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Nonclassical maximum-entropy states
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We investigate specific maximum-entropy states of a single harmonic-oscillator mode that arise when only
number state@~ock statesdiffering by a multiple of a certain integér(k=1) are allowed to be occupied. For
k=2 the number-probability distribution of the even-number maximum-entropy state has a close resemblance
to that of a squeezed-vacuum state. These maximum-entropy states can be obtained as the stationary solutions
of a master equation which takes into accokitfuantum absorption as well &sguantum emission processes
only. The steady-state solution of this master equation depends on the initial conditions. For the vibrational
motion of a trapped ion such nonclassical maximum-entropy states could be produced with the help of the
recently proposed method of laser-assisted quantum reservoir engin¢8i0§0-2947®7)02008-9

PACS numbegps): 42.50.Dv, 32.80.Pj

I. INTRODUCTION A more realistic possibility for the generation of nonclas-

. . - sical k-quantum maximum-entropy states becomes obvious
It is well known that the density operator describing a d 4

. . o o “when the concepts of quantum optics are adopted to the de-
single-mode quantized radiation field that is in thermal qUiscription of the vibrational center-of-mass motion of a
librium with its surrounding can be obtained by maximizing trapped ion in a harmonic-oscillator potenti&l. When the

the entropy of the quantum field under the constraint that thg, s jrradiated by laser light which is tuned to a definite
mean energyor the mean photon number, respectiVeély  yiprational sideband of the internal electronic transition, the
kept constantsee[1]). The expression for the thermal den- center-of-mass motion of the ion is influenced in a specific
sity operator also holds for the density operator of a chaotigyay due to the recoil experienced in each cycle of absorption
radiation field[2] that results from the contributions of many and subsequent spontaneous emission. By changing the laser
statistically independent classical light sources, i.e., fronfrequencies and intensities it is possible to design different
light sources the radiation of which can be described by &inds of couplings between the vibrational energy levels and
positive-definiteP representation(In the multimode case, the surrounding reservoir of the vacuum modes of the elec-
the chaotic or thermal density operator factorizes into théomagnetic field6]. In particular, this coupling can give rise
products of the corresponding single-mode operd@}$ In  to k-phonon transitions in the energy of the center-of-mass
this contribution, we generalize the concept of themotion. In analogy to the classical thermal equilibrium states
maximum-entropy state of a single quantized harmonic osfor k=1, the nonclassicd-phonon maximum-entropy states
cillator of frequencyw to nonclassicak-quantum maximum- (k=2) turn out to be the equilibrium states which result,
entropy statesk = 2,3, ...) that arise when only energy under certain initial conditions, whek-phonon absorption
eigenstates are allowed to be occupied, the energy of whicandk-phonon emisson processes act simultaneously.
differs by a multiple ofk . These states do not possess a

posnwe-deﬂmteP representation, i.e., they are intrinsically Il. PROPERTIES OF THE MAXIMUM-ENTROPY STATES
nonclassical.

In order to generate the nonclassical maximum-entropy We consider the steady-state density operatoof a
states, one might think of radiation fields that result from thesingle harmonic-oscillator mode, the energy of which can be
contributions of many statistically independekiphoton  changed due t&-quantum absorption arkkquantum emis-
emitters k=2), in analogy to the classical chaotic radiation sion processes only. In order to introduce the maximum-
where k=1. For k=2 the photon-number distribution of entropy states we assume that only number states differing
such a field is expected to oscillate similarly to the numbety a multiple ofk are allowed to be occupied. In the station-
distribution of a squeezed-vacuum fiel8] which arises ary state all nondiagonal elements,, in the Fock represen-
from spontaneous degenerate parametric down conversiaation vanish. We can discriminate different kinds of
(see, e.g}4]). In both cases two photons are always emittedk-quantum maximum-entropy states, which we label by the
simultaneously, the probability for the presence of an oddnteger parametery, where O<q<k—1. The diagonal
number of photons, therefore, is zero. However, even if aensity-matrix elements obey the equation
radiation source which consists of a large number of inde-

