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Phase and transition-amplitude holonomy in optics

S. C. Tiwari
Bhawara Gali, Bayana 321 401, Rajasthan, India
(Received 15 October 1996

The Pancharatnam phase in two-photon experiments is interpreted in terms of a pair of paths in the product
space of polarization states. Vector-length holonomy in Weyl space is identified with the transition amplitude
for a two-level orthogonally polarized light system. It is shown that the geometry of the Posptaese admits
Weyl structure[S1050-2947)03407-Q

PACS numbdps): 03.65.Bz, 32.80.Bx

[. INTRODUCTION in a quantum system, and recently proposed modifications in
the transition probability due to Berry phalsg for suitably
Phase holonomy in quantum mechariitshas led to in- chosen Hamiltonian curves. Authors [8] have given an
tense activity in this field, and stimulated rediscovering€legant Jones matrix formulation in optics corresponding to
Reetov-Vladimirskii2] and Pancharatnam phag&$in op- the q_uantum-mgchamcal description of a two_—[evel transition
tics. Underlying geometrical and topological aspects hav@mplitude. Obviously the geometry of the Poincapaere is
been known to be significant, however their relationship withinadequate to describe the transition probability. Noting that
the phase holonomy is not easy and straightforward. Experit_he_multlvalued energy eigenvalue is crucial for the H_amll-
ments with classical light beams and with single-photon lightonian curves considered [6,7], we propose a generalized
fields have been reported, demonstrating the existence toincaresphere to admit Weyl structure in Sec. IIl to inter-
geometrical phases in optics, however their origin, i.e.pret the transition gmplltude as vector-length holonomy. Thls
whether classical or quantal, has been controversial. Intensit§léa[8] seems quite natural since the geometry of the Poin-
and state of polarization describe a classical light beam; pdc@resphere restricts the Weyl connection to be closed, i.e.,
larization ellipse and degree of polarization define the statd€ curvature 2-form is zero. This implies that only for mul-
of polarization. In 1892, Poincarproposed a geometrical (PIy connected space can the transitions occur.
representation for perfectly polarized light in terms of the Multiphoton experiments such as those [#], and the

points on a spherical surface, noting that the intenisiand guantum analog o_f the _observec_i transition probability in
the Stokes parametersM(C,S) satisfied the relation 2 two-state systems in opti¢§], are important to understand

=M?2+C2+ S2. The Pancharatnam phase is a manifestatiorﬁhe nonclassical nature of light, if any. Of equal importance

of the geometry of the Poincasphere. Naturally, one might 1S the problem of the physical mechanism responsible for
ask whether this is the most general geometry. Two recentl§1€S€ €effects. Since polarization of the light beams is made to
reported experiments in optics seem to be important for anchange in both experiments, the role of angular momentum

swering this question. Moreover, they might have significanteXChange could be crucial to affect such changes. In the final

implications on fundamental physics. In one of the experi-seCtiO” we present a discussion on this aspect, together with

