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Mixing quantum and classical mechanics
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Quantum-classical mixing is studied by a group-theoretical approach, and a quantum-classical equation of
motion is derived. The quantum-classical bracket entering the equation preserves the Lie algebra structure of
guantum and classical mechanics, and, therefore, leads to a natural description of interaction between quantum
and classical degrees of freedom. The exact formalism is applied to coupled quantum and classical oscillators.
Various approximations, such as the mean-field and the multiconfiguration mean-field approaches, which are
of great utility in studying realistic multidimensional systems, are derived. Based on the formulation, a natural
classification of the previously suggested quantum-classical equations of motion arises, and several problems
from earlier works are resolvefiS1050-2947®@7)03507-3

PACS numbe(s): 03.65.Sq, 03.65.Db, 03.65.Fd

I. INTRODUCTION tinct quantum evolutions should correlate with different clas-
sical trajectories.

Many phenomena in nature are described by quantum me- The first relationship between quantum and classical vari-
chanics at a fundamental level and with high precision. Yetables is due to Ehrenfeg28] who showed that the equation
there exist numerous situations where mixed quantumef motion for the average values of quantum observables
classical models are needed. In some cases the phenomamncides with the corresponding classical expressisar-
are too complex to allow for a fully quantum approach, inprisingly, the first mathematically rigorous treatment on the
others a consistent quantum theory is lacking. Classical mesubject was not carried out until as late as 1974, see Ref.
chanics often provides a more suggestive description and [29].) Ehrenfest's result leads to the mean-field approach,
clearer picture of physical events. Applications of variouswhere classical dynamics is coupled to the evolution of the
quantum-classical approaches range from biochemical arfkpectation values of quantum variabl89—33. The mean-
condensed-matter chemical reactions, where the large dimefield equations of motion possess all of the properties of the
sionality of the systems of interest requires approximationsPurely classical equations and are rigorous insofaras the
to the evolution of the Universe and cosmology, where ndn€an values of quantum operators are concerned. However,
theory of quantum gravity has been established. an expectation yall_Je_ does not provide |nformat_|on about the

The issue of treating quantum and classical degrees Jlutcome Of an individual Process. The mez_in-ﬂeld approach
freedom within the same formalism has been discussed réiVeS @ satisfactory description of the classical subsystem as

cently in a number of publicatiofd—10Q. The interest was ong as change; W|th|n_the quantum part are f§St Co”?pare‘?' to
, o the characteristic classical time scale. If classical trajectories
spurred[11] by the cosmological problem of defining the

; ) : depend strongly on a particular realization of the quantum
backreaction of quantum matter fields on the classical space; P gy b q

. back d wh lassical iabl hould be ind volution, the mean-field approximation is inadequate. The
time background, where classical variables should be Indes, i, 1em can be corrected, for instance, by the introduction of

pendently correlated with each individual quantum state. Thychastic quantum hops between preferred basis states,

traditiona_l guantum-classical mear!-field_ approach fails th€ynich define classical potential energy surfaces, with prob-
last requirement and was generalized in RéR]. (For a  gpilities determined by the usual quantum-mechanical rules
fully quantum approach to cosmology see RéB|.) Earlier  [34—36. The decoherent histories interpretation of quantum
a similar situation was encountered in chemical physicsmechanic§37,3§ formulated on the level of individual his-
where quantum-classical trajectory methods were employetbries[39,40 establishes a theoretical foundation of the sur-
to simulate gas-phase scattering phenomii#a-21 and, face hopping techniqugtd].
later, chemical dynamics on surfad@®] and in liquids[23— Similarity between the algebraic structures underlying
27]. It was noticed in these studies that asymptotically disquantum and classical mechanics provides a consistent way
of improving upon the mean-field approximation, as ex-
plored in Refs[2,12,19, which aim to derive a quantum-
*Present address: Department of Chemistry, Yale Universityclassical bracket that reduces to the quantum commutator
New Haven, CT 06520. and the Poisson bracket in the purely quantum and classical
Electronic address: oleg@czar.cm.utexas.edu cases. In addition to the reduction property the bracket
"Present address: Vakgroep Wiskundige Analyse, Universiteishould satisfy other criteria so as to produce physically
Gent, Galglaan 2, B-9000, Gent, Belgie. Electronic addressmeaningful quantum-classical evolutions. For example, an
vk@cage.rug.ac.be antisymmetric bracket conserves the total energy.
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Recently, Kisil proposed a mathematical construction that -bundle topology[45,46)). ThenP has a naturalactor to-
naturally envelops classical and quantum mechanics and fsologyinduced by the partitiof3= Upep-
named herg mechanic§42]. Formulated within the frame- (1.3) (Dynamics: the algebrap is equipped with the one-
work of operator algebras, ttppmechanical equation of mo- parameter semigroup of transformatio®@(t): B—P,t
tion reduces to the appropriate quantum or classical equaz g+ Al sets ;i;w pe P arepreservedby G(t). Namely,

tions under suitable representations of the algebra Of(or any me P, all new representations, = mG(t) again
observables. In this paper we extend the ideas nfechan- gelong toq} P
p-

ics to incorporate mixed quantum-classical descriptions. Wi . ]
derive the quantum-classical bracket and explicitly show that (1.4 (The correspondence p_rlncm)iel_et S pH_S(p) .
B, be an operator-valued section, which is continuous in

it satisfies the properties common to quantum and classic :
mechanics. The technique described in this paper allows on e*-bundle topology 45,46 overP. Then for anyt, i.e., at

to construct families of mixed quantum-classical approachesany moment of time, the imag&(p)=G(1)S(p) is also a

each having a specific set of properties. Focusing on thgect!on due to statemel(m). In the *-bundle topology the
ctionsS;(p) arecontinuous for all t

simplest among such families we investigate the relationshiﬁe The above conditions are aeneral. Next. we describe an
between the quantum-classical equations of motions proﬁ”n ortant particular case ogrgcj)u u.a ntizaiion[43] All
posed by other authofg,12,15. P P Pq '

The format of this paper is as follows: In Sec. Il we sum- components o mechanics(operator algebra, partition of

marizep mechanics and introduce the essential mathematicdFPresentations, topologyeadlly_ arise ther?‘-
definitions. In Sec. Il we construct the simplest Construction 2. Group quantizatiasomprises the follow-
p-mechanical model that adopts two distinct sets of variabledd Steps.

associated with quantum and classical degrees of freedom, (_2'_1) Let O =1xj}, 1$j$N be a set of physi_cal variables
By taking an appropriate representation for the model w efining the state of a classical system. Classical observables

derive the quantum-classical bracket, show that it is antisymz-ihre real-valued functions .onrfhe stzites. The Eest k2°<".V” and
metric, and discuss the Jacobi identity. The procedure pré® MOst important case is the $8{=a;, Xj.,=pj}, 1<]

. . .. < = i i -
sented in Sec. Il allows us to discriminate between the very="n: N=2n of coordinates and momenta pfclassical par

similar brackets of Refs[12] and [15], and to obtain the ucles. The observables are real-valued functionstgh We
antisymmetric analog of the bracket of REZ]. In Sec. Iv Wil use this example throughout this section. .

we consider coupled classical and quantum harmonic oscil- (2-2 We_complete the se€) with additional variables
lators and illustrate how the dynamics of a mixed quantumXj. N<j<N, such that the new sd? forms the smallest
classical system can be studied ppynechanics without ex- algebra, which contain§) and is closed under the Poisson
plicit reference to an equation of motion. In Sec. V we bracket
investigate various approximations to the general quantum-
classical description, including the mean-field and the multi-

configuration mean-field approaches. In the concluding S€G, the above example we add the unit functiog,, ;= 1
ve +17 4.

tion we classify the quantum-classical equations of motio h let ¢ tail— 20+ 1 el ts satisfving th
from earlier papers according to the present formalism an%rﬁocuc;mrzl(;t?oiz contais=2n elements satisfying the

summarize our results.

