDURE

The first-order WKB imation i ful tool f In this section we explain our procedure, which is based
© lrls -oraer Web apprc;m_ma lon Iiaggﬁver uttootior matching a superposition of incoming and reflected WKB
accurately approximating solutions to the Sahnger equa-  \4yes o an exact or accurate approximate solution of the

tion in the case of small and slowly varying WaVEIengthSSchr't]jinger equation bridging the region where the WKB
[1-3]. The probabilities for classically forbidden processes

) ! X = approximation is inaccurate. Consider a particle of mass
such as below-barrier tunneling or above-barrier reflectloqnCident fromx— —c with kinetic energy%2k2/2m, which
are then generall_y exponentially Sm"’.‘" and the stgndard p.rorhay be reflected by a potentidf(x) or tralmsrT'\itted to
cedures for treating such cases utilize the classical turmngHWLOC with kinetic energy?2k2/2m=E: the potential is
points in the complex planﬂ—4]. S-UCh procgdures_ are dif- taken to vanish fox— + and t%) assun;e a constant nega-
ficult or impossible to implement if the turning-point struc- five value —V,— — (K2— k2)2/2m for x - The esseng
ture is not known or not simple or if the potential is not . S Vo AR T R — e e )
analytic. An example for an alternative approach has beeff2! condition for applicability oithe WKB method is that the
presented recently by Maitra and Heller, who used the Wkgde _Broglie  wavelength A=2a#/p(x), with  p(x)
wave function without classically forbidden components as= VZMLE—V(x)], varies sufficiently slowly,
the input to a distorted-wave Born approximation and accu-

rately reproduced the exact results for transmission well be- 1 |dA m dV

- i i = =t = o <1 (1)
low a barrier and for reflection well above a barrier or step 2l dx p3 dx
potential[5].

It remains a challenge to find a general procedure for

g ) : o . If Eq. (1) is fulfilled in the entire regiorx<x,,, then the
describing classically forbidden transmission or reflection . !
o . exact wave function should be well approximated by the
when the probabilities are large, which is typically the cas

for energies near the top of a barrier or step. Waves C:MVKB ansatz

become very long in such situations, which occur, e.g., in

collisions of cold atoms, and the applicability of the WKB 1 i [x o

method in this regime recently has become a topic of some ‘pWKB:W A7) p(x’)dx

interest[6—8]. : "
In this paper we study classically forbidden reflection by a i [x

potential step, in particular at energies close to the top of the + RWKBeXF< - gf p(X’)dX')

step where the reflection probability approaches unity. The Xm

treatment is based on straightforward matching of a WKB o ) )

wave function to an exact or good approximate solution ofRequiring the WKB wave function2) to asymptotically

the Schrdinger equation at a real matching point, chosen(X— —) match the exact wave function, assumed propor-

such that the de Broglie wavelength varies sufficientlytional to expki)+Rexp(-ikix), leads to a relation be-

slowly in the entire domain extending from the matching We€NRwxke and the conventionally defined reflection ampli-

point to the asymptotic region from which the incoming tudeR,

wave originates. The purpose of this paper is twofold. First

we demonstrate that the probability for reflection by a suffi- Rwiks=R exdin(Xm)]. 3)

ciently deep and smooth step is determined by the behavior

of the tail of the potential on the up side of the step. Secongrhe phase

we derive, for potentials decaying asl/x® with «>2, ana-

lytic expressions for the leading deviation of the reflection (

, X=<Xqy. (@

probability from unity and for the phase of the reflection 7(Xm) =2 lim

1 (x
= p(x)dx’ —k1X) 4
amplitude at the top of the step. xmo oo\ P i,
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accounts for the fact that the matching poigf is not at  a, =a\2mVy/A=a\ki—k5. The expression for the phase
x=0 and that the local momentum may differ from its  of R involves several compleK functions[1]; for largek,a

asymptotic valuéik, at finite values ok. and energies near the top of the stkp;+0, it becomes
The reflection amplitude can be determined if we know, at

the pointx,, fulfilling Eq. (1), an exact or accurate approxi-
mate wave functions(x) corresponding to a purely outgoing
wave[proportional to exp ik,x) ] for x— + . Matching the

logarithmic derivative of the WKB wave functiof®) to the  This is the same phase as obtained for classically allowed

w

argR)=— 5

+4k;aln2, for k;a>1 , k,—0. (10

logarithmic derivativez= ' (X,)/ (Xy) at Xy, gives reflection at energies approaching the top of the step from
below. The term+4k,aln2 in Eq. (10) is just twice the
i P (Xm) difference between the phases accumulated by the WKB
- %p(me 2p(Xpm) wave between-« and+ and by a free wave with wave
Rwie=—— 0 (X) (5 numberk, between—« and zero:

1 0
2 lim (%J p(x)dx+ k1x> =4k;aln2; (11
The conventional reflection amplitudkecan be derived from X-—=e X

Rwikg Via the phase correctiofB). i . )
: " the additional term— /2 in Eq. (10) is the phase loss that
Fulfillment of the condition(1) atx,, means that the terms the WKB wave undergoes, in the short-wave limit, when

p’/2p in the numerator and the denominator on the right-reflected at infinity[9]
hand side of Eq(5) are small compared tp/%. Neglecting We shall now use the procedure outlined in Sec. Il to

these terms leads to the simplified expression demonstrate that the probability for reflection by {lseffi-
i ciently deep step is determined by the tail of the potential
z— %p(xm) alone. The Woods-Saxon potentid@) approaches an expo-

Ruke= — i 7 (6) nential decay

z+ 2 P(Xm) Visas(X) = — Voexp —x/a) (12

for largex/a. At zero energy, the variation of the de Broglie

which actually corresponds to ivaly matching the wave S A
wavelength in this potential is given by

function ¢ to a superposition eXp(Xmn)(X—Xm)/A]

+RywkeeXd —ip(X)(X—xp/i] of incoming and reflected

\ ; ) 1 |dN| expx/2a)

plane waves with wave numbers given by the local classical _—] =, (13)
momentum at the point,. 2| dx 28,

In the following section, we apply the straightforward For E>0 the variation of the de Broglie wavelength is a

matching procedure outlined above to 8 Woods-Saxon pOterPﬁonotonically decreasing function of energy. For a suffi-

tial in order to illustrate that the reflection probability is . . ; .y .
solely determined by the tail of the potential on the up sideC'emIy large relative diffusenesg the right-hand side of £q.

: 13) can be much smaller than unity, even for values of the
of the step, when the step is deep enough. In Sec. IV wi ; .
- . ; coordinate that are so much larger tharihat the asymptotic
apply the same procedure to derive reflection amplitudes f

0 ; L ;
potentials asymptotically proportional te 1/x°. For ener- form (12) is a good approximation of the potential. In such a

. g .situation, we may use the exact solution of the Sdhnger
gies near the top of the step, we obtain, in Sec. V, analyti¢ : : :
expressions for the leading deviation of the reflection prob_equatlon with the potentill2), namely[10],

ib(jil(igty from unity and for the phase of the reflection ampli- $()=J(y), (14)
to match the WKB wave function Eq2). In (14) J,(y) is
. THE WOODS-SAXON STEP the Bessel function of order= —2ik,a and its argument is
. . y=2a,exp(—x/2a), which is equal to the inverse of the
Above-barrier reflection by a Woods-Saxon step right-hand side of Eq(13).
v At a fixed value ofk,, the asymptotic situatiom— +
Vis(X)= 0 -V, (7) corresponds to small values of the argumgnfor which the
1+ exp(—x/a) Bessel function(14) approaches expfik,x), corresponding

to a rightward-traveling transmitted wave. On the other hand,
a small value of Eq(13) means a large value gf, so at an

IR|2=[sinh m(k,—k,)a]?/[sinh 7(k; + kp)al®.  (8) appropriate matching poirg,,, with the corresponding large
Ym We may use the large argument expansion of the Bessel

For any given large or small value kfa, Eq.(8) reduces to ~function,

RI2~ exp —4mk,a) © Y(Xim) ~ \/%COS(YmHTsza_ w4, (19

in the limit of largek;a, which corresponds to the limit of
large values of the relative diffuseness of the step whereby the logarithmic derivative at x,,, becomes

is described in detail ifil]. The reflection probability is
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1 ) 100 ‘ i
2= o [Ymtanyn+imkoa—mi4) +O(L)].  (16) — k=0005
s o= 0,01
Inserting this value of into the matching equatio(6) and L "ﬁiﬁjﬁ
usingy,,>2k,a leads to 50 | . sz=1.0
— V(x)

Rwke= exp(—2mk,a) exp2iy,—im/2). (17 w2

The reflection probabilityRykg|2=|R|?= exp(—4mk,a) is 0
precisely the expressiof®), valid for large relative diffuse-

ness. The phase &,,xg contains the term- /2 as in Eq.

