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Spatial soliton laser: Localized structures in a laser with a saturable absorber
in a self-imaging resonator
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We demonstrate theoretically and experimentally the manipulation of spatial localized struspagal
solitong of a laser with saturable absorber in a self-imaging resonator. We show the on-off bistability of the
solitons, their movement by phase gradient forces, the parameters of their existence, the limits of their stability,
and periodic soliton nucleation and dynamig81050-294{®@7)04908-1

PACS numbgs): 42.65.Sf, 42.60.Mi, 42.65.Tg

[. INTRODUCTION evidence of spatial solitons is given. Section IV gives the
analysis of existent parameters and stability limits of the spa-
Spatial localized structurgd.S’s), or spatial solitons are tial LS’s. In Sec. V some dynamical peculiarities are re-
presently of interest in optics because of their potential apported, such as the drift of localized structures due to phase
plications for parallel information processing purposes, suctgradients, soliton gluing to the edges of the laser aperture,
as optical pattern recognition, classification, and parallel inswitching on and off by means of external injection, and also
formation storage. Up to now, such localized structures ha\,@_eriodic dynamics of spatial solitons under continuous injec-
been theoretically predicted in the following systenigy ~ tion and a phase gradient.
externally driven Fabry-Ret resonators with focusing me-
dia inside(optically bistable deviced1]; (2) laser systems Il. EXPERIMENT AND MODEL
with saturable absorbéR]; (3) optical parametric oscillators
[3]. Experimentally, LS’s have been demonstrated in a laser ) ) ) o
with saturable absorbd#] and in a corresponding system, A self-imaging resonator configuration is used for a dye

where the gain and loss elements in the resonator were ph@ser with kl)acteri%rhodo?sifB(I;z) has a satLE)rIabIeb abzorber.
torefractive crystald5]. Apart from this, LS’s have been TI € gda!n Eemen( ye ce% anl the sfa:ﬁra €a ?or :ar ar(;a
liquid-crystal light valveqd 6], which are, however, not pure 9 patte ALOr prov

o o a large area near the mirrors and small beam diameter in the
all optical” systems.

: . . . . . center at the gain element. A scheme of experimental setup is
Here, we work with spatial solitons in a laser with gain shown in Fig. 1
element and saturable absorber in conjugated planes of the We use a solution of 6-aminophenolynon in ethyl alcohol

resonator. The shape of the spatial soliton is given not by theg he gain element in order to match the spectral absorption
resonator geometry, but by a balance between nonlinearitigs,ng of BR. The dye solution flows inside a cuvette located
on one side, gnd dllffracuon and/or d|ﬁgS|on on the ot.herin the central part of the resonator. The dye cell is pumped
side. The spatial soliton can move freely in transverse d|recby the second harmonidat 532 nm of a passively
tion throu_ghout the laser aperture and the sollto_n can bg)-switched Nd:YAG(neodymium-doped yttrium aluminum
bistable Wlth respect to s_thchlng it on an_d off. This meansgarnej laser operating in a pulse-periodic regime with a rep-
that a soliton can be “written” anywhere in the laser crossetition rate of 12.5 Hz. Typical values for the pumping

section, thus providing a spatial memory function. pulses are 2 m(pulse energyand 15 ngpulse width. The
We show how a spatial soliton can be caused to move by

gradient forces, in particular by phase gradients in the cross
section of the laser aperture. This can, e.g. be used to trap ¢
soliton at a desired location, providing a means for pattern
recognition[7], or to manipulate solitons otherwise. Stability
limits, writing and erasing of solitons, as well as dynamic
regimes of solitons are shown. CCD camera
The specific properties of the solitons in the system used A Il Vi [
(laser with saturable absorber in conjugated planes of a self- P iV y 4 \/ d
imaging resonatgrare discussed as opposed to a correspond- BR
ing laser in a plane mirror resonatd]. The spatial soliton absorber
in this (conjugated planeconfiguration is shown to be a to PC He-Ne laser
spatial analogue of the temporal pulse emitted by a passively Shutter
mode-locked laser.
We start with the description of the experimental setup,
and the corresponding theoretical mo¢®éc. 1). In Sec. 1l FIG. 1. Experimental setup.

