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Geometric phase, quantum measurements, and the de Broglie–Bohm model
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An approach to the measurement induced geometric phase based on the de Broglie–Bohm hidden-variable
model is developed. The analysis involves an evolving geometric phase connecting the initial and final states
of an individual experimental run. As an illustration the geometric phase produced by a cyclic sequence of
spin-12 filtering experiments is considered. It is argued, in this case, that the evolving geometric phase can be
made close to the Samuel-Bhandari phase.@S1050-2947~97!01808-8#
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The existence of the geometric phase in the case of q
tum measurements was first pointed out by Samuel
Bhandari@1#. The essence of their analysis was to realize t
the phase of the Bargmann invariant@2# associated with a
cyclic sequence of measurements of the first kind is geom
ric in the sense of the Pancharatnam connection@3#. It was
subsequently shown@4,5# that the unitary geometric phas
@6,7# is obtained if the sequence of projections is dense. F
thermore, the appearance of a non-Abelian geometric ph
@8# in the case of incomplete measurements was dem
strated@9# and the restriction to measurements of first ki
was relaxed@10#. Recently the geometric phase in the co
text of the quantum Zeno effect@11# was discussed@12#.
Experimental verifications of the measurement induced g
metric phase have also been carried out@13,14#.

Various models have been developed in order to giv
physical account of the measurement process which goe
yond the usual minimal instrumentalist interpretation
quantum theory@15#. Among the most well established a
the models based on environment induced decoherence@16–
18#, quantum state diffusion@19,20#, and de Broglie–Bohm
hidden variables@21,22#. A common feature of these ‘‘non
minimal’’ approaches is that insights into the measurem
process are provided which cannot otherwise be obtain
One expects this should be true also in the case of meas
ment induced geometric phases. The purpose of the pre
report is to analyze this in the framework of the de Brogli
Bohm model@21–25# which we first briefly review.

A physical system is assumed to consist of a wave an
particle. The wave is described by the wave functi
C(q,t) which is a solution of the time dependent Schr¨-
dinger equation. The particle follows a trajectoryQ(t) in
configuration space given by the equation

Q̇5
JC

rC U
q5Q

. ~1!

HereJC is the quantum-mechanical current andrC the nor-
malized probability density expressing the impossibility
actually observe the trajectory.
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Now with the partitioningq5(v,w) of the system we can
write

V̇5
JCW

rCWU
v5V

, ~2!

where

CW~ t !~v,t !5C„v,W~ t !,t…, ~3!

is the conditional wave function of thev system@26#. In
other words the wave function governing the dynamics of
v system is the total wave function, given the condition th
the w system evolves according toW(t). The measuremen
theory of the de Broglie–Bohm model can now be develop
on the basis of the conditional wave function. Suppose
observableO with the associated nondegenerate normaliz
eigenfunctionscn(v) and eigenvalueson is being measured
for a system described by the normalized wave function

c~v !5(
n

cncn~v !, ~4!

wherecn are complex expansion coefficients. The interact
between the measured system (v) and the apparatus (w)
may result in the superposition

C~v,w,t !5(
n

cncn~v !Fn~w,t !, ~5!

where the apparatus wave packetsFn eventually get macro-
scopically separated. In this case the reduction

CW~ t !~v,t !→CW~ t !8 ~v,t !'cn8cn8~v !Fn8„W~ t !,t… ~6!

occurs in a given individual run of the experiment ifW
evolves into the support ofFn8. Assuming theFn’s are nor-
malized, one can show~see, e.g., Ref.@23#, Sec. 8.3.3! that
the probability for Eq.~6! is ucn8u

2. The measured value
on8 of O can be inferred by observing the ‘‘pointer’’W and,
furthermore, the result is repeatable here provided that
subsequent measurement ofO is made immediately after
wards~i.e., measurement of the first kind!.
1638 © 1997 The American Physical Society
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Next we define the geometric phase for Eq.~3!. The dy-
namical phase changedh(t) at t along the Hilbert space
trajectoryCW(t)(t) is given by

dh~ t !5arg@^CW~ t !~ t !uCW~ t1dt !~ t1dt !&#

'2 i K CW~ t !~ t !

