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Mixing quantum and classical mechanics
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Quantum-classical mixing is studied by a group-theoretical approach, and a quantum-classical equation of
motion is derived. The quantum-classical bracket entering the equation preserves the Lie algebra structure of
quantum and classical mechanics, and, therefore, leads to a natural description of interaction between quantum
and classical degrees of freedom. The exact formalism is applied to coupled quantum and classical oscillators.
Various approximations, such as the mean-field and the multiconfiguration mean-field approaches, which are
of great utility in studying realistic multidimensional systems, are derived. Based on the formulation, a natural
classification of the previously suggested quantum-classical equations of motion arises, and several problems
from earlier works are resolved.@S1050-2947~97!03507-5#

PACS number~s!: 03.65.Sq, 03.65.Db, 03.65.Fd
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I. INTRODUCTION

Many phenomena in nature are described by quantum
chanics at a fundamental level and with high precision. Y
there exist numerous situations where mixed quantu
classical models are needed. In some cases the pheno
are too complex to allow for a fully quantum approach,
others a consistent quantum theory is lacking. Classical
chanics often provides a more suggestive description an
clearer picture of physical events. Applications of vario
quantum-classical approaches range from biochemical
condensed-matter chemical reactions, where the large dim
sionality of the systems of interest requires approximatio
to the evolution of the Universe and cosmology, where
theory of quantum gravity has been established.

The issue of treating quantum and classical degree
freedom within the same formalism has been discussed
cently in a number of publications@1–10#. The interest was
spurred@11# by the cosmological problem of defining th
backreaction of quantum matter fields on the classical sp
time background, where classical variables should be in
pendently correlated with each individual quantum state. T
traditional quantum-classical mean-field approach fails
last requirement and was generalized in Ref.@12#. ~For a
fully quantum approach to cosmology see Ref.@13#.! Earlier
a similar situation was encountered in chemical phys
where quantum-classical trajectory methods were emplo
to simulate gas-phase scattering phenomena@14–21# and,
later, chemical dynamics on surfaces@22# and in liquids@23–
27#. It was noticed in these studies that asymptotically d
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tinct quantum evolutions should correlate with different cla
sical trajectories.

The first relationship between quantum and classical v
ables is due to Ehrenfest@28# who showed that the equatio
of motion for the average values of quantum observab
coincides with the corresponding classical expression.~Sur-
prisingly, the first mathematically rigorous treatment on t
subject was not carried out until as late as 1974, see
@29#.! Ehrenfest’s result leads to the mean-field approa
where classical dynamics is coupled to the evolution of
expectation values of quantum variables@30–33#. The mean-
field equations of motion possess all of the properties of
purely classical equations and are rigorous insofaras
mean values of quantum operators are concerned. Howe
an expectation value does not provide information about
outcome of an individual process. The mean-field appro
gives a satisfactory description of the classical subsystem
long as changes within the quantum part are fast compare
the characteristic classical time scale. If classical trajecto
depend strongly on a particular realization of the quant
evolution, the mean-field approximation is inadequate. T
problem can be corrected, for instance, by the introduction
stochastic quantum hops between preferred basis st
which define classical potential energy surfaces, with pr
abilities determined by the usual quantum-mechanical ru
@34–36#. The decoherent histories interpretation of quant
mechanics@37,38# formulated on the level of individual his
tories@39,40# establishes a theoretical foundation of the s
face hopping technique@41#.

Similarity between the algebraic structures underlyi
quantum and classical mechanics provides a consistent
of improving upon the mean-field approximation, as e
plored in Refs.@2,12,15#, which aim to derive a quantum
classical bracket that reduces to the quantum commut
and the Poisson bracket in the purely quantum and class
cases. In addition to the reduction property the brac
should satisfy other criteria so as to produce physica
meaningful quantum-classical evolutions. For example,
antisymmetric bracket conserves the total energy.
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56 163MIXING QUANTUM AND CLASSICAL MECHANICS
Recently, Kisil proposed a mathematical construction t
naturally envelops classical and quantum mechanics an
named herep mechanics@42#. Formulated within the frame
work of operator algebras, thep-mechanical equation of mo
tion reduces to the appropriate quantum or classical eq
tions under suitable representations of the algebra
observables. In this paper we extend the ideas ofp mechan-
ics to incorporate mixed quantum-classical descriptions.
derive the quantum-classical bracket and explicitly show t
it satisfies the properties common to quantum and class
mechanics. The technique described in this paper allows
to construct families of mixed quantum-classical approach
each having a specific set of properties. Focusing on
simplest among such families we investigate the relations
between the quantum-classical equations of motions
posed by other authors@2,12,15#.

The format of this paper is as follows: In Sec. II we sum
marizep mechanics and introduce the essential mathema
definitions. In Sec. III we construct the simple
p-mechanical model that adopts two distinct sets of variab
associated with quantum and classical degrees of freed
By taking an appropriate representation for the model
derive the quantum-classical bracket, show that it is antis
metric, and discuss the Jacobi identity. The procedure
sented in Sec. III allows us to discriminate between the v
similar brackets of Refs.@12# and @15#, and to obtain the
antisymmetric analog of the bracket of Ref.@2#. In Sec. IV
we consider coupled classical and quantum harmonic o
lators and illustrate how the dynamics of a mixed quantu
classical system can be studied byp mechanics without ex-
plicit reference to an equation of motion. In Sec. V w
investigate various approximations to the general quant
classical description, including the mean-field and the mu
configuration mean-field approaches. In the concluding s
tion we classify the quantum-classical equations of mot
from earlier papers according to the present formalism
summarize our results.

II. P MECHANICS

A. The elements ofP mechanics

We recall the constructions from Refs.@42,43# and intro-
duce appropriate modifications.

Definition 1. An operator algebra P gives a
p-mechanical description@42# of a system if the following
conditions hold.

~1.1! The setP̂ of all irreducible representationsph of P

is a disjoint union of subsetsP̂5øpPPP̂p parametrized by
the elements of a setP. The elements of the setP are asso-
ciated with different values for the Planck constant. We re
to this set as theset of Planck constants. If for p0 the set
P̂p0

consists of only commutative~and, therefore, one

dimensional! representations, thenP̂p0
gives aclassicalde-

scription. IfP̂p0
5$pp0

% consists of a single noncommutativ

representationpp0
, thenP̂p0

gives a purelyquantummodel.

Sets P̂p of other types providemixed ~quantum-classical!
descriptions.

~1.2! Let P̂ be equipped with a natural operator topolo
~for example, it may be the Jacobson topology@44# or the
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* -bundle topology@45,46#!. ThenP has a naturalfactor to-
pology induced by the partitionP̂5øpPP .

~1.3! ~Dynamics!: the algebraP is equipped with the one
parameter semigroup of transformationsG(t): P→P,t
PR1. All sets P̂p , pPP arepreservedby G(t). Namely,
for any pPP̂p all new representationsp t5p+G(t) again
belong toP̂p .

~1.4! ~The correspondence principle!: let S: p°S(p)
PPp be an operator-valued section, which is continuous
the*-bundle topology@45,46# overP. Then for anyt, i.e., at
any moment of time, the imageSt(p)5G(t)S(p) is also a
section due to statement~3!. In the *-bundle topology the
sectionsSt(p) arecontinuous for all t.

The above conditions are general. Next, we describe
important particular case ofgroup quantization@43#. All
components ofp mechanics~operator algebra, partition o
representations, topology! readily arise there.

Construction 2. Group quantizationcomprises the follow-
ing steps.

