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Quantum error-correcting codes are analyzed from an information-theoretic perspective centered on quan-
tum conditional and mutual entropies. This approach parallels the description of classical error correction in
Shannon theory, while clarifying the differences between classical and quantum codes. More specifically, it is
shown how quantum information theory accounts for the fact that “redundant” information can be distributed
over quantum bits even though this does not violate the quantum “no-cloning” theorem. Such a remarkable
feature, which has no counterpart for classical codes, is related to the property that the ternary mutual entropy
vanishes for a tripartite system in a pure state. This information-theoretic description of quantum coding is used
to derive the quantum analog of the Singleton bound on the number of logical bits that can be preserved by a
code of fixed length which can recover a given number of erf@$050-294707)01609-0

PACS numbd(s): 03.65.Bz, 89.70:c

[. INTRODUCTION “quantum redundancy” is impossible. However, after the
pioneering work of Shof4], it has been realized that quan-
The potential use of quantum computers for solving certum coding is achievable in spite of the no-cloning theorem,
tain classes of problems has recently received a consideraldmd a great deal of work has recently been devoted to this
amount of attentiorffor a review see, e.g[1-3]). A major  issue[5-14]. It has been shown that quantum information
obstacle in the building of quantum computers, however, ican be distributed over many quantum Kgsbitsg through a
the coupling of the computer with its environment or the suitable encoding and subsequently recovered after partial
decoherencewhich rapidly destroys the quantum superposi-alteration, without violating the no-cloning theorem.
tion at the heart of quantum algorithms. An essential element In this paper, we aim at clarifying some aspects of quan-
in the realization of such quantum computers is therefore theum coding from a perspective centered on quantum entro-
use of quantum error-correcting codes, which have beepies. It has recently been shown that classical and quantum
shown to ensure protection against decoherefpbeld.  entropies can be described within a unified information-
Quantum codes are similar in many respects to classicaheoretical framework involving negative conditional entro-
codes. In classical coding theory, logical wor@s k bits)  pies[16,17], as briefly outlined in the Appendix. Here, we
are encoded into codewordsf n>k bits). The latter are apply this framework to quantum error-correcting codes, par-
suitably chosen among the set of all possible words of alleling the classical description of error correction in Shan-
n bits so that the alteration because of noise oftshigs (at  non theory. We show that, for an arbitrary entanglement be-
mos) can be recovered. A specific set of codewords thenween the logical words and a “reference” system to be
constitutes arin,k,t] code, encoding bits inton bits and  preserved, the quantumutualentropy between this “refer-
correcting all patterns of (or fewep errors among those  ence” and any “interacting” part of the codewords must be
bits. The simplest example of a classical code withl, vanishing prior to decoherence. In other words, an entropic
n=3, andt=1 is the repetition code where a logical bitd@¥  condition for perfect quantum error correction is that the
1) is encoded into 00Qor 111); decoding is simply per- ‘“reference” system is statisticallindependenbf any arbi-
formed using the majority rule, which is enough to recovertrarily chosen part of the codewords that might interact with
t=1 errors. In classical coding theory, corrupted data is thushe environment. This condition relies on the conservation of
restored by introducing redundanay>k), that is, by dupli- quantum mutual entropies implied by unitarity, along with
cating part of the information that must be preservéuthe  the property of strong subadditivity of quantum entropies
above—very inefficient—example, information is tripli- (see the Appendjx It expresses the fact that the environment
cated) In quantum coding theory, the central issue is to findcannot becoméirectly entangled with the “reference” sys-
a set of ¥ quantum codeword®f n quantum bitssuch that tem (entanglement may arise only via the codewdrds,
guantum informatiorcan be protected against the alterationroughly speaking, that the environment cannot extract infor-
due to coupling with an environmert.e., such that the mation about the logical words.
guantum system survives decoherencat first sight, it We continue by deriving the analog of the Singleton
seems that, since the duplication of an arbitrary quantunbound for quantum coddd1], i.e., k<n—4t, using simple
state is forbidden by the quantuno-cloningtheorem[15], arguments based on this entropic approach. Such an
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information-theoretic description of coding sheds new light

on the interpretation of this bound in terms of “weak” clon-

ing. While the quantum bits that are altered as a result of anyv,,
error are statistically independent of the refereitoe the
encoded logical word the quantum information stored in the
entire codeword remains unaffected. This results from the
fact that theternary mutual entropy vanishes for any en-
tangled tripartite system in a pure state, a property which has
no classical counterpaftl7]. The central point is that, in
contrast with classical codes, no duplicating—or full FIG. 1. Schematic model of a noisy quantum channel preceded
cloning—is achieved byguantum error-correcting codes. by encoding and followed by decoding. The logical statsstem
Rather, a “weak” quantum cloning is achieved, such thatlL of k qubitg are entangled with the reference systenEncoding,
any part of the codeword susceptible to decohere appearsing an ancillaA of n—k *“check” qubits initially in a |0) state,
independent of the reference although the entire codewordelds the codewordgsystemQ of n qubitg. Then,e qubits Q)
remains entangled with it. This purely quantum situation isare “erased” by interacting with the environmef via Uqe,
forbidden in classical information theory due to the non-Wwhile then—e remaining ones@,) are unchanged. Decoding, in-
negativity of Shannon conditional entropies, and reflects ¥°lving the “erased” qubitsQ. along with the unchanged ones

fundamental difference between classical and quantum errofu: Yields thek logical bitsL in the initial entangled statgg,_with
correcting codes the referenc&. The primes refer to the systems after environment-

induced decoherence.

Enc

RIT

initial state of then—k auxiliary qubits(or check bitg. Thus,
after encoding, the joint state of the refererReand the
quantum channed is

II. QUANTUM ERROR CORRECTION

Let us consider a set of orthogonal logical statg}s (with
i=1,...,%) which are encoded into orthogonal codewords
lig) consisting ofn qubits.(The indexQ refers to the quan-
tum channel on which the codewords are 9emhe states
li_) belong to the logical Hilbert spacg, of dimension
d, =2% spanned by the logical qubits, while the states o
lig) belong toH,, of dimensiondy=2". We have clearly Itis a pure state of vanishing entro (R Q) =0; the quan-
do>d, , which is the quantum equivalent of classical “re- Um entropies oR and Q are S(R)=3(Q) =H[a;], where
dundancy”: the logical states are encoded in somdl stands for the Shannon entropy,
2%-dimensional subspace of the full-@imensional Hilbert
space so that part of the information in thequbits is “re-
dundant.” Qualitatively speaking)—k qubits of the code-
words represent redundant informatitthey are equivalent
to the “check bits” of classical codgd 8]). In Sec. IV, we Let us now suppose that the codewords are sent on a noisy
will make this concept of quantum “redundancy” more guantum channel in which they suffer decoherence due to an
quantitative. environmentE. Following Schumacher’'s model of a noisy

