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Spatial soliton laser: Localized structures in a laser with a saturable absorber
in a self-imaging resonator

V. B. Taranenko, K. Staliunas, and C. O. Weiss
Physikalisch Technische Bundesanstalt, 38116 Braunschweig, Germany

~Received 7 February 1997!

We demonstrate theoretically and experimentally the manipulation of spatial localized structures~spatial
solitons! of a laser with saturable absorber in a self-imaging resonator. We show the on-off bistability of the
solitons, their movement by phase gradient forces, the parameters of their existence, the limits of their stability,
and periodic soliton nucleation and dynamics.@S1050-2947~97!04908-1#

PACS number~s!: 42.65.Sf, 42.60.Mi, 42.65.Tg
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I. INTRODUCTION

Spatial localized structures~LS’s!, or spatial solitons are
presently of interest in optics because of their potential
plications for parallel information processing purposes, s
as optical pattern recognition, classification, and parallel
formation storage. Up to now, such localized structures h
been theoretically predicted in the following systems:~1!
externally driven Fabry-Pe´rot resonators with focusing me
dia inside~optically bistable devices! @1#; ~2! laser systems
with saturable absorber@2#; ~3! optical parametric oscillators
@3#. Experimentally, LS’s have been demonstrated in a la
with saturable absorber@4# and in a corresponding system
where the gain and loss elements in the resonator were
torefractive crystals@5#. Apart from this, LS’s have been
experimentally realized in electro-optical systems, such
liquid-crystal light valves@6#, which are, however, not pur
‘‘all optical’’ systems.

Here, we work with spatial solitons in a laser with ga
element and saturable absorber in conjugated planes o
resonator. The shape of the spatial soliton is given not by
resonator geometry, but by a balance between nonlinear
on one side, and diffraction and/or diffusion on the oth
side. The spatial soliton can move freely in transverse dir
tion throughout the laser aperture and the soliton can
bistable with respect to switching it on and off. This mea
that a soliton can be ‘‘written’’ anywhere in the laser cro
section, thus providing a spatial memory function.

We show how a spatial soliton can be caused to move
gradient forces, in particular by phase gradients in the cr
section of the laser aperture. This can, e.g. be used to tr
soliton at a desired location, providing a means for patt
recognition@7#, or to manipulate solitons otherwise. Stabili
limits, writing and erasing of solitons, as well as dynam
regimes of solitons are shown.

The specific properties of the solitons in the system u
~laser with saturable absorber in conjugated planes of a
imaging resonator! are discussed as opposed to a correspo
ing laser in a plane mirror resonator@2#. The spatial soliton
in this ~conjugated plane! configuration is shown to be
spatial analogue of the temporal pulse emitted by a passi
mode-locked laser.

We start with the description of the experimental set
and the corresponding theoretical model~Sec. II!. In Sec. III
561050-2947/97/56~2!/1582~10!/$10.00
-
h
-
e

er

o-

s

the
e
es
r
c-
e

s

y
ss

a
n

d
lf-
d-

ly

,

evidence of spatial solitons is given. Section IV gives t
analysis of existent parameters and stability limits of the s
tial LS’s. In Sec. V some dynamical peculiarities are r
ported, such as the drift of localized structures due to ph
gradients, soliton gluing to the edges of the laser apert
switching on and off by means of external injection, and a
periodic dynamics of spatial solitons under continuous inj
tion and a phase gradient.

II. EXPERIMENT AND MODEL

A. Experimental setup

A self-imaging resonator configuration is used for a d
laser with bacteriorhodopsin~BR! as a saturable absorbe
The gain element~dye cell! and the saturable absorber a
placed in Fourier conjugate planes of the resonator. In or
to give freedom for pattern formation this resonator provid
a large area near the mirrors and small beam diameter in
center at the gain element. A scheme of experimental setu
shown in Fig. 1.

We use a solution of 6-aminophenolynon in ethyl alcoh
as the gain element in order to match the spectral absorp
band of BR. The dye solution flows inside a cuvette loca
in the central part of the resonator. The dye cell is pump
by the second harmonic~at 532 nm! of a passively
Q-switched Nd:YAG~neodymium-doped yttrium aluminum
garnet! laser operating in a pulse-periodic regime with a re
etition rate of 12.5 Hz. Typical values for the pumpin
pulses are 2 mJ~pulse energy! and 15 ns~pulse width!. The

FIG. 1. Experimental setup.
1582 © 1997 The American Physical Society
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56 1583SPATIAL SOLITON LASER: LOCALIZED . . .
pump beam irradiates the active cell at a small angle~;8°!
with respect to the resonator axis. The pumped area of
dye cell is 0.2 mm diameter for the focused pump beam
1 mm for an unfocused beam. At that pumping condition,
unsaturated single pass gain of the dye cell reaches m
than 100.

