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Geometric phase, quantum measurements, and the de Brogh®&ohm model
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An approach to the measurement induced geometric phase based on the de Broglie—Bohm hidden-variable
model is developed. The analysis involves an evolving geometric phase connecting the initial and final states
of an individual experimental run. As an illustration the geometric phase produced by a cyclic sequence of
spin-% filtering experiments is considered. It is argued, in this case, that the evolving geometric phase can be
made close to the Samuel-Bhandari ph§$4.050-294{®7)01808-9

PACS numbd(s): 03.65.Bz

The existence of the geometric phase in the case of quan- Now with the partitioningg= (v,w) of the system we can
tum measurements was first pointed out by Samuel andrite
Bhandari1]. The essence of their analysis was to realize that

the phase of the Bargmann invaridi2if associated with a : _J“'W
cyclic sequence of measurements of the first kind is geomet- V_pr ' @
ric in the sense of the Pancharatham connedt&nlt was o=V

subsequently show,5] that the unitary geometric phase where

[6,7] is obtained if the sequence of projections is dense. Fur-

thermore, the appearance of a non-Abelian geometric phase W (0,) =P, W(t),t) 3)
[8] in the case of incomplete measurements was demon- WL ’ e

strated[9] and the restriction to measurements of first kind

was relaxed 10]. Recently the geometric phase in the con-giher words the wave function governing the dynamics of the
text of the quantum Zeno effe¢tl] was discussed12]. | g stem is the total wave function, given the condition that

Experimental verifications of the measurement induced geog,o system evolves according W/(t). The measurement
metric phase have also been carried [di&,14].

. . . theory of the de Broglie—Bohm model can now be developed
Various models have been developed in order (o give 3y, the hasis of the conditional wave function. Suppose an

physical account of the measurement process which goes bgpseranled with the associated nondegenerate normalized

yond the usual minimal instrumentalist interpretation ofei ; : ; ;

) genfunctionsy,(v) and eigenvalues,, is being measured
quantum theory15]. Among the most well established are ¢, ", system described by the normalized wave function
the models based on environment induced decohefditce

18], quantum state diffusiofil9,20, and de Broglie—Bohm
hidden variable$21,22. A common feature of these “non- ()= Cathn(v), (4)
minimal” approaches is that insights into the measurement n
process are provided which cannot otherwise be obtained. ) o ) )
One expects this should be true also in the case of measur@herec, are complex expansion coefficients. The interaction
ment induced geometric phases. The purpose of the presepgtween the measured system) (and the apparatusw)
report is to analyze this in the framework of the de Broglie—May result in the superposition
Bohm model[21-25 which we first briefly review.

A physical system is assumed to consist of a wave and a _
particle. The wave is described by the wave function Powt) ; Can(v) Pa(W.L), ©
W¥(q,t) which is a solution of the time dependent Schro
dinger equation. The particle follows a trajecta®(t) in  where the apparatus wave packéts eventually get macro-

is the conditional wave function of the system[26]. In

configuration space given by the equation scopically separated. In this case the reduction
v /
o-2| n W) (0,0) = Wy (0,0 = Cor i (V) Py (W(E) 1) (6)
[
9=Q

occurs in a given individual run of the experiment\W
HereJY is the quantum-mechanical current gnli the nor-  evolves into the support ab,,,. Assuming theb,’s are nor-
malized probability density expressing the impossibility tomalized, one can shoysee, e.g., Ref.23], Sec. 8.3.Bthat
actually observe the trajectory. the probability for Eq.(6) is |c,/|2. The measured value
0, of O can be inferred by observing the “pointel¥ and,
furthermore, the result is repeatable here provided that the
*Electronic address: erik.sjoqvist@philosophy.oxford.ac.uk subsequent measurement ©f is made immediately after-
TElectronic address: henrik.carlsen@kvac.uu.se wards(i.e., measurement of the first kind
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Next we define the geometric phase for E8). The dy- W rl=arg (1P |12)
namical phase changézn(t) at t along the Hilbert space )
trajectory Wy, (t) is given by +ard Ai(X(T), Y(T,),Z(Ty), To)]
Sn(t)=ard (W (1) | Wyt o0 (t+ 0t))] .J'TX< Wrip() | d] Wre(D) >dt 10
v t)|||dt|| ¥ t '
~—i< Pwin (1) [ d] () >5t @ b A RO e O
W% oy O At [ Wy, (DI /7 where A,,;=AAUP. Clearly the first term on the right-hand
. ) side (RHS) is zero. The other terms aR dependent and
where ( - ) denotes integration overo and || = inerefore random valued, because Realue is randomly
( - | - )" The geometric phase{W] associated jisyinuted according to¥ (r,T,)|2. Similarly, by postselect-

with the evolutionW¥yy(0)— ¥ (T) is then defined by
removing the accumulated dynamical phase from the tot
phasg27,28

VY wl=ard (Vo) (0)| ¥y (T))]

+iJT< Wy (1) i Wy (t
||‘I’W(t)(t)||‘dt [ i) (

ing X and in support ofAj” andZ in support ofA;", the
eometric phase for the complete sequence becomes

YWR]= arg<T2| PT(/)PTJ Tz>)

+ard A X(T),Y(T),Z(T),T)]

T ¥ t) |d| ¥ t
+if < Rty (1) |_ rip(t) >dt
i ¥ Ry (DI A [ ey (D]