ments, Brendekt al. [4] measure the Pancharatnam phaseconcluding remarks.
for a two-photon light field, and find that for an identically
polarized photon pair it is twice the Pancharatnam phase cor-
responding to a single-photon light field, and for orthogonal In order to make the discussion self-contained, we first
states of polarization of the pair it is zero. This experimentgive a brief description of the experiment reported by Bren-
confirms Klyshko’s resulf5], which showed the equivalence del et al.[4]. A time-correlated photon pair is generated by
of a one-photon field geometric phase to the classical Pardown-conversion in a beta barium borate crystal. Interfero-
charatnam phase, amdtimes of this phase fon identically  grams are recorded in a Michelson interferometer setup using
polarized photons per mode of the light field. The question otwvalanche photodiodes as photon detectors. The geometric
geometrical structure is not addressed, and a simple approaphase is introduced using two quarter-wave plates placed in
using a rotationally symmetric Hamiltonian as a function ofone arm of the interferometer. Interference patterns for
spin is used to interpret this result i4]. In the next section second-order interference and fourth-order interference are
we discuss this experiment and explain the results in terms aheasured by adjusting the path difference in relation to the
a pair of paths in a product state space of the Poincareoherence length of the light. In one set of experiments, a
sphere. fourth-order interference pattern is observed to be the prod-
Another class of experimen[§] studies transitions in an uct of single-photon interferences. Using large path differ-
optical two-level system driven by time-varying optical ele- ences and a time-resolved coincidence detection scheme, the
ments. This work is inspired by the Landau-Zener transitionsinge-photon effect is excluded in another set of experi-
ments. Following the famous statement of Dirac, Brendel,
Dultz, and Martiensseft] say that “a photon pair interferes
*Present address for correspondence: Department of Physics, Baith itself.” It is in this set of experiments that a geometric
naras Hindu University, Varanasi 221005, India. phase twice that of the classical value for parallel polariza
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tion or zero for orthogonal polarization of a two-photon statetum mechanics. The appearance of a factof inf Eq. (2) is
is observed. explained in terms of the two states of the polarization on the

The authors of4] insist that the observed interference is Poincaresphere. But, identification of S©) group transfor-
quantum-optical for a two-photon state. In an earlier papemations on the Poincasphere is not proper, despite the fact
[9] Brendel, Mohler, and Martienssen argued that althouglhat one has a two-state polarization system of light. In fact,
fourth-order interference did not necessarily imply a quanthe Jones matrix is an appropriate description for this, and
tum origin, with observed visibility above 50% by eliminat- one gets the correct phase relati@ in this approach12].
ing background intensity in the time-resolved detection, enit is known that SW2) has a 2:1 homomorphism with the
tangled temporal correlation of the photons in the pairrotation group SCB) in real space, while the Poincasphere
determined interferogram. The same argument is usgdljin represents polarization states such that one direction, usually
however the simultaneous assumption of an independeihe z axis, is fixed. Therefore, for a spin-half particle, e.g.,
photon in the pair is used to explain the first set of experi-electron or neutron, the §B) group is quite natural, but not
ments. How can an entangled two-photon state allow foin the case of light. Rotation group $8) naturally leads to
uncorrelated independent photon states? phase holonomy of Reetov-Vladimirskii for light.

Assuming quantum-optical interference, the question This problem of a factor of in Eq. (2) is resolved by
arises whether the observed phase is a quantum-opticabting that the Poincarsphere has the spherical polar coor-
phase. It is known that in second quantized field theory irdinatesr, 8, ¢, where
which the number operator makes sense, a conjugate Hermit-

ian phase operator does not exist. Recent constructions of r=I,

Hermitian phase operators in finite-dimensional state space

also do not relate quantum optics measurements with the 0=2¢, (4)
phase operators. Since phase and number operators do not

commute, one usually adopts a complementary description ¢=2 arctam.

of the quantum field. Essentially the interference pattern is . ) o ) )
an intensity measurement, and a quasiclassical approadfiS the azimuth of the polarization ellipse and<}) is the

(phase space or operational in the categorization of Barnegllipticity. The radius vector to a point on the sphere is called
and Dalton[10]) is implicit in [4]. the polarization eigenvector. To derive the Pancharatnam
Returning to the problem of geometric phase, by its Vewphase we proceed in two steps: calculate the phase ho-

definition this phase has a sort of absolute characteristic. THENOMY in the complex structure, ar{d) since the phase
state space of polarization cycles is the Poincsphere corresponds to the electric field vector, take the square root