A cell with BR absorber is placed near one resonator m
ror. A water-glycerol suspension of genetically modified B
D96N @8# is used as the saturable absorber. BR is a ph
active energy converting molecule@9# having a large
extinction coefficient of 63 000 M21 cm21 at 568 nm. Non-
linear materials based on BR and its genetically modifi
analogues are easily saturated~10 mW/cm2! and are ex-
tremely stable against thermal and photochemical degr
tion @10#. In order to increase the photoresponse time of B
D96N ~up to around 1 s! and thereby integrate the las
pulses, the suspension was buffered atpH 9. The unsaturated
transmission of the BR absorber is chosen to be 0.028 at
nm.

The change of the intracavity BR absorber transmissio
initiated by an additional~bleaching! unfocused beam of a
He-Ne laser~TEM00, l5633 nm! controlled by a shutter
The linear resonator length is fixed~365 mm! and equals
4 f ~where f is the focal length of the lenses! while the dis-
tance between the active element and one of the intraca
lenses can be varied. The transverse structure of the
emission in the near field is monitored by a CCD cam
connected to a computer.

B. Theoretical model

Here, we derive the theoretical model for lasers with sa
rable absorber in a self-imaging resonator based on exis
models for such a laser with plane resonator. Such a m
has been used in Ref.@2# to study the localized structures i
lasers with saturable absorber in plane resonators:

] tA5
pA

11uAu2/ap
2

b0A

11uAu2/as
2aA1~dRe1 id Im!¹2A.

~1!

Here, p is the gain parameter,ap is the gain saturation
intensity,b0 is the maximum value of the nonlinear absor
tion, as is the absorption saturation intensity,a is the linear
loss, anddRe anddIm are the diffusion and diffraction coef
ficients. The order parameterA(rW,t) is proportional to the
envelope of the optical field in the two-dimensional tran
verse planerW5(x,y), and depends on time normalized to t
photon round-trip time. Using this normalization, the diffra
tion coefficient isdIm5L/(2k), whereL is the full resonator
length ~twice the linear resonator length!, andk is the wave
number of the radiation. Diffusion coefficientdRe is related
to the spatial frequency filtering, and will be discussed
low.

Equation~1! was derived, using adiabatic elimination
the fast atomic variables, from the Maxwell-Bloch equati
system~including two-level amplifying and also absorbin
atoms!. It assumes that the population inversion of the a
plifying medium, and that of the nonlinear absorber, rela
infinitely fast in comparison with the optical field. In order
account for the effects of inertia of absorber, the underly
Eq. ~1! can be modified to yield
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] tA5
pA

11uAu2/ap
2~a1b!A1~dRe1 id Im!¹2A, ~2a!

] tb5g~b02b2buAu2/as!, ~2b!

which in the limit of fast absorberg→` coincides with Eq.
~1!.

Equations~1! and ~2! describe light matter interaction
phenomena of lasers with saturable absorber. These mo
however, are valid only in the paraxial approximation cor
sponding to a plane resonator. For resonator configurat
different from planar, the system has particular propert
which have to be taken into account by modifying Eqs.~1!
and ~2!. In the following, we derive the model for our sel
imaging resonator configuration, based on Eqs.~1! and ~2!.

The linear parts of Eq.~1! can be retrieved by calculatin
the light rays in geometrical optics. The ray inclined by
angleu to the optical axis of the plane mirror resonator ha
larger optical path in one round-trip in the resonator co
pared with the ray directed parallel to the optical axis. T
change of the optical path length isDL5Lu2/2, for small
anglesu. Relating the angle with the components of the wa
number parallel and perpendicular to the optical axis of
resonator:u5k' /k, one obtains the dispersion relation fo
the planar resonator,vk'

5Lk'
2 /(2k) ~we recall that the fre-

quency is normalized to the free-spectral range!. This leads
to the diffraction term in Eq.~1! with diffraction coefficient
dIm5L/(2k).

The dispersion relation~thus diffraction coefficient in the
order-parameter equations! can be obtained directly from th
ABCD matrix @11# analysis. TheABCD matrix for a planar
resonator is

ABCD5 I1 L

0 1
I . ~3!

The dependence of optical length on the angleu is given
by the nondiagonal element of ABCD matrix
(ABCD)12, DL5(ABCD)12 u2/2. This leads to the above
calculated dispersion relation, and the correct value of
fraction parameter.

