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Information-theoretic interpretation of quantum error-correcting codes
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Quantum error-correcting codes are analyzed from an information-theoretic perspective centered on quan-
tum conditional and mutual entropies. This approach parallels the description of classical error correction in
Shannon theory, while clarifying the differences between classical and quantum codes. More specifically, it is
shown how quantum information theory accounts for the fact that ‘‘redundant’’ information can be distributed
over quantum bits even though this does not violate the quantum ‘‘no-cloning’’ theorem. Such a remarkable
feature, which has no counterpart for classical codes, is related to the property that the ternary mutual entropy
vanishes for a tripartite system in a pure state. This information-theoretic description of quantum coding is used
to derive the quantum analog of the Singleton bound on the number of logical bits that can be preserved by a
code of fixed length which can recover a given number of errors.@S1050-2947~97!01609-0#

PACS number~s!: 03.65.Bz, 89.70.1c
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I. INTRODUCTION

The potential use of quantum computers for solving c
tain classes of problems has recently received a conside
amount of attention~for a review see, e.g.,@1–3#!. A major
obstacle in the building of quantum computers, however
the coupling of the computer with its environment or t
decoherence, which rapidly destroys the quantum superpo
tion at the heart of quantum algorithms. An essential elem
in the realization of such quantum computers is therefore
use of quantum error-correcting codes, which have b
shown to ensure protection against decoherence@4–14#.
Quantum codes are similar in many respects to class
codes. In classical coding theory, logical words~of k bits!
are encoded into codewords~of n.k bits!. The latter are
suitably chosen among the set of all 2n possible words of
n bits so that the alteration because of noise of sayt bits ~at
most! can be recovered. A specific set of codewords th
constitutes an@n,k,t# code, encodingk bits into n bits and
correcting all patterns oft ~or fewer! errors among thosen
bits. The simplest example of a classical code withk51,
n53, andt51 is the repetition code where a logical bit 0~or
1! is encoded into 000~or 111!; decoding is simply per-
formed using the majority rule, which is enough to recov
t51 errors. In classical coding theory, corrupted data is t
restored by introducing redundancy (n.k), that is, by dupli-
cating part of the information that must be preserved.~In the
above—very inefficient—example, information is tripl
cated.! In quantum coding theory, the central issue is to fi
a set of 2k quantum codewords~of n quantum bits! such that
quantum informationcan be protected against the alterati
due to coupling with an environment~i.e., such that the
quantum system survives decoherence!. At first sight, it
seems that, since the duplication of an arbitrary quan
state is forbidden by the quantumno-cloning theorem@15#,
561050-2947/97/56~3!/1721~12!/$10.00
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‘‘quantum redundancy’’ is impossible. However, after th
pioneering work of Shor@4#, it has been realized that quan
tum coding is achievable in spite of the no-cloning theore
and a great deal of work has recently been devoted to
issue@5–14#. It has been shown that quantum informatio
can be distributed over many quantum bits~qubits! through a
suitable encoding and subsequently recovered after pa
alteration, without violating the no-cloning theorem.

In this paper, we aim at clarifying some aspects of qu
tum coding from a perspective centered on quantum en
pies. It has recently been shown that classical and quan
entropies can be described within a unified informatio
theoretical framework involving negative conditional entr
pies @16,17#, as briefly outlined in the Appendix. Here, w
apply this framework to quantum error-correcting codes, p
alleling the classical description of error correction in Sha
non theory. We show that, for an arbitrary entanglement
tween the logical words and a ‘‘reference’’ system to
preserved, the quantummutualentropy between this ‘‘refer-
ence’’ and any ‘‘interacting’’ part of the codewords must b
vanishing prior to decoherence. In other words, an entro
condition for perfect quantum error correction is that t
‘‘reference’’ system is statisticallyindependentof any arbi-
trarily chosen part of the codewords that might interact w
the environment. This condition relies on the conservation
quantum mutual entropies implied by unitarity, along wi
the property of strong subadditivity of quantum entrop
~see the Appendix!. It expresses the fact that the environme
cannot becomedirectly entangled with the ‘‘reference’’ sys
tem ~entanglement may arise only via the codewords!, or,
roughly speaking, that the environment cannot extract inf
mation about the logical words.

We continue by deriving the analog of the Singlet
bound for quantum codes@11#, i.e., k<n24t, using simple
arguments based on this entropic approach. Such
1721 © 1997 The American Physical Society
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information-theoretic description of coding sheds new lig
on the interpretation of this bound in terms of ‘‘weak’’ clon
ing. While the quantum bits that are altered as a result of
error are statistically independent of the reference~or the
encoded logical word!, the quantum information stored in th
entire codeword remains unaffected. This results from
fact that theternary mutual entropy vanishes for any en
tangled tripartite system in a pure state, a property which
no classical counterpart@17#. The central point is that, in
contrast with classical codes, no duplicating—or f
cloning—is achieved byquantum error-correcting codes
Rather, a ‘‘weak’’ quantum cloning is achieved, such th
any part of the codeword susceptible to decohere app
independent of the reference although the entire codew
remains entangled with it. This purely quantum situation
forbidden in classical information theory due to the no
negativity of Shannon conditional entropies, and reflect
fundamental difference between classical and quantum e
correcting codes.

II. QUANTUM ERROR CORRECTION

Let us consider a set of orthogonal logical statesu i L& ~with
i 51, . . . ,2k) which are encoded into orthogonal codewor
u i Q& consisting ofn qubits.~The indexQ refers to the quan-
tum channel on which the codewords are sent.! The states
u i L& belong to the logical Hilbert spaceHL of dimension
dL52k spanned by thek logical qubits, while the state
u i Q& belong toHQ of dimensiondQ52n. We have clearly
dQ.dL , which is the quantum equivalent of classical ‘‘r
dundancy’’: the logical states are encoded in so
2k-dimensional subspace of the full 2n-dimensional Hilbert
space so that part of the information in then qubits is ‘‘re-
dundant.’’ Qualitatively speaking,n2k qubits of the code-
words represent redundant information~they are equivalen
to the ‘‘check bits’’ of classical codes@18#!. In Sec. IV, we
will make this concept of quantum ‘‘redundancy’’ mor
quantitative.

The key property of a quantum code lies in its ability
protect anarbitrary superposition of logical states(ai u i L&
against decoherence. Equivalently, a quantum code is
that the entanglement of thek logical qubits with a ‘‘refer-
ence’’ systemR is preserved against decoherence. In fa
this description of quantum coding as a mean to transmit~or
conserve! entanglement with respect toR in spite of the in-
teraction with an environment is more convenient for o
information-theoretic description and will be adopted in t
following. Accordingly, we start by considering the initia
entangled state

ucRL&5(
i 51

2k

ai u i R&u i L&, ~2.1!

whereR and L refer to the reference and logical states,
spectively.~This is the Schmidt decomposition of a pure e
tangled state.! We then consider the transformation
ucRL& due to encoding followed by decoherence. Encodin
performed by use of a unitary transformation that maps
statesu i L&u0& to the codewordsu i Q&, whereu0& stands for the
t
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initial state of then2k auxiliary qubits~or check bits!. Thus,
after encoding, the joint state of the referenceR and the
quantum channelQ is

ucRQ&5(
i 51

2k

ai u i R&u i Q&. ~2.2!