~2.1! Let V5$xj%, 1< j<N be a set of physical variable
defining the state of a classical system. Classical observa
are real-valued functions on the states. The best known
the most important case is the set$xj5qj , xj1n5pj %, 1< j
<n, N52n of coordinates and momenta ofn classical par-
ticles. The observables are real-valued functions onR2n. We
will use this example throughout this section.

~2.2! We complete the setV with additional variables
xj , N, j<N̄, such that the new setV̄ forms the smallest
algebra, which containsV and is closed under the Poisso
bracket

$xi ,xj%PV̄, for all xi ,xjPV̄.

In the above example we add the unit functionx2n1151.
The complete set containsN̄52n11 elements satisfying the
famous relations

$xj ,xj1n%52$xj1n ,xj%5x2n11 . ~1!

All other Poisson brackets are zero.
~2.3! We form anN̄-dimensional Lie algebrap with the

frame $x̂ j%, 1< j<N̄ defined by the formal mappinĝ :
xj° x̂ j . The commutators of the frame vectors are forma
defined by the formula

@ x̂i ,x̂ j #5$xi ,xĵ%. ~2!

We extend the commutator onto the whole algebra by line
ity.

For our example,p is the Lie algebra corresponding to th
Heisenberg group~see the next subsection for details!.

~2.4! We introduce the algebraP of convolutions induced
by p. The convolution operators areobservablesin the group
quantization, and by analogy with the classical case they
be treated as functions ofx̂ j . Particular representations of th
convolution algebra in spacesL2(S) give different descrip-
tions of a physical system. The family of all one-dimension
representations ofP corresponds toclassical mechanics;
various noncommutative representations lead toquantum
and quantum-classicaldescriptions with differentPlanck
constants.
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164 56OLEG V. PREZHDO AND VLADIMIR V. KISIL
For our example the following possibilities exist.~a! S
5Rn, x̂ j5Xj5Mqj

, x̂ j1n52 i\]/]qj , the convolutions are
represented by pseudodifferential operators~PDO!, and we
obtain theDirac-Heisenberg-Schro¨dinger-Weyl quantization
by PDO. ~b! S5R2n, x̂ j5Xj5Mqj

, x̂ j1n5Mpj
, the convo-

lutions are represented by~operators of multiplication by!
functions, and we obtain the classical description that
started from.

It is an empirical observation that the steps above lea
a nilpotent Lie group, with the dualẐ of the centerZ of the
group interpreted as the set of Planck constants. Now
illustrate this fact by a well-known example of quantizatio
and later in Sec. III by constructing a quantum-classi
model.

B. The Heisenberg group generates quantum
and classical mechanics

In the previous subsection we claimed that thenth-order
Heisenberg groupHn describes a set ofn quantum particles.
Here we show how this description is achieved.

Hn is generated by then-dimensional translation and mu
tiplication operatorseip•D, eiq•X, p, qPRn satisfying the
Weyl commutator relations

e2p ip•De2p iq•X5e2p ip•qe2p iq•Xe2p ip•D. ~3!

An element of the Heisenberg groupgPHn is defined by
2n11 real numbers (p,q,s), p, qPRn, sPR. The compo-
sition of two elementsg andg8 is given by

~p,q,s!~p8,q8,s8!5@p1p8,q1q8,s1s81 1
2 ~pq82p8q!#.

Dj , Xj , and I form a (2n11)-dimensional basis of the
Heisenberg algebrahn with a one-dimensional centerZ
5$sI;sPR%. Since all second- and higher-order commu
tors of the basis elements vanish,Hn and hn are step-two
nilpotent Lie group and algebra, respectively.

The unitary irreducible representations of the Heisenb
group are classified by the Stone–von Neumann theo
@47#. They are parametrized by a real numberh, the charac-
ter of the one-dimensional centerZ. A nonzeroh gives non-
commutative unitary representations acting on the Hilb
spaceL2(Rn):

rhÞ0~p,q,s!5e2p i ~p•hD1q•X1s•hI !. ~4!

The n components ofX and hD are the usual quantum
mechanical positionXj ~multiplication by xj ! and momen-
tum hDj ~h/2p i times differentiation with respect toxj ! op-
erators characterized by the Heisenberg commutator rela

@hDj ,Xk#5d jk

h

2p i
I . ~5!

In the limit of zeroh the centerZ of the Heisenberg group
vanishes, andHn becomes isomorphic toR2n. The irreduc-
ible representations of the latter are homomorphisms fr
R2n into the circle group acting onC

rh50~p,q!5e2p i ~pk1qx!. ~6!
e

to
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The dualĤn as a set is equal to$R\0%øR2n ~see Fig. 1!. It
has the natural topology coinciding on$R\0% with the Eu-
clidean topology. Any sequence of representations$rhj%,

hj→0, hjÞ0 is dense in wholeR2n. The last property is
fundamental for the correspondence principle.

The unitary representations ofHn can be extended to th
convolution algebraL1(Hn). Namely, ifAPL1(Hn), then it
defines a convolution on the Heisenberg group:

Ab~g!5E
Hn
A~g8!b~g+g8!dg8.

The representationrh maps the convolution to the operato

rh~A!5E
Hn
A~g!rh~g!dg

5E E E A~p,q,s!rh~p,q,s!dp dq ds. ~7!

The p-mechanical equation of motion~see@42# for details!
for an elementA(g) (g[$p,q%) of the convolution algebra
is defined by

]A~g!

]t
52p i @H,A#~g! ~8!

with

@H,A#~g!5E
Hn

@H~g8!A~g8+g!2A~g8!H~g8+g!#dg8,

whereH(g) is the Hamiltonian. The noncommutative un
tary representations of Eq.~4! reduce this equation to th
Heisenberg equation of motion for operators acting on
Hilbert spaceL2(Rn). Under the commutative represent
tions of Eq. ~6! the p-mechanical equation of motion be
comes the Hamilton equation for functions on the pha
spaceR2n.

We consider the last statement in more detail by mean
the pseudodifferential calculus, which is directly related

FIG. 1. The Heisenberg group and its dual.
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56 165MIXING QUANTUM AND CLASSICAL MECHANICS
the above group-theoretical developments and the prob
of quantization. The noncommutative unitary representati
of the Heisenberg group allow one to define integral ope
tors corresponding to functions on phase space. Give
functions(k,x) onR2n one obtains the operators(D,X) on
L2(Rn) by the formula

s~hD,X!5E
Hn
F21@s#~g!rhÞ0~g!dg

5E E F21@s#~p,q!e2p i ~p•hD1q•X!dp dq,

~9!

whereF21@ # denotes the inverse Fourier transform, and
trivial integration overs has been carried out. The action
the operators(D,X) on a function f (x)PL2(Rn) follows
from the definition ofhD andX @see Eq.~4! and the related
paragraph#, and is given by

s~hD,X! f ~x!5E E F21@s#~p,q!ep ihpq12p iqx

3 f ~x1hp!dp dq

5h2nE E F21@s#S y2x

h
,qD

3ep iq~x1y! f ~y!dy dq

5h2nE E sS k, x1y

2 De2p i ~x2y!k/hf ~y!dydk

~10!

or

s~hD,X! f ~x!5E Ks~x,y! f ~y!dy,

Ks~x,y!5h2nE sS k, x1y

2 De2p i ~x2y!k/hdk, ~11!

whereKs is the kernel of the integral operators(hD,X). In
the language of the pseudodifferential calculus the func
s(k,x) is called the symbol of the operators(hD,X). If
instead of rhÞ0 one uses a commutative representat
ym
q.
uc
m
s
-
a

e

n

n

rh50 , the transformation of Eq.~9! reduces to identity and
we recover the classical observables(k,x). Equations~9!–
~11! are known as the Weyl correspondence principle.