The ABCD matrix for our near self-imaging resonato
~Fig. 2! is

FIG. 2. Sketch of the quasi-self-imaging resonator used in
periment. The deviation from the self-imaging length isl .
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1584 56V. B. TARANENKO, K. STALIUNAS, AND C. O. WEISS
ABCD5 I1 4• l

0 1
I . ~4!

Here, l is the displacement of the plane mirrors from t
self-imaging length. For the precisely self-imaging casl
50, andABCD matrix is the unit matrix. This means that
ray with arbitrary position and arbitrary angle to the optic
axis returns back to the same position after one round
As a consequence, every ray has the same optical leng
one round-trip in the resonator. This leads to no dispersio
the resonator; thus to zero diffraction,dIm50.

For the approximate self-imaging case (lÞ0), the
ABCD matrix of our resonator coincides with that for plan
resonator of the total length 4l . Then the order-paramete
Eqs.~1! and~2!, derived from the planar resonators, are va
also for the case of nearly-self-imaging resonators. The
fraction coefficient for our resonator isdIm52l /k.

The mathematically rigorous proof of equivalence b
tween the planar and self-imaging resonators will be giv
elsewhere. We note here that this equivalence has impo
consequences. As follows, the resonator as used in our
periment can reproduce a planar resonator of extremely~in
the limiting case, infinitely! small length. This allows the
reader to obtain extremely large Fresnel numbers~aspect ra-
tio! of the system. For instance, the smallest size of the
calized structure in the planar resonator isDx5dIm

1/2

5(Ll)1/2, and is limited in optics mainly by the resonat
length. In the case of our self-imaging resonator, the m
mum size of the LS’s could be decreased to zero, if
paraxial approximation would hold.

We note, that for resonators with the length shorter th
the self-imaging length, the diffraction coefficient is neg
tive. This means that the optical length for rays at nonz
angle to the optical axis is smaller than that for the ra
parallel to the optical axis of the resonator. However, in
absence of the focusing or defocusing nonlinearities the
of diffraction has no meaning.

As a conclusion, one can use Eqs.~1! or ~2! in order to
simulate spatiotemporal dynamics of fields of lasers in s
imaging or quasi-self-imaging resonators. The only diff
ence from the planar resonator case is the value of the
fraction coefficient.

There is a requirement for validity of Eqs.~1! and~2! for
the nearly-self-imaging case: all the nonlinear proces
must occur in the same location of the resonator along
optical axis. This requirement has no meaning in the qu
planar resonator case, since the field variation along the r
nator is negligible there. In our case, the fields vary stron
from the near field to the far field. Let us assume for defi
tiveness that the near field is generated at the plane mirro
the resonator. Then, the field at the focal point of the re
nator is the far field, which is the Fourier transform of t
near field. Consequently, there is a difference as to whe
nonlinear element is placed. Obviously, nonlinear opera
acting on the field in the space domain or in the Four
domain lead to different results.

It follows then, that the models, Eqs.~1! or ~2! are valid if
the both nonlinear elements are either in the far-field pla
or in the near-field plane: it is important that the nonline
operators act on the same domain. The situation in the
l
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periment is different. The nonlinear absorption takes pla
close to the resonator mirror, the nonlinear amplification
the fields, however, takes place at the focal plane of
resonator. Then Eqs.~2! have to be rewritten to take into
account this ‘‘far-field–near-field separation’’:

] tA~rW,t !5F̂21N̂~p,ap!F̂A~rW,t !1~dRe1 id Im!¹2A~rW,t !

2@a1b~r ,t !#A~rW,t !, ~5a!

] tb~rW,t !5g„b0~rW !2b~rW,t !2b~rW,t !uA~rW,t !u2/as….
~5b!

The N̂(p,ap) is a nonlinear operator of saturable gain:

N̂~p,ap!A5
pA

11uAu2/ap
~6!

acting on the field variable not in the spatial domains as
Eqs.~1! and~2!, but in the Fourier domain. The spatial Fo
rier transform~and afterwards the inverse Fourier transfor!
is therefore used in Eq.~5a! to change from the near-field t
far-field domain~and vice versa!:

F̂A5
1

2pE E A~x,y,t !exp~ ikxx1 ikyy!dx dy, ~7a!

F̂21A5
1

2pE E A~kx ,ky ,t !exp~2 ikxx2 ikyy!dkxdky .

~7b!