{Xi ,xj}eST, for all x; ,xjeﬁ

{Xjvxj+n}:_{xj+n’xj}zx2n+l- 1
IIl. P MECHANICS .
All other Poisson brackets are zero.
A. The elements ofP mechanics (2.3 We form anN-dimensional Lie algebra with the
We recall the constructions from Refd2,43 and intro-  frame {X;}, 1<j<N defined by the formal mapping:
duce appropriate modifications. Xj—>X;. The commutators of the frame vectors are formally

Definiton 1. An operator algebra‘p gives a defined by the formula
p-mechanical descriptiof42] of a system if the following A o
conditions hold._ [Xi%;]={x; . X}. 2
1.1) Th f all irreducibl tati f .
. ( .). . © se‘@:% ot allirredycible repiesenta |onsh of B We extend the commutator onto the whole algebra by linear-
is a disjoint union of subse®= U, _pP, parametrized by ity
the elements of a s&. The elements of the sé&t are asso- '
ciated with different values for the Planck constant. We rEferHeisenberg grousee the next subsection for details

10 this set. as theet of Planck cqnstantsf for po the set (2.4) We introduce the algebrg of convolutions induced

Py, consists of only commuta’gveﬁand, therefore, one- pyy The convolution operators acbservablesn the group

dimensiongl representations, th«-:'npo gives aclassicalde-  quantization, and by anglogy with the classical case they can

be treated as functions &f. Particular representations of the

X i convolution algebra in spacd€(S) give different descrip-

representationr, , then’p,  gives a pureljquantummodel.  tions of a physical system. The family of all one-dimensional

Sets P, of other types providemixed (quantum-classical —representations off corresponds tcclassical mechanics;

descriptions, various noncommutative representations leadqt@ntum
(1.2 Let B be equipped with a natural operator topology and quantum-classicaldescriptions with differentPlanck

(for example, it may be the Jacobson topoldgy] or the  constants

For our exampleyp is the Lie algebra corresponding to the

scription. |f‘i3p0:{77p0} consists of a single noncommutative
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For our example the following possibilities exigh) S
=R", §<j=xj=qu, Xj+n=—ihdl3q;, the convolutions are

The Heisenberg group H*

R*™ H*

represented by pseudodifferential operat®®0O), and we
obtain theDirac-Heisenberg-Schidinger-Weyl quantization R
by PDO. (b) S=R?", §<j=Xj=qu, §(j+n=ij, the convo-
lutions are represented bypperators of multiplication By
functions, and we obtain the classical description that we

Infinite dimensional
non-commutative
representations

Commutative
one-dimensional

started from. representations for different &
It is an empirical observation that the steps above lead to
a nilpotent Lie group, with the dua of the centeiZ of the
group interpreted as the set of Planck constants. Now we R
illustrate this fact by a well-known example of quantization, The dual H"
and later in Sec. Ill by constructing a quantum-classical 0 Set of Planck constants /
model. R\{0}

Classical phase

space R B2

B. The Heisenberg group generates quantum
and classical mechanics

In the previous subsection we claimed that thik-order
Heisenberg groupl” describes a set af quantum particles.
Here we show how this description is achieved.

" is generated by the-dimensional translation and mul-
tiplication operatorse'? P, €9% p, geR" satisfying the
Weyl commutator relations

FIG. 1. The Heisenberg group and its dual.

The dualll" as a set is equal tR\O}UR?" (see Fig. 1 It
has the natural topology coinciding df\0} with the Eu-
clidean topology. Any sequence of representati(@pﬁj},
hj—0, h;#0 is dense in whold??". The last property is
fundamental for the correspondence principle.

The unitary representations 8" can be extended to the
convolution algebra 1(H"). Namely, if Ae L1(H"), then it
defines a convolution on the Heisenberg group:

e27rip<D627Tiq~X:eZﬂ'ip-quWiq~Xe27Tip~D. (3)

An element of the Heisenberg growps " is defined by
2n+1 real numbersy,q,s), p, qe R", se R. The compo-
sition of two elementg andg’ is given by
(p.a.8)(p'.q’,8')=[p+p’,a+q’",s+s'+3(pq' —p'q)]. Ab(g):anA(g')b(9°g')dg"

D;, X;, and| form a (2n+1)-dimensional basis of the The representatiop, maps the convolution to the operator
Heisenberg algebrg” with a one-dimensional center
={sl;se R}. Since all second- and higher-order commuta-
tors of the basis elements vanisii! and h" are step-two
nilpotent Lie group and algebra, respectively.

The unitary irreducible representations of the Heisenberg
group are classified by the Stone—von Neumann theorem
[47]. They are parametrized by a real numbeithe charac-
ter of the one-dimensional centér A nonzeroh gives non-
commutative unitary representations acting on the Hilber
spacel ?(R"):

(A= | Ao

=f f JA(p,q,s)ph(p,q,S)dp dgds (V)

The p-mechanical equation of motiofsee[42] for detail9
{or an elemenA(g) (g={p,q}) of the convolution algebra
Is defined by

dA
4 —(g)—277i[H,A](g) ®

— a2mi(p-hD+q-X+s-hl)
’ 1S =€ . =
P.d.S) 0

Ph-ol
The n components ofX and hD are the usual quantum- .,
mechanical positiorX; (multiplication by x;) and momen-
tum hD; (h/27i times differentiation with respect tg) op-
erators characterized by the Heisenberg commutator relation [H,A](g) = ﬁHln[H(g')A(g’°9)—A(g')H(g'°9)]d9’,

5) where H(g) is the Hamiltonian. The noncommutative uni-
tary representations of Ed4) reduce this equation to the
Heisenberg equation of motion for operators acting on the

In the limit of zeroh the centerZ of the Heisenberg group Hilbert spaceL?(R"). Under the commutative representa-

vanishes, andl" becomes isomorphic t82". The irreduc- tions of Eq.(6) the p-mechanical equation of motion be-

ible representations of the latter are homomorphisms froncomes the Hamilton equation for functions on the phase

R?" into the circle group acting ofi spaceR?".

