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Heavy-particle collisions and quantum optics: The parabolic noncrossing model
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The problem of deriving analytic formulas for transition probabilities in two-level systems is studied. The
two-level systems are described by a pair of first-order differential equations coupled by a time-dependent

potential. One such model is given bydam /dt52 ib f (t)ane(21)niat (m,n51,2; mÞn), which describes
certain types of ion-atom collisions and some quantum-optics two-level problems. It will be shown that the
correct approach in solving the coupled equations is to adopt a Zwaan-Stueckelberg phase-integral analysis of
the four-transition-point problem based on the parabolic noncrossing model of Crothers@J. Phys. B9, 635
~1976!#. Alternatively, one may obtain an approximation by employing adiabatic perturbation theory, but such
an approach can at best provide only weak-coupling solutions and can never guarantee unitarity in the prob-
ability amplitudes. The advantage of the phase-integral method is that it produces a strong-coupling approxi-
mation by embracing the appropriate asymptotic expansions for cylinder functions of large order and argument
@D. S. F. Crothers, J. Phys. A5, 1680 ~1972!# and it also ensures analyticity, unitarity, and symmetry.
@S1050-2947~97!04208-X#

PACS number~s!: 42.50.2p, 03.65.Sq, 34.10.1x, 32.80.Bx
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In many areas of physics one is faced with a complica
many-body quantum-mechanical system. Through a serie
approximations one may reduce the problem to a mana
able semiclassical form such as a set of first-order differ
tial equations coupled by a time-dependent potential. O
such model is the two-state two-parameter parabolic n
crossing model of four closely clustered transition points t
can be applied to certain types of ion-atom collisions a
some quantum-optics two-level problems. In quantum op
the parabolic model describes the coupling of two levels
an atom by a laser pulse that has a temporal width tha
small compared to the natural lifetimes of the levels. Pre
ous work in this field for an arbitrary pulse areab f (t) has
lead to analytic formulas by Bambini and Berman@1# and
perturbation calculations@2,3#.

In heavy-particle collisions, the parabolic model describ
low-energy inelastic atomic collision processes such
charge transfer through a set of equations describing
quantum-mechanical evolution of the electronic states as
nuclei follow classical trajectories. The charge-trans
mechanism is subject to the noncrossing theory of Rosen
Zener@4# in that the diabatic potential-energy curves do n
cross.

In this Brief Report analytic formulas for the transitio
amplitude are derived from a Zwaan-Stueckelberg pha
integral analysis of the four-transition-point problem dev
oped by Crothers@5#. The advantage of such an approach
that it yields strong-coupling formulas ensuring analytici
unitarity, and symmetry. The analytic formulas are compa
with exact numerical solutions of the coupled equations
perturbation approximations.

The time-dependent noncrossing model is described
the coupled equations

da1

dt
52 ib f ~ t !eiata2 , ~1!
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da2

dt
52 ib f ~ t !e2 iata1 , ~2!

wheret is the time,a andb are real constants, andf (t) is
normalized to unity, in particularf (t) is chosen to be the
Lorentzian function

f ~ t !5
1

p~11t2!
. ~3!

Other possible forms off (t) are

f ~ t !5
1

p~11t2!2 ~4!

or the hyperbolic secant of the Rosen-Zener model

f ~ t !5
1

2
sechS pt

2 D . ~5!

In quantum optics the parametera is related to the atom-
field detuning andb f (t) is defined as the pulse area, where
in ion-atom collisionsa is known as the resonance defe
~the energy difference between the two states! andb effec-
tively determines the location of the nonadiabatic transit
region.

Asymptotic solutions are sought, particularly in the lim
uau@1, subject to the initial conditionsa1(2`)51 and
a2(2`)50. One can quite easily solve these equatio
through numerical integration, yet analytical solutions a
more useful in understanding the main mechanisms
volved. One method of obtaining analytic formulas is
adopt a Zwaan-Stueckelberg phase-integral analysis.
method itself is based on semiclassical JWKB phase in
grals and their analytic continuation into the complex pla
1670 © 1997 The American Physical Society
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Within the JWKB approximation of Bates and Crothe
@6#, the two-level system reduces to a set of coupled eq
tions for diabatic amplitudesc1 andc2,

i
dc1

dt
5H12c2expS 2 i E

0

t

~H222H11!dt8D , ~6!

i
dc2

dt
5H21c1expS i E

0

t

~H222H11!dt8D , ~7!

where the Hamiltonian matrix elements of this particu
model are

H222H115a, ~8!

H125H215b f ~ t !. ~9!

According to adiabatic theory@7#, applying the usual rotation
matrix transformation@8# enables one to obtain the standa
straight-line impact parameter adiabatic equations

da1

dt
5

dT/dt

2~11T2!
a2expS 2 i E

0

t
A4H12

2 1~H222H11!
2dt8D ,

~10!

da2

dt
5

2dT/dt

2~11T2!
a1expS i E

0

t
A4H12

2 1~H222H11!
2dt8D ,

~11!

whereT is the Stueckelberg variable given by

T5
H222H11

2H12
~12!

and

am~1`!5cm~1`!expS i E
0

`
AEm1E12Hmm2H11dt8D

~m51,2!, ~13!

wheream are the adiabatic amplitudes andEm are the adia-
batic energies given by

2Em5H222H111~21!mA4H12
2 1~H222H11!

2. ~14!