pendent atoms undergoing spontaneous two-photon emission 0 for n#mk+q

could be built, the detection of the resulting even-odd oscil- pied = )
lating photon-number distribution of the total field would be Pmi+q for n=mk+aq,

practically impossible due to the different emission direc-

tions involved in each spontaneous transition. wherem=[n/k] is the largest integer that does not not ex-
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ceedn/k. The von Neumann entropy, which takes its maxi- 043
mum value in the equilibrium state, can be written as Pnn |1
'

00 o) 03l :I

Sk = — 2 p(nkr{q)ln(pgkrﬂ))z - 2 pmk+q|n(pmk+q)- I'x
n=0 m=0 H

(2) o2f I

In order to obtain the number-probability distribution of the
maximum-entropy states, we have to maximize expression 01y
(2 under the constraints = pPmysq=1 and

S m(Mk+Q)Pmksg=nN, with n being the mean number of 0
guanta. Using the method of Lagrange multipliers we find 0 5 10 15 20
that the entropys*% takes its maximum value when

__k [ n-g
pmk+q_n_—quk\n_—quk

FIG. 1. Number-probability distributiop,,, of an even-number
two-quantum maximum-entropy state with mean number of quanta
n=5 and of a squeezed-vacuum state with the same value. of
For clearness, the separate dots are connected by a fulltlire
The structure of Eq(3) is analoguous to that of a thermal duantum maximum-entropy statend by a dashed linesqueezed
photon-number distributiofi2] with mean photon number Vacuum.

Szgseg):/i. ég‘ﬁigzim tc?t_rwgztﬁcr;%m;rsq;t?a:) The special comes obvious from Fig. 1, the resulting number-probability

For the maximum-entropy states all higher-orderd!Str!bUt!Ons are remarkably similar. Hence if an oscillating
gquantum-number moments can be reduced to expressioﬁésmbuuon of the kind shown in Fig. 1 is detected, a con-
containing the mean number of quanta only. For this purposglderaple accuracy is required to make sure that the oscillator
use has to be made of the relation mode, indeed, is in a squeezed-vacuum dtate _ N

For completeness we also calculate the quasiprobability
n—q n—qg [ distributions of the two-quantum maximum-entropy states
. .(__ [+1]=" (_) , (4  which can be given in simple analytical terms. Making use of
k k Egs. (1) and (3) we obtain for the theQ function
. . Q(a)=(alp|a)/m of the even-number two-quantum
(I1=1,2,...) that can be derived from Eq§l) and (3), in : i a .
analogy to the expression valid for a thermal field Wheremaxmum entropy stateq(=0) the expression
k=1 andg=0. The quantum-number variance reads

3

1 2e_‘a|2 — 11/2
— _ _ Q(Z,O)(a)Z e COS}{ |a|2 —_ ) . )
An?=(n—n)?=(n—q)(n—q+k). (5) T n+2 n+2
From Eq. (5 we find that thek-quantum maximimum- The Q function of the odd-number state€ 1) reads
entropy  states exhibit sub-Poissonian statistics, with
An2<n, provided that the inequality 1 2e ol n—1]Y?
2 (@)=— ————=sinh |a|?| — 8
ok e Qe = s o — | ©
q<n<|q-——|*||d-——] tak-a) (6)

_ : _ . (cf. Fig. 2. The corresponding Wigner functions can
is fulfilled. Obviously, forq=0 the statistics is always super- o calculated by inverting the relatiorQ(a)=(2/
Poissonian. However, fdt=2 the maximum-entropy states —2la— 242 '

i . L) fW(B)e d“B [8]. We find for the even-number
are, nevertheless, highly nonclassical because of the oscill l/o-quantum maximum-entrooy state
tory distribution of the number probabilitigs<® [cf. Eq. g Py

