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Nonclassical maximum-entropy states
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We investigate specific maximum-entropy states of a single harmonic-oscillator mode that arise when only
number states~Fock states! differing by a multiple of a certain integerk (k>1) are allowed to be occupied. For
k52 the number-probability distribution of the even-number maximum-entropy state has a close resemblance
to that of a squeezed-vacuum state. These maximum-entropy states can be obtained as the stationary solutions
of a master equation which takes into accountk-quantum absorption as well ask-quantum emission processes
only. The steady-state solution of this master equation depends on the initial conditions. For the vibrational
motion of a trapped ion such nonclassical maximum-entropy states could be produced with the help of the
recently proposed method of laser-assisted quantum reservoir engineering.@S1050-2947~97!02008-8#

PACS number~s!: 42.50.Dv, 32.80.Pj
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I. INTRODUCTION

It is well known that the density operator describing
single-mode quantized radiation field that is in thermal eq
librium with its surrounding can be obtained by maximizin
the entropy of the quantum field under the constraint that
mean energy~or the mean photon number, respectively! is
kept constant~see@1#!. The expression for the thermal de
sity operator also holds for the density operator of a cha
radiation field@2# that results from the contributions of man
statistically independent classical light sources, i.e., fr
light sources the radiation of which can be described b
positive-definiteP representation.~In the multimode case
the chaotic or thermal density operator factorizes into
products of the corresponding single-mode operators@2#.! In
this contribution, we generalize the concept of t
maximum-entropy state of a single quantized harmonic
cillator of frequencyv to nonclassicalk-quantum maximum-
entropy states (k 5 2,3, . . .! that arise when only energ
eigenstates are allowed to be occupied, the energy of w
differs by a multiple ofk\v. These states do not possess
positive-definiteP representation, i.e., they are intrinsical
nonclassical.

In order to generate the nonclassical maximum-entr
states, one might think of radiation fields that result from
contributions of many statistically independentk-photon
emitters (k>2), in analogy to the classical chaotic radiatio
where k51. For k52 the photon-number distribution o
such a field is expected to oscillate similarly to the num
distribution of a squeezed-vacuum field@3# which arises
from spontaneous degenerate parametric down conver
~see, e.g.,@4#!. In both cases two photons are always emit
simultaneously, the probability for the presence of an o
number of photons, therefore, is zero. However, even
radiation source which consists of a large number of in
pendent atoms undergoing spontaneous two-photon emis
could be built, the detection of the resulting even-odd os
lating photon-number distribution of the total field would b
practically impossible due to the different emission dire
tions involved in each spontaneous transition.
561050-2947/97/56~2!/1658~4!/$10.00
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A more realistic possibility for the generation of noncla
sical k-quantum maximum-entropy states becomes obvi
when the concepts of quantum optics are adopted to the
scription of the vibrational center-of-mass motion of
trapped ion in a harmonic-oscillator potential@5#. When the
ion is irradiated by laser light which is tuned to a defin
vibrational sideband of the internal electronic transition, t
center-of-mass motion of the ion is influenced in a spec
way due to the recoil experienced in each cycle of absorp
and subsequent spontaneous emission. By changing the
frequencies and intensities it is possible to design differ
kinds of couplings between the vibrational energy levels a
the surrounding reservoir of the vacuum modes of the e
tomagnetic field@6#. In particular, this coupling can give ris
to k-phonon transitions in the energy of the center-of-m
motion. In analogy to the classical thermal equilibrium sta
for k51, the nonclassicalk-phonon maximum-entropy state
(k>2) turn out to be the equilibrium states which resu
under certain initial conditions, whenk-phonon absorption
andk-phonon emisson processes act simultaneously.