It is a pure state of vanishing entropyS(RQ)50; the quan-
tum entropies ofR and Q are S(R)5S(Q)5H@ai #, where
H stands for the Shannon entropy,

H@ai #52(
i

uai u2log2uai u2. ~2.3!

Let us now suppose that the codewords are sent on a n
quantum channel in which they suffer decoherence due to
environmentE. Following Schumacher’s model of a nois
channel@19#, we assume that the environment is initially
the pure stateu0& and then interacts with the channel accor
ing to the unitary transformationUQE , so that the joint state
of the entire system becomes

ucR8Q8E8&5~1R^ UQE!(
i 51

2k

ai u i R&u i Q&u0&. ~2.4!

~The prime refers to the systemsafter decoherence.! This
noisy channel is pictured in Fig. 1 and will be the basis
our description of quantum coding in terms of quantum e
tropies. More specifically, we will consider a ‘‘determinis
tic’’ error model in which the position of the erroneous bi
is known, usually referred to as the quantumerasurechannel
@13#. In this channel, the decoherence induced by the e
ronment involvese qubits at known locations, i.e.,e era-
sures. The componentQe ~of e qubits! of the codeword in-
teracts withE ~suffers e erasures!, while the restQu ~of
n2e qubits! is left unchanged by this interaction. Accord
ingly, the unitary transformation in Eq.~2.4! is of the form

UQE51Qu
^ UQeE . ~2.5!

FIG. 1. Schematic model of a noisy quantum channel prece
by encoding and followed by decoding. The logical states~system
L of k qubits! are entangled with the reference systemR. Encoding,
using an ancillaA of n2k ‘‘check’’ qubits initially in a u0& state,
yields the codewords~systemQ of n qubits!. Then,e qubits (Qe)
are ‘‘erased’’ by interacting with the environmentE via UQE ,
while then2e remaining ones (Qu) are unchanged. Decoding, in
volving the ‘‘erased’’ qubitsQe8 along with the unchanged one
Qu, yields thek logical bitsL in the initial entangled statecRL with
the referenceR. The primes refer to the systems after environme
induced decoherence.
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As an example, we can suppose that the environment is m
of e qubits initially in a u0& state and thatUQeE effects the

exchange between these qubits and thee qubits of Qe ~a
reversible operation!. As a result, the qubits ofQe are erased
~reset tou0&) while the qubits ofE get the original value of
the erased qubits. As the environment is traced over in o
to determine the state of the channelQ after decoherence
quantum information is apparently erased even though
overall process is unitary. Of course, any otherUQeE could
result from decoherence, and a quantum erasure-corre
code will be such that the entanglement withR is preserved
for an arbitraryUQeE .

Before discussing coding and decoherence using quan
entropies~Sec. IV!, let us first review some basics of qua
tum error-correcting codes. It is known that, rather than c
pling the codewords with an environment, one can model
errors by use of error operatorsE. For the purpose of erro
correction, it is enough to consider errors of the typesx ~bit
flip!, sz ~phase flip!, andsy ~bit and phase flip!, since, by
linearity, a code that can correct these errors can cor
arbitrary errors@7#. For a@n,k,t# code, i.e., a code correctin
t errors at most, the error operatorsE applied on the code
words are of the form 1^ (n2t)

^ E^ t, i.e., the tensor produc
of the identity onn2t qubits andt one-bit error operators on
the altered qubits. The one-bit error operators are any lin
combinations of the algebra basis$1,sx ,sy ,sz%. It has been
shown by Knill and Laflamme@11# that a necessary and su
ficient condition on quantum error-correcting codes is tha

^ i QuEa
†Ebu i Q&5^ j QuEa

†Ebu j Q&, ~2.6!

^ i QuEa
†Ebu j Q&50, for iÞ j ~2.7!

where theu i Q& and u j Q& are any two codewords andEa ,
Eb are chosen from the set oft-error operators defined
above. Conditions~2.6! and~2.7! can be understood by con
sidering the decoding operation as an ‘‘inverse’’ unita
transformation@14# that maps then qubits of the corrupted
codewordQ8 into k qubits~the original logical wordL) and
n2k check qubits~the ancillaA8), as represented in Fig. 1
Considering the action of decoding on two codewordsu i Q&
andu j Q& that have been corrupted by errorsEa or Eb , it can
be shown that the state in which the ancilla is left can
depend on the logical state, that is, the decoding mus
such that

Eau i Q&→u i L& ^ uAa&

Ebu i Q&→u i L& ^ uAb&

Eau j Q&→u j L& ^ uAa&

Ebu j Q&→u j L& ^ uAb&. ~2.8!

In other words, the final state ofA must be the same for bot
codewordsu i Q& and u j Q&, and depend only on the error syn
dromea or b. This condition is clearly required in order t
recover an initialarbitrary superposition( iai u i L& ~i.e., the
ancilla must be in a tensor product with thek logical qubits
after decoding!. Conditions ~2.6! and ~2.7! then result
de
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straightforwardly from the orthogonality of the logical stat
u i L& and u j L&, and the conservation of scalar products
unitarity.

The above considerations also apply to the quantumera-
surechannel in which the position of thee erroneous bits is
known @13#. Note that conditions~2.6! and ~2.7! obviously
correspond to the case where the errors are applied att un-
known positions in the codeword. Clearly, if the erro
correcting code aims at correcting forerasuresonly, the er-
ror operatorsEa and Eb differ from each other by one-bi
error operators at thesamepositions only. Therefore, as th
product of two such e-erasure operators is anoth
e-erasure operator~a linear combination of theEa’s!, the
necessary and sufficient condition for erasure-correction
comes@13#

^ i QuEau i Q&5^ j QuEau j Q&, ~2.9!

^ i QuEau j Q&50, for iÞ j . ~2.10!

It results that an error-correcting code correctingt errors~at
unknown positions! is equivalent to ane-erasure correcting
code withe52t. This equivalence will be very useful in th
following because the quantum erasure channel is easie
treat using an entropic approach. Before coming to
information-theoretic analysis of quantum error-correcti
codes~Sec. IV!, let us first analyze classical error correctio
in terms of entropies. This will make the classical-quantu
correspondence more transparent.