A. Experimental setup

Nd:YAG
SHG crystal
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pump beam irradiates the active cell at a small afgi8°) f+l 2f f+]

with respect to the resonator axis. The pumped area of the
dye cell is 0.2 mm diameter for the focused pump beam and

1 mm for an unfocused beam. At that pumping condition, the
unsaturated single pass gain of the dye cell reaches mor H ~~— I ~ H
than 100.
A cell with BR absorber is placed near one resonator mir- M)
ror. A water-glycerol suspension of genetically modified BR-
D96N [8] is used as the saturable absorber. BR is a photo-
active energy converting moleculgd] having a large T T
fa

>« re——>

extinction coefficient of 63 000 M cm™* at 568 nm. Non-

linear materials based on BR and its genetically modified N€ar I
analogues are easily saturatétD mwicnf) and are ex-  field field

tremely stable against thermal and photochemical degrada- ) o )
tion [10]. In order to increase the photoresponse time of BR- /G- 2. Sketch of the quasi-self-imaging resonator used in ex-
D96N (up to around 1 kand thereby integrate the laser periment. The deviation from the self-imaging length.is

pulses, the suspension was buffere@ldt9. The unsaturated

issi i A
transmission of the BR absorber is chosen to be 0.028 at 532 S A= p 2 —(a+,8)A+(dRe+id|m)V2A, 24
nm. 1+|A|%/a,

The change of the intracavity BR absorber transmission is
initiated by an additiona(bleaching unfocused beam of a 8= v(Bo—B— BIAIYay), (2b)

He-Ne laser(TEMg A=633 nm) controlled by a shutter.
The linear resonator length is fix¢®65 mn) and equals
4f (wheref is the focal length of the lensewhile the dis-
tance between the active element and one of the intracavity Equations(l) and (2) describe light matter interaction

lenses can bﬁ Va”ed'f_lee, transvgrsedstt)ructure of the lasghenomena of lasers with saturable absorber. These models,
emission in the near field is monitored by a CCD camerg,qever, are valid only in the paraxial approximation corre-

which in the limit of fast absorbey—« coincides with Eq.

connected to a computer. sponding to a plane resonator. For resonator configurations
_ different from planar, the system has particular properties
B. Theoretical model which have to be taken into account by modifying E€S.

Here, we derive the theoretical model for lasers with satu2nd (2). In the following, we derive the model for our self-
rable absorber in a self-imaging resonator based on existingaging resonator configuration, based on E@s.and(2).
models for such a laser with plane resonator. Such a model The linear parts of Eq(1) can be retrieved by calculating
has been used in R4R] to study the localized structures in the light rays in geometrical optics. The ray inclined by an

lasers with saturable absorber in plane resonators: angled to the optical axis of the plane mirror resonator has a
larger optical path in one round-trip in the resonator com-
PA BoA

. ) pared with the ray directed parallel to the optical axis. The
IA= 1+|A|2/ap_ 1+ |A[a, aA+ (dgetidn) VAA. change of the optical path length 2L =L ¢%2, for small
1) anglesh. Relating the angle with the components of the wave
number parallel and perpendicular to the optical axis of the
Here, p is the gain parametes, is the gain saturation resonator:#=k, /k, one obtains the dispersion relation for
intensity, B is the maximum value of the nonlinear absorp- the planar resonatoty, = ka/(Zk) (we recall that the fre-

tion, as is the absorption satur_atio_n intensit;_/,is thg linear quency is normalized to the free-spectral rangis leads
loss, anddge anddyy, are the diffusion and diffraction coef- ¢, e giffraction term in Eq(1) with diffraction coefficient
ficients. The order paramet@r.(r,t) is prop_ortlon_al to the dyn=L/(2K).

envelope of the optical field in the two-dimensional trans- “yne gispersion relatiofthus diffraction coefficient in the
verse plane = (x,y), and depends on time normalized 10 the 4rder-parameter equationsan be obtained directly from the

photon round-trip time. Using this normalization, the diffrac- A g c D matrix [11] analysis. TheABCD matrix for a planar
tion coefficient isd,,=L/(2k), whereL is the full resonator asonator is

length (twice the linear resonator lengtrandk is the wave
number of the radiation. Diffusion coefficiedk, is related
to the spatial frequency filtering, and will be discussed be- ABCD= ‘
low.

Equation(1) was derived, using adiabatic elimination of
the fast atomic variables, from the Maxwell-Bloch equation The dependence of optical length on the angle given
system(including two-level amplifying and also absorbing by the nondiagonal element ofABCD matrix
atoms. It assumes that the population inversion of the am{ABCD);,, AL=(ABCD),, #%/2. This leads to the above
plifying medium, and that of the nonlinear absorber, relaxesalculated dispersion relation, and the correct value of dif-
infinitely fast in comparison with the optical field. In order to fraction parameter.
account for the effects of inertia of absorber, the underlying The ABCD matrix for our near self-imaging resonator
Eg. (1) can be modified to yield (Fig. 2 is

1L
| ®

0 1
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1 4-] periment is different. The nonlinear absorption takes place

0 1 ’ (4 close to the resonator mirror, the nonlinear amplification of
the fields, however, takes place at the focal plane of the

resonator. Then Eqg2) have to be rewritten to take into

Here, | is the displacement of the plane mirrors from theaccount this “far-field—near-field separation™
self-imaging length. For the precisely self-imaging cése . A n -~ .
=0, andABCD matrix is the unit matrix. This means thata  GA(",1)=F *N(p,ap)FA(F,t) + (dret idm) V2A(F t)
ray with arbitrary position and arbitrary angle to the optical _ >

axis returns back to the same position after one round trip. [atB(rOIATD, (53
As a consequence, every ray has the same optical length in
one round-trip in the resonator. This leads to no dispersion of
the resonator; thus to zero diffractiogh,,=0.