We consider the last statement in more detail by means of
the pseudodifferential calculus, which is directly related to

h
[hD] ,Xk]=5jk ﬁ |

Pho(p,q) =2 (Pkrax, (6)
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the above group-theoretical developments and the problem,_,, the transformation of Eq9) reduces to identity and
of quantization. The noncommutative unitary representationsve recover the classical observalsték,x). Equations(9)—
of the Heisenberg group allow one to define integral opera¢11) are known as the Weyl correspondence principle.
tors corresponding to functions on phase space. Given a The symbolo#,7(k,x) of the product of two operators
function o(k,x) on R?" one obtains the operater(D,X) on o #,7(hD,X)=a(hD,X)r(hD,X) can be obtained by appli-

L2(R") by the formula cation of a noncommutative representation to the convolu-
tion on the Heisenberg groysee Eq.(7)] or directly from
o(hD,X)=f F Hol(9)pnzo(9)dg the Weyl rule. It is given in terms of the symbols of indi-
e vidual operators by
- | | Froup@enereedpag otnrtion
2 2n
© = H) H”o(z,umn,v)
whereF [ ] denotes the inverse Fourier transform, and the A0 () (0K )T/
trivial integration overs has been carried out. The action of xXe v dudv dpdf. (12

the operatora(D,X) on a functionf(x) e L2(R") follows
from the definition ofhD andX [see Eq(4) and the related
paragraph and is given by

It follows that the noncommutative representations of the
Heisenberg group transform th@mechanical equation of
motion (8) into the equation for operators drf(R"):

U(hD’X)f(X):f f FLol(p ereeEn %A(hD,X)= zTﬂ-i[H,A]ﬁh(hD,X), (13

xf(x+hp)dp dq Where[H,A]ﬁhE[HﬁhA—AﬂhH], the operation of taking
:h,nf f Fl[a](u q) the product of two symbolg,, is defined by Eq(12), and
h ° the operatorA(hD,X) and[H,A]ﬁh(hD,X) are recovered

from their symbolsA(k,x) and[H,A]#h(k,x) by the appli-
cation of the Weyl transform Eq99)—(11). This is the
I X+y 2w (x—y)k/h quantum-mechanical law of motion in the Heisenberg form.
=h J J ok o e f(y)dydk In order to obtain the corresponding classical expression it

is useful to cast the product rule of E42) in the form of an
(10) asymptotic expansion in powers lof The integration over

and ¢ and the change of variablesu{x)/h—u, (v

—x)/h—wv converts Eq(12) to

xemaTYi(y)dy dg

or
o(hD,X)f(X)=f Ko(x,y)f(y)dy,
oﬂhr(k,x)=h_2”J J]-"l_'[cr](v,x—i—uh)

X+y eZwi(x—y)k/hdk’ (11)

K, (x,y)=h"" f (k, .
o(X.¥) ‘T X F[ 7] (u,x+vh)etm 0 kdy dy,
whereK ; is the kernel of the integral operatoXhD,X). In  where F; andf]' denote the Fourier transform and its in-
the language of the pseudodifferential calculus the functiorverse with respect to the first variable only. Expandinand
o(k,x) is called the symbol of the operater(hD,X). If 7in the second variable aroundand applying the Fourier
instead of p,.o ONe uses a commutative representationinversion formula to each term in the Taylor series we obtain

(imh)**A(-1)*

Gy al B!

7 (ih)!
-3 7_7'
j=0 J:

o nr(k,x)= DED5o(k,x)DEDE7(k,x)+0O(h?)

[Dk,O'DX,T_ Dk,TDX,U]jO-(kIX) T(k!X) + O(hy)! (14)

w (=DI(mh)d*?
where the second subscriptsand  of D indicate the sym- [T #n7— T#h0](K,X)=2i Zo TS
bol to be acted upon. The asymptotic expression for the sym- J 2j+1

bol of the commutator of two operators follows from Eq. X[Dk,oDx,»~ Dk, Dyl

(14). The even-order terms in the sum cancel out to produce X a(k,x)7(k,x)+0O(h?**1), (15
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The series expansion of the symbol of the commutator Eq. Purely quantum Quantum-classical and classical-
(15) allows one to derive the Poisson bracket as the classical representations quanturmn representations
limit of the symbol of the Heisenberg commutator of two \
guantum operators: \ // \\
2i
lim —— [o#h7= 78 o] (k) ={o(kx),7(k,X)}. /\
h—0

(16)

Purely classical representations

Since the commutative representations of the Heisenberg
group leave symbols of operators unchanged, i.e., FIG. 2. Representations of the step-two nilpotent Lie group with

a two-dimensional center.
JinF M al(9)pn=o(9)dg= [ [F o]

X(p,q)GZWi(pk+qx)dp dq
=o(k,X), It is clear that forhh’#0 the induced representation coin-

cides with the irreducible representation &f"*"" on
we deduce that under the commutative representations th_ez(an')_ This corresponds to purely quantum behavior of
p-mechanical equation of motidB) reduces to the Hamilton 5t sets of variablesee definition 1.1 The trivial charac-
equation terh=h’=0 gives the family of one-dimensional represen-

P tations parametrized b2"*"") and a purely classical de-

EA(k,x)z{H(k,x),A(k,x)}. (17 scription. These situations were studied in detail in the
previous section. A new situation appears whiete0 and

Clg’ =0 producing quantum behavior for the first set and clas-

In summary, the Heisenberg group contains the exact, . Co ,
guantum and classical descriptions of a system of particle§'Cal behavior for the second s¢The (.:h0|ceh—.0, h #Q
Ist permutes the quantum and classical paRgure 2 il-

and provides the correspondence principle between the d
b b P P ustrates these facts. In the topology on the dual to the

scriptions. We refer the reader to Chapters 1 and 2 of Ref. i -
[47] for further information on the subject guantum-classical group the quantum descriptions are dense

in the quantum-classical and classical descriptions, and the
guantum-classical descriptions are dense in the classical
ones.

Consider the quantum-classical case in more detail. The

) ) ) . quantum-classical representation is given by
We proceed to derive an equation of motion for a mixed
2mi(s-hl+p-hD+q-X+p’-k'+q"-x)

guantum-classical system by considering an appropriate Lie (p.g,5.p',s")=¢

group that will play the role of the Heisenberg group of the PriB A= B ' (19)
standard quantization. The desired group can be constructed

based on the following observations. Two distinct sets OKNhere K x'eR"

1 ’ !
variables{D, X} and{D',X'} should correspond to quantum element of the convolution algebra on the quantum-classical

and classical parts, accordingly. An operator from the fIrStgroup is identified with a quantum-classical operator acting

set may or may not commute with an operator from the EMeR2 Th b di f
second set. Each set should have a Planck constant of ! L2(R) @ - The operator can be computed in terms o

own. Then the Planck constant of the second set can aﬁ-e Weyl tran_sform of its_ symbol taken with respect to the
proach zero leading to the classical limit for the second subduantum(unprimed coordinates

system and leaving the first subsystem quantum. “Planck

constants” arise as characters of the center of a Lie group, O-(hD,X,k”X’)f(X):f K (x,y,k’ . x)f(y)dy (20)
therefore, the Lie group should possess a two-dimensional

center.

ni(z,2'y—exdi(hz+h'z")].

Ill. THE QUANTUM-CLASSICAL EQUATION OF
MOTION

and he R\{0}. In this representation an

The “quantum-classical” group is generated by two sets y oy v—n Yy o, 27 (x—y)k/h
of variables{hD,X} and{h'D’,X’} satisfying the commu- KoO6y K x7)=h 7| K, 2 Kx'Je dk
tator relations (21
[hD; X ]=—ihdyl, [h'D], Xy 1=—ih"&l", The quantum-classical analog of the commutator is deter-
mined by the limith#0, h’ — 0, which is similar to that used
1<j,ksn; 1<j’'k'sn’. (18)  to derive the Poisson bracket from the quantum commutator.