S2. A vector parallel transported around a given curve orPf the phase factor exp((2), since this corresponds to the
S? is rotated through an angle equal to the solid angle subtomplex representation of intensity. This gives the correct

tended by the area enclosed by the curve. The parallel tran¥@/U€(2). Since Pancharatnam used intensity and phase for a
port law for a vectoss is given by light beam in the standard way, this anomaly did not arise in

his derivation.
ds : dxi i} The experimental result if4] is formally written as3
gt Flhikges =0 (1 ¢Q(c), where o=2 for parallel ande=0 for orthogonal
states of polarization are identified with the measured values.
wherex!(t), a<t<b defines a curve 08? and T, is the ~We have explained that the geometry of pathsSdrunam-
Christoffel symbol. This much is known from differential biguously gives rotation equal (c), and the role of spin
geometry. does not arise for t_he Pomcae;phere. Therefore, a geometri-
In the case of the Poincasmhere, any point on the sur- cal generalization is to con5|d_er a pair qf _p_aths in a product
face represents a definite state of polarization of monochrosPaceS?x S%. A physically motivated definition for any po-
matic light. Pancharatnam’s original derivatifj is based larization correlated light beams traversing circuits and
on the physical transmission of polarized light through anaC2 can be stated as
lyzer P and interference phenomenon, using spherical trigo-
nometry to calculate the net phase difference between the I'=3[0%(Cy)+0%(Cy) +20(Cy)Q(Cy)cos20]™,
polarization state®; and P,. Pancharatnam’s theorem can (5)

be stated as follows: the geometrical phase depends on there  is the angle between the polarization vectors of
solid angle() of the triangleP;P>P on the Poincarsphere  yhgtons. In the usual homotopy theory of topological spaces,
given by products of loops and paths can be defined that are not gen-
__1 erally commutative, however this cannot be adopted directly
I'=-3Q(P,P,P). 2 . . . :
in our case since we have a pair of paths in a product space.
In fact, Aitchison and Wanelik13] define a complex geo-
metric phase in terms of a pair of paths in a single state
space. Equatiofb) can be understood by first recalling that
H=T-a, ®) on the Poincarsphere the polar angleis equal to twice the
azimuth of the polarization ellipse; see Bd). Therefore,
where o is the Pauli spin matrix and is a unit vector pa- the product space has one of the spheres rotatesvith
rametrized by polar angle®,#), has been given by Berry respect to the other one. Parallel transport of the polarization
[11] analogous to the derivation of the Berry phase in quanvectors completing circuit€, andC, on these spheres gives

Derivation of Eq.(2) using the Hermitian polarization
matrix



56 PHASE AND TRANSITION-AMPLITUDE HOLONOMY IN OPTICS 159

direction holonomy, the composite of which can be formallylution. Dykhne's formula 15] gives a finite nonzero transi-
written as a scalar product giving E). tion probability to the stat¢W¥;) having another eigenvalue
Equation(5) is proposed to be valid for arbitrary polar- of H. The transition amplitude does not depend on the nona-
ization of photons in the pair, and sinee=0 (7/2) for par-  diabatic coupling responsible for the transition. Only the en-
allel (orthogonal polarizations, we get the experimental val- ergy phase integrals near the crossing point of potential
ues Q(C) (0) reported in[4]. Klyshko gave a quantum curves in the complex time plane are involved. For this rea-
generalization of the Jones matrix calculus using the idea afon, Hwang and Pechuk445] remarked that “Dykhne’s
a multiphoton polarization vectof5]. In general, for an formula is very simple, and very mysterious.” Davis and
n-photon state the projection space of the polarization vectoPechukas[15] have rigorously proved this formula, and
is S?", therefore classical correspondence is not obvious. IHwang and Pechukas prove a generalization of the adiabatic
all n photons have the same polarization, then the geometritheorem in a complex time plane, and derive directly a nona-
phase isn times the classical phase. Experiment§4hare  diabatic amplitude along the real time axis.
specialized to such a situation, thus being indistinguishable Joyeet al. [7] expand on this by considering the Berry
from a classical interpretation. In contrast, definiti@ is  phase for a loop in the complex plane around the eigenvalue
more general for a two-photon light field, and does not recrossing. In a significant geometrical approach they intro-
quire guantum-optical description. Though Pancharatnamuce a metric constructed with the eigenvaluedHotising
used great circles on the Poincaghere to derive his theo- the theory of Teichmueller spaces. This metric is shown to
rem, recent calculations by Berry and Kldit4] show that be useful for deciding the question of eigenvalue crossings.
the geometrical phase for arbitrary patfiscluding small  Berry[7] also obtained a geometric adiabatic amplitude for a
circles obeying Eq.(2) is valid in crystal optics. Geometri- complex Hermitian Hamiltonian. In Sec. Ill of his pagé,
cal origin of Eg.(5) thus ensures its general validity and it is shown that by a suitable transformation, the complex
experimental testability. Hamiltonian is transformed into a real symmetric one, and
Dykhne’s formula is applicable. This point has been noted in
Ref.[6] for optical experiments. Let us state our proposition
Ill. GEOMETRY OF TRANSITION PROBABILITY [16]: the Weyl vector-length holonomy corresponds to the