For the approximate self-imaging casd=#Q0), the
ABCD matrix of our resonator coincides with that for planar
resonator of the total lengthl4Then the order-parameter . pA
Egs.(1) and(2), derived from the planar resonators, are valid N(p,a,)A= m
also for the case of nearly-self-imaging resonators. The dif- P

fragl:_trlloen ;%?ng;ﬁggﬁ Ot:ir E)erf)(L)Jgatorro((i)ifmZfZIe/kl.JivaIence be_acting on the field variable not in the spatial domains as in
tween the planar andyseI?—ima inp resonatocrls will be give Egs.(1) and(2), butin the Fourier domain. The spatial Fou-
P ging 9 r}i{ar transform(and afterwards the inverse Fourier transfprm

elsewhere. We note here that this equivalence has.importa[% therefore used in Eq5a to change from the near-field to
consequences. As follows, the resonator as used in our eXr-field domain(and vice versa

periment can reproduce a planar resonator of extreriely
the limiting case, infinitely small length. This allows the . 1
reader to obtain extremely large Fresnel numiaspect ra- FA= —f f A(x,y t)expikx+ikyy)dx dy, (7d)
tio) of the system. For instance, the smallest size of the lo- 2m

calized structure in the planar resonator sx=d?

=(LA)Y2 and is limited in opti_cs m_ainly by the resonator £-1a_ ij JA(kka Dexp —ikx—ik,y)dkdk, .
length. In the case of our self-imaging resonator, the mini- 2 y y Y

mum size of the LS’s could be decreased to zero, if the (7b)
paraxial approximation would hold. ) . . . . .

We note, that for resonators with the length shorter than The (physica) spatial coordinate in the Fourier plane is
the self-imaging length, the diffraction coefficient is nega-felated — with the transverse ~wave number via
. . . — H : — 1/2 5
tive. This means that the optical length for rays at nonzerd r=Ki (M /). [A Gaussian beam of widthy= (A f/7) " is
angle to the optical axis is smaller than that for the rayshe same width in the near- and far-field plafes.
parallel to the optical axis of the resonator. However, in the _Lateral boundary conditions must be added to the Egs.
absence of the focusing or defocusing nonlinearities the sigkP)- The iris in the near-field plane is approximated by the
of diffraction has no meaning. corresponding spatial profile of the gaifr losses «

As a conclusion, one can use E@$) or (2) in order to =a(r). The aperture in the far fielfocal plane results in
simulate spatiotemporal dynamics of fields of lasers in selfSpatial frequency filtering, and is correspondingly approxi-
imaging or quasi-self-imaging resonators. The only diﬁer__mated by the profile of losses in the Fourier domain. Assum-
ence from the planar resonator case is the value of the diffd & parabolic profile of the gain in the Fourier domain,
fraction coefficient. dA(k, ,t)=—drk?A(k, ,t), and converting to the space

There is a requirement for validity of Eq&l) and(2) for ~ domain by inverse Fourier transform, one obtada(r,t)
the nearly-self-imaging case: all the nonlinear processes dreV2A(T,t). This means that the diaphragm in the Fou-
must occur in the same location of the resonator along itsier domain is equivalent to diffusion in the space domain.
optical axis. This requirement has no meaning in the quasi his latter is the reason why the Laplace operatdilin2, 5
planar resonator case, since the field variation along the resbas not only an obvious imaginary pamith coefficient
nator is negligible there. In our case, the fields vary stronghd,,,) corresponding to diffraction, but also a real pésith
from the near field to the far field. Let us assume for defini-coefficientdge) corresponding to diffusion.
tiveness that the near field is generated at the plane mirror of The model(5) is the basis for the numerical analysis in
the resonator. Then, the field at the focal point of the resothe paper. We used the split-step technique for numerical
nator is the far field, which is the Fourier transform of theintegration of Eq(53). In this technique, the local ternfthe
near field. Consequently, there is a difference as to where linear losses and the nonlinear absorptiare calculated in
nonlinear element is placed. Obviously, nonlinear operatorthe space domain, whereas the nonlocal tefdiffraction
acting on the field in the space domain or in the Fourierand diffusion of field, also the galirare calculated in the
domain lead to different results. spatial wave-vectofFouriep domain. A fast-Fourier trans-