The ~physical! spatial coordinate in the Fourier plane
related with the transverse wave number v
r F5k'(l f /p). @A Gaussian beam of widthr 05(l f /p)1/2 is
the same width in the near- and far-field planes.#

Lateral boundary conditions must be added to the E
~5!. The iris in the near-field plane is approximated by t
corresponding spatial profile of the gain~or losses! a
5a(rW). The aperture in the far field~focal plane! results in
spatial frequency filtering, and is correspondingly appro
mated by the profile of losses in the Fourier domain. Assu
ing a parabolic profile of the gain in the Fourier doma
] tA(kW' ,t)52dRek

2A(kW' ,t), and converting to the spac
domain by inverse Fourier transform, one obtains] tA(rW,t)
5dRe¹

2A(rW,t). This means that the diaphragm in the Fo
rier domain is equivalent to diffusion in the space doma
This latter is the reason why the Laplace operator in~1, 2, 5!
has not only an obvious imaginary part~with coefficient
dIm! corresponding to diffraction, but also a real part~with
coefficientdRe! corresponding to diffusion.

The model~5! is the basis for the numerical analysis
the paper. We used the split-step technique for numer
integration of Eq.~5a!. In this technique, the local terms~the
linear losses and the nonlinear absorption! are calculated in
the space domain, whereas the nonlocal terms~diffraction
and diffusion of field, also the gain! are calculated in the
spatial wave-vector~Fourier! domain. A fast-Fourier trans
formation is used to change from the physical space to
spatial wave-vector space in every step of the numerical
tegration. Spatial grids were used of~1283128! for one- and
two-dimensional calculations; the spatial coordinate was n
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56 1585SPATIAL SOLITON LASER: LOCALIZED . . .
malized to the size of the integration region. Equation~5b!
was integrated in the spatial domain, since it does not con
any nonlocal terms.

III. EVIDENCE OF LOCALIZED STRUCTURES

A. Experimental evidence of localized structures

The experimentally measured dependence of the ave
laser output power on the average pump power shown in
3 exhibits a hysteresis loop~optical bistability!. At pump
powers corresponding to the bistable region@Fig. 3~a!# the
laser emits a small isolated quasi-Gaussian light spot.
increase of pump power leads to an increase of the l
beam cross section, which is accompanied by a change o
shape in the region between the bistable and monostabl
gime @Fig. 3~b!# and by structuring in the monostability re
gime @Fig. 3~c!#.

The spatial soliton size depends essentially on the pu
ing area aperture on the dye cell: the larger the pumping a
the smaller the spatial soliton size„compare the spot size fo
two cases: when the pump beam is focused@Fig. 4~a!# and
unfocused@Fig. 4~b!# into the dye cell, respectively…. This
shows that the spatial soliton size is limited primarily by t

FIG. 3. Experimentally measured hysteresis in the depende
of the laser output on the pump, and the transverse structure o
output laser beam for three fixed pump powers:~a! small size and
quasi-Gaussian spatial soliton in the bistable region,~b! intermedi-
ate size and super Gaussian soliton at the border between bista
and monostability, and~c! large size structure of strongly structure
profile in the monostable region.
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diffusion coefficient in Eq.~5!.
When the pump power is inside the hysteresis range@Fig.

3~a!# the spatial soliton can be switched on by a bleach
light beam incident on the BR absorber. The soliton can
switched on in any plane on the laser cross section, whic
our case is limited by the BR absorber cell aperture~10 mm!.
Figure 5 demonstrates how the single spatial soliton
switched on by the writing laser beam applied in differe
places of the BR absorber for a short time.~The power of the
He-Ne laser beam used for writing was 2 mW, the ene
density necessary for writing the LS’s was 15 mJ/cm2.! After
the spatial soliton is switched on in a particular place of
laser cross section it remains stable in this position. In ot
words, the laser possesses spatial multistability: a sin
bistable spatial soliton can have different stable positio
~different spatial states of the laser!.

B. Numerical evidence of the localized structures

We confirm the existence of localized structures by n
merical integration of Eq.~5!. The series of plots in Fig. 6

ce
he

lity

FIG. 4. Experimental observation of the laser spatial soli
structure:~a! for small and~b! for large pump area in the dye cel
illustrating the dependence of soliton size on diffusion.

FIG. 5. Positioning of a spatial soliton initiated by an extern
beam in different places of the laser cross section~the region inside
the dark circle is 2.7 mm in diameter!. ~a! Center,~b! left, ~c! up,
~d! right, and~e! down.
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1586 56V. B. TARANENKO, K. STALIUNAS, AND C. O. WEISS
show a LS developing from noise. We started from an ini
random distribution of fields@Fig. 6~a!#; the pump paramete
was larger than that corresponding to the bistable case~the
system is in the monostable regime!. In the subsequent evo
lution, the field grows linearly until the nonlinear regime
reached. In the linear stage of evolution filtering in the s
tial Fourier domain was apparent, which leads to the narr
ing of the spatial spectrum and consequently to broaden
of the spots in the spatial domain@Fig. 6~b!#.