II. PROPERTIES OF THE MAXIMUM-ENTROPY STATES

We consider the steady-state density operatorr of a
single harmonic-oscillator mode, the energy of which can
changed due tok-quantum absorption andk-quantum emis-
sion processes only. In order to introduce the maximu
entropy states we assume that only number states diffe
by a multiple ofk are allowed to be occupied. In the statio
ary state all nondiagonal elementsrmn in the Fock represen
tation vanish. We can discriminatek different kinds of
k-quantum maximum-entropy states, which we label by
integer parameterq, where 0<q<k21. The diagonal
density-matrix elements obey the equation

rnn
~k,q!5H 0 for nÞmk1q

pmk1q for n5mk1q,
~1!

wherem5@n/k# is the largest integer that does not not e
1658 © 1997 The American Physical Society
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ceedn/k. The von Neumann entropy, which takes its ma
mum value in the equilibrium state, can be written as

S~k,q!52 (
n50

`

rnn
~k,q!ln~rnn

~k,q!!52 (
m50

`

pmk1qln~pmk1q!.

~2!

In order to obtain the number-probability distribution of th
maximum-entropy states, we have to maximize express
~2! under the constraints (mpmk1q51 and
(m(mk1q)pmk1q5 n̄ , with n̄ being the mean number o
quanta. Using the method of Lagrange multipliers we fi
that the entropyS(k,q) takes its maximum value when

pmk1q5
k

n̄2q1k
S n̄2q

n̄2q1k
D m

. ~3!

The structure of Eq.~3! is analoguous to that of a therm
photon-number distribution@2# with mean photon numbe
( n̄2q)/k. ~Note that n̄2q5k(nmpmk1q.0.! The special
casek51 corresponds to the thermal state.

For the maximum-entropy states all higher-ord
quantum-number moments can be reduced to express
containing the mean number of quanta only. For this purp
use has to be made of the relation

n2q

k S n2q

k
21D •••S n2q

k
2 l 11D5 l ! S n̄2q

k
D l

, ~4!

( l 51,2, . . . ) that can be derived from Eqs.~1! and ~3!, in
analogy to the expression valid for a thermal field whe
k51 andq50. The quantum-number variance reads

Dn25~n2 n̄ !25~ n̄2q!~ n̄2q1k!. ~5!

From Eq. ~5! we find that thek-quantum maximimum-
entropy states exhibit sub-Poissonian statistics, w
Dn2, n̄ , provided that the inequality

q, n̄,S q2
k21

2 D1F S q2
k21

2 D 2

1q~k2q!G1/2

~6!

is fulfilled. Obviously, forq50 the statistics is always supe
Poissonian. However, fork>2 the maximum-entropy state
are, nevertheless, highly nonclassical because of the os
tory distribution of the number probabilitiesrnn

(k,q) @cf. Eq.
~1!# which prevents the existence of a positive-definiteP
distribution.

In the special casek52 we obtain the variance
Dn25( n̄21)( n̄11) for q51, i.e., when only odd-numbe
states are occupied, andDn25 n̄ ( n̄12) for q50, i.e., for
the occupation of even-number states only. It is interestin
compare the number-probability distribution of an eve
number two-quantum maximum-entropy state, which is ch
acterized by the recursion relationp2(m11) /p2m

5 n̄ /( n̄12), with that of a squeezed-vacuum state. From
analytical formula for the number-probability distributio
@3,4# of the squeezed vacuum we obtain the recursion r
tion p2(m11)

sv /p2m
sv 5@(2m11) n̄ #/@(2m12)( n̄11)#. As be-
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comes obvious from Fig. 1, the resulting number-probabi
distributions are remarkably similar. Hence if an oscillati
distribution of the kind shown in Fig. 1 is detected, a co
siderable accuracy is required to make sure that the oscill
mode, indeed, is in a squeezed-vacuum state@7#.

For completeness we also calculate the quasiprobab
distributions of the two-quantum maximum-entropy sta
which can be given in simple analytical terms. Making use
Eqs. ~1! and ~3! we obtain for the theQ function
Q(a)5^aurua&/p of the even-number two-quantum
maximum-entropy state (q50) the expression

Q~2,0!~a!5
1

p

2e2uau2

n̄12
coshS uau2F n̄

n̄12
G 1/2D . ~7!