The key property of a quantum code lies in its ability to channel[19], we assume that the environment is initially in
protect anarbitrary superposition of logical stateSa;]i, ) the pure stat¢0) and then interacts with the channel accord-
against decoherence. Equivalently, a quantum code is sudhg to the unitary transformatiod e, so that the joint state
that the entanglement of thelogical qubits with a “refer-  of the entire system becomes
ence” systemR is preserved against decoherence. In fact,
this description of quantum coding as a mean to trangonit

ok

|‘/’RQ>:Z:L ajlig)lig)- (2.2

H[ai]=—2 |ay|?logy|a;|2. 2.3

ok

conserve entanglement with respect ® in spite of the in-
teraction with an environment is more convenient for our
information-theoretic description and will be adopted in the
following. Accordingly, we start by considering the initial

|¢R'Q/E/>=(1R®UQE)241 ailig)|ig)0). (2.9

(The prime refers to the systenadter decoherencg.This

noisy channel is pictured in Fig. 1 and will be the basis of
our description of quantum coding in terms of quantum en-
tropies. More specifically, we will consider a “determinis-
tic” error model in which the position of the erroneous bits
is known usually referred to as the quantarasurechannel
[13]. In this channel, the decoherence induced by the envi-
ronment involvese qubits at known locations, i.ee era-
whereR andL refer to the reference and logical states, re-SUres. The componeQ, (of e qubity of the codeword in-
spectively.(This is the Schmidt decomposition of a pure en-t€racts withE (sufferse erasureg while the restQ, (of
tangled state¢. We then consider the transformation of N~ € qubity is left unchanged by this interaction. Accord-

| L) due to encoding followed by decoherence. Encoding idngly, the unitary transformation in E¢2.4) is of the form
performed by use of a unitary transformation that maps the

statedi )|0) to the codeword§ o), where|0) stands for the 29

entangled state

ok

|¢RL>:iZl ailig)iL), 2.1

UQE: 1Qu® UQeE .
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As an example, we can suppose that the environment is madgraightforwardly from the orthogonality of the logical states
of e qubits initially in a|0) state and thaUQeE effects the |i_) and|j_), and the conservation of scalar products by

exchange between these qubits and ¢hqubits of Q, (a  unitarity. . .

reversible operationAs a result, the qubits d®, are erased ~ The above considerations also apply to the quarean
(reset t0]0)) while the qubits ofE get the original value of surechannel in which the position of theerroneoug bits is
the erased qubits. As the environment is traced over in ordéf?0Wn[13]. Note that conditions2.6) and (2.7) obviously
to determine the state of the chani@lafter decoherence, correspond to the case where the errors are appliediat
quantum information is apparently erased even though th&nown positions in the codeword. Clearly, if the error-
overall process is unitary. Of course, any othg ¢ could correcting code aims at correcting ferasuresonly, the er-

result from decoherence, and a quantum erasure-correctiriar operatorsE, and E, differ from each other by one-bit

code will be such that the entanglement wRhis preserved ror operators at theamepositions only. Therefpre, as the
for an arbitraryU product of two such e-erasure operators is another
QcE -

. i . ) e-erasure operatofa linear combination of thé&,'s), the
Before discussing coding and decoherence using quantufcessary and sufficient condition for erasure-correction be-

entropies(Sec. I\Q, let us first _review some basics of quan- comes[13]

tum error-correcting codes. It is known that, rather than cou-

pling the codewords with an environment, one can model the <iQ|Ea|iQ>:<j Q|Ea|jQ>a (2.9
errors by use of error operatoEs For the purpose of error

correction, it is enough to consider errors of the type(bit (iQ|Ea|jQ>=O, for i#j. (2.10

flip), o, (phase flip, and oy, (bit and phase flip since, by

linearity, a code that can correct these errors can corredt results that an error-correcting code correctingrrors(at
arbitrary errorg7]. For a[n,k,t] code, i.e., a code correcting unknown positionsis equivalent to are-erasure correcting

t errors at most, the error operatdgsapplied on the code- code withe=2t. This equivalence will be very useful in the
words are of the form 1" D9 E®!, j.e., the tensor product following because the quantum erasure channel is easier to
of the identity omn—t qubits and one-bit error operators on treat using an entropic approach. Before coming to the
the altered qubits. The one-bit error operators are any linedpformation-theoretic analysis of quantum error-correcting
combinations of the algebra bagisoy oy ,0,}. It has been codes(Sec. IV), let us first analyze classical error correction
shown by Knill and Laflammg11] that a necessary and suf- in terms of entropies. This will make the classical-quantum
ficient condition on quantum error-correcting codes is that correspondence more transparent.

(iolEXELlig)=(iolEXEblio) (2.6) IIl. ENTROPIC CONDITION FOR CLASSICAL
ERROR OR ERASURE CORRECTION

(iolBaEylig)=0, for i#] 27 Just as in the quantum case, one can define two classes of

classical noisy channels, depending on the fact that the errors
occur at known or unknown locations. In the former case, the
located errors are callegfasures and an erasure-correcting
code is such that, i& bits out of then bits are “erased,” it
is possible to recover the encoded logical word from the
n— e remaining bits only{20]. In the latter case of classical
codes capable of correctirigerrors at unknown positions in
codewords of sizen, all the n bits of the corrupted code-
words must be used in the decoding operation. Exactly as for
ttc:]uantum codes, it is easy to show that a classical code can
. . . orrectt errors at unknown locations if and only if the same
gsgﬁqga?n the logical state, that is, the decoding must b(ﬁ:‘ode can correce=2t erasures at known locations. The
proof is as follows. Let us consider two codewords of length
n, w; andw;, and two error stringsg, ande,, (the bits in a
codeword are flipped where the corresponding bits in the
error string are equal t0)1To be able to recovdrerrors, we

where thelig) and|jo) are any two codewords arnid,,

E, are chosen from the set dferror operators defined
above. Condition$2.6) and(2.7) can be understood by con-
sidering the decoding operation as an “inverse” unitary
transformation 14] that maps then qubits of the corrupted
codewordQ’ into k qubits(the original logical word.) and
n—k check qubitgthe ancillaA’), as represented in Fig. 1.
Considering the action of decoding on two codewdjigs
and|jo) that have been corrupted by errdig or E,,, it can

Ea|iQ>_’|iL>®|Aa>

Ea|JQ>H|JL>®|Aa> Wi@ea¢Wj@eb, (31)
Eplig)—1iL)®[Ap). (2.8)  for any two codewords and for all possible error strings hav-

ing t bits (or fewen equal to one. Herep is the bitwise
In other words, the final state & must be the same for both addition mod 2 and¢ means that the two strings must differ
codewordgig) and|jq), and depend only on the error syn- by at least one bit. A classical code correctingrrors must
dromea or b. This condition is clearly required in order to therefore be such that the distance between any two code-
recover an initialarbitrary superposition=;a;|i,) (i.e., the  words is larger than or equal ta2 1, since the error strings
ancilla must be in a tensor product with thdogical qubits e, ande, can have at modtbits equal to one, implying that
after decodingy Conditions (2.6) and (2.7) then result e,®e, can have at mostt2bits equal to one. Now, in the
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case of codes capable of correctimgrasures, the positions
of the bits equal to one ie, and e, are identical, so that
e.=e,de, can have at most (rather than 2) bits equal to
one and is therefore anothererror string just ag, or ey .
Thus, the condition for recovering erasures is

Wi@e(ﬂ&Wj . (32)

In other words, the distance between any two codewords

must only be larger than or equal &+ 1. Obviously, Eq.
(3.1) parallels Eqs(2.6) and(2.7), while Eq.(3.2) parallels
Egs. (2.9 and (2.10. The resulting equivalence= 2t will

be important for our concern because the entropic analysis
more adapted to erasure correction.