It follows then, that the models, Eg4) or (2) are valid if ~ formation is used to change from the physical space to the
the both nonlinear elements are either in the far-field planespatial wave-vector space in every step of the numerical in-
or in the near-field plane: it is important that the nonlineartegration. Spatial grids were used(@28x128) for one- and
operators act on the same domain. The situation in the exwo-dimensional calculations; the spatial coordinate was nor-

ABCD= ‘

aB(F,)=y(Bo(T) — B(T,t) = B(F,H]A(T,1)|?/ay).
(5b)
The N(p,ap) is a nonlinear operator of saturable gain:

(6)
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(a) (b)

(@ (®) ©

Transverse coodinate (mm)

Pump power
FIG. 4. Experimental observation of the laser spatial soliton
structure:(a) for small and(b) for large pump area in the dye cell,
illustrating the dependence of soliton size on diffusion.
0.12 o"
©) " . . - .
. diffusion coefficient in Eq(5).

g 0107 -* When the pump power is inside the hysteresis rdfgg
:f: 0.08 - o 3(a)] the spatial soliton can be switched on by a bleaching
g ® .= light beam incident on the BR absorber. The soliton can be
< 0.06 o switched on in any plane on the laser cross section, which in
a3 " .' our case is limited by the BR absorber cell aper{di@mm).

f:f 0.04 - @ Figure 5 demonstrates how the single spatial soliton is
3 ’ . switched on by the writing laser bear_n applied in different
0.02 . places of the BR absorber for a short tiniEhe power of the
' He-Ne laser beam used for writing was 2 mW, the energy

000 | emma s density necessary for writing the LS’s was 15 mJgrAfter
T | T T I , 7 the spatial soliton is switched on in a particular place of the

0 2 4 6 8 10 12 14 laser cross section it remains stable in this position. In other
words, the laser possesses spatial multistability: a single
bistable spatial soliton can have different stable positions

ifferen ial f the lager
FIG. 3. Experimentally measured hysteresis in the dependenc(ed erent spatial states of the lage

of the laser output on the pump, and the transverse structure of the
output laser beam for three fixed pump powdes:small size and
quasi-Gaussian spatial soliton in the bistable regibhintermedi- We confirm the existence of localized structures by nu-
ate size and super Gaussian soliton at the border between bistabiligierical integration of Eq(5). The series of plots in Fig. 6
and monostability, an¢t) large size structure of strongly structured

profile in the monostable region.

Average pump power (mW)

B. Numerical evidence of the localized structures

(©)

malized to the size of the integration region. Equatibh)
was integrated in the spatial domain, since it does not contain
any nonlocal terms.

I1l. EVIDENCE OF LOCALIZED STRUCTURES
A. Experimental evidence of localized structures

The experimentally measured dependence of the average
laser output power on the average pump power shown in Fig.
3 exhibits a hysteresis loofoptical bistability. At pump
powers corresponding to the bistable reg[étig. 3(a)] the
laser emits a small isolated quasi-Gaussian light spot. An
increase of pump power leads to an increase of the laser
beam cross section, which is accompanied by a change of its
shape in the region between the bistable and monostable re
gime [Fig. 3(b)] and by structuring in the monostability re-
gime [Fig. 3(c)].

The spatial soliton size depends essentially on the pump-
ing area aperture on the dye cell: the larger the pumping area,
the smaller the spatial soliton si¢eompare the spot size for  F|G. 5. Positioning of a spatial soliton initiated by an external
two cases: when the pump beam is focupeid. 4@] and  beam in different places of the laser cross sectiba region inside
unfocused[Fig. 4(b)] into the dye cell, respectively This  the dark circle is 2.7 mm in diamejera Center,(b) left, (c) up,
shows that the spatial soliton size is limited primarily by the(d) right, and(e) down.
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In the subsequent nonlinear evolution, competition be-
tween the spots occur. The spots, although well separated in
the space domain, overlap completely in the focal plane. The
gain saturation in the focal plane determines the total energy
of the radiation. Thus several spots in the spatial domain
share the inversion. The more spots in the ensemble, the
smaller the average energgnd peak intensipyof the spots.
Due to nonlinear absorption, the weaker spots are more
strongly discriminated. This leads to competition among the
spots. The strongest spot survives in this competition, and a
single LS in the form of a symmetric spot finally develops
[Fig. 6(d)]. The spot shape is independent of its location, and
the location is determined by the initial random distribution.
The spots(actually only one spgtcan move freely in the
transverse plane.