In the nonlinear stage of the evolution two physical p
cesses dominate. Due to gain saturation, the spatial spec
broadens, thus the spots in the near field begin to narr
The saturation of absorption in the space domain also le
to a narrowing of the spots. Thus these two nonlinear p
cesses ‘‘work in the same direction’’ and lead to a format
of an ensemble of symmetric spots@Fig. 6~c!#. The width of
the spots is determined by the diffusion and diffraction pro
erties of the resonator~by the diffusion coefficientdRe,
which is determined by the width of the aperture in the fo
plane of the resonator, and by the diffraction coefficie
dIm , which is determined by the difference from the se
imaging length!. The spots at this stage of evolution a
‘‘spectrally limited’’ in the sense of spatial spectrum.

FIG. 6. Evolution of the symmetric stable localized structu
from an initial randomly distributed field as obtained by numeri
integration of Eq.~5! in the case of two spatial dimensions: le
spatial distributions~near field!; right, spatial spectra~far field!. The
parameters aredRe51023, dIm50.2531023, p52, ap59.82,
b051, as50.5, a50. The plots are given at times~a! t52.5, ~b!
t55.0, ~c! t57.5, ~d! t510.
l

-
-
g

-
um
w.
ds
-

-

l
t

In the subsequent nonlinear evolution, competition b
tween the spots occur. The spots, although well separate
the space domain, overlap completely in the focal plane.
gain saturation in the focal plane determines the total ene
of the radiation. Thus several spots in the spatial dom
share the inversion. The more spots in the ensemble,
smaller the average energy~and peak intensity! of the spots.
Due to nonlinear absorption, the weaker spots are m
strongly discriminated. This leads to competition among
spots. The strongest spot survives in this competition, an
single LS in the form of a symmetric spot finally develo
@Fig. 6~d!#. The spot shape is independent of its location, a
the location is determined by the initial random distributio
The spots~actually only one spot! can move freely in the
transverse plane.

This scenario of developing a single spot in the transve
plane is analogous to the pulse formation in lasers with p
sive mode locking. In both cases one starts from a rand
field distribution in the form of a random ensemble of puls
or spots. In both cases the spectral filtering occurs in
linear stage of the evolution~of frequency and of spatia
Fourier spectrum, correspondingly!. In both cases only one
pulse or spot survives in the nonlinear stage of the evolut
The competition occurs, because several pulses~spots! share
a common population inversion. For mode-locked lasers
amplifying medium is relatively slow and the amplificatio
depends on the integral energy. For our pattern forming
ser, the spatial spectra of individual pulses overlap in
focal plane, and the amplification again depends on the i
gral ~in space! characteristics of the radiation.

IV. PARAMETERS OF LOCALIZED STRUCTURES

A. Gaussian and/or parabolic expansion

For analytical treatment of single LS’s we approxima
their profile by a Gaussian function with unknown tim
dependent parameters:A(r ,t)5a(t)1/2exp@2c(t)r2#. Insert-
ing this into Eq.~5! one obtains a set of equations for th
complex parameters of the LS’s. Some assumptions
made allowing the reader to obtain a simple set of equatio

~i! Strong diffusion compared to diffraction:dRe@dIm :
This means, that the length of the resonator is precisely tu
to correspond to a self-imaging resonator. This allows
reader to consider the parameters of LS’s as real variab

~ii ! Fast saturable absorber:g@1: this allows the reade
to eliminate adiabatically, the absorption variable from E
~5b!.

~iii ! Parabolic profile of the LS’s. This allows the read
to simplify the saturating nonlinear terms by a series exp
sions:

A

11uAu2/as
→

Aa

11a exp~22cr2!/as
→

Aa

11a/as22acr2/as

→
Aa

11a/as
F11

2a cr2

a1as
G . ~8!

Using the above assumptions one obtains from Eq.~5!:

l
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dta52
2b0a

11a/as
1

2pa@113a/~ap4c2!#

@11a/~ap4c2!#2

22aa28acdRe, ~9a!

dtc5
2b0ca/as

~11a/as!
2 1

pa/~ap2c!

@11a/~ap4c2!#
24c2dRe. ~9b!

The system~9! is still too complicated to obtain analyti
cally tractable steady-state solutions, however, its analys
useful to obtain insight into the process of formation of t
LS’s.

The system~9! leads to singular solutions if diffusion i
absent,dRe50. Equation~9b! results in a continuous in
crease of the parameterc(t) ~inverse width of the LS!, which
means that the structure shrinks continuously. Forp.a
1b0 /(11a/as) the amplitudea(t) grows correspondingly
which leads to formation of an unphysical singularity.