Let us shortly describe coding in the case of a classicai

erasure channdl20]. We consider encoding as a classical
channel whose inpuX is made ofk logical bits and output
Y is made ofn physical bits(the codewords We assume
that the set of logical words; occur with probabilityp;, so
that the entropy of the inpX is

H(X)=— EI pilog,p; . (3.3

The input X can be recordeda classical variable can be
“cloned”) and thus compared with the outp¥t As the
encoding is reversiblét is a one-to-one mappingthe mu-
tual entropy is conserved through encoding, that is,

I=H(X:Y)=H(X:X)=H(X), (3.4

where| is defined as the mutual entroggr information

between input and output that must be preserved in the cla

sical erasure channel. Let us assume Yhat partitioned into
e erased bit&¥,, andn—e unchanged bit¥ . (The position
of the erased and unchanged bits is kngwirhe condition

for classical erasure correction is clearly that the uncertainty

of the input when then—e unchanged bits are known van-
ishes, that is,
H(X|Y,)=0. (3.5

In other words, this means that the bits can be erased
without preventing the ability to infer the inpt from Y,
without error. Since we havie (X|Y)=H(X|Y.Y,)=0 as a
result of Eq.(3.4), i.e., it is obviously possible to infexX
from Y=Y,Y,, we obtain the basic entropic condition for
classical error correction

H(X: YY) =H(X|Y,)—H(X|Y.Y,)=0. (3.6
Physically this expresses that, conditionally on thee un-
changed bits, no information aboMtis lost in thee erased
bits. Classical coding works because thee unaffected bits
contain the entire informatioh aboutX, that is ,

H(X:Y,)=H(X:Y)=I, (3.7

NICOLAS J. CERF AND RICHARD CLEVE

. FIG. 2. Entropy diagram for a classical erasure-correcting code.
Lﬁna input X stands for the logical bits, while the outpit (the
odewordsis partitioned into the erased bi¥g and the unchanged

its Y. The condition for erasure correction k§(X:Y|Y,)=0,

that is, the entire information must be found in the unchanged bits,
H(X:Y)=I.

it is clear that Eq(3.7) is satisfied if and only if the condition
Eq. (3.6) is satisfied. In an erasure-correcting code,knits

of information are thus distributed among théebits of Y in
such a way that condition E@3.6) is satisfied for any par-
tition of the n bits into e erased andch—e unchanged bits.
The general classical entropy diagram corresponding to this
situation is represented in Fig. 2. The condition for erasure
correction, Eq.(3.6), appears in Fig. 2 as the vanishing en-
tropy shared by andY,, butnotby Y,.

Let us briefly show that, for a classical code, it is impos-
sible thatall the patterns of & erasable” bits are indepen-
dent of X, i.e., do not contain someedundantinformation
aboutX. (This feature turns out to be possible for a quantum
code, as shown in Sec. IVSuppose that we could isolate

o subparts ofY independenof X, that is, two patterns of

bits, sayY; andY,, such that,

H(X:Y;)=H(X:Y,)=0. (3.9

Suppose also that, taken togeth¥s, and Y, provide the
entire information abouX, that is,

H(X:Y.Y,)=1. (3.10

This should be the case if we want to make a set of bits that
fully determinesX (such asY,) out of pieces that are inde-
pendent ofX. We have, using E(3.10,

H(X:Y) +H(X: Y5)=H(X: YY) +H(X: Y :Y5)
Since the logical wordX fully determines any bit of the

codewordY, we haveH(Y;:Y,|X)=0. Thus, the subaddi-
tivity of entropies,H(Y:Y,)=0, implies that

H(X:Y,)+H(X:Y) =1, (3.12

so that thee bits that are erased are “redundant.” Using the which is incompatible with Eq(3.9 if 1>0. One of the

chain rule for Shannon mutual entropies,

HOX:YoY) = HOX Y ) + H(X: Yo Yy, (3.9

subparts ¥, or Y,) must necessarily be correlated with
(have a nonvanishing mutual entropy wKh if the other one
is independent oK. Some pattern of & erasable” bits, in-
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cluding Y, or Y5, will therefore be redundaritontain some 0’ R’
information abouiX that is already iy ), i.e., will be such

that H(X:Y,) #0. &
IV. ENTROPIC CONDITION FOR QUANTUM
ERROR OR ERASURE CORRECTION @VA

A. Classical correspondence

The above information-theoretic analysis can be straight-
forwardly applied to the case of a quantum erasure-
correcting code. Here, the referenReplays the role of the

input X, while Q (the quantum codeworiiseplaces the out- FIG. 3. Entropy diagram summarizing the entropic relations be-

put Y. We also _subst|tufce the classical notion of Shannoncen the entangled syster@s (quantum channglR’ (referencg,
mutual entro'py(mformatlon) betweenX and Y with the . qg’ (environmenit after decoherencésee also Refi21]).
guantum notion of von Neumann mutual entropy between

R andQ, and use the extension to the quantum regime of thelancy” requires correlation of the erased bits withX,
fundamental relations between Shannon entropies in a muwhile “quantum redundancy” is achievedithout correlat-
tipartite system[16,17,21 (see the Appendix First, the Ing (or entangling the erased qubits witR. We will show
mutual entropy between the logical wortlsandR is con- later on that the above entropic condition, £4.5), can be

of quantum entropies and the entropic condition for perfect

E’

l,=S(R:Q)=S(R:L)=2S(R), (4.1)  quantum error correctiofil9,21].
for the mutual entropy between the codewor@sand R. B. Quantum loss of a noisy channel
Here, I, can be seen as the “quantum informatioiithe As explained in Sec. Il, we assume that the codewords

entanglement withR) which must be preserved in the quan- sent on the quantum noisy channel suffer an arbitrary deco-
tum erasure channel. As before, we assume @hé parti-  herence due to the environmet that is, Ugg is an arbi-
tioned into Q. (the e erased qubilsand Q, (then—e un-  trary unitary transformationfWe do not restrict ourselves to
changed qubijs Just as in the classical case, it is intuitively a quantum erasure channel for the momeAfter such an
clear that entanglement is preserved at the condition that therbitrary environment-induced decoherence, the joint system
total mutual entropy witlR is found in the unaffected qubits, R'Q’E’ is in the state|y/r q/e/) given by Eq.(2.4). The
Q,, that is, corresponding quantum entropy diagram is represented in
Fig. 3 (as mentioned earlier, the primes refer to the systems
S(R:Qu)=S(R:Q)=l4, (4.2 after decoherence
As shown in Ref[21], it depends on three parameters,
in analogy with Eq(3.7). Using the chain rule for the quan- S=S(R’)=S(R), the entropy of the referend® (which is
tum mutual entropy betwedR andQ=Q.Q,, also equal to the entropy of) before decoherenge
S.=S(E"), the entropy of the environment after decoher-