This scenario of developing a single spot in the transverse
plane is analogous to the pulse formation in lasers with pas-
sive mode locking. In both cases one starts from a random-
field distribution in the form of a random ensemble of pulses
or spots. In both cases the spectral filtering occurs in the
linear stage of the evolutiofof frequency and of spatial
Fourier spectrum, correspondinglyin both cases only one
pulse or spot survives in the nonlinear stage of the evolution.
The competition occurs, because several pulspsts share
a common population inversion. For mode-locked lasers the
amplifying medium is relatively slow and the amplification
depends on the integral energy. For our pattern forming la-
ser, the spatial spectra of individual pulses overlap in the
focal plane, and the amplification again depends on the inte-

gral (in space characteristics of the radiation.
FIG. 6. Evolution of the symmetric stable localized structure

from an initial randomly distributed field as obtained by numerical
integration of Eq.(5) in the case of two spatial dimensions: left,
spatial distributiongnear field; right, spatial spectréar field). The A. Gaussian and/or parabolic expansion

parameters aredge=10"3, d;;,=0.25x10°3, p=2, a,=9.82, . . , .
Bo=1, a.=05, a=0. The plots are given at timég) t=2.5, (b) For analytical treatment of single LS’s we approximate

t=5.0, (c) t=7.5, (d) t=10. their profile by a Gaussian function with unknown time-
dependent parameters(r,t) =a(t)Y%exg —c(t)r?]. Insert-
show a LS developing from noise. We started from an initialing this into Eq.(5) one obtains a set of equations for the
random distribution of field§Fig. 6a@)]; the pump parameter complex parameters of the LS’s. Some assumptions are
was larger than that corresponding to the bistable ¢@®e  made allowing the reader to obtain a simple set of equations.
system is in the monostable regimén the subsequent evo-  (j) strong diffusion compared to diffractiontlges dyp:
lution, the field grows linearly until the nonlinear regime is This means, that the length of the resonator is precisely tuned

rgached: In the Ii.near stage of evolu'gion filtering in the SPayg correspond to a self-imaging resonator. This allows the
tial Fourier domain was apparent, which leads to the NArOWreader to consider the parameters of LS’s as real variables.

ing of the spatial spectrum and consequently to broadening (i) Fast saturable absorbeys1: this allows the reader

of the spots in the spatial domdjiRig. 6(b)]. Do . : . )
In the nonlinear stage of the evolution two physical prO_to eliminate adiabatically, the absorption variable from Eq.

cesses dominate. Due to gain saturation, the spatial s ectru(r?lb)_'__ . . .
broadens, thus the spotsgin the near field begin to r?arrow. (iii) Parabolic profile of the LS’s. This allows the reader
The saturation of absorption in the space domain also lead® SIMPlify the saturating nonlinear terms by a series expan-
to a narrowing of the spots. Thus these two nonlinear proS'0ns:

cesses “work in the same direction” and lead to a formation \/— \/—

of an ensemble of symmetric spdtsig. 6(c)]. The width of A - a - a

the spots is determined by the diffusion and diffraction prop-1+|Al%/as ~1+aexp —2cr)/a; ~ 1+al/a;—2acr’/as

a)

b)

d)

IV. PARAMETERS OF LOCALIZED STRUCTURES

erties of the resonatotby the diffusion coefficientdge, Ja 2
which is determined by the width of the aperture in the focal _ a 2a cr _ (8
plane of the resonator, and by the diffraction coefficient 1+alag atas

d,,,, which is determined by the difference from the self-
imaging length. The spots at this stage of evolution are
“spectrally limited” in the sense of spatial spectrum. Using the above assumptions one obtains from(Bg.
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2

daz— 2Bpa  2pa[l+3al(apdc)] Il HHHH
t 1+alag [1+a/(aydc?)]? SRRRRSRAEE
RRSTANE
—2aa—8acdge, (93 H{\\;%ZZ?:HI
2) ARl

2Bycalag pa/(a,2c) 5 RSSAIIIINT

dic= > >=—4C%dre. (9D N N
(1+alas)® [1+al(adc?)] WP LI

o VIZEZIITINN

The system(9) is still too complicated to obtain analyti- PIASZTTTIO0OON

cally tractable steady-state solutions, however, its analysis is
useful to obtain insight into the process of formation of the
LS’s.