An optical analog of the transition probability for a transition amplitude, and the Weyl space is a natural state

twisted Landau-Zener model has recently been demonstrate2Cce€: .
[6]. This is an interesting experiment for two reasons. First, a " the Weyl geometry one has the gauge transformations
classical optical system exhibits tunneling effects, and secdefined by

ond, local aspects of the geometrical phase can be studied. '

The two-level system is formed out of two orthogonal polar- ds—ds'=Ads, 63

ization states of a single longitudinal mode of an optical ring A—A = A+ (InA) 6b)
I i i i ’

where the metric is

L'=L exp

cavity. Time-dependent voltages applied to three electro-

optic modulators simulate a Hamiltonian curve, for which

the authors of6] choose a twist function for the Gaussian

twisted Landau-Zener model. Laser light with definite polar- ds?=g;;dx'dx 7)

ization is injected into the ring cavity, which is tuned in

resonance with it. For a specific intracavity intensity level angnd Aidx‘ is a linear ground form. Unlike the Riemannian

acousto-optic modulator switches off the injection light. space, in this space a vector under parallel displacement from

Time-dependent optical elements drive this state to an orpoint x' to x'+dx undergoes changes in both direction and

thogonal polarization state within the cavity decay time.  |ength, the length change for a closed path being given by
The correspondence of the Jones matrix formalism for a

two-level optical system and the Schinger formulation for i

a two-level quantum system driven by a time-dependent real 3€ Aidx'|. ®

symmetric 22 matrix Hamiltonian is the basis of their the-

oretical description. The authors are careful to point out thélhe proposition stated above reinterprets Bj.by identi-

classical nature of their experiments. We ask the followingfying L andL’ to be the lengths of the state vector in state 1

question: is there a geometric description of the level transiand state 2, respectively. In quantum theory, the parent Hil-

tion amplitude? We will attempt here to show that there is. bert state of the quantum states ¢+ 1)-dimensional com-
The geometric rendition of the transition probability am- plex vector space, and the physical state for the equivalence

plitude is inspired by the key role of the multivalued energyclass of states under phase transformations is the projective

eigenvalue in this process. Intuitively, a multiply connectedHilbert space isomorphic to the complex projective space

state space seems appropriate. In order to appreciate the sigP". Since CP is Kahler, the natural generalization incor-

nificance of these observations, a brief discussion omorating gauge transformations leads to the WeythlKage-

Dykhne’s formula is first outlined. ometry. For a simply connected Weyl-Klar space, there is
Let us consider a two-state hondegenerate quantum syee vector-length holonomy, however non-simply connected

tem described by the time-dependent Sdiiger equation Weyl-Kahler space admits such a structure; @ for de-

with a time-dependent real symmetrick2 matrix Hamil-  tails.