(10) and the contribution 2,,; at the top of the stefk,—0,

2y, is twice the action integral (il))ffmp(x)dx. With Eq. ~50

(11) we see that the expressiéoh?) yields the correct phase
(20) for the conventionally defined reflection amplituée
via Egs.(3) and(4) at the top of the step. - FIG. 1. Variation (1/27)|d\/dx| of the de Broglie wavelength
The de”vat|on above ShOWS that the pI’ObabI|Ity fOI’ reﬂec-for the attractive inverse power-|aw potent(aJS) for a=8 and
tion by a sufficiently deep Woods-Saxon step is determine@arious values of the reduced momentigs.
by the asymptotic tail of the potential alone; the shape of the o _ )
step itself and its depth are irrelevant for the derivation. The For finite values ok,g3 the quzanntyd)\/dx has a maxi-
shape and the precise value of the depth do, however, entBUM at B/x)“=2(a+1)(k,B)°/(a—2) and decreases
crucially into the WKB wave functiori2), which now offers ~ monotonically towards lower and higher valuesxaf3. Its
an accurate approximation to the exact wave function in th&n@ximum value becomes equal to Falkyp for large a
entire rangex<x.,. These features of reflection are charac-2nd is arbitrarily large for sufficiently smeh3. The depen-
teristic of any sufficiently smooth step potential for which dénce of (1/a)dx/dx on x/B=kax/kyf is illustrated in
the variation of the de Broglie wavelength is small every-F'g' 1 for the caser=8 and_ various values of the reduced
where except in the tail region of the potential. The exampl&Vave numbek,S. The localized peak grows and moves to-

of potentials decaying as an inverse power of the coordinat¥/ards larger values o/ 8 ask,8 approaches zero. Note that
is treated in the next section. (1/27)dN/dx at any given pointx is a monotonically de-

creasing function of energy as long B3> V(X).

The behavior of (1/2)d\/dx is qualitatively similar to
that shown in Fig. 1 for any negative potential vanishing
faster than M° asymptotically. At small but finite energies

Consider a step potentid(x) that behaves asymptoti- the condition(1) is fulfilled in the limits x—c and, for the
cally, x— +%, as inverse power-law potentiald8) with «>2, also forx—0,

but there are “badlands” in between, where the WKB ap-
proximation breaks down.
72 g2 The efficacy of the matching equatios) and (6) for
V, (X)=— m va (19 obtaining the reflection probability is illustrated in Fig. 2 for
X the powera=8 and the reduced momentupB=0.1. Fig-
ure da) shows two linearly independent solutions of the
o . Schralinger equationg(x) and ¢4(x), which evolve into
The variation(1) of the de Broglie wavelength at energy zero cosk,x and sink,x, respectively, in the asymptotic region
IS X— +0oo. The wave functiong(x)= y.(X)+igs(x) corre-
sponds to a rightward-traveling outgoing wave asymptoti-
wl2-1 cally. The acceleration of the particle aspproaches zero is
_ E( f) (19) indicated by decreasing wavelengths and amplitudes of the
2\B ' oscillations. Figure &) shows the reflection probabilities as
derived by matching incoming and reflected WKB waves to
_ ¥(x) via Egs.(5) and(6) as functions of the matching point
The properties of the Schdinger equation with the homo- x .~ After violent variations a,, passes through the bad-
geneous potential18) depend only on the dimensionless |ands[Fig. 2(b)], |Ryks|? settles down and oscillates with
“reduced wave number’k,3. For energies near zero the rapidly diminishing amplitude to a well-defined limiting
wavelengths become arbitrarily large asymptotically, but Eqvalue asx,, approaches zero. Note that the full WKB match-

0.0 2.0 4.0 6.0 8.0 10.0
/P

IV. POTENTIAL ASYMPTOTICALLY PROPORTIONAL
TO —1K*

1

2w

dx
dx

(19) shows that the WKB conditiofil) is fulfilled if ing condition (5) (dotted ling leads to more rapid conver-
gence than the truncated conditi@ (solid line). If |Ryz|?
(a=2)2 9 . ;
X <l (20) as calculated from the tail part of the potential has converged
B a’ to a given number at a point,, then this number defines the

reflection probability for any step potential obtained by con-
which can be achieved for sufficiently small valuesxéB,  tinuing the potential sufficiently smoothly into the region
as long ase>2. X<Xpm.
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0.0 1.0 2.0 3.0 FIG. 3. Probability for reflection by the potential sté) as a