0

)
)”>dt. 8

The geometric phasg[ V,] is real, reparametrization in-
variant and projective geometric. It depends only on the 1
curve in projective Hilbert spac® (the space of rays in :_§¢+7(R)’ 1D
Hilbert spaceH of the v system corresponding to the evo-
lution of W,y. Furthermore, it can be demonstrated thatwhereT is the final time. The first term on the RHS of Eq.
y[P] reduces to the Aharonov-Anandan form{ild for  (11) is the Samuel-Bhandari phasgg. The phase/(R) is a
cyclic wave functions decoupled from the environment random contribution to the geometric phase. Generally for a
We are now prepared to discuss the geometric phase fayclic sequence of measurements of first kind we have
measurements. Consider three consecutive Stern-Gerlach
spin+ filtering experiments in thes, n,, andz direction, NYwl=rset v(W), (12)
wheren,, lies in thex-y plane and makes an angde with
the x axis. The sequence of postselected spin states is giv
by the projections Py =|T,)(T.l, Py, =|T4)}T4l, and

where bothygg and y(W) are projective geometric and are
Sherefore physical quantities of the measured system. The
S x i ) appearance ofsg in Eg. (12) can be understood as being a
Py, =[12(T]. If the initial spin state is|T,)(T| then the  consequence of the emergent “collapse” of the system wave
sequence is cyclic and the Samuel-Bhandari geometric phagenction as depicted by Eq6).

vsg becomes the phase of the Bargmann invariant As an illustration it is sufficient to consider the mea-

(14 PT¢PTX|TZ>- It follows that ysg= — 3¢, which is minus  surement above. Take the spatial wave function as Gaussian
half the solid angle enclosed by the geodesic triangle conef fixed widtho (spreading is neglectg¢dnd use the impulse
necting the point$I(|1,)), TI(|1,)), andII(|T4)) in P. This  approximation during the passage of the particle through the
phase can be observed as an interference oscillation by varptern-Gerlach field yielding

ing ¢.
The de Broglie—Bohm analysis of this experiment goes as X=u tanl‘( E;-() ' (13
follows (for details concerning the de Broglie—Bohm model o

of Stern-Gerlach experiments, see Rdf9,30). Assume ] )
the spin measurements take place at timgst,, andt, where 21 is the speed of the center AP relative the center

(ty<t,<t,). After the particle has left the first Stern-Gerlach Of_Agown- The solutionsX(t) = X(t; X(0)) of Eq. (13) deter-
field the spatial“apparatus’ wave function splits into two Mine the total ¢:.;) and dynamical {4,,) phases
separating wave packets!? and A2°"". The subsequent

(t>t,) evolution of the conditional wave function is given utX(t)
by ytot(t)=arctar%tar{u(X(t)—X(O))]tan?‘( 557 ”

[P ety (1) =AY (1), Z(O)[ALPX (D), P

(14)

ot 2 ut’X(t’)\
FALPYX(),0P 11, © oyl 0=07 | antf| =
whereR(t) = (X(t),Y(t),Z(t)) is the particle trajectory and where we have puti=1 and t,=0. First we choose
A(Y,2) is the (y,z)-dependent part of the spatial wave func- (o,u)=(0.1,1). In Fig. 1y, and yg4y, associated with the
tion. trajectory ending aX(0.4)= 0.4 [center ofA}P(x,0.4)], to-
The measurement is completed at tifig, say, when gether with the geometric phasg ¥g]= vioi— Ydyn, are
AYP and AZ°"" are macroscopically separated. Th¥nis  shown as a function of. We note thaty[ W] tends to an
postselected in the support AP yielding asymptotic value. This follows from the emergent reduction
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Phase Geometric phase
s
0.25 0.05
0.2 0.04
0.15 0.03
0.1 0.02
0.05 0.01
t 0.2 0.4 0.6 0.8 1 X
0 0.1 0.2 0.3 0.4

FIG. 2. Geometric phase as a function of postseleitedlue.
The chosen parameter values arer,u()=(0.1,1) (solid),
Yo,u)=(0.05,1) (dashed} and (r,u)=(0.1,2) (dotted.

FIG. 1. Total(solid), dynamical(dashegl and geometriddot-
ted phases as a function of time associated with the trajector
ending atX(0.4)=0.4 and ¢,u)=(0.1,1).

(2) The unpredictable dynamics of the measurement pro-
cess, which plays no role in the Samuel-Bhandari analysis
(the nonrandom contribution to the total phase equals the

of the wave function: In the limit whera!? and AS°"" are

macroscopically separatedtt> o) andX is in the support of
up ; ; ; 2y s i

AX ’ Wh'Ch ;cogether |mp2I|esutX(t)/(2cr )>12’ we. ob.tam geometric phase in their analygiss explicitly taken into

Ytot— UX~U? and y4yn=u?arctafutX(t)/o?]—u? which im-  Zcount.

plies ;)’['\PR]_’O- In Fig. 2 the asymptotic geometric phase as  (3) The geometric phase associated with the physical evo-
a function of the postselected value is shown for three jution of the conditional wave function during the measure-
different values ofr andu. The dependence on the random ment process does not coincide with the geodesic closure

size of theX-dependent contribution to the geometric phaseygstselected states.

depends on the experimental parametarsuf. In fact it

appears that the difference betwegn?] and ysg can be We are grateful to Gonzalo Gaacde Polavieja for many
made small by narrowing the incoming wave packet. useful comments on the manuscript. We also thank Osvaldo
To summarize we will make the following points. Goscinski for continuing discussions during this work. E.S.
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