tonian,H(t). If the time variation of the Hamiltonian is very For a two-level optical system, I¢E) and|E’) represent

slow, the adiabatic theorem shows that the system initially irorthogonal polarization states. The transition amplitude using

a statg/¥;) remains in this state for all time during its evo- Eq. (8) is
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A the objects appearing in Eq®) and(13) look similar to the
(E|E>=exp{ - jg Aidx')<E'|E'>- (9 fiber bundleg17], and might cause confusion. Weyl's origi-
nal theory was reinterpreted as a circle bundle over a Lorent-
We first show that the polarization state space, i.e., the Poirgian manifold, so that instead of the gauge transformations
caresphere, does admit the Weyl structure. The natural metone had complex phase transformations compatible with

ric on S? is induced by the Euclidean metric &7, guantum mechanics. It is this version which has been used in
P ) non-Abelian generalizations and unified gauge theories of
ds’=dr2+r?(d6°+sinf6 dg?). (10 fundamental interactions. In the present paper, we have used

the original Weyl space to allow vector-length changes under

Introducing gauge transformatioK), parallel transportation.

r=expS), (11a
A=exg—$), (11b IV. DISCUSSION AND CONCLUSION
Experiments on the two-photon Pancharatnam phake
Ai=—dS. (12 and transitions in two-level optical systerf8] have been
. analyzed in detail. Basically, the phenomenon regarding the
The 2-formF calculated from Eq(12) is zero. Therefore,  nanges in the polarization state of light is common to both
only the multivalued scalar functioB will give a nonzero s of the experiments. Geometrically the Poihcapiere

transition amplitude. represents the polarization state, and therefore a unified de-

. As an illustrative example,_ the m_ultiply gonnected Spacescription has to be based on the geometrySaf We have
is constructed from two hemispherical regionsS(@<7/2 i yroquced the idea of a pair of paths in a product Poincare
+¢€) and (7/2—e< <), the metrics being related the scale gnace 1o account for the result on the Pancharatnam phase
transformation(11) such thatS=—B¢, with B a positive  anqrted inf4]. Equation(5) suggests coupling of the phases
constant. Using Eq(12), the length holonomy is calculated ,cquired in different paths for arbitrary polarization correla-
to be tion, and contains the results obtained % as special cases
for identical and orthogonal polarizations.
jg A,dx'=27BN. (13 In the present paper an interpretation of the Weyl connec-
tion representing the traqsition amplitude is proposed, and
N is an integer, and the transition probability becomes the geometry O_f the_PolncaEphere is shown to admit Weyl
structure. In this Poincasé@/eyl space, the curvature 2-form
P=exp —4mBN). (14)  is zero, therefore only for multi-valued scalar fields does one
get nontrivial multiply connected space allowing transitions
This result can be understood in terms of the analytic confrom one space to another. A simple illustrative example is
tinuation of phase'? near the crossing point gt= 7 to the  given to obtain Eq(14). The constanB is not determined by
orthogonal polarization state, which lives on the secondyeometry, rather it is fixed by a physical problem. In the case
hemisphere, i.eE)—|E’). Paths in one region only give of the Landau-Zener model, E€L5), the scalar field is cal-
the Pancharatnam phase, and the scale transformation daggated to beS=3 In(A?+7) using Eq.(118 and transform-
not change the topology. ing Eq. (15) to a spherical coordinate system. Jayeal. [7]
One can examine the Landau-Zener model and its varighave given several geometries for which investigating Weyl
tions geometrically. The Hamiltonian vector considered bystructure would be interesting.
Berry [7] is During the past few years, an entangled two-photon state
: has been used to study the foundational problems of quantum
H(7)=(A cosp(7),A sing(),A7). (19 mechanics. In the final section of their pajéi, Brendel,
Dultz, and Martienssen have given a tentative suggestion that
their work on the geometric phase of two-photon light fields
For this as well as fors=7, calculations show that the geo- could be used for testing Bell's inequality and quantum non-

metrical contribution toP is zero. The geometry of the Iocal_|ty. In the present paper we have argued that the geo-
: istinquisfnetric phase for a two-photon state also has a geometrical