S(R:QeQu):S(R:Qu)+S(R:Qe|Qu)1 4.3 ence, and

we conclude that the condition for quantum erasure correc- L=S(R":E'|Q")
tion is
S(R:Q |Q )=0 (4.4) =S(R'QN+S(E'Q")—S(Q")—S(R'Q'E")
ey ) : =S(E')+S(Q)—S(Q), .6

the straightforward analog of E@3.6). At this point, the hel t the ch following th inol f Sh
parallel with classical erasure correction breaks down bele or?so the ¢ ahnne[ 0 owmlgt € terrtr)unohogy 0 b a?}'
cause of a peculiar property of quantum entropies. It ig'°n theonf18]). The quantum losk can be shown to be the

shown in Ref[17] that theternary mutual entropy of any analog of the loss in a classicgl noisy channel, and t'hus can

entangled tripartite system in a pure state vanighes also be written as a c|1uantum ct?ndmg}al m(;Jtu,aI ent:jo_py, "ﬁ" the

the Appendix. In the case of interest here, the tripartite dUantum mutual entropy betwedi andE’, conditionally

systemRQ.Q, is in the pure statgyrg), so that we have onQ’ [21]. . L L

S(R:Q.:Q,)=0. As a consequence, we obtain from Eq The lossL has a simple physical interpretation in the case
:Qe:Qy . , .

(4.4 the basic entropic condition for quantum erasure cor-Of a classicalnoisy channel: it corresponds to the entropy of
rection the inputX of the channel conditional on its outpWt i.e.,

L=H(X|Y), thereby characterizing the unavoidable uncer-
S(R:Qe)=S(R:Q|Q,) +S(R:Q.:Q,)=0. (4.5 tainty in the decoding operatiofwhen inferring the input

Physically, this expresses that the “erased” part of the code=——

words Q. must beindependenbf the referenceR. This is ISince the total systeR'Q'E’ is in a pure state after decoher-
very different from the classical situation, where, in order toence, i.e., S(R'Q'E’)=0, its Schmidt decomposition implies
enable erasure correction, some erased bits must by construgR’Q’)=S(E’) and S(E'Q’)=S(R’), resulting in the last rela-

tion be correlated wittX. In other words, “classical redun- tion in Eq. (4.6).
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o’ R Unlike in the classical case, it is possible to rewrite the
quantum loss as a function & andR’ only, exploiting a

purely quantum feature of entropies in a tripartite system. As
mentioned earlier, an important consequence of

S(R'Q’E’")=0 is that the quantunternary mutual entropy

A% vanishes, that is,

S(R":E":Q")=S(R":E")-S(R":E’'|Q")
=S(R')+S(Q')+S(E')-S(R'Q’)

E ~S(R'E")—S(Q'E")+S(R'Q'E’)=0.
FIG. 4. Entanglement betweeR’, R’, andE’ in a lossless 4.9
(L=0) quantum channel. The quantum systé&nh is entangled
“separately” with R" andE’ (see also Ref21]). As a result, the quantum loss can be expressed as
from the corrupted output Equivalently, it corresponds to L=S(R":E’). (4.10

the mutual entropy between the input and the environment, - N

conditional on the output, i.eL=H(X:E|Y). That is, for a  Therefore, a necessary and sufficient condition for perfect

given outputL measures the information about the input that€fror correction is that the reference and the environment are

has been irrecoverably lost in correlations with the environstatisticallyindependen(L=0). This condition relates en-

ment. If X corresponds to encoded codewords ¥ntb cor-  tropiesafter decoherence, and thus allows us to check that,

rupted ones due to a particular error source, the conditiofr @ given code and after a specific interaction with the

L=0 must be satisfied for the error-correcting code to pre£nvironment, decoherence can be recovered by decoding. As

serve the codewords against classical npis. far as quantum coding is concerned, it is more useful to
In Ref.[21], it is shown that the same interpretation holdsderive an entropic relation involving only the refereriee

for the quantum loss., substituting the classical notion of and the codeword® beforeunitary interaction with the en-

mutual information betweeiX and E (conditional onY)  Vironment, using some error modef. Eq. (4.9)].

with the quantum notion of von Neumann mutual entropy

betweenR’ and E’ (conditional onQ’). The referenceR C. Upper bound on the quantum loss

(=R’) plays the role of the inpuX, while Q' replaces the

. " e As before, we now consider an explicit error model in
outputY. Accordingly, it is expected that a vanishing quan-

which the decoherence involveqqubits at known locations,

., the case oé erasures. The compone@t, (of e qubity

of the codeword interacts witle while the restQ, (of

n— e qubity remains unchanged by the interaction. Accord-
L=S.+S-S(Q")=0 (4.7 ingly, the unitary transformation describing such an error

model isUrqge=1g® 1g,®Uqek- This results in the conser-

is a necessary and sufficient condition for the existence of 3ation rule for the mutual entropisee the Appendix

perfect quantum decoding scheme, as proven recently by

Schumacher and Niels¢@9]. In Fig. 4, the entropy diagram S(R":QLE")=S(R:Q.E)=S(R:Q,), (4.11

of R"Q'E’ is represented in the case where this condition is

achieved. It appears that, whén=0, the state ofQ’ be- where we made use of the fact tHatis initially in a pure

be entirely eliminated using a quantum code. Indeed,

comes entangledeparatelywith the environment(“bad” state, i.e.S(E)=0. This entropy can also be expressed as
entanglementand the referencé'good” entanglemeny, al-
lowing this “bad” entanglement to be transferred to an an- S(R:QLE")=S(R":E")+S(R":Q4E"), (4.12

cilla (the n—k check qubits while recovering only the

“good” one. This transfer of entanglement, requiring a local by use of the chain rule for quantum mutual entropies. Using
action onQ only (not onE), can be seen as a measurementthe strong subadditivity of quantum entropies,

of the error syndrométhe ancilla becoming entangled with

E) leaving the original state intact. S(R":Q¢|E')=S(R'E')+S(Q.E")—S(E")
The fact that Eq(4.7) is a necessary condition can be _ R
understood simply by noticing that the loss can never de- S(R'Q.E")=0, (4.13