(1)] which prevents the existence of a positive-defirfte

distribution. , VN+2— \/;
In the special casek=2 we obtain the variances expl —2|e|———=

An?=(n—1)(n+1) forq=1, i.e., when only odd-numb 1 2 Vi+2+n

g=1, i.e., when only odd-number W20(g)= =

states are occupied, amth?=n(n-+2) for q=0, i.e., for LN o4 \/;—

the occupation of even-number states only. It is interesting to -

compare the number-probability distribution of an even- n_+2+\/;

number two-quantum maximum-entropy state, which is char- exp —2|a——

acterized by the recursion relationpym:1)/Pom Vn+o-— \/F

=n/(n+2), with that of a squeezed-vacuum state. From the — — , 9

analytical formula for the number-probability distribution \/n+2—\/;

[3,4] of the squeezed vacuum we obtain the recursion rela-
tion p§‘2m+1)/p§”m=[(2m+ Ln]/[(2m+2)(n+1)]. As be- and for the odd-number state
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FIG. 2. Q function of an odd-number two-quantum maximum- 0.1
entropy state witm =5. 02
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n+1+vVn—-1 Re(e)
exp 2| ——=———
vn+l-vVn-1 FIG. 3. Cut at Im@) =0 through theQ function (full line) and
— — . (10 the Wigner functior{dashed-dotted lineof an even-numbe(a) and
Vvn+1l-vn-1 an odd-number(b) two-quantum maximum-entropy state with

Similarly to the case of the even and odd coherent superporl >
sition state$9], the Wigner function is positive for the even-

number two-photon maximum entropy state and exhibits , _
negative values in the odd-number cdsee Fig. 3. These . n!
remarkably strong negativities are centered arowrd. (12)

(n+k)! n!
(YkPn+k— BrPn) — m_—k)!(Ykpn—kan—k)-

Invoking detailed-balance considerations, we immediately
arrive at the recurrence relatiqn, , ./p,= B« ! v« Which has
In order to discuss the generation of the maximum-

. . ; to be fulfilled in the equilibrium state, i.e., fgr,=0. Since
entropy states we consider the interplaykefluantum emis- . . )
sion processegwith emission constanB,) and k-quantum only number states which differ by a multiple &f are
absof tion processéwith absorption c0r|1(sta ) gince we coupled due to the interaction with the reservoir, we have to
oy broc avsorp anfi). discriminatek different interaction channels fée=2 which
are interested in the equilibrium state which results from the . . . .
) ; . . ' . Wwe again characterize by the integer paramejemwith
interaction with a corresponding reservoir, both kinds of0< <Kk—1. Making use of the decompositiam=mk.+
k-quantum processes have to be assumed to be unsaturate 4= ~ _g P g
. Wwhere m=[n/k]=1,2,..., the steady-state number-
(In contrast, e.g., to the case of kaphoton laser with probability distribution can be written as
m-photon lossesk;m=1,2,...) [10], where the emission

process is saturatgdWe therefore start from the master

Ill. GENERATION OF THE STATES

equation Pmk+q= Ca k(B! vi)™ (13
. B We mention that fok=1, whereq=0, the well-known mas-
_ K akatk tk ok ko Tk . . ) .
p=-—5(aa"p—2aTpa’+pa‘a ) ter equation for the interaction with a thermal heat Hath

can be regained from Ed11), when Eq.(13) is used to
expressB; /vy, by the value ofn. For k=2 the constants
Cgq.k have to be determined from the number-probability dis-
tribution p{" of the initial state using the relation