Qterpretation rendering quantum-mechanical description un-

The dynamical and geometrical parts in the exponen® of
are treated separately. The Landau-Zener modeld#a8.

between these two cases by considering the Weyl structu?

for SL. The metric forS, necessary. In _thg optical level trangitions, Bouwmeester and
co-workerg 6] indicate that that precise time evolution of the
ds?=dr2+r2d#?, (16) optical wave function is measurable in contrast to the prob-

lem of the collapse of quantum-mechanical state evolution.
admits the Weyl structure, and the length holonomy in thisHowever, they note that Planck’s constant in the description
case is also similar to E¢13) usingS=—B#. Hamiltonian  of the optical dynamics is a superfluous constant. In fact, by
curve (15) for ¢=0 is topologically the same &', while its very nature the state function ] is classical, therefore
the uniform helix is locallyS*x Z. That bothS* andS? are it cannot give information regarding histories of adiabatic
not simply connected topological spaces is the reason whguantum transitions. In quantum optics there is a problem in
one gets the transition amplitude holonomy. A useful referdistinguishing a quantum state from a classical ft. In
ence on the topology of manifolds [47]. An important another context, Sut¢t9] demonstrated an optical analog of
point regarding the Weyl space needs to be understood sine@e “quantum time-translation machine” experimentally and
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explained it classically. Bouwmeesteral.[6] are careful to  gular momentum transfer to the optical elemef8s18],
point out that although the Landau-Zener transition is supwhile in level transitions, time-dependent optical modulators
posed to be a quantum-mechanical effect, classical wavd$] may transfer angular momentum from one state of light
can exhibit tunneling. It is reasonable to conclude from thisto another. It may be noted that there is a renewed interest in
discussion that apparently both experimefdst] invoke  the problem of the angular momentum of light; $&8&] for
quantum mechanics, but do not yield an unambiguousurther references. The physical significance of the separa-
guantum-mechanical effect. tion of spin and orbital parts of the angular momentum of
Instead of the approach adopted to study fundamentdight beams, and the meaning of the spin of photons, are
questions on quantum mechanics, we suggest that the role b&ing debated. Any attempt to visualize a light beam in terms
angular momentum exchange in these experiments may la# constituent photons necessarily leads to the following
crucial [18]. Indeed, it is surprising that the mean value of questions: Is a light field some kind of photon fluid? Does
the angular momentum’s projection, E@) of Ref. [5], the internal structure of a photon make sense? Post has em-
arises in the description of the geometric phase, but its rolphasized the role of angular momentum quantization in the
has not been sufficiently stressed. Van Enk calculated thearly developments of quantum thed88]. It has also been
Pancharatnam phase for transformations of Gaussian ligiiointed out that rather than action, it would be more useful to
beamd20] and confirmed the suggestion of angular momen4reat Planck’s constant as an angular momentum unit. An
tum exchange18]. Further plausibility argument can be interesting work on the de Broglie wavelength of light beams
given by an analogy. Provost and Vallg] considered the [24] shows that the wavelength depends on the internal struc-
Riemannian structure of the quantum state space, and calcture of the Bose condensate of photons. A possible approach
lated metrics for some illustrative examples. The metric forto model the photon as an extended space-time object with
the atomic coherent states having an angular momentuinternal structure has also been outlif@®)]. It seems that

component equal td in the (6,¢) direction is given by the questions related to the optical phase holonomy and the
3 phase of a photon could be significant for assessing such
dSZZE[d02+ (S|n20)d¢2] (17) Speculatlons.
It has a Riemannian structure & with scalar curvature ACKNOWLEDGMENT

equal to 2). Comparing with Eq(10), a gauge field appears
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