crease by processinQ’ through a subsequent channel, for
example, in the decoding operati¢2l]. Denoting the loss
after decoherence bly; and the overall losgafter decoher- M=S(R: 41
ence and decodindy L,, one has (RQe) (4.14

and denoting by

the initial mutual entropyor mutual entanglemenbetween
Os<L;<Lj, (4.8 the referenceR and theerasedsubpartQ, of the codeword,
Egs.(4.11) and(4.12) yield an upper bound on the los
showing thatl ;=0 is necessary for haviniy,,=0, that is,
for perfectly recovering decoherence by decoding. o=sL=<M. (4.19
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FIG. 5. Entropy diagram for a quantum erasure-correcting code. FIG. 6. Quantum entropy diagram of the combined system
It characterizes the combined syst&®=RQ.Q, before decoher- RQ.Q, before decoherence for the five-bit quantum code=§,
ence when the condition for perfect error correct®fR:Q.)=0is  k=1,e=2)[8,9].
fulfilled. The two parameters aif®(R) =k and S(Q.) =s.

) o do not yield any information aboR (no mutual entangle-
Consequently, if the mutual entanglemést(initial mutual  ment with R) and are thus unnecessary for recovering the
entropy betweeR andQ.) is zero, original logical state. In this sense, they constitute “redun-
_ ‘O ) — dant” quantum information since the total mutual entropy
M=S(R:Qe) =0, (4.19 2k is found betweerR and Q,. The unchanged qubit®,,
then the lossL=S(R’:E’) vanishes, allowing for perfect are entangledeparatelywith the reference (the “useful”
erasure correction. In other words, the statistical indepenéntanglement R that must be preserved by the codand
dence M =0) between the referend® and the erased part With the erased qubit®, (“useless” entanglemeitso that
of the codeword, is a sufficientcondition for perfect era- any action orQ, due to an environmeri can only transfer
sure correction, as anticipated in E@.5. Note that this this “useless” entanglement t& but leaves the “useful”
condition must hold for any pattern eferased qubits among €ntanglement unchanged. Indeed, if the entropy diagram Fig.
then qubits, a constraint which implies the quantum Single-5 is achieved, then Eq4.15 implies that any interaction
ton bound(see Sec. ¥ betweenQ. andE necessarily results in an entropy diagram
The physical content of the entropic condition, E416,  such as the one depicted in Fig. 4, wh&e is entangled
is the following. The reduced density matriprg ~ Separatelywith E’ andR’ (i.e.,L=0), guaranteeing that one
:TTQU|¢RQ><¢RQ| obtained by tracing the state BQ, i.e., can undo decoherence by applying an appropriate decoding.

Eq. (2.2), overQ, (ignoring then—e unchanged qubijse-
fore decoherence must represent tindependensystems: D. Example
thek qubits of the referencR and thee erased qubit§), of
the quantum system. The lattex qubits can then be
“erased” without interfering withR in the sense that the
n—e remaining qubits retain all the entanglement with
The general entropy diagram of the joint state of the syste

RQ=RQ.Q, before decoherence is shown in Fig(t6 be We haveS(R)=1, (Q,)=3, andS(Q.) =2, so that each

compared with Fig. 2 for a cIa$S|caI code subsystem has the maximum allowed entropy for its Hilbert
For a code to protect an arbitrary mutual entropy between

Q andR (or an arbitrary state fo@), the above condition space R, Qu, andQ, are made of 1, 3, and 2 qubits, respec-

M =0 must clearly be satisfied for the worst case in which;[(w:elzy)l'0 Ii\lcc;tle Jgﬁts ;?1?1 gglrjrzgzs'tziogfgs(jé)loegoggg
the amplitudesy, in Eq. (2.2) are all equal [a;|>=2"%), that gicalq 9 ’

o o " ; responds, in fact, to the same entropy diagram ®tplay-
is, in the case wher@ andR "saturate” their entropy ing the role of Q. and conversely. Indeed® has then an
S(Q)=S(R)=k. (4.17)  entropy of two bits and shares a mutual entropy of four bits
with Q,, (which then contains the full information about the
(Note that sinc&lo>d, , the entropy is limited by the size of two encoded qubijs This mutual entanglement is preserved
the Hilbert space ok.) We will thus only consider this case against erasure of one qubit sin@g is independent oR.
in the following (it is important when deriving the Singleton Let us finally compare this “quantum redundancy” in the
bound on quantum codesBecause of the two constraints five-qubit code with the entropic diagram characterizing a
Egs. (4.16 and (4.17), the ternary entropy diagram for classical code. As explained in Sec. lll, in a classical code
RQ.Q, depends on a single unknown parameterthe information k bits) is distributed among the bits which
s=5(Q,), the entropy of the erased qubftén view of Fig.  are then correlated with the inpMtin a specific wayso that
5, we see that the qubits of Q. are “superfluous,” as they Eq. (3.6) is satisfied. Ignoring the n—e unchanged bits
(Y,) leavese bits (Y,) that areredundant[the total infor-
mation is inY,,, as implied by Eq(3.7)], butcorrelatedwith
°The entropy diagram for a general tripartite system in a pure statthe inputX, in contrast with the quantum case. The entropy
depends on three parameters. diagram corresponding to a simple classical code is illus-

As an illustration, we show in Fig. 6 the entropy diagram
in the case of a five-qubit coda€5) encodingk=1 logical
qubit witht=1, i.e., allowing up tee=2 erasure$8,9]. The
full mutual entanglement of two bits is found betwdemand

r@)u, while the two erased qubit®, are independent doR.
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Y, X k<n-2t, (5.2

as a consequence of the equivalence between codes correct-
ing t errors ande= 2t erasures. In order to derive the quan-

tum analog of this bound, we consider the joint state of the
v system RQ=RQ.Q, before decoherence. For a quantum
code to protect an arbitrary entanglement betw&erand
R, the entropic conditioMM = S(R:Q,) =0 must be satisfied
for the worst case of maximum entanglement, that is, in the
case where Q and R ‘“saturate” their entropy
Y, S(Q)=S(R)=k. Assume for the moment that the code is
such thatS(Q.)=e, i.e., that the erased qubits have the
FIG. 7. Classical entropy diagram ofY.Y, for the n=5,  maximum entropy allowed by the dimension of the Hilbert
k=2, e=2 classical linear code defined in the text. space ofQ,. Then, the conditioM =0 is clearly satisfied if

tracing over then—e qubits associated witl®, yields a

trated in Fig. 7(to be compared with Fig.)6We consider a yequced density matrix foRQ, that saturates its quantum
simple linear code witm=5, k=2, e=2, defined in Ref. entropy