The Q function of the odd-number state (q51) reads

Q~2,1!~a!5
1

p

2e2uau2

A n̄221
sinhS uau2F n̄21

n̄11
G 1/2D ~8!

~cf. Fig. 2!. The corresponding Wigner functions ca
be calculated by inverting the relationQ(a)5(2/
p)*W(b)e22ua2bu2d2b @8#. We find for the even-numbe
two-quantum maximum-entropy state

W~2,0!~a!5
1

p

2

A n̄12

F expS 22ua2u
An̄122A n̄

A n̄121A n̄
D

A n̄121A n̄

1

expS 22ua2u
An̄121A n̄

A n̄122A n̄
D

A n̄122A n̄

G , ~9!

and for the odd-number state

FIG. 1. Number-probability distributionrnn of an even-number
two-quantum maximum-entropy state with mean number of qua

n̄55 and of a squeezed-vacuum state with the same value on̄ .
For clearness, the separate dots are connected by a full line~two-
quantum maximum-entropy state! and by a dashed line~squeezed
vacuum!.
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W~2,1!~a!5
1

p

2

A n̄21

F expS 22ua2u
An̄112A n̄21

A n̄111A n̄21
D

A n̄111A n̄21

2

expS 22ua2u
An̄111A n̄21

A n̄112A n̄21
D

A n̄112A n̄21

G . ~10!

Similarly to the case of the even and odd coherent supe
sition states@9#, the Wigner function is positive for the even
number two-photon maximum entropy state and exhib
negative values in the odd-number case~see Fig. 3!. These
remarkably strong negativities are centered arounda50.

III. GENERATION OF THE STATES

In order to discuss the generation of the maximu
entropy states we consider the interplay ofk-quantum emis-
sion processes~with emission constantbk) and k-quantum
absorption processes~with absorption constantgk). Since we
are interested in the equilibrium state which results from
interaction with a corresponding reservoir, both kinds
k-quantum processes have to be assumed to be unsatu
„In contrast, e.g., to the case of ak-photon laser with
m-photon losses (k,m51,2, . . . ) @10#, where the emission
process is saturated.… We therefore start from the maste
equation

ṙ52
bk

2
~aka†kr22a†krak1raka†k!

2
gk

2
~a†kakr22akra†k1ra†kak! ~11!

for the density operatorr of the considered field mode. Her
a and a† are the boson annihilation and creation operato
respectively. From Eq.~11! the equation of motion for the
diagonal elementsrnn[pn is given by

FIG. 2. Q function of an odd-number two-quantum maximum

entropy state withn̄55.
o-

s

-

e
f
ted.

s,

ṗn5
~n1k!!

n!
~gkpn1k2bkpn!2

n!

~n2k!!
~gkpn2bkpn2k!.

~12!

Invoking detailed-balance considerations, we immediat
arrive at the recurrence relationpn1k /pn5bk /gk which has

to be fulfilled in the equilibrium state, i.e., forṗn50. Since
only number states which differ by a multiple ofk are
coupled due to the interaction with the reservoir, we have
discriminatek different interaction channels fork>2 which
we again characterize by the integer parameterq with
0<q<k21. Making use of the decompositionn5mk1q,
where m5@n/k#51,2, . . . , the steady-state number
probability distribution can be written as

pmk1q5Cq,k~bk /gk!
m. ~13!

We mention that fork51, whereq50, the well-known mas-
ter equation for the interaction with a thermal heat bath@1#
can be regained from Eq.~11!, when Eq.~13! is used to
expressb1 /g1 by the value ofn̄ . For k>2 the constants
Cq,k have to be determined from the number-probability d
tribution pn

( i ) of the initial state using the relation

Cq,k

C0,k
5

(m50
` pmk1q

~ i !

(m50
` pmk

~ i ! . ~14!