We proceed as follows. First we need to obtain the expres-
Other commutators are zero. The group has a twosion for the symbol of the product of two operators. We start
dimensional cente?={sl+s’l’;s,s’ e R}. The irreducible with the expression analogous to E32), but having two,
representations of a nilpotent Lie group are induced by theather than one, sets of variables. Focusing on the primed
characters of the centd48]. For the quantum-classical variables, we carry out the transformations identical to those
group the characters are performed in deriving Eq(16):
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o n7(k,x,k',x")

2n 2n’
ffffdudvdndge““'[x (k=)= (v ke 01”‘( ) ffffdu dv’ dy’ dZ’

Xe4ﬂ'i[(x’fu')(k'77;')7(X'7v')(k'7§’)]/h'0.(§,u’é«/,u/)T( 7],U,77,,U,)

2n
ffjjdu dv dy d¢ et wk=mn=(v)k=0lh (h’) deu dop e i@’ —uK

X F3Hol(Lup' X +u'h)Fl7](gv,u" X" +v'h")

2n Y j
) ffffdu do dyp d¢ el wik=m=(v)k- g)]/hz ('Wh)

X[Dk’,(er’,T_Dk',TDX’,(r]][U(gvu!k,!X,)T( n:vak,:xl)]+o(h,y)- (22)

At this point we drop explicit dependence of the symbols on the primed variables, since the unprimed variables alone account
for the noncommuting nature of the symbols. Applying the limit limyh/h’ behind the zero-order terms, which are kept
intact to preserve the purely quantum part, we obtain the expression for the symbol of the quantum-classical commutator:

2n
[o#nr—T#no](kx)= ( ) ””du dv 7 dgetmIix ko m (o m”‘[ a(§W)7(70) = 7L, Wo(n,0)

©

j 2j+1
rim h W2 %[Dkf,anr,T—Dkr,TDxr,g]@i+1>[a(z,u>r<mv)—r(gﬁu)a(n,v)]]
RS !

(23

or

Lo, T]gn(K,X)= o({,ur(n,v)—7({,u)o(n,v)

%) ffffdu dv dy dzetmilx-uk=mn—(x-v)k=0h
h
3

1 (&U({,u) ar(n,v) do(L,u) 67(7],0)) 1 h (&T({,u) do(n,v) JI7(L,u) r?cr(n,v))
"2 ok’ ax X ok’ ) 22w\ ok ax’ ax’ oK’

(24)

Equation (24) for the symbol of the commutator, together terms of second and higher orderhn. Third, substituteh
with the rule for calculating operators from their symbolsfor h’ in the first-order terms.

given by Egs(20) and(21), leads to the following equation Example 3Consider the quantum-classical bracket for the
of motion for a mixed quantum-classical system following functions:

5 o i a(k,x, k' x)=x?k"2, 7(kxk',x)=k’x'2.  (26)
o
— A(hD,X,k" x")=——1[H,A]; (hD,X,k’,x"). ] ) ) ) )
ot h n With this choice ofo and 7 the integral in Eq(22) factor-
(25 izes, and the symbol of the quantum-quantum commutator
becomes

This formula determines the evolution of an operagar 212 122 o o ' 2y 2
which depends on quantum and classical position and mo- [XK'“ KX 7]y = (X" k%) (k"4 1/ x"%) = (k“# 1x%)
mentum variables and acts arf(R")® R2". The kernel of 2 L2

the operator with respect to th&(R") subspace is given by XX k) @7
Eq. (21).

The limiting procedure that leads from the quantum-
guantum commutatdieq. (22)] to the quantum-classical one
[Eq. (24)] constitutes an essential part of the current formal- '
ism. The procedure can be summarized as follows. First, +4iﬁxk<x’2k’2 h )

compute the quantum-quantum commutator. Second, discard 2

ﬁZ
= —4ihx’k’(x2k2— 7)

(28
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where# =h/27 is used for notational convenience. The de-3(hD-X+ X-hD). Another variant of the correspondence
tails of evaluation of individual compositions in E@7) are  principle, which is widely used in the mathematics commu-
given in the Appendix. The limiting procedure applied to Eq. nity because of its simpler form, is due to Kohn and Niren-
(28) leads to berg(KN). It keeps momentum operators on the right, map-
ping kx to X-hD. It is straightforward to obtain a mixed

quantum-classical equation of motion using the Kohn-
Nirenberg calculus. One starts wih=e?™'4-Xg27iP-hD

2

f
—4ihx’k’(x2k2——

5|+ 4ixkx 22 (29)

In-

_ . . . stead ofp, =27 (P-ND+a-X) (see[47]) and follows the same
This result can be obtained directly from Eg4), which for  gtens. The result is

the current choice ofr and 7 factorizes as

20 124 124 2 J ;o 2 KN oo
x24 K2+ K24 1 x - A(D, XK' x')= == [H,AJSN(hD, XK' X') (3D)
2

+X 2K XK (30)

[X2K'2 k22, =—4ifix'K’

h,h'—
with the correspondence rule

The quantum-classical correspondence of Sec. Il and the U(hD-X,k',X')KNf(X)ZJ KEN(xy. k' x) f(y)dy,
guantum-classical bracket of E@4) are based on the Weyl
correspondence principle. It is well known, however, that the _
Weyl correspondence is not unique in mapping phase space Kﬁ“(x,y,k’,x’)zh‘“f o(k,x,k',x")e2mx=ykihg,
functions to Hilbert space operators. In fact, there exist arbi- (32)
trarily many such mappings, differing in the order assigned
to products of position and momentum operators. For exand the following formula for the quantum-classical bracket
ample, the Weyl rule mapkx to the symmetrized product of two symbols

2\" _
[a,T]’;’:(k,x,k',x')z(ﬁ) ffdu dve4”'<X“><vk>’“(a(v,x)r(k,u)—T(v,x)a(k,u)

h

do(v,x) dr(k,u) d7(v,x) da(k,u)
2ai a

ak’ ax’ k' ax'

] : (33

These expressions are somewhat simpler than(&6s.(21) and(24), (25), which were obtained by the Weyl correspondence.
The Weyl rule results are preferable, though, since they preserve the simplectic invariance of the phase spacd4igriables
and lead via the Wigner transform from the density matrix to the quantum quasiprobability function that is closest to the
classical probability densitj49].
It is instructive to consider Example 3 within the KN correspondence. The quantum-quantum commutator is e{sdeated
AppendiX as
hrZ

[X2k72,k2X/2]§:{hI:(XZﬁﬁNkZ)(kIZﬁE!\‘XrZ)_(kZﬁENXZ)(XIZﬁE[\‘er): _X2k2(4ihrxrk/ + 7

hZ
4ifixk+ ?>x’2k’2.