x, /B function of the asymptotic X— +«) momentumk, (8=1) for

a=28 and various values of the parameter

FIG. 2. (a) Real and imaginary parts of the solution of the
Schralinger equation with the potentiél8), which asymptotically
(x—+09) corresponds to a rightward-traveling outgoing wave range over whicl/(x) differs from its asymptotic forms and
exp(kpx). Herea=8 and the reduced momentumkig8=0.1. The  is related to the depth of the potential via E2). The
potential and the variation of the de Broglie wavelength for thisresults are shown in Fig. 3 far=8 and in Fig. 4 fora=3.
case are shown ifb). (c) Reflection probabilityRws|* derived by As a is decreased, the reflection probabilities converge rap-
matching incoming and reflected WKB wave functions to the exactid|y not necessarily monotonically, to the limiting case
solutiony [(a)] according to the full matching conditig®) (dotted a=0, where the potential becomes infinitely deep, and the

line) and to the truncated matching conditio®) (solid line as homogeneous taill8) solely determines the reflection prob-
functions of the matching point,,. As x,, approaches zero, the

reflection probability converges to a well-defined value, which is

0.8747 ... inthis case. 1.0
In order to demonstrate this in a concrete example, we
have calculated the reflection probabilities in the potential 08 r
Vo
V(X)=— . (21
1+{In[1+ exp(x/a)]}“ 0.6 f
For x— + this potential has the forrfi8) with IR
2m |
Ba*ZZ?VOaa; (22) 04
for x— —o we have
02 f
alx|
V(X)~—Vgo| 1— ex pa it (23
i.e.,V(x) approaches-V, exponentially on the down side of %%.0

the step.

We fixed the scale for the reduced momentum by choos-
ing B=1 and calculated the reflection probability by numeri-  FIG. 4. Probability for reflection by the potential sté1) as a
cally integrating the Schrdinger equation with the potential function of the asymptotic X— +%) momentumk, (8=1) for
(21) for various values of the paramet@rwhich defines the =3 and various values of the parameter
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FIG. 5. Convergence of the probability for reflection by the 02.0 410 610 8"0 16_0 12.0
potential(21) with a decreasing value of the paramedefincreas- o

ing depth of the potential The results are fo8=1 and the reduced

momentumk,3=0.01. The crosses on the ordinate mark the re-

spective limiting values foa—0. FIG. 6. CoefficientC(«) of the leading deviation of the reflec-
tion probability from unity for reflection by a sufficiently deep and
smooth potential step decaying asymptotically -a$/x%; cf. Eqg.

ability. The convergence of the reflection probability as(36).

a—0 is demonstrated in detail in Fig. 5 fé,=0.01. The

crosses on the ordinate indicate the limiting values calculated 1 ik

with the limiting form(18) of the potential21) via Eq.(5) as P(X)=— Py(x)+ -2 Pp(X) (28)

described above. C1 C2

V. ANALYTIC RESULTS . . - L .
is a solution of the Schabinger equation in the regiox>0

There are no known analytic solutions f(_)_r step potentialsp to O(kg) and its asymptoticX— + ) behavior
with the asymptotic behavidi8), but the Schrdinger equa-
tion with this potential alone can be solved in terms of Bessel
functions atE=0 [10], and this is sufficient to deduce the P(X) ~ L+ iK,X (29)
leading behavior of the reflection amplitude at the top of the
step. Two linearly independent solutions are

_ _ - 24 corresponds to a rightward-traveling outgoing wave. For
0=V L), P60 =N I (y), 24 small values ok/ 8 the argumeny of the Bessel functions in
with Eq. (24) is large, giving[10]
1 2 ﬁ al2—-1
a2 y—m(;) | =
X (O 7 A T VT
Asymptotically,x— + o, the solutiong24) behave as (X)) y co§y-—7- % +ik,B cog y— 2732
(30)
P1()~C1t O, gh(X)~Cx+0(x*~%), (26)
with
with
1 \Ma-2) \/’E
ol
* a—2 B= &
C2
1 —2)Ua=2) 2l(a—2)
cz:——(a ) ) 27) _ 1 7B
Jﬁr(l_l a2 T P P
a—2 a—2 —2)"Ma=2

For small wave numbers,, the wave function (32
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At an appropriate matching point, fulfilling Eq. (20) the logarithmic derivative of the wave functidB0) is

] T VT
Ca-2| ST

22X Ym T VT
e ARy

. . T VT
+ik,B sm( Ym— Z+ >

a

T V7T) * 2(a—2) (32)

+ik,B Co{ym—z+7

The constant term in the square brackets can be neglected The phase of the conventionally defined reflection ampli-
since the value of,,, which is related t,,, by Eq.(25), is  tudeR at the top of the step can be derived from EB#) via
large. Insertingz into the matching conditiori6) yields the  Egs.(3) and(4),

expressions for modulus and phase of the reflection ampli-

tude Rykg » (1=
argR=2 lim %J’ p(x") dx'+kix|— o, (37)