III. ENTROPIC CONDITION FOR CLASSICAL
ERROR OR ERASURE CORRECTION

Just as in the quantum case, one can define two class
classical noisy channels, depending on the fact that the er
occur at known or unknown locations. In the former case,
located errors are callederasures, and an erasure-correctin
code is such that, ife bits out of then bits are ‘‘erased,’’ it
is possible to recover the encoded logical word from
n2e remaining bits only@20#. In the latter case of classica
codes capable of correctingt errors at unknown positions in
codewords of sizen, all the n bits of the corrupted code
words must be used in the decoding operation. Exactly as
quantum codes, it is easy to show that a classical code
correctt errors at unknown locations if and only if the sam
code can correcte52t erasures at known locations. Th
proof is as follows. Let us consider two codewords of leng
n, wi andwj , and two error strings,ea andeb ~the bits in a
codeword are flipped where the corresponding bits in
error string are equal to 1!. To be able to recovert errors, we
must have

wi % eaÞwj % eb , ~3.1!

for any two codewords and for all possible error strings h
ing t bits ~or fewer! equal to one. Here,% is the bitwise
addition mod 2 andÞ means that the two strings must diffe
by at least one bit. A classical code correctingt errors must
therefore be such that the distance between any two c
words is larger than or equal to 2t11, since the error strings
ea andeb can have at mostt bits equal to one, implying tha
ea% eb can have at most 2t bits equal to one. Now, in the
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case of codes capable of correctinge erasures, the position
of the bits equal to one inea and eb are identical, so tha
ec[ea% eb can have at moste ~rather than 2e) bits equal to
one and is therefore anothere-error string just asea or eb .
Thus, the condition for recoveringe erasures is

wi % ecÞwj . ~3.2!

In other words, the distance between any two codewo
must only be larger than or equal toe11. Obviously, Eq.
~3.1! parallels Eqs.~2.6! and ~2.7!, while Eq. ~3.2! parallels
Eqs. ~2.9! and ~2.10!. The resulting equivalencee52t will
be important for our concern because the entropic analys
more adapted to erasure correction.

Let us shortly describe coding in the case of a class
erasure channel@20#. We consider encoding as a classic
channel whose inputX is made ofk logical bits and output
Y is made ofn physical bits~the codewords!. We assume
that the set of logical wordsxi occur with probabilitypi , so
that the entropy of the inputX is

H~X!52(
i

pi log2pi . ~3.3!

The input X can be recorded~a classical variable can b
‘‘cloned’’ ! and thus compared with the outputY. As the
encoding is reversible~it is a one-to-one mapping!, the mu-
tual entropy is conserved through encoding, that is,

I[H~X:Y!5H~X:X!5H~X!, ~3.4!

where I is defined as the mutual entropy~or information!
between input and output that must be preserved in the c
sical erasure channel. Let us assume thatY is partitioned into
e erased bitsYe , andn2e unchanged bitsYu . ~The position
of the erased and unchanged bits is known.! The condition
for classical erasure correction is clearly that the uncerta
of the input when then2e unchanged bits are known van
ishes, that is,

H~XuYu!50. ~3.5!

In other words, this means that thee bits can be erased
without preventing the ability to infer the inputX from Yu
without error. Since we haveH(XuY)5H(XuYeYu)50 as a
result of Eq.~3.4!, i.e., it is obviously possible to inferX
from Y[YeYu , we obtain the basic entropic condition fo
classical error correction

H~X:YeuYu!5H~XuYu!2H~XuYeYu!50. ~3.6!

Physically this expresses that, conditionally on then2e un-
changed bits, no information aboutX is lost in thee erased
bits. Classical coding works because then2e unaffected bits
contain the entire informationI aboutX, that is ,

H~X:Yu!5H~X:Y!5I , ~3.7!

so that thee bits that are erased are ‘‘redundant.’’ Using t
chain rule for Shannon mutual entropies,

H~X:YeYu!5H~X:Yu!1H~X:YeuYu!, ~3.8!
s
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it is clear that Eq.~3.7! is satisfied if and only if the condition
Eq. ~3.6! is satisfied. In an erasure-correcting code, thek bits
of information are thus distributed among then bits of Y in
such a way that condition Eq.~3.6! is satisfied for any par-
tition of the n bits into e erased andn2e unchanged bits.
The general classical entropy diagram corresponding to
situation is represented in Fig. 2. The condition for eras
correction, Eq.~3.6!, appears in Fig. 2 as the vanishing e
tropy shared byX andYe , but not by Yu .

Let us briefly show that, for a classical code, it is impo
sible thatall the patterns of ‘‘e erasable’’ bits are indepen
dent of X, i.e., do not contain someredundantinformation
aboutX. ~This feature turns out to be possible for a quantu
code, as shown in Sec. IV.! Suppose that we could isolat
two subparts ofY independentof X, that is, two patterns of
bits, sayY1 andY2, such that,

H~X:Y1!5H~X:Y2!50. ~3.9!

Suppose also that, taken together,Y1 and Y2 provide the
entire information aboutX, that is,

H~X:Y1Y2!5I . ~3.10!

This should be the case if we want to make a set of bits
fully determinesX ~such asYu) out of pieces that are inde
pendent ofX. We have, using Eq.~3.10!,

H~X:Y1!1H~X:Y2!5H~X:Y1Y2!1H~X:Y1 :Y2!

5I 1H~Y1 :Y2!2H~Y1 :Y2uX!. ~3.11!

Since the logical wordX fully determines any bit of the
codewordY, we haveH(Y1 :Y2uX)50. Thus, the subaddi
tivity of entropies,H(Y1 :Y2)>0, implies that

H~X:Y1!1H~X:Y2!>I , ~3.12!

which is incompatible with Eq.~3.9! if I .0. One of the
subparts (Y1 or Y2) must necessarily be correlated withX
~have a nonvanishing mutual entropy withX) if the other one
is independent ofX. Some pattern of ‘‘e erasable’’ bits, in-

FIG. 2. Entropy diagram for a classical erasure-correcting co
The input X stands for the logical bits, while the outputY ~the
codewords! is partitioned into the erased bitsYe and the unchanged
bits Yu . The condition for erasure correction isH(X:YeuYu)50,
that is, the entire information must be found in the unchanged b
H(X:Yu)5I .
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56 1725INFORMATION-THEORETIC INTERPRETATION OF . . .
cluding Y1 or Y2, will therefore be redundant~contain some
information aboutX that is already inYu), i.e., will be such
that H(X:Ye)Þ0.

IV. ENTROPIC CONDITION FOR QUANTUM
ERROR OR ERASURE CORRECTION

A. Classical correspondence

The above information-theoretic analysis can be straig
forwardly applied to the case of a quantum erasu
correcting code. Here, the referenceR plays the role of the
input X, while Q ~the quantum codewords! replaces the out-
put Y. We also substitute the classical notion of Shann
mutual entropy~information! betweenX and Y with the
quantum notion of von Neumann mutual entropy betwe
R andQ, and use the extension to the quantum regime of
fundamental relations between Shannon entropies in a m
tipartite system@16,17,21# ~see the Appendix!. First, the
mutual entropy between the logical wordsL and R is con-
served through encoding~since it is unitary!, so that we have

I q[S~R:Q!5S~R:L !52S~R!, ~4.1!

for the mutual entropy between the codewordsQ and R.
Here, I q can be seen as the ‘‘quantum information’’~the
entanglement withR) which must be preserved in the qua
tum erasure channel. As before, we assume thatQ is parti-
tioned intoQe ~the e erased qubits! and Qu ~the n2e un-
changed qubits!. Just as in the classical case, it is intuitive
clear that entanglement is preserved at the condition tha
total mutual entropy withR is found in the unaffected qubits
Qu , that is,

S~R:Qu!5S~R:Q!5I q , ~4.2!

in analogy with Eq.~3.7!. Using the chain rule for the quan
tum mutual entropy betweenR andQ[QeQu ,

S~R:QeQu!5S~R:Qu!1S~R:QeuQu!, ~4.3!

we conclude that the condition for quantum erasure cor
tion is

S~R:QeuQu!50, ~4.4!

the straightforward analog of Eq.~3.6!. At this point, the
parallel with classical erasure correction breaks down
cause of a peculiar property of quantum entropies. It
shown in Ref.@17# that theternary mutual entropy of any
entangled tripartite system in a pure state vanishes~see also
the Appendix!. In the case of interest here, the tripart
systemRQeQu is in the pure stateucRQ&, so that we have
S(R:Qe :Qu)50. As a consequence, we obtain from E
~4.4! the basic entropic condition for quantum erasure c
rection

S~R:Qe!5S~R:QeuQu!1S~R:Qe :Qu!50. ~4.5!