(34

J’_

Multiplication of each term containing’ by #/%' and the respectively. Since the quantum-classical brackets of the
limit #’—0 produce right-hand side of Eqs25) and (31) were obtained by se-
lecting a representation for the Lie bracket of a Lie group,
o2 they possess the general properties of Lie brackets. In par-
X'k o= ticular, both quantum-classical brackets are antisymmetric,
since their symbols are antisymmetric: the integrands of Eqgs.
—4iﬁx’k’(x21¢ﬁNk2)+x’2k’2[x2,k2]';':, (35  (24) and(33) change sign under the permutatior- . The
Jacobi identity is a more subtle issue. If the limiting proce-
which also directly follows from Eq(33). The Weyl and KN dure introduced in the previous paragraphs is applied to de-
expressions for the quantum-classical commutator in the exive the quantum-classical Jacobi identity from the quantum-
ample[Egs.(29) and(35)] disagree in the second-order term duantum one, no problems are encountered. Indeed, by

2

. . fi
—x2K%(4ihx'K") +| ditixk+ >

in %. successive application of ER2) the symbol of the product
The quantum-classical equations of mot[&y. (25) and  ©f three operators
(31)] exhibit many desired features. & and H depend o(hD,X,k",x")7(hD,X,k’ X" ) $(hD,X,k’ ;X"

solely on quantum or classical variables, they reduce to the
purely quantum and classical equations, E48) and(17), takes the form
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o#nTnd(K,X)

2 2n ) 2 2n
:<H) ffffduldv1d771d§184”'[(><*“1)(k*ﬂl)*(val)(k*h)]/h (W) J'J'ffdu dv dn d{[o({,u)7(n,v)

—7(¢,u)a( W’U)]{[e4ﬁi[(§1*U)(U1* 77)*(41*U)(U1*§)]/h¢( 7]1,01)—94“[(”17”(”17 ﬂ)*(ﬂl*v)(vlfi)]/h(b(é'l'ul)]
+i7Th,{[Dk’a-(§!u)T( 7710)+0-(§IU)DK’7( W,U)_Dk'T(gaU)O'( 7710)_ T(g,U)DkIO'( 7710)]

x @dmil(g1—u)(uy— ﬂ)—(§1—v)(U1—§)]/thD,¢( 7 ,Ul)_eAWi[(Wl_u)(ul_n)_(nl_v)(vl_g)]/th!¢(§1,U1)

X[Dy o (£,u)7(7,0)+0(£,u)Dyr 7(7,0) = Dy 7(,U) 0(7,0) — 7(£,u)Dyro( 7,0) ]} + O(h' %)} (36)

The limit lim,, _oh/h’, applied after the zero-order term, discards second- and higher-order terms. Subsequent integrations
lead to an expression that can be rewritten in a compact symbolic form as

(Tfl"Tﬂ(]’):U’T(ﬁ_¢TU+i(Uk/T¢X/+UTk/¢Xr_’Tk70'¢x/_’T(Tkl¢xr_¢k/0'X/T_¢k/UTX/+¢k/TX/U+¢krTO'X/), (37)

where the subscripts’ andx’ indicate differentiation with are briefly summarized below and are applied to coupled
respect to these variables, and the ordering of the symbols guantum and classical oscillators. The reader is referred to
to be kept track of. Given Eq37) it is straightforward to  Refs. [50-56 for further information on the quantization
check that the Jacobi identity holds for the symbols of opprocedure used below.

erators:[[ o, 7]yn, dlsn(k. XK', X") and, therefore, for the Let L,(C",du,) be a space of functions o that are

operators themselves. square integrable with respect to the Gaussian measure
Evaluation of the double quantum-quantum commutators _
followed by removal of theh’? terms leads to the same dun(z)=m""e **dv(2),

result. However, when an attempt is made to check the Ja- ] .

cobi identity based only on the quantum-classical bracketvheredv(z)=dx dy is the Euclidean volume measure on
the outcome is negative: repeated application of @¢) or ~ C"=R’". The Segal-Bargmani57,58, or, equivalently,
Eq. (33) leaves some of the second-order terms as observefOck[59] spaceF,(C") is the subspace df,(C",du,) con-
for instance, in Ref[7]. Close examination of the quantum- sisting of all entire functions, i.e., functiori§z) that satisfy
classical Jacobi identity shows that the second-order terms

that do not cancel out are associated in expan&éhwith a_L _
h'2 [see also Eq(22)], i.e., with the Planck constant for the dz;
classical set of variables. If one takes the view that transition

from quantum to classical leaves only the first-order contriDenote byPq the orthogonal Bargmann projecti§h7] of
butions from the classical part, then the second-order termsz(C",duy,) onto the Fock spacE,(C"). Then

in the Jacobi identity must disappear. Examination of the .
guantum-classical bracket alone does not show the origin of k(d,p)—Ti(q+ip)=Pok(a+ip)! (38)

the extra terms. The subtlety with the Jacobi identity is due, .. . . - o .
to the nontrivial topological structure of the unitary dual to defines the Berezin-Toepli@nti-Wick) quantization, which

; _ ; 2n_ n
the quantum-classical Lie group. maps a functionk(g,p)=k(q+ip) on R™=C" 10 the

The quantum-classical Lie bracket itself does not defineToeplltz operatofT, . There exists an identification between

the dynamics of a mixed quantum-classical system. The “na'Ehe Berezin and Weyl quantizatiof50,53,5. The identifi-
ive” proposition of Eq. (25 for the time derivative of a
guantum-classical operatérmeets the problem that the sec-

ond time derivative given by a double bracket must contai%

1sj=n.

cation has an especially transparent form for the observables
depending only orp andq.
The Berezin-Toeplitz quantization is related to the

the h'2 terms, so as to reduce to the double Poisson brack eisenberg group more intuitively than the representation of

in the purely classical limit. Formulation of a consistent dy- 9. (4). On a geometrical level, consider the group of Eu-

namical equation for the evolution of a quantum-cIassicaF"dfa?:fg'ftsat‘ﬁHZhJ.rﬂa of (. TI(tJ ?.bt:'g utnhltary (_)pﬁtr?tors
system remains incomplete. It is stressed, however, thal" 2(C",dp) the shifts are multiplied by the weight func-

guantum-classical dynamics can be analyzeg@ nyechanics
even without an explicit form for the equation of motion. An

. —za—aal2
example of such an analysis is presented in the next section. af(z)—~f(z+a)e : (39

This mapping determind$0] a unitary representation of the
(2n+1)-dimensional Heisenberg group acting on
L,(C",dw). The mapping preserves the Fock space
F,(C"), and, hence, all operators of the form of E§9)

Quantization of a classical system is particularly suitablecommute withP,. The operators are generated by infinitesi-
for a description of harmonic oscillators. The relevant resultsmal displacements

IV. QUANTUM-CLASSICAL COUPLING FOR HARMONIC
OSCILLATORS
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contrast to the rather complicated case of the Heisenberg

, representatiof[61], Prop. 7.1 of Chap. L The powers of

z are the eigenfunctiong,(z) =z" of the Hamiltonian(42),

and the integera are the eigenvalues. Either pure or mixed,

any initial state of the oscillator remains unchanged during

the Eq.(43) evolutions and no transitions between states are

i— z —iz!
02]', j j

al L iz
j oz AT

”n
+aj

k=1

where a=(ay,....a,), 2z=(z;,...,z,)eC", and a;
=(aj,af), z=(7 ,z}’)eRz. The generators form a linear
space with the basis

observed.
1/ 9 1/ 9 Now consider classical and quantum oscillators coupled
A== (—,— zf—iz}’) . A== (—,,— z/+ izj’). by a quadratic term
i\ dz i\ dz
(40 H(p.a;p’.q")=3[p" 2+ p?+ X 2+ X%+ a(x' —x)?].
The basis vectors commute with the Bargmann projector (45)
Pq. The operators Applying the canonical transformatiagisee[62], Sec. 23 D
1/ 9 1/ 9
X{,:T(F_ZJ{_HZIV , xJT”:i—(W—z}’—izj’) q,:‘h"‘QZ _ i ,_P1t P2 _PiP2
ZJ Z] (41) ‘/2 L) ‘/2 L) ‘/2 ) ‘/2 )
(46)