FIG. 3. Cut at Im(a)50 through theQ function ~full line! and
the Wigner function~dashed-dotted line! of an even-number~a! and
an odd-number~b! two-quantum maximum-entropy state wit

n̄55.
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Thus for k>2, where the number of possibleq values is
larger than 1, the equilibrium state depends on the ini
conditions. When the condition

pk[n/k] 1q
~ i ! 50 for qÞq0 ~15!

is fulfilled for k>2, the system evolves towards th
k-quantum maximum-entropy state described by Eqs.~1! and
~3! with q5q0, where the mean number of quanta is giv
by the relation

n̄5q01k/~gk /bk21!, ~16!

which follows from Eqs.~13!–~15!. From Eq.~16! we con-
clude that a steady state can only be reached when the
sorption constantgk exceeds the emission constantbk . This
is obvious from physical reasons, since in the casebk5gk
the mean number of quanta would already grow to infin
due to the excess caused by spontaneousk-quantum emis-
sion. The requirement~15!, which is necessary for the gen
eration of k-quantum maximum-entropy states, is satisfi
e.g., when the system is initially prepared in a number st

Finally we address the question as to how t
k-quantum maximum-entropy states could be produced
real experiment. Recently it has been shown@6# that the
system-reservoir coupling described by a master equatio
the general form

ṙ52g~ f †f r22 f r f †1r f †f !, ~17!

with f [ f (a,a†), can be experimentally realized for the m
tional state of a single ion trapped in a harmonic potent
with trap frequencyn, and being irradiated by a standing
wave laser field of a freqencyvL5kLc, which is nearly in
resonance with the frequencyv0 of an internal electronic
transition of the ion. The operatora is then given by
a5X(mn/2\)1/21 iP(2m\n)1/2, whereX, P, andm are the
position, momentum operator, and the mass of the ion,
spectively. It is assumed that the Lamb-Dicke parame
h5(\kL

2/2mn)1/2 is small and that the spontaneous decay
the excited electronic level can be neglected during the
cillation period of the ion in the trap. Moreover, the intens
of the laser field has to be low enough to allow for the elim
ler

P

a

l

ab-

,
e.

a

of

l,

e-
r
f
s-

-

nation of the excited-state population@6#. When the position
dependence of the standing-wave field is expressed
sin(kLX1f0) and when this term is expanded in the Lam
Dicke limit, it can be shown, with the help of the metho
outlined in @6#, that a specific kind of system-reservoir co
pling can be realized, which is described by a master eq
tion of the form of Eq.~17!, where f [ak, provided that
vL5v02kn, and f [a†k for vL5v01kn. To this endf0
has to be chosen to be equal to zero for odd values ofk and
to be equal top/2 for even values ofk, which means that the
trap center is in a node (f050) or antinode (f05p/2) of
the standing wave, respectively@6#. The constantg of Eq.
~17! is proportional to the square of the Rabi frequenc
When the ion is excited at thekth lower motional sideband
(vL5v02kn), k phonons are annihilated during eac
absorption-spontaneous emission cycle of the ion, and
excitation at thekth upper sideband (vL5v01kn) we have
the case ofk-phonon emission@6#.

When the ion is irradiated by two appropriately detun
incoherent lasers@6#, a combination ofk-phonon absorption
andk-phonon emission resulting in the master equation~11!
could be experimentally realized. The ratiogk /bk would
then be determined by the ratio of the squared Rabi frequ
cies or of the laser intensities, respectively. In particular,
order to prepare an even-number two-phonon maximu
entropy state the properties of which are shown in Figs
and 3~a!, one could start from the motional ground state
the ion since laser cooling to the zero-point energy of mot
has already been achieved experimentally@11#. ~We mention
that recently a generation of even and odd coherent state
the motion of a trapped ion has been proposed via bich
matic excitation of both the electronic transition and the s
ond vibrational sideband@12#.!

In summary, we have introduced specifick-quantum
maximum-entropy states which possess nonclassical pro
ties and we have shown that these states could be prod
in a real experiment.
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