The latter can be understood from the following cons
erations: The saturating absorption leads to narrowing of
LS. The saturating gain would lead to a broadening of
structure if it would occur in the space domain. Such a b
ance of saturation absorption and saturating gain leads to
formation of the spatial solitons in the quasiplanar cav
lasers@2#. However, in our case the saturating gain occurs
the Fourier plane, and the broadening of the structure in
Fourier domain leads to narrowing of the correspond
structure in the spatial domain. Thus, both nonlinear p
cesses narrow the LS, and develop a singularity if no ot
physical phenomena balance this ‘‘double’’ narrowing. T
balance in our model comes from the diffusion, as Eq.~9b!
shows.

To demonstrate the counterbalance between nonlinear
on one side, and diffusion on the other side, we plot in Fig
the vector field generated by Eqs.~9!. The arrows in Fig. 7
indicate the direction of temporal evolution of the state v
tor of the system~9! @horizontal, inverse widthc(t), of LS’s,
vertical, peak intensitya(t)#. Figure 7~a! represents the be
low threshold case: the axisa50 ~corresponding to trivial
solution! is absolutely attracting.

Increase of the pump parameter leads to the saddle-n
bifurcation as shown in Fig. 7~b!. The node point corre-
sponds to the parameters of the stable LS’s. Due to the p
ence of the saddle point the node is not absolutely attract
the trivial zero solution is also possible. In this regime a
appears via subcritical bifurcation, and thus is bistable. O
has then a possibility to write and erase a LS.

Further increase of the pumpp.a1b0 results in mono-
stability, as shown in Fig. 7~c!. The LS develops from arbi
trary initial conditions. In this regime one cannot erase
LS’s: the trivial zero solution is linearly unstable.

The evolution diagram leads to an understanding of
qualitative behavior of the system. To determine the para
eters of the LS’s one can solve Eq.~7! numerically. How-
ever, we present rather the results of the numerical inte
tion of the initial partial differential Eqs.~5! to determine the
parameters of the LS’s.

B. Numerical integration

We solve numerically, the initial partial differential equ
tions ~5! to determine the parameters and stability limits
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the LS’s without the approximations used to derive Eqs.~9!.
The calculations were carried out for one dimension due
restrictions of computational facilities@a few runs have been
done also for two-dimensional cases~see, e.g., Fig. 6!, how-
ever, this does not show qualitative differences#.

In numerical calculations we use a small but nonze
value of the diffraction parameterdIm51024. In the corre-
sponding experiment, this means a small deviation of
resonator length from the self-imaging length. In Fig. 8 t
width of the localized structure versus gain is plotted. T
four curves in the figure correspond to four different valu
of diffusion ~different radii of apertures in the focal plane!.
Towards small pump values, the LS’s die at the end of
corresponding curves. Towards larger pump values, the L
begin to pulsate periodically at the end of the co

FIG. 7. The vector field of evolution of parameters of the spa
soliton @amplitudea(t), in the vertical direction; and inverse widt
c(t), in the horizontal direction# as given by parabolic expansio
~7!. ~a! Below the threshold,p50.75, dRe50.127;~b! correspond-
ing to bistability, p50.79, dRe50.13; and~c! in the monostable
regime, p51.6, dRe50.29. Other parameters areap51, as51;
amplitudea(t) varies from 0 to 8.4; and inverse widthc(t), from 0
to 1.4 in all three cases.
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responding curve. A further increase of the pump param
leads to more complicated dynamical regimes.

Stable LS’s cannot be obtained for small values of dif
sion ~very wide apertures!. The rough condition for the ex
istence of a LS is that diffusion is approximately larger th
diffraction: dRe>dIm . For dominating diffraction the stabil
ity region of LS shrinks to zero, and periodically pulsin
LS’s occur.

For dRe.dIm the LS’s are relatively stable both in th
bistability regime ~for p,1 in Fig. 8!, and also in the
monostable regime~for p.1!. In the bistable regime a LS
can be written and erased; in the monostable regime one
always exists. The width of the LS is dependent on the g
parameterp, and is restricted both bydRe and dIm ~by the
larger one of the two!.

Large gain parameters lead to nonstationary LS’s. Fig
9 shows nonstationary dynamics of LS’s. During the evo
tion, the field of the LS remains localized; however, the fo
of the LS changes periodically. At the border between
stationary and nonstationary regime~at the very onset of the
nonstationary regime!, the width of the LS changes period
cally @Fig. 9~a!#. Further increase of the gain leads to co
plicated periodical branching of LS’s: the LS’s broaden
splits into two LS’s, then one of two LS’s wins in the com
petition, and leads to the new branching cycle@Fig. 9~b!#.