Physically, this expresses that the ‘‘erased’’ part of the co
words Qe must beindependentof the referenceR. This is
very different from the classical situation, where, in order
enable erasure correction, some erased bits must by cons
tion be correlated withX. In other words, ‘‘classical redun
t-
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dancy’’ requires correlation of thee erased bits withX,
while ‘‘quantum redundancy’’ is achievedwithout correlat-
ing ~or entangling! the erased qubits withR. We will show
later on that the above entropic condition, Eq.~4.5!, can be
derived rigorously, using the property of strong subadditiv
of quantum entropies and the entropic condition for perf
quantum error correction@19,21#.

B. Quantum loss of a noisy channel

As explained in Sec. II, we assume that the codewo
sent on the quantum noisy channel suffer an arbitrary de
herence due to the environmentE, that is,UQE is an arbi-
trary unitary transformation.~We do not restrict ourselves t
a quantum erasure channel for the moment.! After such an
arbitrary environment-induced decoherence, the joint sys
R8Q8E8 is in the stateucR8Q8E8& given by Eq.~2.4!. The
corresponding quantum entropy diagram is represente
Fig. 3 ~as mentioned earlier, the primes refer to the syste
after decoherence!.

As shown in Ref.@21#, it depends on three parameter
S5S(R8)5S(R), the entropy of the referenceR ~which is
also equal to the entropy ofQ before decoherence!,
Se5S(E8), the entropy of the environment after decohe
ence, and1

L5S~R8:E8uQ8!

5S~R8Q8!1S~E8Q8!2S~Q8!2S~R8Q8E8!

5S~E8!1S~Q!2S~Q8!, ~4.6!

the lossof the channel~following the terminology of Shan-
non theory@18#!. The quantum lossL can be shown to be the
analog of the loss in a classical noisy channel, and thus
be written as a quantum conditional mutual entropy, i.e.,
quantum mutual entropy betweenR8 and E8, conditionally
on Q8 @21#.

The lossL has a simple physical interpretation in the ca
of a classicalnoisy channel: it corresponds to the entropy
the inputX of the channel conditional on its outputY, i.e.,
L5H(XuY), thereby characterizing the unavoidable unc
tainty in the decoding operation~when inferring the input

1Since the total systemR8Q8E8 is in a pure state after decohe
ence, i.e., S(R8Q8E8)50, its Schmidt decomposition implie
S(R8Q8)5S(E8) and S(E8Q8)5S(R8), resulting in the last rela-
tion in Eq. ~4.6!.

FIG. 3. Entropy diagram summarizing the entropic relations
tween the entangled systemsQ8 ~quantum channel!, R8 ~reference!,
andE8 ~environment! after decoherence~see also Ref.@21#!.
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1726 56NICOLAS J. CERF AND RICHARD CLEVE
from the corrupted output!. Equivalently, it corresponds to
the mutual entropy between the input and the environm
conditional on the output, i.e.,L5H(X:EuY). That is, for a
given output,L measures the information about the input th
has been irrecoverably lost in correlations with the envir
ment. If X corresponds to encoded codewords andY to cor-
rupted ones due to a particular error source, the condi
L50 must be satisfied for the error-correcting code to p
serve the codewords against classical noise@18#.

In Ref. @21#, it is shown that the same interpretation hol
for the quantum lossL, substituting the classical notion o
mutual information betweenX and E ~conditional onY)
with the quantum notion of von Neumann mutual entro
betweenR8 and E8 ~conditional onQ8). The referenceR
(5R8) plays the role of the inputX, while Q8 replaces the
outputY. Accordingly, it is expected that a vanishing qua
tum loss corresponds to a situation where decoherence
be entirely eliminated using a quantum code. Indeed,

L5Se1S2S~Q8!50 ~4.7!

is a necessary and sufficient condition for the existence
perfect quantum decoding scheme, as proven recently
Schumacher and Nielsen@19#. In Fig. 4, the entropy diagram
of R8Q8E8 is represented in the case where this condition
achieved. It appears that, whenL50, the state ofQ8 be-
comes entangledseparatelywith the environment~‘‘bad’’
entanglement! and the reference~‘‘good’’ entanglement!, al-
lowing this ‘‘bad’’ entanglement to be transferred to an a
cilla ~the n2k check qubits! while recovering only the
‘‘good’’ one. This transfer of entanglement, requiring a loc
action onQ only ~not onE), can be seen as a measurem
of the error syndrome~the ancilla becoming entangled wit
E) leaving the original state intact.

The fact that Eq.~4.7! is a necessary condition can b
understood simply by noticing that the loss can never
crease by processingQ8 through a subsequent channel, f
example, in the decoding operation@21#. Denoting the loss
after decoherence byL1 and the overall loss~after decoher-
ence and decoding! by L12, one has

0<L1<L12 ~4.8!

showing thatL150 is necessary for havingL1250, that is,
for perfectly recovering decoherence by decoding.

FIG. 4. Entanglement betweenQ8, R8, and E8 in a lossless
(L50) quantum channel. The quantum systemQ8 is entangled
‘‘separately’’ with R8 andE8 ~see also Ref.@21#!.
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Unlike in the classical case, it is possible to rewrite t
quantum loss as a function ofE8 andR8 only, exploiting a
purely quantum feature of entropies in a tripartite system.
mentioned earlier, an important consequence
S(R8Q8E8)50 is that the quantumternary mutual entropy
vanishes, that is,

S~R8:E8:Q8!5S~R8:E8!2S~R8:E8uQ8!

5S~R8!1S~Q8!1S~E8!2S~R8Q8!

2S~R8E8!2S~Q8E8!1S~R8Q8E8!50.

~4.9!

As a result, the quantum loss can be expressed as

L5S~R8:E8!. ~4.10!

Therefore, a necessary and sufficient condition for perf
error correction is that the reference and the environment
statistically independent(L50). This condition relates en
tropiesafter decoherence, and thus allows us to check th
for a given code and after a specific interaction with t
environment, decoherence can be recovered by decoding
far as quantum coding is concerned, it is more useful
derive an entropic relation involving only the referenceR
and the codewordsQ beforeunitary interaction with the en-
vironment, using some error model@cf. Eq. ~4.5!#.