The symbols]ht(k,x) of the product of two operators
s]ht(hD,X)5s(hD,X)t(hD,X) can be obtained by appli
cation of a noncommutative representation to the convo
tion on the Heisenberg group@see Eq.~7!# or directly from
the Weyl rule. It is given in terms of the symbols of ind
vidual operators by

s]ht~k,x!

5S 2hD
2nE E E E s~z,u!t~h,v !

3e4p i @~x2u!~k2h!2~x2v !~k2z!#/hdu dv dh dz. ~12!

It follows that the noncommutative representations of
Heisenberg group transform thep-mechanical equation o
motion ~8! into the equation for operators onL2(Rn):

]

]t
A~hD,X!5

2p i

h
@H,A#]h

~hD,X!, ~13!

where @H,A#]h
[@H]hA2A]hH#, the operation of taking

the product of two symbols]h is defined by Eq.~12!, and
the operatorsA(hD,X) and @H,A#]h

(hD,X) are recovered

from their symbolsA(k,x) and @H,A#]h
(k,x) by the appli-

cation of the Weyl transform Eqs.~9!–~11!. This is the
quantum-mechanical law of motion in the Heisenberg for

In order to obtain the corresponding classical expressio
is useful to cast the product rule of Eq.~12! in the form of an
asymptotic expansion in powers ofh. The integration overh
and z and the change of variables (u2x)/h→u, (v
2x)/h→v converts Eq.~12! to

s]ht~k,x!5h22nE E F12 l@s#~v,x1uh!

3F1@t#~u,x1vh!e4p i ~v2u!kdu dv,

whereF1 andF12 l denote the Fourier transform and its in
verse with respect to the first variable only. Expandings and
t in the second variable aroundx and applying the Fourier
inversion formula to each term in the Taylor series we obt
s]ht~k,x!5 (
a1b<g

~ iph!a1b~21!a

a!b!
Dk

bDx
as~k,x!Dk

aDx
bt~k,x!1O~hg!

5(
j50

g
~ iph! j

j !
@Dk,sDx,t2Dk,tDx,s# js~k,x!t~k,x!1O~hg!, ~14!
where the second subscriptss andt of D indicate the sym-
bol to be acted upon. The asymptotic expression for the s
bol of the commutator of two operators follows from E
~14!. The even-order terms in the sum cancel out to prod
-

e

@s]ht2t]hs#~k,x!52i(
j50

g
~21! j~ph!2 j11

~2 j11!!

3@Dk,sDx,t2Dk,tDx,s#2 j11

3s~k,x!t~k,x!1O~h2g11!. ~15!
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166 56OLEG V. PREZHDO AND VLADIMIR V. KISIL
The series expansion of the symbol of the commutator
~15! allows one to derive the Poisson bracket as the class
limit of the symbol of the Heisenberg commutator of tw
quantum operators:

lim
h→0

2p i

h
@s]ht2t]hs#~k,x!5$s~k,x!,t~k,x!%.

~16!

Since the commutative representations of the Heisenb
group leave symbols of operators unchanged, i.e.,

*HnF21@s#~g!rh50~g!dg5**F21@s#

3~p,q!e2p i ~pk1qx!dp dq

5s~k,x!,

we deduce that under the commutative representations
p-mechanical equation of motion~8! reduces to the Hamilton
equation

]

]t
A~k,x!5$H~k,x!,A~k,x!%. ~17!

In summary, the Heisenberg group contains the ex
quantum and classical descriptions of a system of parti
and provides the correspondence principle between the
scriptions. We refer the reader to Chapters 1 and 2 of R
@47# for further information on the subject.

III. THE QUANTUM-CLASSICAL EQUATION OF
MOTION

We proceed to derive an equation of motion for a mix
quantum-classical system by considering an appropriate
group that will play the role of the Heisenberg group of t
standard quantization. The desired group can be constru
based on the following observations. Two distinct sets
variables$D,X% and$D8,X8% should correspond to quantum
and classical parts, accordingly. An operator from the fi
set may or may not commute with an operator from
second set. Each set should have a Planck constant o
own. Then the Planck constant of the second set can
proach zero leading to the classical limit for the second s
system and leaving the first subsystem quantum. ‘‘Pla
constants’’ arise as characters of the center of a Lie gro
therefore, the Lie group should possess a two-dimensio
center.

The ‘‘quantum-classical’’ group is generated by two s
of variables$hD,X% and $h8D8,X8% satisfying the commu-
tator relations

@hDj ,Xk#52 ihd jkI , @h8Dj 8
8 ,Xk8

8 #52 ih8d jkI 8,

1< j ,k<n; 1< j 8,k8<n8. ~18!

Other commutators are zero. The group has a tw
dimensional centerZ5$sI1s8I 8;s,s8PR%. The irreducible
representations of a nilpotent Lie group are induced by
characters of the center@48#. For the quantum-classica
group the characters are
q.
al

rg

he

ct
s
e-
f.

ie

ted
f

t
e
its
p-
-
k
p,
al

s

-

e

m:~z,z8!°exp@ i ~hz1h8z8!#.

It is clear that forhh8Þ0 the induced representation coin
cides with the irreducible representation ofHn1n8 on
L2(R

n1n8). This corresponds to purely quantum behavior
both sets of variables~see definition 1.1!. The trivial charac-
ter h5h850 gives the family of one-dimensional represe
tations parametrized byR2(n1n8) and a purely classical de
scription. These situations were studied in detail in t
previous section. A new situation appears wherehÞ0 and
h850 producing quantum behavior for the first set and cl
sical behavior for the second set.~The choiceh50, h8Þ0
just permutes the quantum and classical parts.! Figure 2 il-
lustrates these facts. In the topology on the dual to
quantum-classical group the quantum descriptions are d
in the quantum-classical and classical descriptions, and
quantum-classical descriptions are dense in the class
ones.

Consider the quantum-classical case in more detail.
quantum-classical representation is given by

rh~p,q,s,p8,s8!5e2p i ~s•hI1p•hD1q•X1p8•k81q8•x8!.
~19!

where k8,x8PRn8 and hPR\$0%. In this representation a
element of the convolution algebra on the quantum-class
group is identified with a quantum-classical operator act
on L2(R

n)^R2n8. The operator can be computed in terms
the Weyl transform of its symbol taken with respect to t
quantum~unprimed! coordinates

s~hD,X,k8,x8! f ~x!5E Ks~x,y,k8,x8! f ~y!dy ~20!

Ks~x,y,k8,x8!5h2nE sS k, x1y

2
,k8,x8De2p i ~x2y!k/hdk.

~21!

The quantum-classical analog of the commutator is de
mined by the limithÞ0, h8→0, which is similar to that used
to derive the Poisson bracket from the quantum commuta
We proceed as follows. First we need to obtain the expr
sion for the symbol of the product of two operators. We st
with the expression analogous to Eq.~12!, but having two,
rather than one, sets of variables. Focusing on the prim
variables, we carry out the transformations identical to th
performed in deriving Eq.~16!:

FIG. 2. Representations of the step-two nilpotent Lie group w
a two-dimensional center.
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56 167MIXING QUANTUM AND CLASSICAL MECHANICS
s]ht~k,x,k8,x8!

5S 2hD
2nE E E E du dv dh dz e4p i @~x2u!~k2h!2~x2v !~k2z!#/h S 2h8D

2n8E E E E du8 dv8 dh8 dz8

3e4p i @~x82u8!~k82h8!2~x82v8!~k82z8!#/h8s~z,u,z8,u8!t~h,v,h8,v8!