The system(9) leads to singular solutions if diffusion is
absent,dg.=0. Equation(9b) results in a continuous in-
crease of the parameteft) (inverse width of the L§ which \ \

§
i
i
RN
A

—ee——

means that the structure shrinks continuously. Bora

+ Bo/(1+alag) the amplitudea(t) grows correspondingly,

which leads to formation of an unphysical singularity. b)
The latter can be understood from the following consid-

erations: The saturating absorption leads to narrowing of the

LS. The saturating gain would lead to a broadening of the

structure if it would occur in the space domain. Such a bal- \ ST ~\\

ance of saturation absorption and saturating gain leads to the N

formation of the spatial solitons in the quasiplanar cavity

laserg 2]. However, in our case the saturating gain occurs in

the Fourier plane, and the broadening of the structure in the node

Fourier domain leads to narrowing of the corresponding

structure in the spatial domain. Thus, both nonlinear pro-

cesses narrow the LS, and develop a singularity if no other

physical phenomena balance this “double” narrowing. The

balance in our model comes from the diffusion, as &dp)

shows. c)
To demonstrate the counterbalance between nonlinearities

on one side, and diffusion on the other side, we plot in Fig. 7

the vector field generated by Eq®). The arrows in Fig. 7

indicate the direction of temporal evolution of the state vec-

tor of the systent9) [horizontal, inverse widtle(t), of LS’s,

vertical, peak mtensﬂya(t)]._ Figure 7a) repres_ents th? _be' FIG. 7. The vector field of evolution of parameters of the spatial

low threshold case: the ax&=0 (corresponding to trivial  gqjiton [amplitudea(t), in the vertical direction; and inverse width

solution is absolutely attracting. c(t), in the horizontal directichas given by parabolic expansion
Increase of the pump parameter leads to the saddle-node). (a) Below the thresholdp=0.75, dge=0.127;(b) correspond-

bifurcation as shown in Fig. (B). The node point corre- ing to bistability, p=0.79, dge=0.13; and(c) in the monostable

sponds to the parameters of the stable LS’s. Due to the pregegime, p=1.6, dge=0.29. Other parameters aeg,=1, a;=1;

ence of the saddle point the node is not absolutely attractingimplitudea(t) varies from 0 to 8.4; and inverse widdgt), from 0

the trivial zero solution is also possible. In this regime a LSto 1.4 in all three cases.

appears via subcritical bifurcation, and thus is bistable. One

has then a possibility to write and erase a LS.
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i _ the LS’s without the approximations used to derive E§s.
Further increase of the punp>a+ B, results in mono-  The cajculations were carried out for one dimension due to

stability, as shown in Fig.(€). The LS develops from arbi- eqyrictions of computational facilitigs few runs have been

trary initial conditions. In this regime one cannot erase theyone also for two-dimensional caseee, e.g., Fig. )6 how-

LS’s: the trivigl zero solution is linearly unstable. ' ever, this does not show qualitative differenes
The evolution diagram leads to an understanding of the " nymerical calculations we use a small but nonzero

qualitative behavior of the system. To determine the paramy e of the diffraction parametet, =104 In the corre-
m .

eters of the LS’s one can solve EQ) numerically. How-  g,qn4ing experiment, this means a small deviation of the

ever, we p_rgsent rat'her _the res_ults of the numerigal ir‘tegr"’]"esonator length from the self-imaging length. In Fig. 8 the
tion of the initial partial differential Eqs’5) to determine the |\ iqth of the localized structure versus gain is plotted. The

parameters of the LS’s. four curves in the figure correspond to four different values
of diffusion (different radii of apertures in the focal plane
Towards small pump values, the LS’s die at the end of the
We solve numerically, the initial partial differential equa- corresponding curves. Towards larger pump values, the LS'’s
tions (5) to determine the parameters and stability limits ofbegin to pulsate periodically at the end of the cor-

B. Numerical integration
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FIG. 8. The width of the stable LS versus pump parameter for
four different values of diffusion coefficieritliameter of the aper-
ture in the focal planeas obtained by numerical integration of Eq.
(5) in the case of one spatial dimension. The parameterdgre
=10"% p=2, a,=7.83, By=1, a;=1, and a=0. The value
of the diffusion coefficient increases for curves from left to right: b)
dre=0.50, dre=dim, dre=1.5dy, dre=2diy.

time

responding curve. A further increase of the pump parameter
leads to more complicated dynamical regimes.

Stable LS’s cannot be obtained for small values of diffu-
sion (very wide apertures The rough condition for the ex-
istence of a LS is that diffusion is approximately larger than —Spa;_> spmcy
diffraction: dge=d,,,. For dominating diffraction the stabil-
ity region of LS shrinks to zero, and periodically pulsing

FIG. 9. Nonstationary dynamics of LS’s as obtained by numeri-
LS’s occur. cal integration of Eq(5) in the case of one spatial dimensida)