[22]
00 00000 S(RQe) =S(R) +S(Qe) ~S(R:Qe) =k+e. (5.3
This corresponds to the case e in Fig. 5. SinceRQ.Q,, is
01-01110 in a pure statefi.e., S(RQ.Q,)=0], one hasS(RQ,)
=5(Q,) by the Schmidt decomposition. Expressing that the
10—10101 guantum entropy o6, is bounded from above by the loga-
rithm of the dimension of its Hilbert space, that $Q,,)
11—-11011, (418  =n-—e, one gets the inequality
such that the distance between any two codewords is three or ksn—2e, (5.9

larger. We assume that the first and the last bit are erased

(Ye), the three other ones being unchang¥d)( and show Which is the Singleton bound for quantum erasure-correcting
the entropy diagram in the case where the logical words ogodes. Making use of the equivalence between. codes correct-
to 11 are equiprobablgthe entropy in Eq.(3.3) is maxi-  ing errors oft qubits and the erasure ef= 2t qubits, we get
mum]. The full information is found inY,, H(X:Y,)=2 the Singleton bound for quantum error-correcting codes
bits, but the erased bits are partially correlated with ~ (proven in Ref[11] for k=t=1)

H(X:Y.)=1 bit. Classical redundancy necessarily implies _

that the erased bits contain part of the information that is k<n—4t. (5.9

duplicated. . . - .
The situation is thus quite different in a quantum code:Th'S. condition must be satisfied by any quantum cgde
Eq. (3.6) is replaced by its quantum counterpart E4.4) cluding degenerate codesMathematically, Eq.(5.4) ex-
9. (o P y 9 P e jpresses thus that it is necessary to trace over at least half of

with the same physical interpretation, but the latter equatio X - )
L ; " then+k qubits constituting the total entangled stpfg ) in
then implies the simpler conditiod.16) as a consequence of order to open the possibility of havink+e independent

the property that the quantum ternary mutual entropy van- - . ; . .
isheg fopr a)p/)ure state.qSuch a possibiﬁty to achieve .Pxeak,,remalnlng qults(that s which saturate their entropy
cloning through codingin the sense that the full information thereby allowing error correction. Equati¢®4) suggests an

is in Q, without correlatingQ. with the referenceR) is :nterzgeéa:(tl?gi:;glijr?nstz::n i:/cl)dmg in terms of a “weak™ clon-
purely quantum and suggests an interesting interpretation 3p9: P o .
. ; ; The above derivation was based on the assumption that
guantum coding, as explained in Sec. VI. . ;
the erased qubits have a maximum entropy, 56Q.) =e.
This is true, for example, in the case of the five-qubit code
V. SINGLETON BOUND ON QUANTUM CODES shown in Fig. 6. However, we need to prove Eg4) in full

The above entropic considerations provide a simple wa@enerality, without recourse to this assumption. In general, it
to derive the quantum analog of the Singleton bound orlS POsSible to havés(R:Q.) =0 with S(Qc)<e; this is the
error-correcting codes, obtained recently by Knill and®@se, for example, when oer morg of the physical qubits
Laflamme[11]. For a classical code, the Singleton boundiS aways O(nonoptimal code Suppose that the condition
(see, e.q.[23]) states that the number of logical bisthan for erasure correctio(R: Q) =0 is satisfied for some pat-

can be encoded in a code of lengthecoveringe erasures is tern of e erased qubits, so that the remaining part of the
such that codeword Q, retains the “full” entanglement,S(R:Q,)

=2k. The central point in deriving the quantum Singleton
k<n—e. (5.1 bound is that this entropic condition must be fulfilled &ory
pattern ofe erased qubits among timequbits. Therefore, one
Of course, for a classical code recoveringrrors (at un-  can choose for example another pattere gubits within the
known locationy the Singleton bound becomes n— e qubits that constitut®, , and check that they have also
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Finally, combining Egs(5.8) and (5.11) provides a lower
bound forS(Q*)

k<S(Q*). (5.12
This bound is equivalent t8(Q.Q4|R)=0, and has the fol-

QeQy or Q;Q, which are used in the derivation of the quantum lowing interpretation. Even thougQ, and Q. are both in-

Singleton bound.

a vanishing mutual entropy witR.> Let us denote the
erased qubits in this second check @y, so thatQ, is di-
vided into Q. and Q* (the n—2e remaining qubits as

dependent oR, the combined syster®.Q/. will generally

be entangled withR (with a mutual entropy between 0 and
2k). However, in contrast with the entanglement between
Q. (or Q) andR, the entropy ofQ.Q. conditional onR
cannot become negative because of the opposite constraints

shown in Fig. 8. The corresponding entropic condition_ iSon S(Qe) — S(Q,) from Egs.(5.8) and(5.11). The quantum
thus S(R:Qc)=0. Conversely, the unchanged qubits Singleton bound is obtained simply by noticing t1&{Q*)
Qu' =QeQ" in this second check must also retain the full is bounded from above by the dimension of the Hilbert space

mutual entanglement witlR, i.e., S(R:Q;)=2k. This im-
plies that, while thee qubits of Q. are independent oR,
they must recover the total mutual entanglemektwdth R
when supplemented only with the—2e qubits of Q*.

These two opposite constraints must be satisfied simult
neously, which gives rise to the quantum Singleton bound.
In order to prove this bound, we first calculate a lower

bound on the entropy ofQ*. Using the fact thatRQ

=RQ.Q.Q* is in a pure state and the independence be-

tweenQ. andR, we have

S(Qu) =S(QeQ*)
=S(RQe)=S(R) +S(Qe) — S(R:Qe)

=k+3S(Qe).

Then, the property of subadditivity of quantum entropies

(5.9

S(QeQ*)=S(Q¢) +S(Q*), (5.7
implies the inequality
k+S(Qe) = S(Qe) <=S(Q*). (5.9

By the same token, given the independence betw@geand
R, we can calculate the entropy &,

S(Q()=S(QQ*)
=S(RQL)=S(R)+S(Q.)—S(R:Qy,)

=k+S(Q.), (5.9
and make use of subadditivity
S(QeQ*)=S(Qe) +S(Q*), (5.10
to obtain
k+S(Q¢) = S(Qe) <S(Q™). (5.11)

3This implies the simple constraint that the dimensiofQgfmust
be larger than the dimension @, that is,e<n—e. This inequal-

ity, i.e., the Singleton bound fde= 1, also results straightforwardly

from the no-cloning theorertsee Sec. VL

a

of Q*, that is
S(Q*)<n-—2e. (5.13

The latter equation together with E¢6.12 completes the
proof of Egs.(5.4) and(5.5).