5S 2hD
2nE E E E du dv dh dz e4p i @~x2u!~k2h!2~x2v !~k2z!#/h S 1h8D

2n8E E du8 dv8e4p i ~v82u8!k8

3F321@s#~z,u,v8,x81u8h8!F3@t#~h,v,u8,x81v8h8!

5S 2hD
2nE E E E du dv dh dz e4p i @~x2u!~k2h!2~x2v !~k2z!#/h(

j50

g
~ iph8! j

j !

3@Dk8,sDx8,t2Dk8,tDx8,s# j@s~z,u,k8,x8!t~h,v,k8,x8!#1O~h8g!. ~22!

At this point we drop explicit dependence of the symbols on the primed variables, since the unprimed variables alone
for the noncommuting nature of the symbols. Applying the limit limh8→0h/h8 behind the zero-order terms, which are ke
intact to preserve the purely quantum part, we obtain the expression for the symbol of the quantum-classical comm

@s]ht2t]hs#~k,x!5S 2hD
2nE E E E du dv dh dze4p i @~x2u!~k2h!2~x2v !~k2z!#/hH s~z,u!t~h,v !2t~z,u!s~h,v !

1 lim
h8→0

h

h8 (
j50

`
~21! j~ph8!2 j11

~2 j11!!
@Dk8,sDx8,t2Dk8,tDx8,s#~2 j11!@s~z,u!t~h,v !2t~z,u!s~h,v !#J

~23!

or

@s,t#]h~k,x!5S 2hD
2nE E E E du dv dh dze4p i @~x2u!~k2h!2~x2v !~k2z!#/hFs~z,u!t~h,v !2t~z,u!s~h,v !

1
1

2

h

2p i S ]s~z,u!

]k8

]t~h,v !

]x8
2

]s~z,u!

]x8

]t~h,v !

]k8 D2
1

2

h

2p i S ]t~z,u!

]k8

]s~h,v !

]x8
2

]t~z,u!

]x8

]s~h,v !

]k8 D G .
~24!
er
ls

m

m
e
a
irs
ca

he

tor
Equation ~24! for the symbol of the commutator, togeth
with the rule for calculating operators from their symbo
given by Eqs.~20! and~21!, leads to the following equation
of motion for a mixed quantum-classical system

]

]t
A~hD,X,k8,x8!5

2p i

h
@H,A#]h

~hD,X,k8,x8!.

~25!

This formula determines the evolution of an operatorA,
which depends on quantum and classical position and
mentum variables and acts onL2(Rn)^R2n. The kernel of
the operator with respect to theL2(Rn) subspace is given by
Eq. ~21!.

The limiting procedure that leads from the quantu
quantum commutator@Eq. ~22!# to the quantum-classical on
@Eq. ~24!# constitutes an essential part of the current form
ism. The procedure can be summarized as follows. F
compute the quantum-quantum commutator. Second, dis
o-

-

l-
t,
rd

terms of second and higher order inh8. Third, substituteh
for h8 in the first-order terms.

Example 3.Consider the quantum-classical bracket for t
following functions:

s~k,x,k8,x8!5x2k82, t~k,x,k8,x8!5k2x82. ~26!

With this choice ofs and t the integral in Eq.~22! factor-
izes, and the symbol of the quantum-quantum commuta
becomes

@x2k82,k2x82#]h,h8
5~x2]hk

2!~k82]h8x8
2!2~k2]hx

2!

3~x82]h8k8
2! ~27!

524i\x8k8S x2k22 \2

2 D
14i\xkS x82k822 \82

2 D , ~28!
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where\5h/2p is used for notational convenience. The d
tails of evaluation of individual compositions in Eq.~27! are
given in the Appendix. The limiting procedure applied to E
~28! leads to

24i\x8k8S x2k22 \2

2 D14i\xkx82k82. ~29!

This result can be obtained directly from Eq.~24!, which for
the current choice ofs andt factorizes as

@x2k82,k2x82#]h,h8→0
524i\x8k8

x2]hk
21k2]hx

2

2

1x82k82@x2,k2#]h
. ~30!

The quantum-classical correspondence of Sec. II and
quantum-classical bracket of Eq.~24! are based on the Wey
correspondence principle. It is well known, however, that
Weyl correspondence is not unique in mapping phase sp
functions to Hilbert space operators. In fact, there exist a
trarily many such mappings, differing in the order assign
to products of position and momentum operators. For
ample, the Weyl rule mapskx to the symmetrized produc
e
m

th
-

.

he

e
ce
i-
d
-

1
2(hD•X1X•hD). Another variant of the correspondenc
principle, which is widely used in the mathematics comm
nity because of its simpler form, is due to Kohn and Nire
berg~KN!. It keeps momentum operators on the right, ma
ping kx to X•hD. It is straightforward to obtain a mixed
quantum-classical equation of motion using the Koh
Nirenberg calculus. One starts withrh5e2p iq•Xe2p ip•hD in-
stead ofrh5e2p i (p•hD1q•X) ~see@47#! and follows the same
steps. The result is

]

]t
A~hD,X,k8,x8!5

2p i

h
@H,A#]h

KN~hD,X,k8,x8! ~31!

with the correspondence rule

s~hD,X,k8,x8!KN f ~x!5E Ks
KN~x,y,k8,x8! f ~y!dy,

Ks
KN~x,y,k8,x8!5h2nE s~k,x,k8,x8!e2p i ~x2y!k/hdk,

~32!

and the following formula for the quantum-classical brack
of two symbols
ce.
bles
to the

ted
@s,t#]h

KN~k,x,k8,x8!5S 2hD
nE E du dve4p i ~x2u!~v2k!/hH s~v,x!t~k,u!2t~v,x!s~k,u!

1
h

2p i F]s~v,x!

]k8

]t~k,u!

]x8
2

]t~v,x!

]k8

]s~k,u!

]x8 G J . ~33!

These expressions are somewhat simpler than Eqs.~20!, ~21! and~24!, ~25!, which were obtained by the Weyl corresponden
The Weyl rule results are preferable, though, since they preserve the simplectic invariance of the phase space varia@47#
and lead via the Wigner transform from the density matrix to the quantum quasiprobability function that is closest
classical probability density@49#.

It is instructive to consider Example 3 within the KN correspondence. The quantum-quantum commutator is evalua~see
Appendix! as

@x2k82,k2x82#]h,h8

KN 5~x2]h
KNk2!~k82]h8

KNx82!2~k2]h
KNx2!~x82]h8

KNk82!52x2k2S 4i\8x8k81
\82

2 D1S 4i\xk1
\2

2 D x82k82.
~34!
the
-
p,
par-
tric,
qs.

e-
de-
m-
by

t

Multiplication of each term containing\8 by \/\8 and the
limit \8→0 produce

2x2k2~4i\x8k8!1S 4i\xk1
\2

2 D x82k825
24i\x8k8~x2]h

KNk2!1x82k82@x2,k2#]h

KN , ~35!

which also directly follows from Eq.~33!. The Weyl and KN
expressions for the quantum-classical commutator in the
ample@Eqs.~29! and~35!# disagree in the second-order ter
in \.

