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Heavy-particle collisions and quantum optics: The parabolic noncrossing model
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The problem of deriving analytic formulas for transition probabilities in two-level systems is studied. The
two-level systems are described by a pair of first-order differential equations coupled by a time-dependent
potential. One such model is given lha,,/dt=—igf(t)a,e(" D"t (m,n=1,2; m#n), which describes
certain types of ion-atom collisions and some quantum-optics two-level problems. It will be shown that the
correct approach in solving the coupled equations is to adopt a Zwaan-Stueckelberg phase-integral analysis of
the four-transition-point problem based on the parabolic noncrossing model of Crpihétkys. B9, 635
(1976)]. Alternatively, one may obtain an approximation by employing adiabatic perturbation theory, but such
an approach can at best provide only weak-coupling solutions and can never guarantee unitarity in the prob-
ability amplitudes. The advantage of the phase-integral method is that it produces a strong-coupling approxi-
mation by embracing the appropriate asymptotic expansions for cylinder functions of large order and argument
[D. S. F. Crothers, J. Phys. A, 1680 (1972] and it also ensures analyticity, unitarity, and symmetry.
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PACS numbg(s): 42.50—p, 03.65.Sq, 34.16-x, 32.80.Bx

In many areas of physics one is faced with a complicated da, . ,
many-body quantum-mechanical system. Through a series of T pf(te '"ay, (2
approximations one may reduce the problem to a manage-
a_lble semi_classical form such as a set of first-order qiﬁeren\Nheret is the time,a and 8 are real constants, arfdt) is
tial equations coupled by a time-dependent potenUal. Onﬂormalized to unity, in particulaf(t) is chosen to be the
such model is the two-state two-parameter parabolic none e ntzian function
crossing model of four closely clustered transition points tha{‘
can be applied to certain types of ion-atom collisions and 1
some quantum-optics two-level problems. In quantum optics f(t)y=———>. 3
the parabolic model describes the coupling of two levels of ® m(1+1%) ®
an atom by a laser pulse that has a temporal width that ig) .
small compared to the natural lifetimes of the levels. Previ-Other possible forms of(t) are
ous work in this field for an arbitrary pulse argd(t) has
lead to analytic formulas by Bambini and Bermgk] and
perturbation calculationg2,3].

In heavy-particle collisions, the parabolic model describes .
low-energy inelastic atomic collision processes such a8 the hyperbolic secant of the Rosen-Zener model
charge transfer through a set of equations describing the
guantum-mechanical evolution of the electronic states as the f(t)= l secV( i‘) (5)
nuclei follow classical trajectories. The charge-transfer 2 2)
mechanism is subject to the noncrossing theory of Rosen and . )
Zener[4] in that the diabatic potential-energy curves do not/n quantum optics the parameteris related to the atom-
Cross. field detuning angf(t) is defined as the pulse area, whereas

In this Brief Report analytic formulas for the transition in ion-atom collisionsa is known as the resonance defect
amplitude are derived from a Zwaan-Stueckelberg phasethe energy difference between the two statesd 8 effec-
integra| ana|ysis of the four-transition-point prob|em deve|-tive.|y determines the location of the nonadiabatic transition
oped by Crother$5]. The advantage of such an approach isrégion.
that it yields strong-coupling formulas ensuring analyticity, ~Asymptotic solutions are sought, particularly in the limit
unitarity, and symmetry. The analytic formulas are compareda|>1, subject to the initial conditiong,(—>)=1 and
with exact numerical solutions of the coupled equations an@2(—=)=0. One can quite easily solve these equations

f(t)= (1 1)2 (4

perturbation approximations. through numerical integration, yet analytical solutions are
The time-dependent noncrossing model is described bynore useful in understanding the main mechanisms in-
the coupled equations volved. One method of obtaining analytic formulas is to

adopt a Zwaan-Stueckelberg phase-integral analysis. The
method itself is based on semiclassical JWKB phase inte-
grals and their analytic continuation into the complex plane.