VI. DISCUSSION AND CONCLUSION

Before concluding, let us discuss the relationship between
the quantum no-cloning theorem and quantum erasure-
correcting codes. The main point is to note that, if we can
erasee qubits while being able to recover the codeword, it
means that th@—e remaining qubits contain all the infor-
mation, so that thee qubits apparently contain gpartia)
duplication of the logical word. Clearly, it is forbidden to
erase halfor more of then qubits, since then the two halves
of the codeword could be mapped on the logical word, en-
abling quantum cloning. Thus, one must have2e>0 (a
constraint equivalent to the condition that the dimension of
Q. must exceed the dimension @f). However, Eq(5.4) is
actually more restrictive, implying that it is possible to quan-
tify the impossibility of cloning(to be more precise than a
yes-or-no theoreim We will see that the Singleton bound
expresses that a “weak” cloning is allowed, up to a certain
extent. Let us define the number of clongke fractional
number of copies of the logical wor@s

(6.2)

where then—e qubits constitute the “original”(necessary
to fully recover the logical stajewhile the e erased qubits
make the partiélclone. It is easy to see from E¢5.4) that

the fractional number of clones is restricted to the range

“This concept of “partial” cloning is unrelated to the notion of
“approximate” cloning introduced in Ref24]. There, a universal
guantum-cloning machine is used that has two outputs being an
approximatecopy of the input. This can be viewed as two channels
sharing the same input but necessarily characterized bothyn-a
vanishingquantum loss, i.e., the fidelity of both copies is not one.
In our case, we have twimsslesschannels.L—Q, and L—Q),.
However, the outputs unavoidably share a common p@tevhich
cannot be reduced to zero f&R:Q,) =2k and S(R:Q/) =2k to
hold simultaneously.
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# 1, while Eq.(6.2) provides an upper bound on weak clon-

0=N,=

ing. In the limiting case where=Kk, the number of clones is APPENDIX: INFORMATION-THEORETICAL

strictly zero. This simply means that, if the codewords span FRAMEWORK FOR QUANTUM ENTROPIES

the full 2"-dimensional Hilbert spacé.e., if no coding is

actually usegl then no cloning at all is achievedN(=0). Classical information theory is centered on Shannon en-

The same is obviously true for a classical code, since, usintjopies(see, e.g.[18,20). A random variableX, distributed
Eqg. (5.1, the equivalent condition on “weak” cloning is according to the probability distributiop; , is characterized
0=<N.=<(n—Kk)/k. When qguantum coding uses only part of by the Shannon entropy

the Hilbert space, i.e., the space of codewords is some
2X-dimensional subspace of the full spaée(n), the logical
states may then be viewed as partially cloned by the encod-
ing process, the fractional number of clones being limited to
(n—Kk)/(n+K). The latter increases as a smaller subspace i¥he Shannon entrogy (X) measures thancertaintyof X (it
used k decreasgs and tends to ongfull cloning) when  vanishes if the distribution is peaked, i.e., if the valu&ds
n/k—co. The cas&k=0 corresponds to perfect cloning of a perfectly known. When considering two random variables
fixed (i.e., nonarbitrary pure state. In short, whatever the X andY, described in general by the joint probability distri-
apparent “replication factor’n/k of the logical words butionp; ;, one can define several entropies. First, one has
achieved by the encoding process, the allowed number ahe joint entropyH(XY), based orp; ; in analogy with Eq.
clonesN <1 (for a nonvanishingk). For a classical code, (A1), which reflects the uncertainty &f andY. Second, one
however, no such limit exists on the number of clones, agefines the entropy of conditionalon Y, that is the entropy

N¢—n/k whenn/k— . of X whenY is known (averaged oveY),
We have shown that some insight into quantum coding

can be gained by use of an information-theoretic approach

paralleling the one used to describe classical coding. Such an H(X[Y)=— IE Pi,jlogepij=H(XY)—H(Y), (A2)
analysis displays explicitly the similarities between classical !

and quantum codes_, but als_(_) emphasizes the major diffef;,qaq onp;;=p;;/p;, the conditional probability ofi
ences. The en.troplc condition for a quantum erasureknowing j- The équivalent definition holds for the condi-
correcting code is that the quantum mutual entropy betweeﬂonal entropy of Y knowing X, i.e., H(Y|X)=H(XY)

a reference and the erased part of the codeword is vanishin_gH(X) Finally, one defines thenutual entropy betweeiX
prior to decoherence. Such a statistical independence b%’ndY a's '

tween the reference and the erased qultiteracting with
the environment guarantees that the entanglement of the

logical word with respect to this reference is preserved by the H(X:Y)=— E Pi jl0gyp;.;=H(X) + H(Y) —H(XY),
guantum code. This is to be compared with the correspond- bl

ing entropic condition for a classical erasure-correcting code, (A3)
i.e., that the mutual information between the logical bits and _ : o .
the erased bits of the codewordsnditionalon the remain- Wherep;;; = pip; /pi ; is the mutual probability of and]. It
ing unchanged bits of the codewords, is vanishing. Such glays th_e role O.f mutuahforman_on betweenX andY, that
classical condition, however, doest imply that the erased IS, the information abouX that is conveyed by, or the
bits are independent of the logical bits. On the contrary, thergecrease of the entropy of due to knowledge ofY (or
must be correlations between them, and this duplication conversely

“cloning” ) of classical information is at the heart of classi-
cal codes. The classical “cloning” of information has no
guantum counterpart, as a consequence of the purely quan-
tum property that thdernary mutual entropy vanishes for
any entangled tripartite system in a pure state. In a quantu
code, only a “weak” cloning is achieved, up to the extent
allowed by the quantum Singleton bound, so that the eras
gubits areunentangledvith the reference although the entire
codeword remains entangled with it. This reflects a majo
difference between classical and quantum coding.

H(X)=— Z pilog,p; - (A1)

H(X:Y)=H(X)—H(X]Y)=H(Y)—H(Y|X). (A4)

Consider now the information-theoretical description of a
bipartite quantum systetdY, whereX andY correspond to
"To quantum variables or degrees of freed¢erg., thez
component of a spin-1/2 partiglelt is shown in Refs.
6,17] that a quantum information-theoretical formalism
rthat parallels Shannon construction can be defined that is
based on the von Neumann entropy, where probability dis-
tributions are replaced by density matrices, and averages are
ACKNOWLEDGMENTS changed into quantum expectation values. We have for the
quantum(von Neumanpentropy ofX,
We acknowledge C. Adami and J. Preskill for very useful
discussions. We thank the organizers of the ITP program on S(X)=—Try(px l10g:px), (A5)
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where py is the density matrix characterizing the state ofS;/p;|ir)|ix). Assume that the systeiX is sent through a
X. The density matridpy is obtained by a partial trace over gquantum channdwhich does not act oR). It is easy to see
the Y variable, i.e.,px=Try(pxy), Where pyy is the joint  that, if the channe{including error correctionis “perfect,”
density matrix describingXY. A similar definition holds for i.e., if the outputY ends up in a joint pure statgogether
S(Y), based orpy, and for the joint entropy5(XY). One  with R) such that the quantum mutual entropy wkhis
then defines the quanturfvon Neumanp conditional en-  conserved, then aarbitrary quantum state is preserved in
tropy, the channel. Indeed, asR is unchanged, any joint state of
RY that is characterized byS(R:Y)=S(R:X) and
SIX[Y)=—Trxy(pxvlogzpxy) =S(XY)—S(Y), (A6)  S(RY)=S(RX)=0 is necessarily of the form
=Vpilir)(Ulix)) whereU is afixedunitary transformation
P N . (it doesnot depend on the;’s). Thus, up to a given change
[16,17). The latter plays the role of a “quantum” condi- ¢ pagis the outpuy is in the same entangled state with
tional probability, and witnesses the appearance of nonclagy ProjectingR onto any pure state shows that the corre-