iCW~ t !~ t !iU d

dtU CW~ t !~ t !

iCW~ t !~ t !i L dt, ~7!

where ^ • & denotes integration overv and i•i
5^ • u • &1/2. The geometric phaseg@CW# associated
with the evolutionCW(0)(0)→CW(T)(T) is then defined by
removing the accumulated dynamical phase from the t
phase@27,28#

g@CW#5arg@^CW~0!~0!uCW~T!~T!&#

1 i E
0

TK CW~ t !~ t !

iCW~ t !~ t !iU d

dtU CW~ t !~ t !

iCW~ t !~ t !i L dt. ~8!

The geometric phaseg@CW# is real, reparametrization in
variant and projective geometric. It depends only on
curve in projective Hilbert spaceP ~the space of rays in
Hilbert spaceH of the v system! corresponding to the evo
lution of CW . Furthermore, it can be demonstrated th
g@CW# reduces to the Aharonov-Anandan formula@7# for
cyclic wave functions decoupled from the environmentW.

We are now prepared to discuss the geometric phase
measurements. Consider three consecutive Stern-Ge
spin-12 filtering experiments in thex, nf , and z direction,
wherenf lies in thex-y plane and makes an anglef with
the x axis. The sequence of postselected spin states is g
by the projections P↑x

5u↑x&^↑xu, P↑f
5u↑f&^↑fu, and

P↑z
5u↑z&^↑zu. If the initial spin state isu↑z&^↑zu then the

sequence is cyclic and the Samuel-Bhandari geometric p
gSB becomes the phase of the Bargmann invari
^↑zuP↑f

P↑x
u↑z&. It follows that gSB52 1

2f, which is minus
half the solid angle enclosed by the geodesic triangle c
necting the pointsP(u↑z&), P(u↑x&), andP(u↑f&) in P. This
phase can be observed as an interference oscillation by v
ing f.

The de Broglie–Bohm analysis of this experiment goes
follows ~for details concerning the de Broglie–Bohm mod
of Stern-Gerlach experiments, see Refs.@29,30#!. Assume
the spin measurements take place at timestx , tf, and tz
(tx,tf,tz). After the particle has left the first Stern-Gerlac
field the spatial~‘‘apparatus’’! wave function splits into two
separating wave packetsAx

up and Ax
down. The subsequen

(t.tx) evolution of the conditional wave function is give
by

uCR~ t !~ t !&5A„Y~ t !,Z~ t !…@Ax
up
„X~ t !,t…P↑x

1Ax
down

„X~ t !,t…P↓x
#u↑z&, ~9!

whereR(t)5„X(t),Y(t),Z(t)… is the particle trajectory and
A(y,z) is the (y,z)-dependent part of the spatial wave fun
tion.

The measurement is completed at timeTx , say, when
Ax

up and Ax
down are macroscopically separated. ThenX is

postselected in the support ofAx
up yielding
al
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g@CR#5arg~^↑zuP↑x
u↑z&!

1arg@Atot„X~Tx!,Y~Tx!,Z~Tx!,Tx…#

1 i E
tx

TxK CR~ t !~ t !

iCR~ t !~ t !iU d

dtU CR~ t !~ t !

iCR~ t !~ t !i L dt, ~10!

whereAtot5AAx
up . Clearly the first term on the right-han

side ~RHS! is zero. The other terms areR dependent and
therefore random valued, because theR value is randomly
distributed according touC(r ,Tx)u2. Similarly, by postselect-
ing X andY in support ofAf

up andZ in support ofAz
up , the

geometric phase for the complete sequence becomes

g@CR#5arg~^↑zuP↑f
P↑x

u↑z&!