commute with the basis vectors, and we anticipate Ehat
produces a self-adjoint representation of convolutions witho,_ A _ R ;
respect toX{", X{”, and unit operators. Z=q +Ip, 2=Q1 1Py, =02+ 1P2,
Proposition 4 [43]. The Bargmann projectd?, defines a
representation of convolutions induced by the Weyl-

r, equivalently, introducing complex variables=q+ip,

Z’—Zl+22 7= 21_22

Heisenberg Lie algebrg, operating orC" by Eqgs.(41). The V2 v2

kernelb(t,{), te R, e C" of the representation is given by

the formula zZ'+z zZ'-z
~ — Zl: 1 22: ’ (47)
b(t,g):2n+1/2e—1e—(t2+gg/2)_ V2 V2

We move on to apply the Bargmann projection techniqueWe get rid of the coupling term

to the quantum-classical coupling of harmonic oscillators. H . —1(n20 024 242, 2.2
X Jd1:P2,02)=5(pP+pP5+ + , (48
Example 5 [52].In the Segal-Bargmann representation (P1,013P2,0G2) = 2(P1H P2+ 0idr +w2dz),  (48)
the creation anq ann|h|Iat|qn operators arJTe= zjl and g; wherew; =1, w,= 1+ 2a. The two uncoupled oscillators
=dldz;, respectively. Consider amdegree of freedom har- eyolve independently:
monic oscillator with the classical Hamilton function _ ‘
z,(t)=e”1'zy(tg), Zp(t)=€""2'2y(ty).

1 n
H(q,p)zzgl (a7 +pp). The dynamics in the original coordinates, however, is not
trivial. The primed and unprimedclassical and quantum
The corresponding quantum Hamiltonian is obtained by th&/ariables mix:

Bargmann projection : : ) .
g p ] (e2|w1t+82|w2t)zr(to) + (eZlet_eZIwzt)Z(to)

Z'(t)= :
1 . 1 g 2
— 2 2\ —
TH(q,p)_i Pq ;1 (qj+pj)|_§ nl-i-jg1 z; &_ZJ) (49)
(42) (eZiwlt_eZiwzt)Z/(to)+(eZiw1t+e2iw2t)Z(to)
The right side of Eq(42) is the celebrated Euler operator. It AY)= 2 '
generates the well-known dynamical grolipl], Chap. 1, (50

Eq. (6.39] ) N .
A . . Suppose that the classical subsystem is initially localized at a
eTH,of(z)=e"?f(el'z), f(z)eF,, (43)  pointz} of the phase space and the quantum subsystem is in

o ) ) its nth pure state®(z’',z;tg) = 8(zy—2z')®z". Then, the dy-
which induces rotation of the" space. The evolution of the namics of the combined system is given by
classical oscillator is also given by a rotation, that of the

phase SpacBZ“: ¢( , . 5( , (eZiwlt+e2iw2t)Z/+(e2iw1t_e2iw2t)z
. Z',z;t)=6| z,—
2(1)=Gzo=e"z, Z()=p(t)+ia(t), 2zo=Po+idp. 2
(51)
(44)
The projectionP, leads to the Segal-Bargmann representa- ® (e?lert—e?wd)z' + (¥ rt+ e ez "
tion, providing a very straightforward correspondence be- 2 '

tween quantum and classical mechanics of oscillators, in (52
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During the evolution, the classical subsystéfy. (51)] is
always sharply supported, i.e., represented by the delta func- (‘I’|A(k' X )|‘1’>— <‘1’|[H Al (K" X")[W).
tion, while the quantum subsystdiag. (52)] evolves into a (53)
mixed state. The binomidb2) contains all powers of less
than or equal ta (z*, k=<n). Therefore, there exists a non- |f A is a purely quantum mechanical observable independent
zero probability for the quantum subsystem to make a tranof classical variables, the derivatives/dok’ and dA/dx’ in
S|t|on from the initial pure state” into a lower-energy state the quantum-classical bracket of E@4) vanish, and we

, k<n. It is remarkable that in this particular case the gptain
mteractlon with the classical subsystem can only decrease
the initial energy of the quantum one. If the quantum sub-
system is originally in the ground state<0), expression <‘I’|A|‘I’>— (‘1’|[H(k' )AlY) (54
(52) identically equals one, and energy exchange is not ob-
served. The overall dynamics (guasjperiodic with the re-  yjth the HamiltonianH parametrically dependent on the

currence time determined by the frequenaigsand w, . classical phase space variabkésandx’. Substituting these
variables in place ofA(k’,x’) in the quantum-classical
V. MULTICONFIGURATION MEAN-FIELD bracket of Eq.(53), we compute the integrals in the defini-
APPROXIMATION tion of the brackefEq. (24)] and recover the classical equa-

tions of motion with the classical Hamiltonian being equal to

The quantum-classical equation of mofiti#y. (25)] can the quantum mechanical average of the total Hamiltonian

be applied in several ways depending on the description cho

sen for the quantum gnd classical subsystems. The great util- Ik HWIH(K X)) W)

ity of quantum-classical models based on a trajectory de- = '

scription for the classical subsystem has found realization in at ax’ (55)
numerous molecular-dynamics techniq{i3,64|, which are

inexpensive computationally and predict dynamical charac- ax"  (WIH(K' x")|¥)

teristics of many degree of freedom systems by averaging ot Ik’ '

over just a few sample trajectories. In the simplest case the

classical subsystem can be represented by a point in thequations(54) and(55) constitute the traditional mean-field
phase spacék; ,x{} evolving according to the Hamilton approximation: classical variables are coupled to the expec-
equations with the quantum-classical bracket of @4) re- tation values of quantum observab[&9—33.

garded as a modification of the Poisson bracket. If at the The quantum-classical equation of motideg. (25)] can
same time the Heisenberg equation of motion with thealso be regarded as a Liouville—von Neumann equation for a
guantum-classical bracket in place of the commutator is usethixed density matrix—phase space distribution function
to describe the evolution of quantum operators, the mearp(hD,X,k’,x"). In a quantum basis the evolution pfis
field approximation follows. Namely, the quantum- given by a set of coupled equations for classical phase space
mechanical average of E¢25) with respect to the wave distribution functionsp;;(k’,x") corresponding to each pair
function ¥ is given by of the quantum basis stateg:

apu

— —*H, 4 — —— _J_ L . ! i_ ' hallis)
ot - h ZI( Ikpk] plkaj+ 2 2. (gkl Ix’ ax ok’ (56)

S 22mi \ ok’ ax' ox' ok’