sical correlations in_ the case of quantum entan_gled variable, onding pure state o (the “relative” stat® has been pre-
X and Y. Indeed, it can be shown that an eigenvalue Ofserved, i.e.Y ends up in the same state.
px|y can exceed one, and, conseque_ntly, that the quantum Another important property of the quantum mutual en-
conditional entropyS(X| Y) can benegative a fact related to 1, (x: vy s that it is conserved when the bipartite sys-
quantum nonseparabilitjsee [16,17,23). Fo_r e_xample, i tem XY undergoes a unitary transformation of the form
X andY represent two entangled quantum bits in a Bell statey; o U. . Indeed. if

we haveS(X|Y)=S(Y|X)=—1 bit. Since negative condi- ~* ' ’

tional entropies are forbidden in Shannon theory, a negative , +

value ofS(X|Y) obviously implies quantum nonseparability, pxy=(Ux®Uy)pxy(Ux®Uy), (A9)
the converse being not true. On the other hanghyi§ de-

scribes a mixture of orthogonal product sttt is, a clas-  then py=Try(pky) =UxpxU% and similarly forp!, so that
sical situation, pyy is then a diagonal matrix with the

pijj's on its diagonal, and EqA6) reduces to its classical S(X":Y)=S(XY), (A10)
counterpart Eq(A2). The above definition Eq(A6) must
therefore be viewed as a quantwxtensiornof the Shannon , )
conditional entropy in a way that incorporates quantum enfollows from Eq.(A7), using the conservation of von Neu-

tanglement, while including the classical conditional entropy™ann entropy under a unitary transformation. In particular,
as a special case. any entangled systedY that undergoes a local operation

According to this, it is natural to define a quantywon separately orX and Y retains its initial entanglement be-
Neumanh mutualentropy, tween)_( andy, i.e., S(X:Y) is conserved. This property is
useful in the context of quantum channels and quantum error

based on theconditional density matrix pyy (defined in

S(X:Y)=—Trxy(pxy 10Gopx.y)=S(X)+S(Y) - S(XY) ~  correction.
The quantum information-theoretical formalism defined
=S(X) = S(X|Y)=S(Y)—S(Y[X), (A7) above can be generalized to multipartite systems, in analogy

) ) ] ) to the Shannon constructidi6,17. The definition of the
based on thenutualdensity matrixpy.y (defined in[16,17).  conditional (and mutual density matrices provides grounds
The interpretation is the same as in Shannon informatiofor the quantum extension of the usual algebraic relations
theory, andS(X:Y) is a symmetric quantity. Subadditivity of petween Shannon entropiesee, e.g.[18,20)). The resulting
quantum entropies, i.eS(XY)=<S(X)+S(Y), implies that  framework for quantum information theory goes beyond
S(X:Y)=0, just as for Shannon mutual entropies. Howeverc|assical correlations, i.e., accounts for situation where
in the case of quantum entangled variabl&X:Y) can  quantum variables are entangled, by allowing conditional en-
reach twice the maximum allowed value in Shannon theoryropies to be negative. Of course, it also includes Shannon

[16,17: theory as a special case. Consider, for example, a tripartite
_ . quantum systenXY Z First, one can write thehain rulefor
S(X:Y)<2 min S(X),S(Y)]. (A8)  quantum entropies,

For instance, we havg(X:Y)=2 bits between the members

of an Einstein-Podolsky-Rosen pair. Note tB&K:Y) is not

ameasureof entanglement in the sense that it can be nonzero

for classical(separablemixtures. It does not necessarily ex- One can also define the von Neumagwnditional mutual

ceed the classical upper bound, p8x),YY)], for quantum-  entropy,

entangled systems. Thu§(X:Y) is rather a quantum-

mechanical extension of the usual Shannon mutual entropy,

which measures quantum as well as classical correlations5The classical analog of this property is intuitive. If the inpubf

Nevertheless, it plays an important role in the information-a classical channel is copied into a memfy(so thatM is thus

theoretic description of quantum channels and error corregerfectly correlated wittx), the correlation between the outpyt

tion, as emphasized throughout this pafsee alsd21]). and the memonM reflects the “quality” of the channel. In par-
Consider a quantum systeXhentangled with a reference ticular, if the mutual entropy betweevi and M is equal to that

R, so that the joint systenRQ is in the pure state betweenX andM, then the classical channel is perféicssless

S(XY2)=S(X)+S(Y|X)+S(Z|XY). (A1l
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S(X:Y|Z)=S(X|Z) - S(X|Y2) S(X:Y)=S(X:Y|Z)+S(X:Y:2), (A14)

=S(X|Z)+S(Y|Z)—S(XY|2) so that we can spli§(X:Y) into a conditional piece and a
_ B B mutual piece withZ. The latter pieceS(X:Y:Z), character-

=S(X)+S(Y9)—=S(2)=S(XY D), izes therefore théernary mutual entropy, i.e., that piece of
(A12)  the mutual entropy betweex andY that is also shared by

. Z. All these relations between entropies can be understood
which reflects the quantum mutual entropy betweeand very easily using Venn diagrani&6,17,21.

Y, whenZ is known. EquatiofA12) parallels the definition Finally, an important property ofguantum entropies

of a mutual entropy Eq(A7), but with all entropies being \yhich has no classical counterpart, is that, for any entangled
conditional onZ. Just as with classical entropies, the Prop-yripartite systemXYZ in a pure state, the ternary mutual
erty of strong subadditivityof quantum entropies holds, that entropy vanishegl7], i.e.

is S(X:Y|Z)=0. Conditional mutual entropies are also used
in the quantum analog of the chain rules for mutual entro-S(X:Y:Z)=S(X)+ S(Y)+S(Z)—S(XY)—S(XZ)—S(Y 2)

pies, that is,
+S(XY2)=0. (A15)
S(X:Y2)=S(X:Z)+S(X:Y|2). (A13) . o
This results from the fact thatS(XY2Z)=0 implies
Finally, the relation between conditional and mutual entro-S(XY)=S(Z), S(XZ)=5(Y), andS(Y 2)=S(X), as a con-
pies,S(X)=S(X|Z) + S(X:Z) can be extended to a tripartite sequence of the Schmidt decomposition of the state of

system, that is, XYZ
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