X— — X

|Rwks| 2= 1—4szsin( %) , (33
@ with
4 (B (al2)—1 -
- | — _ ) —_. aa s

a'rgQWKB a— 2( Xm) 2 a—2]" (34) d): E + E . (38)

Note that the factor sjar/(a—2)] in Eq. (33) cancels the
corresponding factor in the denominator of the expressio
(31) for B, so that Eq.(33) is continuous in@ and has no
singularity at the valueg=2+1/n,n=1,2,3...,where the
sine vanishes. Corrections to the formu(88) and (34) are

of the order k,3)? for =3 and of order k,B)* ! for
a=<3. This can be seen by estimating the corrections to th
approximation(29) for finite momentg11]. The matching-

point-dependent contribution to the pha8é) again has the being the classical turning point at the top of the step. For

form (2h) ] me(x) dx, _SO the phgse of the conventionally large powersy this phase los&38) approachesr/2 as for the
defined reflection amplitude consists of the standard contriyygods-Saxon step with large relative diffusenégk For
bution as on the left-hand side of Ed.1) minus a term that  jhyerse power-law potentials with>2, vanishing reduced
may be interpreted as the phase loss in the WKB wave funGnomentum corresponds to the anticlassical limit of the
tion due to the reflection at infinit}d]. Schralinger equation, and WKB waves reflected by repul-
The individual steps in the derivation above are essengjye inverse power-law potentials acquire a phase foss
tially the same as those used for deriving scattering lengthgis |imit [13]. For the attractive inverse power-law poten-
as in Sec. 4.3. di2] and in[8,12], where real superpositions jg|s studied in this section, the phase loss for vanishing re-
of the solutions(24) are used. Their coefficients are deter- yyced momentum depends on the power it increases
mined by matching to WKB approximations of the regu""‘rmonotonically from the valuer/2 for a—, passesr at
solutions fors-wave scattering. In the present approach we,—4 gnd grows beyond bound asapproaches the value 2
use afixed superposition(28) to determineRyxg by match-  \yhere the present theory breaks down.
ing it to Eq.(2) at x,.
From the above derivation it follows that for a sufficiently
deep and smooth step potential behaving asymptotically as VI. CONCLUSION

Eq. (18), the reflection probabilityR|? near the top of the We have studied classically forbidden reflection by a po-
step is given to leading order by tential step that is sufficiently deep and smooth, so that the
2. variation of the de Broglie wavelength is small except in the
[RI*=1-C(a)k;p (39 tail region of the potential. The probability for reflection is
then determined by the decaying tail of the potential on the
up side and is independent of the precise shape and depth of

r'1l'he first term on the right-hand side of E&7) is just twice

the difference between the phase accumulated by the WKB
wave function betweenr- and +« and the phase accumu-
lated by the free wave with wave numbler between—«
andx=0. This term depends of course on the precise shape
gf the whole potential and not only on the decaying tail. The
Second term on the right-hand side of Eg7) describes the
phase lossp in the WKB wave due to the reflection atoo,

and the coefficient of the term linear in the reduced momen
tum is

a—

C(a)=<—2

1+a—2

1 (36) inverse power of the coordinad(x)~— B 2/x% , a>2,
F( - 2)1’
of the reflection amplitude at the top of the step. The de-

the potential step.
Ua—2) A For potentials decaying asymptoticallx-{ +«) as an
) we have derived analytic expressions for the leading devia-
tion of the reflection probability from unity and for the phase
This result holds for any real value of the powens long as  crease of the reflection probability from unity is linear in the
a>2. The behavior of2(«) is illustrated in Fig. 6. reduced momenturk, B3, and the coefficient36) of this lin-
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ear dependence increases monotonically from zero to infinitdeep and smooth step potential decaying asymptotically as
asa varies frome to 2, according to Eq36) (Fig. 6). The  EQ. (18) with any real power>2.

phase&(37) of the reflection amplitude contains a general con-
tribution describing the accumulated phase difference of the
incoming and reflected WKB waves in comparison with free We are grateful to Christopher Eltschka, Rick Heller, and
waves and an additional contribution describing the phasg/hchael J. Moritz for stimulating discussions. This work was

: supported by the National Science Foundation through a
l0ss ¢ of the WKB wave due to reflection. At the top of the grant for the Institute for Theoretical Atomic and Molecular

step, the phase losg increases monotonically from the ppygics(ITAMP) at Harvard University and Smithsonian
value 7/2 in the limit of large powersy to +o asa ap-  Astrophysical Observatory. H.F. would like to thank the staff
proaches 2; see E38). The result(35) with Eq. (36) and  at ITAMP for the warm hospitality extended to him during
the result(37) with Eq. (38) are valid for any sufficiently his visit.
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