dal_ H f jat
L (t)e'“a,, 1)
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Within the JWKB approximation of Bates and Crothers analysis[9], one is able to uncouple the equations, reducing
[6], the two-level system reduces to a set of coupled equahe problem to the second-order Weber differential equation.
tions for diabatic amplitudes; andc,, By embracing the appropriate asymptotic expansions for

parabolic cylinder functions of large order and magnitude

dc t . - .
id—tlelzczeXP( _if (H22—H11)dt’), ©6) [10], one then obtains the final amplitude
0
a,(+w)=—1 sinx secly, a7
dc, [t ,
ot H21c1exp< ! fO(HZZ_ Hipdt ) : (M) Where we have used the method of steepest descent, concen-

trating on the transition points in the upper half plane. The
where the Hamiltonian matrix elements of this particulargeneral Zwaan-Stueckelberg interpretation of the model is
model are

ZC
Ho—Hi=a, (8) X+iy:f0 VAHT+ (Hgo—Hyp)%dt! (18)
Hio=Ha=Bf(1). 9)
. . . . . V=11 02
According to adiabatic theoify’], applying the usual rotation = af dt’ \/ 1+ ——>—,
matrix transformatioi8] enables one to obtain the standard 0 (1+1"%)
straight-line impact parameter adiabatic equations (19

da;  dT/dt t 5 > . which in physical terms is a line integral representing the
at  2(1+72) %80 ! O\/4H12+(H22_H11) dt’ |, adiabatic action difference integrated between the classical
(10) turning point and the transition poirZ.; the other three

complex transition points ar&} , —Zz, and —Z.. The

da, —dT/dt [t . 5 complex transition point is given by the zero of the inte-
at o 2(1+ 12 X 'fo VAH I+ (Hz—Hypdt’ |, grand, i.e.Z;=\-1+iQ.
(12) A careful analysis of the phase integral yields
whereT is the Stueckelberg variable given by = (=1 (—Qd)n
Hoo—H x+iy=a\/—1+iQnZO ol
T= 22 11 (12)
2Hy, 1 3.4
X oF1(3,2n;5:;1-iQ) (20)
and
s ~E+' +0(0? 21
am(+oo)=cm(+oo)eXp<if0 VEnt E;—Hpm Hpgdt! ~ 7 Tlar O (
(m=1,2) (13 for smallQ), where ( 3),, is a Pochhammer symbol. There-

fore, the strongly coupled transition probability from a
wherea,, are the adiabatic amplitudes afg, are the adia- phase-integral abstraction is
batic energies given by

B
2

2Em=H o~ Hy1+ (— 1)™/4HZ+ (Hp— Hip2  (14) Pz=|az(+°°)|2=sin2( sectfa. (22
The final amplitudea,(+ ) is the quantity sought, which is o

obtained by solving the adiabatic equations subject to thén the limit la[>1,

initial conditionsa;(—«)=1 anda,(—«)=0. The strongly

coupled adiabatic equations may be specifically written as P2~4e‘2“sin2(§). 29

day Ot Jt / 02
= 7 aexp —i 1+ ——dt’ |, . . . ;
dt — (1+t%)2+02°2 p( “Jo (1+t"9) Adiabatic perturbation theory offers an alternative ap-

(15 proach for obtaining solutions for the coupled equati@®
and(11). For some purposes this approach may be preferable
da, - Ot ] t 02 , and more convenient than the mathematically intensive
at 1+l e f o V 1+mdt , Zwaan-Stueckelberg phase-integral analysis, but at best per-
(16) turbation theory can produce only weak-coupling approxi-
mations, which can never guarantee analyticity, unitarity,
whereQ)=28/ra. and symmetry.

Within the framework of the Zwaan-Stueckelberg phase- Within adiabatic perturbation theory the transition ampli-
integral method and following from the parabolic model tude is given as
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FIG. 1. The four transition points of the parabolic noncrossing
modelZ.=—1+i(). FIG. 3. Transition probability plotted as a function @f where
2<a<6 andB=0.5.