C. Upper bound on the quantum loss

As before, we now consider an explicit error model
which the decoherence involvese qubits at known locations
i.e., the case ofe erasures. The componentQe ~of e qubits!
of the codeword interacts withE while the restQu ~of
n2e qubits! remains unchanged by the interaction. Accor
ingly, the unitary transformation describing such an er
model isURQE51R^ 1Qu

^ UQeE . This results in the conser
vation rule for the mutual entropy~see the Appendix!,

S~R8:Qe8E8!5S~R:QeE!5S~R:Qe!, ~4.11!

where we made use of the fact thatE is initially in a pure
state, i.e.,S(E)50. This entropy can also be expressed a

S~R8:Qe8E8!5S~R8:E8!1S~R8:Qe8uE8!, ~4.12!

by use of the chain rule for quantum mutual entropies. Us
the strong subadditivity of quantum entropies,

S~R8:Qe8uE8!5S~R8E8!1S~Qe8E8!2S~E8!

2S~R8Qe8E8!>0, ~4.13!

and denoting by

M5S~R:Qe! ~4.14!

the initial mutual entropy~or mutual entanglement! between
the referenceR and theerasedsubpartQe of the codeword,
Eqs.~4.11! and ~4.12! yield an upper bound on the lossL:

0<L<M . ~4.15!
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Consequently, if the mutual entanglementM ~initial mutual
entropy betweenR andQe) is zero,

M5S~R:Qe!50, ~4.16!

then the lossL5S(R8:E8) vanishes, allowing for perfec
erasure correction. In other words, the statistical indep
dence (M50) between the referenceR and the erased par
of the codewordQe is a sufficientcondition for perfect era-
sure correction, as anticipated in Eq.~4.5!. Note that this
condition must hold for any pattern ofe erased qubits amon
then qubits, a constraint which implies the quantum Sing
ton bound~see Sec. V!.

The physical content of the entropic condition, Eq.~4.16!,
is the following. The reduced density matrixrRQe

5TrQu
ucRQ&^cRQu obtained by tracing the state ofRQ, i.e.,

Eq. ~2.2!, overQu ~ignoring then2e unchanged qubits! be-
fore decoherence must represent twoindependentsystems:
thek qubits of the referenceR and thee erased qubitsQe of
the quantum system. The lattere qubits can then be
‘‘erased’’ without interfering withR in the sense that the
n2e remaining qubits retain all the entanglement withR.
The general entropy diagram of the joint state of the sys
RQ[RQeQu before decoherence is shown in Fig. 5~to be
compared with Fig. 2 for a classical code!.

For a code to protect an arbitrary mutual entropy betw
Q and R ~or an arbitrary state forQ), the above condition
M50 must clearly be satisfied for the worst case in wh
the amplitudesai in Eq. ~2.2! are all equal (uai u2522k), that
is, in the case whereQ andR ‘‘saturate’’ their entropy

S~Q!5S~R!5k. ~4.17!

~Note that sincedQ.dL , the entropy is limited by the size o
the Hilbert space ofL.! We will thus only consider this cas
in the following ~it is important when deriving the Singleto
bound on quantum codes!. Because of the two constrain
Eqs. ~4.16! and ~4.17!, the ternary entropy diagram fo
RQeQu depends on a single unknown paramet
s5S(Qe), the entropy of the erased qubits.2 In view of Fig.
5, we see that thee qubits ofQe are ‘‘superfluous,’’ as they

2The entropy diagram for a general tripartite system in a pure s
depends on three parameters.

FIG. 5. Entropy diagram for a quantum erasure-correcting co
It characterizes the combined systemRQ[RQeQu before decoher-
ence when the condition for perfect error correctionS(R:Qe)50 is
fulfilled. The two parameters areS(R)5k andS(Qe)5s.
n-

-

m

n

,

do not yield any information aboutR ~no mutual entangle-
ment with R) and are thus unnecessary for recovering
original logical state. In this sense, they constitute ‘‘redu
dant’’ quantum information since the total mutual entro
2k is found betweenR and Qu . The unchanged qubitsQu
are entangledseparatelywith the referenceR ~the ‘‘useful’’
entanglement 2k that must be preserved by the code! and
with the erased qubitsQe ~‘‘useless’’ entanglement!, so that
any action onQe due to an environmentE can only transfer
this ‘‘useless’’ entanglement toE but leaves the ‘‘useful’’
entanglement unchanged. Indeed, if the entropy diagram
5 is achieved, then Eq.~4.15! implies that any interaction
betweenQe andE necessarily results in an entropy diagra
such as the one depicted in Fig. 4, whereQ8 is entangled
separatelywith E8 andR8 ~i.e.,L50), guaranteeing that on
can undo decoherence by applying an appropriate decod

D. Example

As an illustration, we show in Fig. 6 the entropy diagra
in the case of a five-qubit code (n55) encodingk51 logical
qubit with t51, i.e., allowing up toe52 erasures@8,9#. The
full mutual entanglement of two bits is found betweenR and
Qu , while the two erased qubitsQe are independent ofR.
We haveS(R)51, S(Qu)53, andS(Qe)52, so that each
subsystem has the maximum allowed entropy for its Hilb
space (R, Qu , andQe are made of 1, 3, and 2 qubits, respe
tively!. Note that the four-qubit code (n54) encoding
k52 logical qubits and correctinge51 erasure@10,13# cor-
responds, in fact, to the same entropy diagram withR play-
ing the role ofQe and conversely. Indeed,R has then an
entropy of two bits and shares a mutual entropy of four b
with Qu ~which then contains the full information about th
two encoded qubits!. This mutual entanglement is preserve
against erasure of one qubit sinceQe is independent ofR.

Let us finally compare this ‘‘quantum redundancy’’ in th
five-qubit code with the entropic diagram characterizing
classical code. As explained in Sec. III, in a classical co
the information (k bits! is distributed among then bits which
are then correlated with the inputX in a specific way@so that
Eq. ~3.6! is satisfied#. Ignoring the n2e unchanged bits
(Yu) leavese bits (Ye) that areredundant@the total infor-
mation is inYu , as implied by Eq.~3.7!#, butcorrelatedwith
the inputX, in contrast with the quantum case. The entro
diagram corresponding to a simple classical code is ill

te

e. FIG. 6. Quantum entropy diagram of the combined syst
RQeQu before decoherence for the five-bit quantum code (n55,
k51, e52) @8,9#.
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1728 56NICOLAS J. CERF AND RICHARD CLEVE
trated in Fig. 7~to be compared with Fig. 6!. We consider a
simple linear code withn55, k52, e52, defined in Ref.
@22#

00→00000

01→01110

10→10101

11→11011, ~4.18!

such that the distance between any two codewords is thre
larger. We assume that the first and the last bit are era
(Ye), the three other ones being unchanged (Yu), and show
the entropy diagram in the case where the logical words
to 11 are equiprobable@the entropy in Eq.~3.3! is maxi-
mum#. The full information is found inYu , H(X:Yu)52
bits, but the erased bits are partially correlated withX,
H(X:Ye)51 bit. Classical redundancy necessarily impli
that the erased bits contain part of the information tha
duplicated.