1arg@Atot„X~T!,Y~T!,Z~T!,T…#

1 i E
tx

TK CR~ t !~ t !

iCR~ t !~ t !iU d

dtU CR~ t !~ t !

iCR~ t !~ t !i L dt

52
1

2
f1g~R!, ~11!

whereT is the final time. The first term on the RHS of E
~11! is the Samuel-Bhandari phasegSB. The phaseg(R) is a
random contribution to the geometric phase. Generally fo
cyclic sequence of measurements of first kind we have

g@CW#5gSB1g~W!, ~12!

where bothgSB andg(W) are projective geometric and ar
therefore physical quantities of the measured system.
appearance ofgSB in Eq. ~12! can be understood as being
consequence of the emergent ‘‘collapse’’ of the system w
function as depicted by Eq.~6!.

As an illustration it is sufficient to consider thex mea-
surement above. Take the spatial wave function as Gaus
of fixed widths ~spreading is neglected! and use the impulse
approximation during the passage of the particle through
Stern-Gerlach field yielding

Ẋ5u tanhS utX

s2 D , ~13!

where 2u is the speed of the center ofAx
up relative the center

of Ax
down. The solutionsX(t)5X„t;X(0)… of Eq. ~13! deter-

mine the total (g tot) and dynamical (gdyn) phases

g tot~ t !5arctanF tan@u„X~ t !2X~0!…#tanhS utX~ t !

2s2 D G ,
gdyn~ t !5u2E

0

t

tanh2S ut8X~ t8!

s2 Ddt8, ~14!

where we have put\51 and tx50. First we choose
(s,u)5(0.1,1). In Fig. 1g tot and gdyn associated with the
trajectory ending atX(0.4)50.4 @center ofAx

up(x,0.4)#, to-
gether with the geometric phaseg@CR#5g tot2gdyn , are
shown as a function oft. We note thatg@CR# tends to an
asymptotic value. This follows from the emergent reducti



a

m
th
s

th
n
o

ck

ro-
sis
the

vo-
re-
ure
f

ldo
.S.
yal

cial
ncil

to

1640 56BRIEF REPORTS
of the wave function: In the limit whereAx
up andAx

down are
macroscopically separated (ut@s) andX is in the support of
Ax

up , which together impliesutX(t)/(2s2)@1, we obtain

ġ tot→uẊ'u2 andġdyn5u2arctan@utX(t)/s2#→u2, which im-
plies ġ@CR#→0. In Fig. 2 the asymptotic geometric phase
a function of the postselectedX value is shown for three
different values ofs andu. The dependence on the rando
variableX is clearly seen. Furthermore, Fig. 2 shows that
size of theX-dependent contribution to the geometric pha
depends on the experimental parameters (s,u). In fact it
appears that the difference betweeng@CR# andgSB can be
made small by narrowing the incoming wave packet.

To summarize we will make the following points.
~1! The Samuel-Bhandari phase can be identified as

nonrandom part of the geometric phase for the conditio
wave function in the case of measurements. As the ab
calculation indicates, we expect the random partg(W) to be
small if the experiment utilizes narrow apparatus wave pa
ets.

FIG. 1. Total ~solid!, dynamical~dashed!, and geometric~dot-
ted! phases as a function of time associated with the trajec
ending atX(0.4)50.4 and (s,u)5(0.1,1).
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~2! The unpredictable dynamics of the measurement p
cess, which plays no role in the Samuel-Bhandari analy
~the nonrandom contribution to the total phase equals
geometric phase in their analysis!, is explicitly taken into
account.

~3! The geometric phase associated with the physical e
lution of the conditional wave function during the measu
ment process does not coincide with the geodesic clos
rule ~Pancharatnam connection! applied to the sequence o
postselected states.
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FIG. 2. Geometric phase as a function of postselectedX value.
The chosen parameter values are (s,u)5(0.1,1) ~solid!,
(s,u)5(0.05,1) ~dashed!, and (s,u)5(0.1,2) ~dotted!.
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