- %(a“‘akp— 2akpa’ + pa'ak) (12)
for the density operatgs of the considered field mode. Here

a anda' are the boson annihilation and creation operators, c 5 p(i)

respectively. From Eq(11) the equation of motion for the ~ak_ "“;O—w_ (14)
diagonal elementp,,,=p,, is given by Cox  Zm=oPmk
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Thus for k=2, where the number of possibte values is nation of the excited-state populatipf]. When the position
larger than 1, the equilibrium state depends on the initiadependence of the standing-wave field is expressed by

conditions. When the condition sin(k, X+ ¢g) and when this term is expanded in the Lamb-
_ Dicke limit, it can be shown, with the help of the method
p(k'[)n,qu:O for g#qq (15 outlined in[6], that a specific kind of system-reservoir cou-

pling can be realized, which is described by a master equa-
is fulfilled for k=2, the system evolves towards the tion of the form of Eq.(17), where f=aX, provided that
k-quantum maximum-entropy state described by Ejsand @, = wy— kv, andf=a' for = wy+kv. To this ende,
(3) with g=q,, where the mean number of quanta is givenhas to be chosen to be equal to zero for odd valudsafd
by the relation to be equal tar/2 for even values ok, which means that the
_ trap center is in a node¢(;=0) or antinode o= m/2) of
n=do+k/(yk/Bx—1), (16)  the standing wave, respectivel§]. The constanty of Eq.

which follows from Eqs.(13~(15). From Eq.(16) we con- (17) is proportional to the square of the Rabi frequency.

hen the ion is excited at theth lower motional sideband
clude that a steady state can only be reached when the ap-

. T . w_=wo—kv), k phonons are annihilated during each
§orpt|qn constany ex.ceeds the emission .const:mt. This absorption-spontaneous emission cycle of the ion, and for
is obvious from physical reasons, since in the cgge vy

the mean number of quanta would already grow to infinity,?hxglgt;%n oit-;hhdg;hoﬁpeprﬁirssslig%g? N = wokv) we have
due to the excess caused by spontandegsantum emis- P ' .
sion. The requiremen(L5), which is necessary for the gen- When the ion is irradiated by two appropriately detuned

. . . 2~ incoherent laser mbination ok-phonon rption
eration ofk-quantum maximum-entropy states, is satisfied, o) t laserf6], a combination ok-phonon absorptio

e.g., when the system is initially prepared in a number stateand k-phonon emission resuiting in the master equait)

Finally we address the question as to how theCould be experimentally realized. The ratiq /B, would

k-quantum maximum-entropy states could be produced in t%hen be determined by the ratio of the squared Rabi frequen-
real experiment. Recently it has been shofi@ that the ies or of the laser intensities, respectively. In particular, in

. : : ; erder to prepare an even-number two-phonon maximum-
system-reservoir coupling described by a master equation Oentropy state the properties of which are shown in Figs. 1
the general form :

and 3a), one could start from the motional ground state of
(17) the ion since laser cooling to the zero-point energy of motion
has already been achieved experimentdllij. (We mention
with f=f(a,a"), can be experimentally realized for the mo- that recgntly a generatioq of even and odd coheren_t states of
tional state of a single ion trapped in a harmonic potentialth® motion of a trapped ion has been proposed via bichro-
with trap frequencyr, and being irradiated by a standing- matic excitation (_)f both the electronic transition and the sec-
wave laser field of a freqency, =k, c, which is nearly in  ©nd vibrational sidebanfll2].) -
resonance with the frequenay, of an internal electronic In summary, we have introduced specifiequantum
transition of the ion. The operatca is then given by maximum-entropy states which possess nonclassical proper-
a=X(mv/2k)Y2+iP(2m#iv) Y2 whereX, P, andm are the ties and we ha_ve shown that these states could be produced
position, momentum operator, and the mass of the ion, rél? @ real experiment.
spectively. It is assumed that the Lamb-Dicke parameter
n=(1k?/2mv)*?is small and that the spontaneous decay of
the excited electronic level can be neglected during the os- U.H. acknowledges the hospitality extended to her during
cillation period of the ion in the trap. Moreover, the intensity her stay in New York. The research of J.B. was supported by
of the laser field has to be low enough to allow for the elimi-the Office of Naval Research and by PSC-CUNY.

p=—y(fTtp—2fpfT+pf't),
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