The quantum-classical equations of motion@Eq. ~25! and
~31!# exhibit many desired features. IfA and H depend
solely on quantum or classical variables, they reduce to
purely quantum and classical equations, Eqs.~13! and ~17!,
x-

e

respectively. Since the quantum-classical brackets of
right-hand side of Eqs.~25! and ~31! were obtained by se
lecting a representation for the Lie bracket of a Lie grou
they possess the general properties of Lie brackets. In
ticular, both quantum-classical brackets are antisymme
since their symbols are antisymmetric: the integrands of E
~24! and~33! change sign under the permutations↔t. The
Jacobi identity is a more subtle issue. If the limiting proc
dure introduced in the previous paragraphs is applied to
rive the quantum-classical Jacobi identity from the quantu
quantum one, no problems are encountered. Indeed,
successive application of Eq.~22! the symbol of the produc
of three operators

s~hD,X,k8,x8!t~hD,X,k8,x8!f~hD,X,k8,x8!

takes the form
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s]ht]hf~k,x!

5S 2hD
2nE E E E du1dv1dh1dz1e

4p i @~x2u1!~k2h1!2~x2v1!~k2z1!#/h S 2h8D
2nE E E E du dv dh dz@s~z,u!t~h,v !

2t~z,u!s~h,v !#ˆ@e4p i @~z12u!~u12h!2~z12v !~u12z!#/hf~h1 ,v1!2e4p i @~h12u!~v12h!2~h12v !~v12z!#/hf~z1 ,u1!#

1 iph8$@Dk8s~z,u!t~h,v !1s~z,u!Dk8t~h,v !2Dk8t~z,u!s~h,v !2t~z,u!Dk8s~h,v !#

3e4p i @~z12u!~u12h!2~z12v !~u12z!#/hDxD8f~h1 ,v1!2e4p i @~h12u!~u12h!2~h12v !~v12z!#/hDk8f~z1 ,u1!

3@Dx8s~z,u!t~h,v !1s~z,u!Dx8t~h,v !2Dx8t~z,u!s~h,v !2t~z,u!Dx8s~h,v !#%1O~h82!‰. ~36!

The limit limh8→0h/h8 , applied after the zero-order term, discards second- and higher-order terms. Subsequent inte
lead to an expression that can be rewritten in a compact symbolic form as

s]t]f5stf2fts1 i ~sk8tfx81stk8fx82tk8sfx82tsk8fx82fk8sx8t2fk8stx81fk8tx8s1fk8tsx8!, ~37!
ls
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where the subscriptsk8 andx8 indicate differentiation with
respect to these variables, and the ordering of the symbo
to be kept track of. Given Eq.~37! it is straightforward to
check that the Jacobi identity holds for the symbols of o
erators: @@s,t#]h ,f#]h(k,x,k8,x8) and, therefore, for the
operators themselves.

Evaluation of the double quantum-quantum commutat
followed by removal of theh82 terms leads to the sam
result. However, when an attempt is made to check the
cobi identity based only on the quantum-classical brac
the outcome is negative: repeated application of Eq.~24! or
Eq. ~33! leaves some of the second-order terms as obser
for instance, in Ref.@7#. Close examination of the quantum
classicalJacobi identity shows that the second-order ter
that do not cancel out are associated in expansion~36! with
h82 @see also Eq.~22!#, i.e., with the Planck constant for th
classical set of variables. If one takes the view that transi
from quantum to classical leaves only the first-order con
butions from the classical part, then the second-order te
in the Jacobi identity must disappear. Examination of
quantum-classical bracket alone does not show the origi
the extra terms. The subtlety with the Jacobi identity is d
to the nontrivial topological structure of the unitary dual
the quantum-classical Lie group.

The quantum-classical Lie bracket itself does not defi
the dynamics of a mixed quantum-classical system. The ‘‘
ive’’ proposition of Eq. ~25! for the time derivative of a
quantum-classical operatorA meets the problem that the se
ond time derivative given by a double bracket must cont
theh82 terms, so as to reduce to the double Poisson bra
in the purely classical limit. Formulation of a consistent d
namical equation for the evolution of a quantum-classi
system remains incomplete. It is stressed, however,
quantum-classical dynamics can be analyzed byp mechanics
even without an explicit form for the equation of motion. A
example of such an analysis is presented in the next sec

IV. QUANTUM-CLASSICAL COUPLING FOR HARMONIC
OSCILLATORS

Quantization of a classical system is particularly suita
for a description of harmonic oscillators. The relevant resu
is

-

s

a-
t,

d,

s

n
i-
s
e
of
e

e
-

n
et
-
l
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n.

e
s

are briefly summarized below and are applied to coup
quantum and classical oscillators. The reader is referre
Refs. @50–56# for further information on the quantizatio
procedure used below.

Let L2(C
n,dmn) be a space of functions onCn that are

square integrable with respect to the Gaussian measure

dmn~z!5p2ne2z• z̄dv~z!,

wheredv(z)5dx dy is the Euclidean volume measure o
Cn5R2n. The Segal-Bargmann@57,58#, or, equivalently,
Fock @59# spaceF2(C

n) is the subspace ofL2(C
n,dmn) con-

sisting of all entire functions, i.e., functionsf (z) that satisfy

] f

] z̄j
50, 1< j<n.

Denote byPQ the orthogonal Bargmann projection@57# of
L2(C

n,dmn) onto the Fock spaceF2(C
n). Then

k~q,p!→Tk~q1 ip !5PQk~q1 ip !I ~38!

defines the Berezin-Toeplitz~anti-Wick! quantization, which
maps a functionk(q,p)5k(q1 ip) on R2n5Cn to the
Toeplitz operatorTk . There exists an identification betwee
the Berezin and Weyl quantizations@50,53,56#. The identifi-
cation has an especially transparent form for the observa
depending only onp andq.

The Berezin-Toeplitz quantization is related to t
Heisenberg group more intuitively than the representation
Eq. ~4!. On a geometrical level, consider the group of E
clidean shiftsa:z°z1a of Cn. To obtain unitary operators
on L2(C

n,dm) the shifts are multiplied by the weight func
tion

a: f ~z!° f ~z1a!e2z ā2a ā/2. ~39!

This mapping determines@60# a unitary representation of th
(2n11)-dimensional Heisenberg group acting o
L2(C

n,dm). The mapping preserves the Fock spa
F2(C

n), and, hence, all operators of the form of Eq.~39!
commute withPQ . The operators are generated by infinite
mal displacements
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i(
k51

n Faj8S ]

]zj8
2zj82 izj9D 1aj9S ]

]zj9
2zj91 izj8D G ,

where a5(a1, ...,an), z5(z1 ,...,zn)PCn, and aj
5(aj8 ,aj9), z5(zj8 ,zj9)PR2. The generators form a linea
space with the basis

Aj
f85

1

i S ]

]zj8
2zj82 izj9D , Aj

f95
1

i S ]

]zj9
2zj91 izj8D .

~40!

The basis vectors commute with the Bargmann projec
PQ . The operators

Xj
f85

1

i S ]

]zj8
2zj81 izj9D , Xj

f95
1

i S ]

]zj9
2zj92 izj8D

~41!

commute with the basis vectors, and we anticipate thatPQ
produces a self-adjoint representation of convolutions w
respect toXj

f8 , Xj
f9 , and unit operators.

Proposition 4 [43].The Bargmann projectorPQ defines a
representation of convolutions induced by the We
Heisenberg Lie algebrahn operating onC

n by Eqs.~41!. The
kernelb(t,z), tPR, zPCn of the representation is given b
the formula

b̂~ t,z!52n11/2e21e2~ t21z z̄ /2!.

We move on to apply the Bargmann projection techniq
to the quantum-classical coupling of harmonic oscillators

Example 5 [52]. In the Segal-Bargmann representati
the creation and annihilation operators areaj

†5zj I and aj
2

5]/]zj , respectively. Consider ann degree of freedom har
monic oscillator with the classical Hamilton function

H~q,p!5
1

2 (
j51

n

~qj
21pj

2!.