With a decrease ofdRe ~broader aperture of diaphragm
the focal plane! the parameter range corresponding to sta
LS shrinks~left curve in Fig. 8!. For dRe!dIm , when the
diffraction dominates over diffusion, stable LS’s are impo
sible, as follows from our numerical calculations.

The nonstationary dynamics in two dimensions is qual
tively the same. The spot flattens, degenerates into a r
then the ring splits into two~or sometimes three, or four!
LS’s, and only one ‘‘daughter’’ LS survives in the compe
tion for their common population inversion. The detail
analysis of the nonstationary regimes is outside the scop
the paper, and will be given elsewhere.

FIG. 8. The width of the stable LS versus pump parameter
four different values of diffusion coefficient~diameter of the aper-
ture in the focal plane! as obtained by numerical integration of E
~5! in the case of one spatial dimension. The parameters aredIm

51024, p52, ap57.83, b051, as51, and a50. The value
of the diffusion coefficient increases for curves from left to rig
dRe50.5dIm, dRe5dIm , dRe51.5dIm , dRe52dIm .
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V. DYNAMICS OF LOCALIZED STRUCTURES

A. Switching processes of the localized structures

The quasi-self-imaging resonator geometry leads to
namical peculiarities of LS’s, compared to those of quasip
nar resonators. One such peculiarity~as shown in the previ-
ous section! is the strong competition between the LS’s. T
LS’s compete even when they are strongly spatially se
rated in the near field, which is different from the quasiplan
case where there is not near and far field.

The switching is observed experimentally when the w
ing laser beam initiates a LS in a new position~Fig. 10!: the

r

FIG. 9. Nonstationary dynamics of LS’s as obtained by nume
cal integration of Eq.~5! in the case of one spatial dimension:~a!
pulsating LS’s close to the instability boundarydIm50.531024; ~b!
periodically branching LS’s fordIm50.2531024. The space-time
plots are on the left; the Fourier spectrum evolution, at the rig
The parameters arep50.7, dRe50.631024; the other parameters
as in Fig. 8. Time runs overDt5125 from the top to the bottom o
the plots.

FIG. 10. Switching of LS’s initiated by an external bleachin
beam in a new position across the laser aperture. Arrow in~b!
indicates the place of the initiating beam incidence. The time in
val between neighboring pictures is 2.5 s.
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new soliton is switched on in a new position while the o
soliton dies at the same time. This shows the strong com
tition between the spatial solitons, and implies that a LS
be switched off~erased! by injection anywhere in the ab
sorber plane.

The numerical calculations presented in Fig. 11 illustr
this switching process. In Fig. 11 the simulated injecti
beam has been switched on twice for a short time. After
injection has been switched on and off for the first time,
initial LS remains, although perturbed by injection. The
jection energy ~intensity times duration! was not large

FIG. 11. The dynamics of switching of LS’s by injection a
obtained by numerical integration of Eq.~5! in case of one spatia
dimension. First, injection flash occurs att540; second, att580.
The peak amplitude of the first injection beam was 4.1; that of
second was 4.4; the width of the injection beam wasDr 50.1. ~For
comparison, the peak amplitude of the LS under these condit
wasApeak54.882; the width wasDr 50.0745.! The parameters are
p50.8, dRe51.531024, dIm51024; the other parameters are a
in Fig. 8. Time runs overDt5125 from the top to the bottom of th
plot.
e-
n

e

e
e

enough to bleach stronger than at the previous soliton lo
tion.

The energy of injection switched on an off for the seco
time in Fig. 11 is sufficiently strong to win: The initial LS
decays, and the new one, induced by injection, develops.
injection energy was 5% larger than in the previous case

B. Propagation of localized structures
in the misaligned resonator

The LS’s are stationary for spatially homogeneous para
eters ~apart from the Brownian motion due to noise!. For
spatially inhomogeneous parameters, motion of LS’s can
cur. Such inhomogeneity can, e.g., occur due to a tilt
mirrors and/or lenses in the resonator. Then the space
ropy is broken, and the LS starts to drift~e.g., along thex
axis if the resonator mirrors are tilted in thex direction! until
they reach the edge of the laser aperture.