The situation is thus quite different in a quantum cod
Eq. ~3.6! is replaced by its quantum counterpart Eq.~4.4!,
with the same physical interpretation, but the latter equa
then implies the simpler condition~4.16! as a consequence o
the property that the quantum ternary mutual entropy v
ishes for a pure state. Such a possibility to achieve ‘‘wea
cloning through coding~in the sense that the full informatio
is in Qu without correlatingQe with the referenceR) is
purely quantum and suggests an interesting interpretatio
quantum coding, as explained in Sec. VI.

V. SINGLETON BOUND ON QUANTUM CODES

The above entropic considerations provide a simple w
to derive the quantum analog of the Singleton bound
error-correcting codes, obtained recently by Knill a
Laflamme @11#. For a classical code, the Singleton bou
~see, e.g.,@23#! states that the number of logical bitsk than
can be encoded in a code of lengthn recoveringe erasures is
such that

k<n2e. ~5.1!

Of course, for a classical code recoveringt errors ~at un-
known locations!, the Singleton bound becomes

FIG. 7. Classical entropy diagram ofXYeYu for the n55,
k52, e52 classical linear code defined in the text.
or
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k<n22t, ~5.2!

as a consequence of the equivalence between codes co
ing t errors ande52t erasures. In order to derive the qua
tum analog of this bound, we consider the joint state of
system RQ5RQeQu before decoherence. For a quantu
code to protect an arbitrary entanglement betweenQ and
R, the entropic conditionM5S(R:Qe)50 must be satisfied
for the worst case of maximum entanglement, that is, in
case where Q and R ‘‘saturate’’ their entropy
S(Q)5S(R)5k. Assume for the moment that the code
such thatS(Qe)5e, i.e., that the erased qubits have t
maximum entropy allowed by the dimension of the Hilbe
space ofQe . Then, the conditionM50 is clearly satisfied if
tracing over then2e qubits associated withQu yields a
reduced density matrix forRQe that saturates its quantum
entropy

S~RQe!5S~R!1S~Qe!2S~R:Qe!5k1e. ~5.3!

This corresponds to the cases5e in Fig. 5. SinceRQeQu is
in a pure state@i.e., S(RQeQu)50#, one has S(RQe)
5S(Qu) by the Schmidt decomposition. Expressing that t
quantum entropy ofQu is bounded from above by the loga
rithm of the dimension of its Hilbert space, that isS(Qu)
<n2e, one gets the inequality

k<n22e, ~5.4!

which is the Singleton bound for quantum erasure-correc
codes. Making use of the equivalence between codes cor
ing errors oft qubits and the erasure ofe52t qubits, we get
the Singleton bound for quantum error-correcting cod
~proven in Ref.@11# for k5t51)

k<n24t. ~5.5!

This condition must be satisfied by any quantum code~in-
cluding degenerate codes!. Mathematically, Eq.~5.4! ex-
presses thus that it is necessary to trace over at least ha
then1k qubits constituting the total entangled stateucRQ& in
order to open the possibility of havingk1e independent
remaining qubits~that is which saturate their entropy!,
thereby allowing error correction. Equation~5.4! suggests an
interpretation of quantum coding in terms of a ‘‘weak’’ clon
ing, as explained in Sec. VI.

The above derivation was based on the assumption
the erased qubits have a maximum entropy, i.e.,S(Qe)5e.
This is true, for example, in the case of the five-qubit co
shown in Fig. 6. However, we need to prove Eq.~5.4! in full
generality, without recourse to this assumption. In genera
is possible to haveS(R:Qe)50 with S(Qe),e; this is the
case, for example, when one~or more! of the physical qubits
is always 0~nonoptimal code!. Suppose that the conditio
for erasure correctionS(R:Qe)50 is satisfied for some pat
tern of e erased qubits, so that the remaining part of t
codeword Qu retains the ‘‘full’’ entanglement,S(R:Qu)
52k. The central point in deriving the quantum Singleto
bound is that this entropic condition must be fulfilled forany
pattern ofe erased qubits among then qubits. Therefore, one
can choose for example another pattern ofe qubits within the
n2e qubits that constituteQu , and check that they have als
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a vanishing mutual entropy withR.3 Let us denote thee
erased qubits in this second check byQe8, so thatQu is di-
vided into Qe8 and Q* ~the n22e remaining qubits! as
shown in Fig. 8. The corresponding entropic condition
thus S(R:Qe8)50. Conversely, the unchanged qub
Qu’ [QeQ* in this second check must also retain the f
mutual entanglement withR, i.e., S(R:Qu8)52k. This im-
plies that, while thee qubits of Qe are independent ofR,
they must recover the total mutual entanglement 2k with R
when supplemented only with then22e qubits of Q* .
These two opposite constraints must be satisfied simu
neously, which gives rise to the quantum Singleton boun

In order to prove this bound, we first calculate a low
bound on the entropy ofQ* . Using the fact thatRQ
5RQeQe8Q* is in a pure state and the independence
tweenQe andR, we have

S~Qu!5S~Qe8Q* !

5S~RQe!5S~R!1S~Qe!2S~R:Qe!

5k1S~Qe!. ~5.6!

Then, the property of subadditivity of quantum entropies

S~Qe8Q* !<S~Qe8!1S~Q* !, ~5.7!

implies the inequality

k1S~Qe!2S~Qe8!<S~Q* !. ~5.8!

By the same token, given the independence betweenQe8 and
R, we can calculate the entropy ofQu8,

S~Qu8!5S~QeQ* !

5S~RQe8!5S~R!1S~Qe8!2S~R:Qe8!

5k1S~Qe8!, ~5.9!

and make use of subadditivity

S~QeQ* !<S~Qe!1S~Q* !, ~5.10!

to obtain

k1S~Qe8!2S~Qe!<S~Q* !. ~5.11!

3This implies the simple constraint that the dimension ofQu must
be larger than the dimension ofQe , that is,e,n2e. This inequal-
ity, i.e., the Singleton bound fork51, also results straightforwardly
from the no-cloning theorem~see Sec. VI!.

FIG. 8. Schematic representation of the two partitions ofQ into
QeQu or Qe8Qu8 which are used in the derivation of the quantu
Singleton bound.
l

a-
.
r

-

Finally, combining Eqs.~5.8! and ~5.11! provides a lower
bound forS(Q* )

k<S~Q* !. ~5.12!

This bound is equivalent toS(QeQe8uR)>0, and has the fol-
lowing interpretation. Even thoughQe and Qe8 are both in-
dependent ofR, the combined systemQeQe8 will generally
be entangled withR ~with a mutual entropy between 0 an
2k). However, in contrast with the entanglement betwe
Qu ~or Qu8) and R, the entropy ofQeQe8 conditional onR
cannot become negative because of the opposite constr
on S(Qe)2S(Qe8) from Eqs.~5.8! and ~5.11!. The quantum
Singleton bound is obtained simply by noticing thatS(Q* )
is bounded from above by the dimension of the Hilbert sp
of Q* , that is

S~Q* !<n22e. ~5.13!

The latter equation together with Eq.~5.12! completes the
proof of Eqs.~5.4! and ~5.5!.