The corresponding quantum Hamiltonian is obtained by
Bargmann projection

TH~q,p!5
1

2
PQ (

j51

n

~qj
21pj

2!I5
1

2 S nI1(
j51

n

zj
]

]zj
D .

~42!

The right side of Eq.~42! is the celebrated Euler operator.
generates the well-known dynamical group@@61#, Chap. 1,
Eq. ~6.35!#

eitTH~p,q! f ~z!5eint/2f ~eitz!, f ~z!PF2 , ~43!

which induces rotation of theCn space. The evolution of the
classical oscillator is also given by a rotation, that of t
phase spaceR2n:

z~ t !5Gtz05eitz0 , z~ t !5p~ t !1 iq~ t !, z05p01 iq0 .
~44!

The projectionPQ leads to the Segal-Bargmann represen
tion, providing a very straightforward correspondence
tween quantum and classical mechanics of oscillators
r

h

-

e

e

-
-
in

contrast to the rather complicated case of the Heisenb
representation@@61#, Prop. 7.1 of Chap. 1#. The powers of
z are the eigenfunctionsfn(z)5zn of the Hamiltonian~42!,
and the integersn are the eigenvalues. Either pure or mixe
any initial state of the oscillator remains unchanged dur
the Eq.~43! evolutions and no transitions between states
observed.

Now consider classical and quantum oscillators coup
by a quadratic term

H~p,q;p8,q8!5 1
2 @p821p21x821x21a~x82x!2#.

~45!

Applying the canonical transformation~see@62#, Sec. 23 D!

q85
q11q2

&
, q5

q12q2

&
, p85

p11p2

&
, p5

p12p2

&
,

~46!

or, equivalently, introducing complex variablesz5q1 ip,
z85q81 ip8, z15q11 ip1 , z25q21 ip2 ,

z85
z11z2

&
, z5

z12z2

&
,

z15
z81z

&
, z25

z82z

&
, ~47!

we get rid of the coupling term

H~p1 ,q1 ;p2 ,q2!5 1
2 ~p1

21p2
21v1

2q1
21v2

2q2
2!, ~48!

wherev151, v25A112a. The two uncoupled oscillators
evolve independently:

z1~ t !5e2iv1tz1~ t0!, z2~ t !5e2iv2tz2~ t0!.

The dynamics in the original coordinates, however, is
trivial. The primed and unprimed~classical and quantum!
variables mix:

z8~ t !5
~e2iv1t1e2iv2t!z8~ t0!1~e2iv1t2e2iv2t!z~ t0!

2
,

~49!

z~ t !5
~e2iv1t2e2iv2t!z8~ t0!1~e2iv1t1e2iv2t!z~ t0!

2
.

~50!

Suppose that the classical subsystem is initially localized
point z08 of the phase space and the quantum subsystem
its nth pure state:f(z8,z;t0)5d(z082z8)^zn. Then, the dy-
namics of the combined system is given by

f~z8,z;t !5dS z082
~e2iv1t1e2iv2t!z81~e2iv1t2e2iv2t!z

2 D
~51!

^ S ~e2iv1t2e2iv2t!z81~e2iv1t1e2iv2t!z

2 D n.
~52!
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During the evolution, the classical subsystem@Eq. ~51!# is
always sharply supported, i.e., represented by the delta f
tion, while the quantum subsystem@Eq. ~52!# evolves into a
mixed state. The binomial~52! contains all powers ofz less
than or equal ton ~zk, k<n!. Therefore, there exists a non
zero probability for the quantum subsystem to make a tr
sition from the initial pure statezn into a lower-energy state
zk, k,n. It is remarkable that in this particular case t
interaction with the classical subsystem can only decre
the initial energy of the quantum one. If the quantum su
system is originally in the ground state (n50), expression
~52! identically equals one, and energy exchange is not
served. The overall dynamics is~quasi!periodic with the re-
currence time determined by the frequenciesv1 andv2 .

V. MULTICONFIGURATION MEAN-FIELD
APPROXIMATION

The quantum-classical equation of motion@Eq. ~25!# can
be applied in several ways depending on the description c
sen for the quantum and classical subsystems. The great
ity of quantum-classical models based on a trajectory
scription for the classical subsystem has found realizatio
numerous molecular-dynamics techniques@63,64#, which are
inexpensive computationally and predict dynamical char
teristics of many degree of freedom systems by averag
over just a few sample trajectories. In the simplest case
classical subsystem can be represented by a point in
phase space$ki8 ,xi8% evolving according to the Hamilton
equations with the quantum-classical bracket of Eq.~24! re-
garded as a modification of the Poisson bracket. If at
same time the Heisenberg equation of motion with
quantum-classical bracket in place of the commutator is u
to describe the evolution of quantum operators, the me
field approximation follows. Namely, the quantum
mechanical average of Eq.~25! with respect to the wave
functionC is given by
th
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]

]t
^CuA~k8,x8!uC&5

2p i

h
^Cu@H,A#]h

~k8,x8!uC&.

~53!

If A is a purely quantum mechanical observable independ
of classical variables, the derivatives]A/]k8 and]A/]x8 in
the quantum-classical bracket of Eq.~24! vanish, and we
obtain

]

]t
^CuAuC&5

2p i

h
^Cu@H~k8,x8!,A#uC& ~54!

with the HamiltonianH parametrically dependent on th
classical phase space variablesk8 andx8. Substituting these
variables in place ofA(k8,x8) in the quantum-classica
bracket of Eq.~53!, we compute the integrals in the defin
tion of the bracket@Eq. ~24!# and recover the classical equ
tions of motion with the classical Hamiltonian being equal
the quantum mechanical average of the total Hamiltonian

]k8

]t
52

]^CuH~k8,x8!uC&
]x8

,
~55!

]x8

]t
5

]^CuH~k8,x8!uC&
]k8

.

Equations~54! and ~55! constitute the traditional mean-fiel
approximation: classical variables are coupled to the exp
tation values of quantum observables@30–33#.

The quantum-classical equation of motion@Eq. ~25!# can
also be regarded as a Liouville–von Neumann equation f
mixed density matrix–phase space distribution funct
r(hD,X,k8,x8). In a quantum basis the evolution ofr is
given by a set of coupled equations for classical phase sp
distribution functionsr i j (k8,x8) corresponding to each pa
of the quantum basis statesi , j :
]r i j
]t

5
2p i

h (
k

FHik* rk j2r ik*Hkj1
1

2

h

2p i S ]Hik*

]k8

]rk j
]x8

2
]Hik*

]x8

]rk j
]k8

D 2
1

2

h

2p i S ]r ik*

]k8

]Hkj

]x8
2

]r ik*

]x8

]Hkj

]k8
D G . ~56!
ons.
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The above set of coupled Liouville equations is based on
Weyl correspondence.

In the purely quantum and classical limits the corollar
@Eqs.~54!, ~55!, and Eq.~56!# of the quantum-classical equa
tion of motion @Eq. ~25!# are equivalent. In the mixed cas
they are not due to nonlocal correlations within the class
subsystem induced by interactions with the quantum o
Such correlations, inherent in the Liouville–von Neuma
equation, do not appear in the mean-field approach. In
ticular, if Eqs.~56! are integrated with the initial condition
r11(k8,x8)5d(k82k08)d(x82x08), r i j50, ;$ i j %Þ$11%, at
later timesr i jÞ0 because of the nonzero couplingsHi j .
Classical phase space distribution functions associated
different quantum states differ and mix. Mutual mixing e
hances spreading of classical distributions. An initially loc
e

s

l
e.

r-

ith

-

ized phase space distributionr11 corresponding to the
ground quantum state populates excited-state distributi
Since, in general, ground- and excited-state distributions
dergo diverging evolutions,r11 delocalizes due to mixing
with excited states. This, of course, cannot happen in
mean-field approach, where the classical subsystem is
scribed by a single trajectory and the nonlocal correlatio
are averaged out. In the absence of coupling between q
tum states, phase space distributions do not mix, and Eq.~56!
splits into a set of uncoupled equations for classical distri
tion functions for individual quantum states. The evoluti
of each distribution function can be equivalently describ
by the classical trajectory mean-field approach@Eqs.~54! and
~55!# with the corresponding basis state wave function
place ofC. Adiabatic molecular-dynamics methods@63# take
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advantage of this situation by evolving classical particles
adiabatic quantum states and neglecting nonadiabatic
pling.