The spatial soliton drifts without change in its size
shape when the resonator mirror is tilted@Fig. 12~a!# like that
observed in Ref.@5#, and predicted in Ref.@12#. In this ar-
rangement, the drift direction is completely determined
the direction of the mirror tilting: when the mirror is tilte
around the vertical axis the spatial soliton drifts in the ho
zontal direction. However, when one of the intracavity lens
is placed closer to the resonator center~see Fig. 1!, the spa-
tial soliton drifts even for perfectly aligned resonator mirro
In this case, the spatial soliton drifts toward the resona
axis independent of its initial location and remains stable
the resonator axis@Fig. 12~b!#. This corresponds to localizing
~trapping! of a soliton due to phase troughs@7#.

We accounted for the spatial anisotropy by including ph
nomenologically, the symmetry breaking term in Eq.~5a!:

] tA52kW tilt¹
W A1~dRe1 id Im!¹2A1TNL. ~10!

Here, theTNL are the same nonlinear terms as in Eq.~5a!.
kW tilt describes the tilt of the mirror, and has the dimension
a velocity.

The LS’s move with a constant velocity proportional
kW tilt . In the limit of a fast nonlinear absorber:g→` the ve-
locity is equal tokW tilt ; For a slow absorber, the velocity i
dependent also ong. However the slowness of the absorb

e
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ty
-
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en
FIG. 12. Drift motion of the LS~a! trans-
versely, for the tilted resonator mirror;~b! and~c!
toward the LSA resonator axis for an intracavi
lens shift from the self-imaging geometry. Ar
rows indicate initial positions of the spatial sol
ton ~b! on the left and~c! on the right side of the
laser cross section. The time interval betwe
neighboring pictures is 3 s.
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does not produce qualitative differences, thus we give res
of the calculation for the caseg→` only.

C. Dynamics of localized structures in the misaligned
resonator in the presence of constant bleaching

The simultaneous tilt of a laser mirror and the const
injection of the absorber by an external light beam can l
to periodic dynamics. This was observed experimentally:
riodic spatial soliton switching on, unidirectional drift mo
tion, and switching off occur~see Fig. 13!.

The injection creates a LS at some position. Due to mir
tilt this structure moves away from the bleaching beam
sition. The bleaching now cannot create a new LS, due
strong competition~as described in the previous subsectio!.

FIG. 13. The periodic LS. Unidirectional drift motion an
switching off occurs for a tilted resonator mirror and the perman
local bleaching of the BR absorber cell by a laser beam.
lts

t
d
-

r
-

to

However, when the LS reaches the edge of the reson
mirror ~zero boundaries! it dies because of larger losse
there. After that, the LS disappears and the injection
create a new one. This scenario is plotted in Fig. 14~a! as
obtained numerically.

When, however, the tilt of the mirror is smaller than som
threshold, then the LS’s can ‘‘glue’’ to the edge of the res
nator when approaching it. This case is illustrated by
space-time plot in Fig. 14~b!.

We can interpret the gluing of a LS to the edge of t
resonator in terms of a LS interaction with its image. T
edge of the resonator corresponds to zero boundary co
tions. The zero boundary can be described by the imag
the LS placed symmetrically with respect to the bounda
and with opposite phase to the real structure~the phase of the
image is shifted byp!. The LS interacts with its image. Fo
zero boundary conditions, this interaction seems to be re
sive, which explains qualitatively the gluing phenomenon

VI. CONCLUSIONS

We have investigated theoretically and experimentally
emission of a laser with saturable absorber in the form o
spatial soliton. The parameters for the existence of these
tons were determined.

The motivation for these investigations was to prove t
LS’s can be manipulated, as it is necessary to realize
associative memory as theoretically described in Ref.@7#.
Here we have used amplifier and absorber in Four
conjugated planes in order to limit the number of LS’s
one: to create a simple situation for experimenting with LS
For excitation of several LS’s one has to arrange ampli
and absorber in the same plane. Our first experiments of
kind yielded up to 20 stationary LS’s.

The principle results of the work are the proofs that so
tons are bistable. A soliton can be written anywhere in
laser cross-section~spatial multistability!. Solitons remain
structurally stable in the presence of phase gradients. T
drift along a phase gradient, and they can be captured b
phase trough. And finally, good correspondence between
periments and numerical simulations may be mentioned.

t

ir-
q.
a-

ilt
re

er
FIG. 14. ~a! Periodic switching of the LS in
the presence of constant injection and tilted m
rors as obtained by numerical integration of E
~5! in the case of one spatial dimension for rel
tively large tilt, ktilt50.01; ~b! ‘‘gluing’’ of the
LS to the edge of the resonator for smaller t
ktilt50.005. The parameters of injection beam a
peak amplitude, Apeak52.5; width, Dr 50.1;
other parameters as in Fig. 8. Time runs ov
Dt5125 from the top to the bottom of the plot.
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