For dge>d|, the LS’s are relatively stable both in the puisating LS's close to the instability boundaty,=0.5x 10~%; (b)
bistability regime (for p<1 in Fig. 8, and also in the periodically branching LS's fod,,=0.25x 10" . The space-time
monostable regiméfor p>1). In the bistable regime a LS plots are on the left; the Fourier spectrum evolution, at the right.
can be written and erased; in the monostable regime one L&he parameters ae=0.7, dg=0.6x10"*; the other parameters
always exists. The width of the LS is dependent on the gair@s in Fig. 8. Time runs ovekt=125 from the top to the bottom of
parameterp, and is restricted both bylge and d,,, (by the the plots.
larger one of the twp

Large gain parameters lead to nonstationary LS’s. Figure
9 shows nonstationary dynamics of LS’s. During the evolu- A. Switching processes of the localized structures
tion, the field of the LS remains localized; however, the form The quasi-self-imaging resonator geometry leads to dy-

of the LS changes periodically. At the border between the,smica| peculiarities of LS's, compared to those of quasipla-
stationary and nonstationary regirte the very onset of the 4 resonators. One such peculialias shown in the previ-
nonstationary regimethe width of the LS changes periodi- s sectiopis the strong competition between the LS's. The
cally [Fig. 9(@)]. Further increase of the gain leads to com-| S's compete even when they are strongly spatially sepa-

plicated periodical branching of LS’s: the LS's broadens,rated in the near field, which is different from the quasiplanar
splits into two LS’s, then one of two LS’s wins in the com- case where there is not near and far field.

petition, and leads to the new branching cyidfég. 9(b)]. The switching is observed experimentally when the writ-
With a decrease alg. (broader aperture of diaphragm in ing laser beam initiates a LS in a new positid¢tig. 10: the

the focal plangthe parameter range corresponding to stable

LS shrinks(left curve in Fig. 8. For dge<<d,,,, when the

diffraction dominates over diffusion, stable LS’s are impos- “
sible, as follows from our numerical calculations. /
The nonstationary dynamics in two dimensions is qualita-
(@ ® © @ O}

V. DYNAMICS OF LOCALIZED STRUCTURES

tively the same. The spot flattens, degenerates into a ring,

then the ring splits into twdor sometimes three, or four

LS’s, and only one “daughter” LS survives in the competi-

tion for their common population inversion. The detailed FIG. 10. Switching of LS’s initiated by an external bleaching

analysis of the nonstationary regimes is outside the scope fam in @ new position across the laser aperture. Arrowbjn
the paper, and will be given elsewhere indicates the place of the initiating beam incidence. The time inter-

val between neighboring pictures is 2.5 s.
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injection enough to bleach stronger than at the previous soliton loca-
tion.

The energy of injection switched on an off for the second
time in Fig. 11 is sufficiently strong to win: The initial LS
decays, and the new one, induced by injection, develops. The
injection energy was 5% larger than in the previous case.

B. Propagation of localized structures
mjection in the misaligned resonator

time

The LS’s are stationary for spatially homogeneous param-
eters (apart from the Brownian motion due to nojiséor
spatially inhomogeneous parameters, motion of LS’s can oc-
cur. Such inhomogeneity can, e.g., occur due to a tilt of
mirrors and/or lenses in the resonator. Then the space isot-
ropy is broken, and the LS starts to drit.g., along thec
axis if the resonator mirrors are tilted in tRedirection until
they reach the edge of the laser aperture.

The spatial soliton drifts without change in its size or
shape when the resonator mirror is tilféetg. 12a)] like that

_—> observed in Ref[5], and predicted in Ref12]. In this ar-
space rangement, the drift direction is completely determined by
) o o the direction of the mirror tilting: when the mirror is tilted

FIG. 11. The dynamics of switching of LS’s by injection as aroyng the vertical axis the spatial soliton drifts in the hori-
obtained by numerical integration of Eh) in case of one spatial  ;,na direction. However, when one of the intracavity lenses
dimension. First, injection flash occurs tat 40; second, at=80. s 15064 closer to the resonator cerf@e Fig. 1, the spa-
The peak amplitude of the first injection beam was 4.1; that of thetial soliton drifts even for perfectly aligned resonator mirrors.

second was 4.4; the width of the injection beam was=0.1. (For . . . .
. . _.In this case, the spatial soliton drifts toward the resonator
comparison, the peak amplitude of the LS under these conditions

wasApeq=4.882; the width wadr =0.0745) The parameters are ahX'S |ndependen_t O_f 'ti mt;tlalTlg_catlon and r((ejmalr}s st?b_le on
p=0.8, dpe=1.5<10% d,,=10* the other parameters are as the resonator axig=ig. 12b)]. This corresponds to localizing

in Fig. 8. Time runs oveAt=125 from the top to the bottom of the ({r@PPiNg of a soliton due to phase troughl. .
plot. We accounted for the spatial anisotropy by including phe-

nomenologically, the symmetry breaking term in E5g):

new soliton is switched on in a new position while the old
soliton dies at the same time. This shows the strong compe-
tition between the spatial solitons, and implies that a LS can

be switched off(erasedl by injection anywhere in the ab- . .
sorber plane ( ol by inj yw Here, theT\,_ are the same nonlinear terms as in Esp).