VI. DISCUSSION AND CONCLUSION

Before concluding, let us discuss the relationship betw
the quantum no-cloning theorem and quantum eras
correcting codes. The main point is to note that, if we c
erasee qubits while being able to recover the codeword,
means that then2e remaining qubits contain all the infor
mation, so that thee qubits apparently contain a~partial!
duplication of the logical word. Clearly, it is forbidden t
erase half~or more! of then qubits, since then the two halve
of the codeword could be mapped on the logical word,
abling quantum cloning. Thus, one must haven22e.0 ~a
constraint equivalent to the condition that the dimension
Qu must exceed the dimension ofQe). However, Eq.~5.4! is
actually more restrictive, implying that it is possible to qua
tify the impossibility of cloning~to be more precise than
yes-or-no theorem!. We will see that the Singleton boun
expresses that a ‘‘weak’’ cloning is allowed, up to a certa
extent. Let us define the number of clones~the fractional
number of copies of the logical word! as

Nc[
e

n2e
, ~6.1!

where then2e qubits constitute the ‘‘original’’~necessary
to fully recover the logical state! while the e erased qubits
make the partial4 clone. It is easy to see from Eq.~5.4! that
the fractional number of clones is restricted to the range

4This concept of ‘‘partial’’ cloning is unrelated to the notion o
‘‘approximate’’ cloning introduced in Ref.@24#. There, a universal
quantum-cloning machine is used that has two outputs being
approximatecopy of the input. This can be viewed as two chann
sharing the same input but necessarily characterized both by anon-
vanishingquantum loss, i.e., the fidelity of both copies is not on
In our case, we have twolosslesschannels:L→Qu and L→Qu8.
However, the outputs unavoidably share a common pieceQ* which
cannot be reduced to zero forS(R:Qu)52k and S(R:Qu8)52k to
hold simultaneously.
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1730 56NICOLAS J. CERF AND RICHARD CLEVE
0<Nc<
n2k

n1k
. ~6.2!

This somehow extends the standard no-cloning theorem
‘‘weak’’ ( Nc,1) cloning. The no-cloning theorem@15#
states that it is forbidden to make one full clone, i.e.,Nc
Þ1, while Eq.~6.2! provides an upper bound on weak clo
ing. In the limiting case wheren5k, the number of clones is
strictly zero. This simply means that, if the codewords sp
the full 2n-dimensional Hilbert space~i.e., if no coding is
actually used!, then no cloning at all is achieved (Nc50).
The same is obviously true for a classical code, since, u
Eq. ~5.1!, the equivalent condition on ‘‘weak’’ cloning is
0<Nc<(n2k)/k. When quantum coding uses only part
the Hilbert space, i.e., the space of codewords is so
2k-dimensional subspace of the full space (k,n), the logical
states may then be viewed as partially cloned by the enc
ing process, the fractional number of clones being limited
(n2k)/(n1k). The latter increases as a smaller subspac
used (k decreases!, and tends to one~full cloning! when
n/k→`. The casek50 corresponds to perfect cloning of
fixed ~i.e., nonarbitrary! pure state. In short, whatever th
apparent ‘‘replication factor’’n/k of the logical words
achieved by the encoding process, the allowed numbe
clonesNc,1 ~for a nonvanishingk). For a classical code
however, no such limit exists on the number of clones,
Nc→n/k whenn/k→`.

We have shown that some insight into quantum cod
can be gained by use of an information-theoretic appro
paralleling the one used to describe classical coding. Suc
analysis displays explicitly the similarities between classi
and quantum codes, but also emphasizes the major di
ences. The entropic condition for a quantum erasu
correcting code is that the quantum mutual entropy betw
a reference and the erased part of the codeword is vanis
prior to decoherence. Such a statistical independence
tween the reference and the erased qubits~interacting with
the environment! guarantees that the entanglement of
logical word with respect to this reference is preserved by
quantum code. This is to be compared with the correspo
ing entropic condition for a classical erasure-correcting co
i.e., that the mutual information between the logical bits a
the erased bits of the codewords,conditionalon the remain-
ing unchanged bits of the codewords, is vanishing. Suc
classical condition, however, doesnot imply that the erased
bits are independent of the logical bits. On the contrary, th
must be correlations between them, and this duplication~or
‘‘cloning’’ ! of classical information is at the heart of class
cal codes. The classical ‘‘cloning’’ of information has n
quantum counterpart, as a consequence of the purely q
tum property that theternary mutual entropy vanishes fo
any entangled tripartite system in a pure state. In a quan
code, only a ‘‘weak’’ cloning is achieved, up to the exte
allowed by the quantum Singleton bound, so that the era
qubits areunentangledwith the reference although the enti
codeword remains entangled with it. This reflects a ma
difference between classical and quantum coding.
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APPENDIX: INFORMATION-THEORETICAL
FRAMEWORK FOR QUANTUM ENTROPIES

Classical information theory is centered on Shannon
tropies~see, e.g.,@18,20#!. A random variableX, distributed
according to the probability distributionpi , is characterized
by the Shannon entropy

H~X![2(
i

pi log2pi . ~A1!

The Shannon entropyH(X) measures theuncertaintyof X ~it
vanishes if the distribution is peaked, i.e., if the value ofX is
perfectly known!. When considering two random variable
X andY, described in general by the joint probability distr
bution pi , j , one can define several entropies. First, one
the joint entropyH(XY), based onpi , j in analogy with Eq.
~A1!, which reflects the uncertainty ofX andY. Second, one
defines the entropy ofX conditionalon Y, that is the entropy
of X whenY is known ~averaged overY),

H~XuY![2(
i , j

pi , j log2pi u j5H~XY!2H~Y!, ~A2!

based onpi u j5pi , j /pj , the conditional probability ofi
knowing j . The equivalent definition holds for the cond
tional entropy of Y knowing X, i.e., H(YuX)5H(XY)
2H(X). Finally, one defines themutualentropy betweenX
andY as

H~X:Y![2(
i , j

pi , j log2pi : j5H~X!1H~Y!2H~XY!,

~A3!

wherepi : j5pipj /pi , j is the mutual probability ofi and j . It
plays the role of mutualinformationbetweenX andY, that
is, the information aboutX that is conveyed byY, or the
decrease of the entropy ofX due to knowledge ofY ~or
conversely!

H~X:Y!5H~X!2H~XuY!5H~Y!2H~YuX!. ~A4!