+eo  —dT/dt : -
ay(+w)= dt Concentrating on the poles in the upper half pldsee
2 . 2(1+T?) Fig. 1) and using Eq(20) yields
t
: 2 _ 24!
><exp(| | Rt ea P2~w2e2“sin2(§), (26)

which contains an error of 4 when compared with Eq.
(23), showing the inadequacy of perturbation theory when
applied to this model.

For the parabolic model this reduces to

t Another approximation based on perturbation thel@y
az(+°°)——9jiw dtm yields
2
X > (£)€" (27)
ex;{laf (1+t2)2dt ) (25 - i
where
0.0050 T T T T
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Numerical _— / T T T
Equation (23) = ————- /' Y/,
Molander et al [5] —~—-—- 5y
0.0040 |
Numerical _—

Bquation (23)  ————
Molander et al [5] —-—-—

0.0030 | 0.00020 1

0.0020 [

Transition Probability

0.00010
0.0010

Transition Probability

0.0000
0.00 0.10 0.20 0.30 0.40 0.50

0.00000
2.0 5.0 6.0

FIG. 2. Transition probability plotted as a function 8f where
0=<pB=<0.5 anda=1,2. Numerical results and E(®3) are shown to FIG. 4. Transition probability plotted as a function @f where
be in excellent agreement even whens not in the limita>1. 2<a<6 andB=0.1.
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[t 5 5. state that their solution is valid only for large correspond-
Si=I Jo VAH T+ (Hap— Hip *dt, (289 ing to a large detuning region. However, large valuesvof
correspond to extremely small transition probabilities, which
t; are the complex transition points in the upper half planeultimately have little or no physical significance. Therefore,

and the ¢); are chosen according to perturbation theory cannot reveal accurately any of the im-
) portant physical processes that occur in the region of strong
4H1(tj) = xi(Hx—Hyo). coupling (small ).

The strongly coupled approximations for the transition
probability are shown to agree favorably with the exact nu-
w2 pe o B merical calculations, within the limita|>1. It is therefore
Pa~gae “5|n2(§). (29 concluded that the Zwaan-Stueckelberg phase-integral
method developed by Crothdfs] produces the correct tran-
In quantum optic®, represents the probability that the atom sition amplitudes when supplemented with the appropriate
has been excited by the laser pulse and in ion-atom collisionasymptotic expansions for the parabolic cylinder functions of
it is the probability of charge exchange occurring. large order and argumemfil0]. The main strength of the
Equation (23) and the perturbation approximation of method is that it incorporates the essential physics into the
Molanderet al. [3] [Eq. (29)] are compared with the exact problem, ensuring analyticity, unitarity, and symmetry. It has
numerical solutions of the coupled equatiofi3 and (2).  also been shown that perturbation theory fails to produce the

Figures 2—4 show that EqR3) is almost in exact agreement correct form of the transition amplitude in the case of strong
with the numerical solutions, even for comparatively smallgoypjing.

values of «, for instance,a=2. Thus, in practice, the

|a|>1 limit for Eq. (23) may be interpreted in the usual B.S.N. acknowledges the financial support of the Depart-
semiclassical way, namely, &s| is moderately greater than ment Applied Mathematics and Theoretical Physics, The
1. Of course, fofa|<1, which includesy~0, Eq.(22) must ~ Queen’s University of Belfast. S.F.C.O. acknowledges cur-
always be preferred to Eq23) or (29). Not surprisingly, for  rent support by the Royal Society University. D.S.F.C. ac-
relatively small values ofy, the approximation of Molander knowledges EPSRC Grant No. GR/L21891. P.R.B. acknowl-
et al.[3] deviates from the numerical solutions, but then theyedges support from NSF Grant No. PHY-9414020.

Equation(27) then reduces to
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