The numerical calculations presented in Fig. 11 illustrateir describes the tilt of the mirror, and has the dimension of
this switching process. In Fig. 11 the simulated injection@ Velocity. . . .
beam has been switched on twice for a short time. After the. The LS’s move with a constant velocity proportional to
injection has been switched on and off for the first time, thekg: - In the limit of a fast nonlinear absorbey:— the ve-
initial LS remains, although perturbed by injection. The in-locity is equal toky ; For a slow absorber, the velocity is
jection energy (intensity times duration was not large dependent also on. However the slowness of the absorber

OA=—kyVA+(dretidim) VAT Ty (10)

Cavity axis
{
B S e |
ol
— b) ‘ FIG. 12. Drift motion of the LS(a) trans-
. _ versely, for the tilted resonator mirraip) and(c)
B 5 toward the LSA resonator axis for an intracavity
— lens shift from the self-imaging geometry. Ar-
a) _ — rows indicate initial positions of the spatial soli-
T _ ton (b) on the left andc) on the right side of the
2 _ c) ’ laser cross section. The time interval between
= _ | _ neighboring pictures is 3 s.
:

Transverse coordinate —m=

0 1 2 3 4 5

Transverse coordinate (mm )
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However, when the LS reaches the edge of the resonator
mirror (zero boundarigsit dies because of larger losses
there. After that, the LS disappears and the injection can
create a new one. This scenario is plotted in Figlalés
obtained numerically.

When, however, the tilt of the mirror is smaller than some
threshold, then the LS’s can “glue” to the edge of the reso-
nator when approaching it. This case is illustrated by a
space-time plot in Fig. 18).

We can interpret the gluing of a LS to the edge of the
resonator in terms of a LS interaction with its image. The
edge of the resonator corresponds to zero boundary condi-
tions. The zero boundary can be described by the image of
the LS placed symmetrically with respect to the boundary,
and with opposite phase to the real structithe phase of the
image is shifted byr). The LS interacts with its image. For
zero boundary conditions, this interaction seems to be repul-
sive, which explains qualitatively the gluing phenomenon.

(d)

(e)

VI. CONCLUSIONS

We have investigated theoretically and experimentally the
FIG. 13. The periodic LS. Unidirectional drift motion and emission of a laser with saturable absorber in the form of a

switching off occurs for a tilted resonator mirror and the permanen$SPatial soliton. The parameters for the existence of these soli-
local bleaching of the BR absorber cell by a laser beam. tons were determined.

The motivation for these investigations was to prove that
does not produce qualitative differences, thus we give resultsS'S can be manipulated, as it is necessary to realize an
of the calculation for the casg— only. associative memory as theoretically described in Ref.
Here we have used amplifier and absorber in Fourier-
conjugated planes in order to limit the number of LS’s to
one: to create a simple situation for experimenting with LS’s.
For excitation of several LS’s one has to arrange amplifier

The simultaneous tilt of a laser mirror and the constantand absorber in the same plane. Our first experiments of this
injection of the absorber by an external light beam can leadind yielded up to 20 stationary LS's.
to periodic dynamics. This was observed experimentally: pe- The principle results of the work are the proofs that soli-
riodic spatial soliton switching on, unidirectional drift mo- tons are bistable. A soliton can be written anywhere in the
tion, and switching off occu(see Fig. 13 laser cross-sectiofispatial multistability. Solitons remain

The injection creates a LS at some position. Due to mirrostructurally stable in the presence of phase gradients. They
tilt this structure moves away from the bleaching beam podrift along a phase gradient, and they can be captured by a
sition. The bleaching now cannot create a new LS, due tphase trough. And finally, good correspondence between ex-
strong competitior{as described in the previous subsection periments and numerical simulations may be mentioned.

C. Dynamics of localized structures in the misaligned
resonator in the presence of constant bleaching

boundary injection boundary injection

/

FIG. 14. (a) Periodic switching of the LS in
the presence of constant injection and tilted mir-
rors as obtained by numerical integration of Eq.
(5) in the case of one spatial dimension for rela-
tively large tilt, k;;=0.01; (b) “gluing” of the
LS to the edge of the resonator for smaller tilt
kit =0.005. The parameters of injection beam are
peak amplitude, Ageq=2.5; width, Ar=0.1;
other parameters as in Fig. 8. Time runs over
At=125 from the top to the bottom of the plot.

o
~
time

b)

time

space space
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