The Liouville–von Neumann equation for the evolutio
of the mixed quantum-classical distribution reduces to
coupled equations of the mean-field approximation when
distribution is restricted to have the following function
form

r5uC&^Cud~k082k8!d~x082x8!, ~57!

wherek8 andx8 are then-dimensional classical momentum
and position vectors. Under this constraint the quantum
of the mixed distribution remains a pure state at all tim
and the classical part is always represented by a delta f
tion. Substituting expression~57! for r in place ofA in Eq.
~25! and integrating out the phase space variables we ob
the von Neumann equation with the quantum Hamilton
depending on classical coordinatesH(k8,x8). For a pure
state the von Neumann equation is equivalent to the Sc¨-
dinger equation and to Eq.~54!. In order to recover the
mean-field equations for the classical positions and mom
@Eqs. ~55!# we substitute Eq.~57! into Eq. ~25!, multiply
both sides by eitherk8 or x8, and integrate over quantum an
classical variables.

The mean-field approximation does not account for
nonlocal correlations that appear in the fully quantum
scription and are reproduced by the Liouville–von Neuma
equation. Such correlations are important, for instance, w
quantum motion involves tunneling between two distin
subspaces. Unfortunately, the quantum-classical Liouvil
von Neumann equation does not provide a computatio
advantage over the fully quantum von Neumann equat
since both deal with delocalized distributions. At the sa
time, propagation of an individual classical trajectory via t
Hamilton equations of motion is far less demanding th
integration of the Liouville equation. In order to account f
the quantally induced nonlocal correlations among the ph
space variables, while retaining a trajectory description
the classical subsystem, we interpolate between the m
field and Liouville–von Neumann approaches by develop
a multiconfiguration version of the mean-field method. Sta
ing with the quantum-classical distribution of the followin
functional form,

r5(
i

(
j

% i j uC i&^C j ud~ki j8 2k8!d~xi j8 2x8!, ~58!

where the sums run over configurations, we assume or
normality of the wave functionŝC i uC j&5d i j , substitute
Eq. ~58! into Eq. ~25!, integrate over the classical variable
(*dk8 *dx8), and obtain the von Neumann equation for t
quantum density matrix

]% i j

]t
5
2p i

h (
k

@Hik* ~kik8 ,xik8 !% ik2%k j* Hkj~kk j8 ,xk j8 !#.

~59!

Note that in contrast tor i j (k8,x8) of Eq. ~56!, % i j do not
explicitly depend on classical variables and are comp
numbers rather than phase space distribution functions
get the equations of motion for the classical momenta
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positionski j , xi j we substitute Eq.~58! into Eq. ~25!, mul-
tiply both sides by the corresponding variable, and integr
over all degrees of freedom. The ‘‘diagonal’’ positions a
momenta evolve according to

]kii8

]t
52

1

2 (
k

S ]Hik* ~kik8 ,xik8 !

]xik8
1

]Hki~kki8 ,xki8 !

]xki8
D ,

]xii8

]t
5
1

2 (
k

S ]Hik* ~kik8 ,xik8 !

]kik8
1

]Hki~kki8 ,xki8 !

]kki8
D . ~60!

The corresponding expressions for the ‘‘nondiagonal’’ va
ables are more complicated

]xi j8

]t
5(

k
Hik* ~kik ,xik!xk j8 2xik8 Hkj~kik ,xik!

1
1

2 S ]Hik* ~kik ,xik!

]kik8
1

]Hkj~kk j8 ,xk j8 !

]kk j8
D , ~61!

and similarly for momenta. In order to keep the Hamiltoni
matrix HermitianHi j5Hji* and to avoid situations wher
Hi j (ki j8 ,xi j8 ) andHji* (kji8 ,xji8 ) are computed at different loca
tions of classical particles, we stipulate that the position a
momentum ‘‘matrices’’ are symmetric:ki j8 5kji8 , xi j8 5xji8 .
With this constraint the ‘‘nondiagonal’’ evolutions simplify
the first two terms in formula~61! disappear, and the dynam
ics of the ‘‘nondiagonal’’ phase space variables coinc
with the average dynamics of the ‘‘diagonal’’ variables

]xi j8

]t
5
1

2 H ]xi j8

]t
1

]xji8

]t J
5
1

2 (
k

HHik* xk j8 2xik8 Hkj1
1

2 S ]Hik*

]kik8
1

]Hkj

]kk j8
D

1Hjk* xki8 2xjk8 Hki1
1

2 S ]Hjk*

]kjk8
1

]Hki

]kki8
D J

5
1

4 S ]Hik*

]kik8
1

]Hkj

]kk j8
1

]Hjk*

]kjk8
1

]Hki

]kki8
D 5

1

2 S ]xii8

]t
1

]xj j8

]t D ,
~62!

and similarly for momenta. Apart from assigning the ‘‘no
diagonal’’ coordinates and momenta unique values with
simple physical meaning: xi j8 5(xii8 1xj j8 )/2, ki j8 5(kii8
1kj j8 )/2, Eq.~62! reduces the number of independent clas
cal trajectories in then-dimensional multiconfiguration
mean-field approximation fromn2 to n.

The multiple configuration technique is widely used
quantum chemistry as an improvement on the self-consis
field solution to the time-independent Schro¨dinger equation
@65#. The time-dependent fully quantum multiconfiguratio
self-consistent field approach is discussed in Ref.@66#. Equa-
tions of motion similar to our version of the quantum
classical multiconfiguration approximation were first pr
posed in Ref.@14#. Our approach has a different derivatio
and is less computationally demanding, since it needs a
tor of n fewer trajectories. Other versions of the quantu
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classical multiconfiguration mean-field approximation can
found in Refs.@67, 68#. We point out that the number o
configurations in the multiconfiguration mean-field meth
does not have to equal and is usually less than the numb
quantum basis states. The indicesi , j ,k in Eq. ~59! denote
configurations, which do not, in general, correspond to ba
states. In the case when the overall space is separated
several weakly connected regions, the number of config
tions is determined by the number of such regions. For
ample, the double well system@69# requires two configura-
tions and two classical trajectories, each originating in
own well @70#.

VI. DISCUSSION AND CONCLUSIONS

The technique presented in the earlier sections provid
unifying framework for the quantum-classical equations
motion proposed by other authors@2,12,15#. The equations
of Refs.@12, 15# are very similar and correspond to Eq.~25!
of this paper. Thus, Ref.@12# proposes

ṙ5
i

\
@r,H#1

1

2
$r,H%2

1

2
$H,r%. ~63!

@See Eqs.~3.4! and ~3.6! of Ref. @12#.# The equation of mo-
tion presented in Ref.@15#, Eq. ~11!, is slightly different:

ṙ5 i @r,H#1
\

2
$r,H%2

\

2
$H,r%. ~64!

Our results based on the Weyl correspondence principle@cf.
Eqs.~24! and ~25!# give preference to Eq.~63!.