Consider now the information-theoretical description o
bipartite quantum systemXY, whereX andY correspond to
two quantum variables or degrees of freedom~e.g., thez
component of a spin-1/2 particle!. It is shown in Refs.
@16,17# that a quantum information-theoretical formalis
that parallels Shannon construction can be defined tha
based on the von Neumann entropy, where probability d
tributions are replaced by density matrices, and averages
changed into quantum expectation values. We have for
quantum~von Neumann! entropy ofX,

S~X![2TrX~rX log2rX!, ~A5!
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where rX is the density matrix characterizing the state
X. The density matrixrX is obtained by a partial trace ove
the Y variable, i.e.,rX5TrY(rXY), where rXY is the joint
density matrix describingXY. A similar definition holds for
S(Y), based onrY , and for the joint entropyS(XY). One
then defines the quantum~von Neumann! conditional en-
tropy,

S~XuY![2TrXY~rXYlog2rXuY!5S~XY!2S~Y!, ~A6!

based on theconditional density matrix rXuY ~defined in
@16,17#!. The latter plays the role of a ‘‘quantum’’ cond
tional probability, and witnesses the appearance of nonc
sical correlations in the case of quantum entangled varia
X and Y. Indeed, it can be shown that an eigenvalue
rXuY can exceed one, and, consequently, that the quan
conditional entropyS(XuY) can benegative, a fact related to
quantum nonseparability~see @16,17,25#!. For example, if
X andY represent two entangled quantum bits in a Bell sta
we haveS(XuY)5S(YuX)521 bit. Since negative condi
tional entropies are forbidden in Shannon theory, a nega
value ofS(XuY) obviously implies quantum nonseparabilit
the converse being not true. On the other hand, ifrXY de-
scribes a mixture of orthogonal product states~that is, a clas-
sical situation!, rXuY is then a diagonal matrix with the
pi u j ’s on its diagonal, and Eq.~A6! reduces to its classica
counterpart Eq.~A2!. The above definition Eq.~A6! must
therefore be viewed as a quantumextensionof the Shannon
conditional entropy in a way that incorporates quantum
tanglement, while including the classical conditional entro
as a special case.

According to this, it is natural to define a quantum~von
Neumann! mutualentropy,

S~X:Y![2TrXY~rXY log2rX:Y!5S~X!1S~Y!2S~XY!

5S~X!2S~XuY!5S~Y!2S~YuX!, ~A7!

based on themutualdensity matrixrX:Y ~defined in@16,17#!.
The interpretation is the same as in Shannon informa
theory, andS(X:Y) is a symmetric quantity. Subadditivity o
quantum entropies, i.e.,S(XY)<S(X)1S(Y), implies that
S(X:Y)>0, just as for Shannon mutual entropies. Howev
in the case of quantum entangled variables,S(X:Y) can
reach twice the maximum allowed value in Shannon the
@16,17#:

S~X:Y!<2 min@S~X!,S~Y!#. ~A8!

For instance, we haveS(X:Y)52 bits between the member
of an Einstein-Podolsky-Rosen pair. Note thatS(X:Y) is not
a measureof entanglement in the sense that it can be nonz
for classical~separable! mixtures. It does not necessarily e
ceed the classical upper bound, min@S(X),S(Y)#, for quantum-
entangled systems. Thus,S(X:Y) is rather a quantum
mechanical extension of the usual Shannon mutual entr
which measures quantum as well as classical correlati
Nevertheless, it plays an important role in the informatio
theoretic description of quantum channels and error cor
tion, as emphasized throughout this paper~see also@21#!.

Consider a quantum systemX entangled with a referenc
R, so that the joint systemRQ is in the pure state
f
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( iApi u i R&u i X&. Assume that the systemX is sent through a
quantum channel~which does not act onR). It is easy to see
that, if the channel~including error correction! is ‘‘perfect,’’
i.e., if the outputY ends up in a joint pure state~together
with R) such that the quantum mutual entropy withR is
conserved, then anarbitrary quantum state is preserved
the channel.5 Indeed, asR is unchanged, any joint state o
RY that is characterized byS(R:Y)5S(R:X) and
S(RY)5S(RX)50 is necessarily of the form
( iApi u i R&(Uu i X&) whereU is a fixedunitary transformation
~it doesnot depend on thepi ’s!. Thus, up to a given chang
of basis, the outputY is in the same entangled state wi
R. ProjectingR onto any pure state shows that the cor
sponding pure state ofX ~the ‘‘relative’’ state! has been pre-
served, i.e.,Y ends up in the same state.

Another important property of the quantum mutual e
tropy S(X:Y) is that it is conserved when the bipartite sy
tem XY undergoes a unitary transformation of the for
UX^ UY . Indeed, if

rXY8 5~UX^ UY!rXY~UX^ UY!†, ~A9!

thenrX85TrY8(rXY8 )5UXrXUX
† and similarly forrY8 , so that

S~X8:Y8!5S~X:Y!, ~A10!

follows from Eq. ~A7!, using the conservation of von Neu
mann entropy under a unitary transformation. In particu
any entangled systemXY that undergoes a local operatio
separately onX and Y retains its initial entanglement be
tweenX and Y, i.e., S(X:Y) is conserved. This property i
useful in the context of quantum channels and quantum e
correction.

The quantum information-theoretical formalism defin
above can be generalized to multipartite systems, in ana
to the Shannon construction@16,17#. The definition of the
conditional~and mutual! density matrices provides ground
for the quantum extension of the usual algebraic relati
between Shannon entropies~see, e.g.,@18,20#!. The resulting
framework for quantum information theory goes beyo
classical correlations, i.e., accounts for situation wheren
quantum variables are entangled, by allowing conditional
tropies to be negative. Of course, it also includes Shan
theory as a special case. Consider, for example, a tripa
quantum systemXYZ. First, one can write thechain rulefor
quantum entropies,

S~XYZ!5S~X!1S~YuX!1S~ZuXY!. ~A11!

One can also define the von Neumannconditional mutual
entropy,

5The classical analog of this property is intuitive. If the inputX of
a classical channel is copied into a memoryM ~so thatM is thus
perfectly correlated withX), the correlation between the outputY
and the memoryM reflects the ‘‘quality’’ of the channel. In par-
ticular, if the mutual entropy betweenY and M is equal to that
betweenX andM , then the classical channel is perfect~lossless!.
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S~X:YuZ!5S~XuZ!2S~XuYZ!

5S~XuZ!1S~YuZ!2S~XYuZ!

5S~XZ!1S~YZ!2S~Z!2S~XYZ!,

~A12!

which reflects the quantum mutual entropy betweenX and
Y, whenZ is known. Equation~A12! parallels the definition
of a mutual entropy Eq.~A7!, but with all entropies being
conditional onZ. Just as with classical entropies, the pro
erty of strong subadditivityof quantum entropies holds, tha
is S(X:YuZ)>0. Conditional mutual entropies are also us
in the quantum analog of the chain rules for mutual ent
pies, that is,

S~X:YZ!5S~X:Z!1S~X:YuZ!. ~A13!

Finally, the relation between conditional and mutual ent
pies,S(X)5S(XuZ)1S(X:Z) can be extended to a tripartit
system, that is,
ys

.

A

-

-

-

S~X:Y!5S~X:YuZ!1S~X:Y:Z!, ~A14!

so that we can splitS(X:Y) into a conditional piece and a
mutual piece withZ. The latter piece,S(X:Y:Z), character-
izes therefore theternary mutual entropy, i.e., that piece o
the mutual entropy betweenX and Y that is also shared by
Z. All these relations between entropies can be underst
very easily using Venn diagrams@16,17,21#.

Finally, an important property ofquantum entropies
which has no classical counterpart, is that, for any entang
tripartite systemXYZ in a pure state, the ternary mutu
entropy vanishes@17#, i.e.,

S~X:Y:Z!5S~X!1S~Y!1S~Z!2S~XY!2S~XZ!2S~YZ!

1S~XYZ!50. ~A15!

This results from the fact thatS(XYZ)50 implies
S(XY)5S(Z), S(XZ)5S(Y), andS(YZ)5S(X), as a con-
sequence of the Schmidt decomposition of the state
XYZ.
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