The above set of coupled Liouville equations is based on thezed phase space distributiop;; corresponding to the
Weyl correspondence. ground quantum state populates excited-state distributions.
In the purely quantum and classical limits the corollariesSince, in general, ground- and excited-state distributions un-
[Egs.(54), (55), and Eq.(56)] of the quantum-classical equa- dergo diverging evolutionsp,, delocalizes due to mixing
tion of motion[Eq. (25)] are equivalent. In the mixed case with excited states. This, of course, cannot happen in the
they are not due to nonlocal correlations within the classicaimean-field approach, where the classical subsystem is de-
subsystem induced by interactions with the quantum onescribed by a single trajectory and the nonlocal correlations
Such correlations, inherent in the Liouville—von Neumannare averaged out. In the absence of coupling between quan-
equation, do not appear in the mean-field approach. In patum states, phase space distributions do not mix, and3sy.
ticular, if Egs.(56) are integrated with the initial conditions splits into a set of uncoupled equations for classical distribu-
p1a(k',x")=8(k" —kg) 8(x" —xp), pij=0, V{ij}#{11}, at tion functions for individual quantum states. The evolution
later timesp;;#0 because of the nonzero couplings; . of each distribution function can be equivalently described
Classical phase space distribution functions associated withy the classical trajectory mean-field approfigls.(54) and
different quantum states differ and mix. Mutual mixing en- (55)] with the corresponding basis state wave function in
hances spreading of classical distributions. An initially local-place of¥. Adiabatic molecular-dynamics methdds] take
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advantage of this situation by evolving classical particles orpositionsk;; , x;; we substitute Eq(58) into Eq. (25), mul-

adiabatic quantum states and neglecting nonadiabatic cotiply both sides by the corresponding variable, and integrate

pling. over all degrees of freedom. The “diagonal” positions and
The Liouville—von Neumann equation for the evolution momenta evolve according to

of the mixed quantum-classical distribution reduces to the

coupled equations of the mean-field approximation when the  dkj; 1 IHN (K Xi)  IH (K ki)
distribution is restricted to have the following functional at 2 < IX) X[,
form ! !
p=|TN¥|S8(ky—k")S(xo—x"), (57) axi 1 D IH ik (Kiy 1 Xi) N IHyi(Kyi  Xii) . 60
2% ki Ky

wherek’ andx’ are then-dimensional classical momentum

and position vectors. Under this constraint the quantum parthe corresponding expressions for the “nondiagonal” vari-
of the mixed distribution remains a pure state at all timesaples are more complicated

and the classical part is always represented by a delta func-

tion. Substituting expressiofb7) for p in place ofA in Eq. IXij . ) ,

(25) and integrating out the phase space variables we obtain W:Ek Hik (Kik » Xik) X = Xii Hi (Kik » Xik)

the von Neumann equation with the quantum Hamiltonian

depending on classical coordinatek’,x"). For a pure 1 [ oHE(Kik Xik) aij(kl;j-XI,(j)

state the von Neumann equation is equivalent to the Schro + > Kl oK. , (61
[ j

dinger equation and to Eq54). In order to recover the
mean-field equations for the classical positions and momenta,
[Egs. (55)] we substitute Eq(57) into Eq. (25), multiply
both sides by eithek’ or x’, and integrate over quantum and
classical variables. ) ijij/ < ji ' Aji X -
The mean-field approximation does not account for thdions of classical partlcles, we st|puIaFe that the position and
momentum “matrices” are symmetrick;; =Kj;, X{j=Xj; .

nonlocal correlations that appear in the fully quantum de-"'- : ' N . ; . i -
scription and are reproduced by the Liouville—von NeumannVith this constraint the “nondiagonal” evolutions simplify,

equation. Such correlations are important, for instance, whef€ first two terms in formulg61) disappear, and the dynam-

quantum motion involves tunneling between two distinctiCS Of the “nondiagonal” phase space variables coincide
subspaces. Unfortunately, the quantum-classical Liouville-With the average dynamics of the “diagonal” variables

von Neumann equation does not provide a computational_, , ,

advantage over the fully quantum von Neumann equation,ﬁ: E (ﬂJr ﬁ]
since both deal with delocalized distributions. At the same dt 2 | dt at

time, propagation of an individual classical trajectory via the

d similarly for momenta. In order to keep the Hamiltonian
matrix Hermitian H”:HJ?*i and to avoid situations where
Hi;(ki; ;) andHji(kj; ,xj;) are computed at different loca-

Hamilton equations of motion is far less demanding than :f 2 H %! —x' H A+} ﬂ+%>
integration of the Liouville equation. In order to account for 2 W KT 2 kg aky

the quantally induced nonlocal correlations among the phase .

space variables, while retaining a trajectory description for HE s Hog © [Pk M

the classical subsystem, we interpolate between the mean A R LS U aKjy Ky

field and Liouville—von Neumann approaches by developing

a multiconfiguration version of the mean-field method. Start- 1 [dHj  aHy;  dHj  dH) 1 [ = dx;
ing with the quantum-classical distribution of the following "4\ okl oy okl Ik =2\t T a )
functional form, 62

p=2 > il Wi (| 8(ki; —Kk") 8(x;—x"), (58)  and similarly for momenta. Apart from assigning the “non-
b diagonal” coordinates and momenta unique values with a

where the sums run over configurations, we assume orthc?—imf’le physical meaning: Xi’i:(xi,i“ij,J)/z' ki; = (ki _
normality of the wave function§¥;|¥;)=5;, substitute *kj)/2, Eq.(62) reduces the number of independent classi-
Eq. (58) into Eq. (25), integrate over the classical variables cal trajectories in then-dimensional multiconfiguration

(fdk’ fdx'), and obtain the von Neumann equation for themean-field approximation from? to n.

quantum density matrix The multiple configuration technique is widely used in
quantum chemistry as an improvement on the self-consistent
dey;  2mi . . ., field solution to the time-independent Sctiimger equation
ot h Ek: [Hik(Kiie Xit) @ik — @k Hij (Kigg 1 Xigy) - [65]. The time-dependent fully quantum multiconfiguration

(59 self-consistent field approach is discussed in F&8§]. Equa-
tions of motion similar to our version of the quantum-
Note that in contrast tg;;(k’,x") of Eq. (56), ¢;; do not  classical multiconfiguration approximation were first pro-
explicitly depend on classical variables and are complexposed in Ref[14]. Our approach has a different derivation
numbers rather than phase space distribution functions. Tand is less computationally demanding, since it needs a fac-
get the equations of motion for the classical momenta antbr of n fewer trajectories. Other versions of the quantum-
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classical multiconfiguration mean-field approximation can beRef.[71] leads to a family of quantization rules parametrized
found in Refs.[67, 68. We point out that the number of by a continuous parametersd.<<1. The general form of
configurations in the multiconfiguration mean-field methodpseudodifferential operators underlying this family of
does not have to equal and is usually less than the number gliantum-classical correspondences is given in R4£5.77.
quantum basis states. The indidep,k in Eq. (59) denote ) equal to 1/2 and 1 produces the Weyl and Kohn-Nirenberg
configurations, which do not, in general, correspond to basigorrespondence rules, respectively. Arbitrarily many
states. In the case when the overall space is separated indantum-classical brackets can be generated for different
several weakly connected regions, the number of configurgspgices of.

tions is determined by the number of such regions. For ex- oyr approach explains why the author of R&f came to
ample, the double well systefi69] requires two configura- the conclusion of the algebraic impossibility of quantum-
tions and two classical trajectories, each originating in its|assical coupling. The assumptions imposed in F8fon a

own well [70]. possible quantum-classical theory restrict consideration to
step-two nilpotent Lie groups with a one-dimensional center.
VI. DISCUSSION AND CONCLUSIONS Under this exceedingly stringent constraint any interaction

The technique presented in the earlier sections provides %%tl\g/eienn dgggntlﬂgnwir\‘grC|%Snsc'ga:hie?::)enesstrg{nftreigogg;émgﬂi
unifying framework for the quantum-classical equations ofWe s'ee o réason o réstrict our attention to ArouDs "th a
motion proposed by other authdi3,12,19. The equations groups wi

of Refs.[12, 15 are very similar and correspond to H5) one-dimensional center only, quantum clasglcal interactions
; naturally reappear. The step-two nilpotent Lie group with a

of this paper. Thus, Refl12] proposes X . . . ;
two-dimensional center considered here in detail produces

o 1 1 satisfactory results. Other groups in principle suitable to de-
p=3 [p,H]+ > {p,H}— > {H,p}. (63)  scribe quantum-classical mixing do exist. For instance, one
may consider a step-three nilpotent Lie group and the corre-