The final amplitudea2(1`) is the quantity sought, which is
obtained by solving the adiabatic equations subject to
initial conditionsa1(2`)51 anda2(2`)50. The strongly
coupled adiabatic equations may be specifically written a

da1

dt
5

Vt

~11t2!21V2 a2expS 2 iaE
0

tA11
V2

~11t82!2dt8D ,

~15!

da2

dt
5

2Vt

~11t2!21V2 a1expS iaE
0

tA11
V2

~11t82!2dt8D ,

~16!

whereV52b/pa.
Within the framework of the Zwaan-Stueckelberg pha

integral method and following from the parabolic mod
a-

r

e

-
l

analysis@9#, one is able to uncouple the equations, reduc
the problem to the second-order Weber differential equat
By embracing the appropriate asymptotic expansions
parabolic cylinder functions of large order and magnitu
@10#, one then obtains the final amplitude

a2~1`!52 i sinx sechy, ~17!

where we have used the method of steepest descent, con
trating on the transition points in the upper half plane. T
general Zwaan-Stueckelberg interpretation of the model

x1 iy5E
0

ZcA4H12
2 1~H222H11!

2dt8 ~18!

5aE
0

A211 iV
dt8A11

V2

~11t82!2,

~19!

which in physical terms is a line integral representing t
adiabatic action difference integrated between the class
turning point and the transition pointZc ; the other three
complex transition points areZc* , 2Zc* , and 2Zc . The
complex transition point is given by the zero of the int
grand, i.e.,Zc5A211 iV.

A careful analysis of the phase integral yields

x1 iy5aA211 iV (
n50

` ~2 1
2 !n~2V2!n

n!

3 2F1~ 1
2 ,2n; 3

2 ;12 iV! ~20!

'
b

2
1 ia1O~V2! ~21!

for small V, where (2 1
2)n is a Pochhammer symbol. There

fore, the strongly coupled transition probability from
phase-integral abstraction is

P25ua2~1`!u25sin2S b

2 D sech2a. ~22!

In the limit uau@1,

P2;4e22asin2S b

2 D . ~23!

Adiabatic perturbation theory offers an alternative a
proach for obtaining solutions for the coupled equations~10!
and~11!. For some purposes this approach may be prefera
and more convenient than the mathematically intens
Zwaan-Stueckelberg phase-integral analysis, but at best
turbation theory can produce only weak-coupling appro
mations, which can never guarantee analyticity, unitar
and symmetry.

Within adiabatic perturbation theory the transition amp
tude is given as
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a2~1`!5E
2`

1`

dt
2dT/dt

2~11T2!

3expS i E
0

t
A4H12

2 1~H222H11!
2dt8D . ~24!

For the parabolic model this reduces to

a2~1`!52VE
2`

1`

dt
t

V21~11t2!2

3expS iaE
0

tA11
V2

~11t2!2 dt8D . ~25!

FIG. 1. The four transition points of the parabolic noncross
modelZc5A211 iV.

FIG. 2. Transition probability plotted as a function ofb, where
0<b<0.5 anda51,2. Numerical results and Eq.~23! are shown to
be in excellent agreement even whena is not in the limita@1.
Concentrating on the poles in the upper half plane~see
Fig. 1! and using Eq.~20! yields

P2;p2e22asin2S b

2 D , ~26!

which contains an error of 4/p2 when compared with Eq
~23!, showing the inadequacy of perturbation theory wh
applied to this model.

Another approximation based on perturbation theory@3#
yields

P2;
p2

9 U(
i

~6 ! ie
siU2

, ~27!

where

FIG. 3. Transition probability plotted as a function ofa, where
2<a<6 andb50.5.

FIG. 4. Transition probability plotted as a function ofa, where
2<a<6 andb50.1.
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si5 i E
0

t iA4H12
2 1~H222H11!

2dt8, ~28!

t i are the complex transition points in the upper half pla
and the (6) i are chosen according to

4H12~ t i !56 i ~H222H11!.

Equation~27! then reduces to

P2;
p2

9
4e22asin2S b

2 D . ~29!

In quantum opticsP2 represents the probability that the ato
has been excited by the laser pulse and in ion-atom collis
it is the probability of charge exchange occurring.

Equation ~23! and the perturbation approximation o
Molanderet al. @3# @Eq. ~29!# are compared with the exac
numerical solutions of the coupled equations~1! and ~2!.
Figures 2–4 show that Eq.~23! is almost in exact agreemen
with the numerical solutions, even for comparatively sm
values of a, for instance,a52. Thus, in practice, the
uau@1 limit for Eq. ~23! may be interpreted in the usua
semiclassical way, namely, asuau is moderately greater tha
1. Of course, foruau,1, which includesa'0, Eq.~22! must
always be preferred to Eq.~23! or ~29!. Not surprisingly, for
relatively small values ofa, the approximation of Molande
et al. @3# deviates from the numerical solutions, but then th
J.
,

ns

ll

y

state that their solution is valid only for largea correspond-
ing to a large detuning region. However, large values ofa
correspond to extremely small transition probabilities, wh
ultimately have little or no physical significance. Therefo
perturbation theory cannot reveal accurately any of the
portant physical processes that occur in the region of str
coupling ~small a).

The strongly coupled approximations for the transiti
probability are shown to agree favorably with the exact n
merical calculations, within the limituau.1. It is therefore
concluded that the Zwaan-Stueckelberg phase-inte
method developed by Crothers@5# produces the correct tran
sition amplitudes when supplemented with the appropr
asymptotic expansions for the parabolic cylinder functions
large order and argument@10#. The main strength of the
method is that it incorporates the essential physics into
problem, ensuring analyticity, unitarity, and symmetry. It h
also been shown that perturbation theory fails to produce
correct form of the transition amplitude in the case of stro
coupling.
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