The quantum-classical bracket of Ref.@2#, Eq. ~2!,

@A,B#~q2c!5@A,B#1 i $A,B% ~65!

is not antisymmetric. It is very similar to Eq.~33! of the
current work, which is derived by the Kohn-Nirenberg ca
culus and is antisymmetric as expected from the derivat
The example given in the paragraph following Eq.~2! in Ref.
@2# considers a separable case withf ,g being classical func-
tions andU,V being quantum operators:

@ fU,gV#~q2c!5 f g@U,V#1 iUV$ f ,g%. ~66!

If U andV do not commute, the result is clearly not an
symmetric. For this example, Eq.~33! of this work gives the
expression

f g@U,V#1 i ~UV]pf ]xg2VU]pg]xf !, ~67!

which does change sign under the permutationf↔g,
U↔V. Thus, Eq.~33! can be regarded as the corrected v
sion of the bracket of Ref.@2#.

The brackets of Refs.@12, 15# and the bracket of Ref.@2#
relate to each other via the choice of the corresponde
principle, i.e., via the ordering of products of position a
momentum operators used in constructing quantum opera
from classical phase space functions. References@12,15# em-
ploy symmetrized products, while Ref.@2# uses expressions
which keeps momentum operators on the right. The relat
ship between the quantum-classical correspondence
and pseudodifferential calculus explored, for instance,
e

of
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nto
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n.

-
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n-
les
n

Ref. @71# leads to a family of quantization rules parametriz
by a continuous parameter 0<l<1. The general form of
pseudodifferential operators underlying this family
quantum-classical correspondences is given in Refs.@42, 72#.
l equal to 1/2 and 1 produces the Weyl and Kohn-Nirenb
correspondence rules, respectively. Arbitrarily ma
quantum-classical brackets can be generated for diffe
choices ofl.

Our approach explains why the author of Ref.@8# came to
the conclusion of the algebraic impossibility of quantum
classical coupling. The assumptions imposed in Ref.@8# on a
possible quantum-classical theory restrict consideration
step-two nilpotent Lie groups with a one-dimensional cen
Under this exceedingly stringent constraint any interact
between quantum and classical degrees of freedom is im
sible, indeed. However, once the constraint is relaxed,
we see no reason to restrict our attention to groups wit
one-dimensional center only, quantum-classical interacti
naturally reappear. The step-two nilpotent Lie group with
two-dimensional center considered here in detail produ
satisfactory results. Other groups in principle suitable to
scribe quantum-classical mixing do exist. For instance,
may consider a step-three nilpotent Lie group and the co
sponding algebra, which, as a vector space, is decompos
into the three subspacesV0 , V1 , andV2 having the follow-
ing properties. The elements ofV0 commute with all ele-
ments and form the center. Commutators of vectors fr
V1 belong toV0 . Commutators of vectors fromV2 belong to
V1 . By taking a representation of this group that maps
centerV0 to zero, we would obtain another model for
mixed quantum-classical system, where vectors fromV1
would correspond to classical degrees of freedom, since t
commutators vanish, while vectors fromV2 would describe
quantum variables. It is likely, though, that this scheme w
exhibit properties atypical for quantum and classical m
chanics, since step-three nilpotent Lie groups differ fro
step-two groups and from the Heisenberg group in particu
There exist, however, some advantages in dealing with g
eral nilpotent Lie groups. For example, the relativistic qua
tization of Ref.@73# is based on a representation of the si
plest step-three nilpotent Lie group~meta-Heisenberg group
@74#! spanned by the Schro¨dinger representation of th
Heisenberg group and the operators of multiplication
functions. Application of the quantization rules to the app
priate Lie algebras leads to quantum-classical construct
for string theory, conformal field theory, and Yang-Mil
theories@75#.

In summary, we presented a systematic approach to c
pling quantum and classical degrees of freedom based
generalization of the unified description of quantum a
classical mechanics given in terms of convolutions on
Heisenberg group. Considering the simplest extension of
Heisenberg group that allows for two distinct sets of va
ables, we derived a quantum-classical equation of mot
The quantum-classical bracket entering the equation is a
bracket and, therefore, possesses the two most impo
properties common to the quantum commutator and the P
son bracket: it is antisymmetric and satisfies the Jacobi id
tity. The quantum-classical Jacobi identity meets with sub
ties that we associate with the dynamical interpretation of
bracket. Further work is needed in order to clarify this iss
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and the simplistic equation2 i\dA/dt5@H,A#q2c might
have to be abandoned. We constructed the quantum-clas
dynamics of coupled harmonic oscillators without explici
appealing to such an equation. Starting from a general gro
theoretical formulation we derived the mean-field and
multiconfiguration mean-field approximations, which a
trajectory-based approaches of great utility in studying re
istic multidimensional physical and chemical systems. T
proposed technique allowed us to classify the quantu
classical equations of motion and to resolve some probl
from earlier works.
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APPENDIX

We present details of computation of the] compositions
encountered in Example 3 of Sec. III. The transformatio
below use the standard properties of the delta functi
Within the Weyl correspondence@Eq. ~12!# a typical compo-
sition in Example 3 is calculated as follows:
k2]hx
25S 2hD

2E E E E z2v2e4p i @~x2u!~k2h!2~x2v !~k2z!#/hdu dv dh dz

5S 2hD
2E e4p ix~k2h!/hdhE e24p iu~k2h!/hduE E z2v2e24p i ~x2v !~k2z!/hdv dz

5S 2hD
2E e4p ix~k2h!/hdhdF2~h2k!

h G E E z2v2e24p i ~x2v !~k2z!/hdv dz

5
2

h E z2e24p ix~k2z!/hF E v2e4p iv~k2z!/hdv Gdz5
2

h E z2e24p ix~k2z!/hS h

4p i D
2

d9F2~k2z!

h Gdz

5S h

4p i D
2E z2e24p ix~k2z!/hd9~k2z!dz5S h

4p i D
2 d2

dz2
@z2e24p ix~k2z!/h#z5k

5S h

4p i D
2F S 4p i

h D 2x2k21 4p i

h
4xk12G . ~A1!
in
The composition with the opposite order ofx2 and k2 is
computed similarly:

x2]hk
25S h

4p i D
2F S 4p i

h D 2x2k22 4p i

h
4xk12G . ~A2!

Appropriate combinations of the above results produce E
~28! and~29! of Sec. III. For instance, the commutator in E
~30!,

@x2,k2#]h
5x2]hk

22k2]hx
252

h

2p i
4xk54i\xk

~A3!

contributes to the second term in Eq.~29!. The Kohn-
Nirenberg correspondence given by Eq.~33! requires even
simpler calculations:

k2]h
KNx25

2

h E E u2v2e4p i ~x2u!~v2k!/hdu dv
s.

5
2

h E v2F E u2e24p iu~v2 !/hduGe4p ix~v2k!/hdv

5
2

h E v2S h

4p i D
2

d9F2~v2k!

h Ge4p ix~v2k!/hdv

5S h

4p i D
2 d2

dv2
@v2e4p ix~v2k!/h#v5k

5S h

4p i D
2F S 4p i

h D 2x2k21 4p i

h
4xk12G . ~A4!

In the KN calculus the composition ofx2]k2 is just the
productx2k2, and, for instance, the commutator appearing
right-hand side of Eq.~35! equals

@x2,k2#]h

KN5x2k22S h

4p i D
2F S 4p i

h D 2x2k21 4p i

h
4xk12G

52
h

4p i
4xk22S h

4p i D
2

54i\xk1
\2

2
. ~A5!
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