[See Eqs(3.4) and (3.6) of Ref.[12].] The equation of mo- sponding algebra, which, as a vector space, is decomposable

tion presented in Ref15], Eq. (11), is slightly different: into the three subspacd, V,, andV; having the follow-
ing properties. The elements &, commute with all ele-

o % % ments and form the center. Commutators of vectors from
p=ilp,H]+ 5 {p,Hi = 5 {H.p}. (64 v, belong toV,. Commutators of vectors froi, belong to
V. By taking a representation of this group that maps the

Our results based on the Weyl correspondence prinfgile centerV, to zero, we would obtain another model for a

Egs.(24) and(25)] give preference to Eq63). mixed quantum-classical system, where vectors fram
The quantum-classical bracket of REZ], Eq. (2), would correspond to classical degrees of freedom, since their
commutators vanish, while vectors frowy would describe
[ABlq-¢=[A,B]+i{A,B} (65  quantum variables. It is likely, though, that this scheme will

] ] ] ) o exhibit properties atypical for quantum and classical me-
is not antisymmetric. It is very similar to Ed33) of the  chanics, since step-three nilpotent Lie groups differ from
current work, which is derived by the Kohn-Nirenberg cal- step-two groups and from the Heisenberg group in particular.
culus and is antisymmetric as expected from the derivationtpere exist, however, some advantages in dealing with gen-
The example given in the paragraph following £2).in Ref.  grg| nilpotent Lie groups. For example, the relativistic quan-
[2] considers a separable case witly being classical func-  tjzation of Ref.[73] is based on a representation of the sim-
tions andU,V being quantum operators: plest step-three nilpotent Lie groymeta-Heisenberg group
. [74]) spanned by the Schdmger representation of the
[fU.9Vg-=f[U.VI+iUV{f.g}. (66) Heisenberg group and the operators of multiplication by
functions. Application of the quantization rules to the appro-
priate Lie algebras leads to quantum-classical constructions
for string theory, conformal field theory, and Yang-Mills
theorieg[75].
fg[U,V]+i(UVa,fag—VUd,gixf ), (67) In summary, we presented a systematic approach to cou-
pling quantum and classical degrees of freedom based on a
which does change sign under the permutatiba g, generalization of the unified description of quantum and
U« V. Thus, Eq.(33) can be regarded as the corrected ver-classical mechanics given in terms of convolutions on the
sion of the bracket of Ref2]. Heisenberg group. Considering the simplest extension of the
The brackets of Ref$12, 15 and the bracket of Ref2] Heisenberg group that allows for two distinct sets of vari-
relate to each other via the choice of the correspondencables, we derived a quantum-classical equation of motion.
principle, i.e., via the ordering of products of position and The quantum-classical bracket entering the equation is a Lie
momentum operators used in constructing quantum operatotgacket and, therefore, possesses the two most important
from classical phase space functions. Referefit245 em-  properties common to the quantum commutator and the Pois-
ploy symmetrized products, while R¢R] uses expressions, son bracket: it is antisymmetric and satisfies the Jacobi iden-
which keeps momentum operators on the right. The relationtity. The quantum-classical Jacobi identity meets with subtle-
ship between the quantum-classical correspondence ruldies that we associate with the dynamical interpretation of the
and pseudodifferential calculus explored, for instance, irbracket. Further work is needed in order to clarify this issue,

If U andV do not commute, the result is clearly not anti-
symmetric. For this example, EB3) of this work gives the
expression
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and the simplistic equation-iZdA/dt=[H,A],_. might the Hemphill/Gilmore fund and Peter Rossky for financial
have to be abandoned. We constructed the quantum-classiclpport and thanks Bill Gardiner and John Lobaugh for use-
dynamics of coupled harmonic oscillators without explicitly ful comments on the manuscript. V.V.K. is grateful to the
appealing to such an equation. Starting from a general groupepartment of Mathematical Analysis, University of Ghent
theoretical formulation we derived the mean-field and theand to the Fund of Scientific Research-Flanders, Scientific
multiconfiguration mean-field approximations, which areResearch Network “Fundamental Methods and Techniques
trajectory-based approaches of great utility in studying realin Mathematics” for support at the later stages of manuscript
istic multidimensional physical and chemical systems. Thereparation.

proposed technique allowed us to classify the quantum-

classical equations of motion and to resolve some problems APPENDIX

from earlier works. ] ] »
We present details of computation of thecompositions

ACKNOWLEDGMENTS encountered in Example 3 of Sec;. lll. The transformatiqns
below use the standard properties of the delta function.
The authors thank Arlen Anderson and Lajos ®ifor ~ Within the Weyl correspondend&g. (12)] a typical compo-
helpful suggestions and discussions. O.V.P. acknowledgestion in Example 3 is calculated as follows:

2
)fffj£202e4wi[(xu)(kn)(XU)(k{)]/hdu dv d7 d¢

Arix(k— n)/hd”f o Amiu(k— ”)’hduf J' {2p2e - Amix-0)(k=0lhg,, g7

it
o oy

4wix(k7;)/hd7]5[ }f f {2p2e o) k=0, dr

d§=§ f éze_4mx(k_5)/h( h )25/1[2(—k_§)}d§

2 .
— 24— 4mix(k—¢)/h .
h f cre g h

f vZe4ﬂTiv(k—{)/hdv

? 2 a—Amix(k—¢)/h h |2 d 2 o~ Amix(k—{)/h
—4mix(k— ", — —4aix(k—
| e &' (k=0)d¢ (m) az e Tk

2N Aai 222 4i
- — | x°kc+ —4xk+2

= h . (A1)

The composition with the opposite order ®f and k? is

2 i )
computed similarly: =h f v? JUZG%mU(U*)IhdU gmxw=k/hgy
2
h \2[/4mi\2 47 _Zf 2( h ) | 2(v—k) 4mix(v—K)/h
24 12— 2,2 _ == | v —| &'—F—|€ dv
X“# Lk yp ( h ) xk h Axk+2|. (A2) h A h
h 2 2
_ [v2etmix(w=kin)
Appropriate combinations of the above results produce Eqgs. 47i| dv? v=k
(28) and(29) of Sec. lll. For instance, the commutator in Eq. h \2[ {472 A
Y L N R BT S
(30, (47-ri) [ h ) Xk + h Axk+2|. (A4)
2,2 2 2 2 2 h H . ..
[X% K g, =X"# k™= Ko px"= — 5— dxk=4ifixk In the KN calculus the composition of?#k? is just the

(A3) productx?k?, and, for instance, the commutator appearing in
right-hand side of Eq(35) equals

contributes to the second term in E@9. The Kohn-
Nirenberg correspondence given by E83) requires even

2
simpler calculations: [x? kz]r;N:szz_(L) [(Ai
' h Agi

i 41ri
n ) X2Kk2+ - axk+-2

2
h
k2 KN 2_2 2.2 4wi(xfu)(ufk)/hd dv — h Axk—2 h 2—4'ﬁ k hz A5
ﬁhx—ﬁfjuve u ——mx—m—IX'i—?. (A5)
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