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Phase and transition-amplitude holonomy in optics

S. C. Tiwari*

Bhawara Gali, Bayana 321 401, Rajasthan, India
~Received 15 October 1996!

The Pancharatnam phase in two-photon experiments is interpreted in terms of a pair of paths in the product
space of polarization states. Vector-length holonomy in Weyl space is identified with the transition amplitude
for a two-level orthogonally polarized light system. It is shown that the geometry of the Poincare´ sphere admits
Weyl structure.@S1050-2947~97!03407-0#

PACS number~s!: 03.65.Bz, 32.80.Bx
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I. INTRODUCTION

Phase holonomy in quantum mechanics@1# has led to in-
tense activity in this field, and stimulated rediscoveri
Reetov-Vladimirskii@2# and Pancharatnam phases@3# in op-
tics. Underlying geometrical and topological aspects h
been known to be significant, however their relationship w
the phase holonomy is not easy and straightforward. Exp
ments with classical light beams and with single-photon li
fields have been reported, demonstrating the existenc
geometrical phases in optics, however their origin, i
whether classical or quantal, has been controversial. Inten
and state of polarization describe a classical light beam;
larization ellipse and degree of polarization define the s
of polarization. In 1892, Poincare´ proposed a geometrica
representation for perfectly polarized light in terms of t
points on a spherical surface, noting that the intensityI and
the Stokes parameters (M ,C,S) satisfied the relationI 2

5M21C21S2. The Pancharatnam phase is a manifesta
of the geometry of the Poincare´ sphere. Naturally, one migh
ask whether this is the most general geometry. Two rece
reported experiments in optics seem to be important for
swering this question. Moreover, they might have signific
implications on fundamental physics. In one of the expe
ments, Brendelet al. @4# measure the Pancharatnam pha
for a two-photon light field, and find that for an identical
polarized photon pair it is twice the Pancharatnam phase
responding to a single-photon light field, and for orthogo
states of polarization of the pair it is zero. This experime
confirms Klyshko’s result@5#, which showed the equivalenc
of a one-photon field geometric phase to the classical P
charatnam phase, andn times of this phase forn identically
polarized photons per mode of the light field. The question
geometrical structure is not addressed, and a simple appr
using a rotationally symmetric Hamiltonian as a function
spin is used to interpret this result in@4#. In the next section
we discuss this experiment and explain the results in term
a pair of paths in a product state space of the Poinc´
sphere.

Another class of experiments@6# studies transitions in an
optical two-level system driven by time-varying optical el
ments. This work is inspired by the Landau-Zener transitio
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in a quantum system, and recently proposed modification
the transition probability due to Berry phase@7# for suitably
chosen Hamiltonian curves. Authors of@6# have given an
elegant Jones matrix formulation in optics corresponding
the quantum-mechanical description of a two-level transit
amplitude. Obviously the geometry of the Poincare´ sphere is
inadequate to describe the transition probability. Noting t
the multivalued energy eigenvalue is crucial for the Ham
tonian curves considered in@6,7#, we propose a generalize
Poincare´ sphere to admit Weyl structure in Sec. III to inte
pret the transition amplitude as vector-length holonomy. T
idea @8# seems quite natural since the geometry of the Po
carésphere restricts the Weyl connection to be closed,
the curvature 2-form is zero. This implies that only for mu
tiply connected space can the transitions occur.

Multiphoton experiments such as those in@4#, and the
quantum analog of the observed transition probability
two-state systems in optics@6#, are important to understan
the nonclassical nature of light, if any. Of equal importan
is the problem of the physical mechanism responsible
these effects. Since polarization of the light beams is mad
change in both experiments, the role of angular momen
exchange could be crucial to affect such changes. In the
section we present a discussion on this aspect, together
concluding remarks.

II. PHASE AND GEOMETRY OF PATHS

In order to make the discussion self-contained, we fi
give a brief description of the experiment reported by Bre
del et al. @4#. A time-correlated photon pair is generated
down-conversion in a beta barium borate crystal. Interfe
grams are recorded in a Michelson interferometer setup u
avalanche photodiodes as photon detectors. The geom
phase is introduced using two quarter-wave plates place
one arm of the interferometer. Interference patterns
second-order interference and fourth-order interference
measured by adjusting the path difference in relation to
coherence length of the light. In one set of experiments
fourth-order interference pattern is observed to be the pr
uct of single-photon interferences. Using large path diff
ences and a time-resolved coincidence detection scheme
singe-photon effect is excluded in another set of exp
ments. Following the famous statement of Dirac, Brend
Dultz, and Martienssen@4# say that ‘‘a photon pair interfere
with itself.’’ It is in this set of experiments that a geometr
phase twice that of the classical value for parallel polar
a-
157 © 1997 The American Physical Society
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158 56S. C. TIWARI
tion or zero for orthogonal polarization of a two-photon sta
is observed.

The authors of@4# insist that the observed interference
quantum-optical for a two-photon state. In an earlier pa
@9# Brendel, Mohler, and Martienssen argued that althou
fourth-order interference did not necessarily imply a qu
tum origin, with observed visibility above 50% by elimina
ing background intensity in the time-resolved detection,
tangled temporal correlation of the photons in the p
determined interferogram. The same argument is used in@4#,
however the simultaneous assumption of an indepen
photon in the pair is used to explain the first set of expe
ments. How can an entangled two-photon state allow
uncorrelated independent photon states?

Assuming quantum-optical interference, the quest
arises whether the observed phase is a quantum-op
phase. It is known that in second quantized field theory
which the number operator makes sense, a conjugate He
ian phase operator does not exist. Recent construction
Hermitian phase operators in finite-dimensional state sp
also do not relate quantum optics measurements with
phase operators. Since phase and number operators d
commute, one usually adopts a complementary descrip
of the quantum field. Essentially the interference pattern
an intensity measurement, and a quasiclassical appr
~phase space or operational in the categorization of Bar
and Dalton@10#! is implicit in @4#.

Returning to the problem of geometric phase, by its v
definition this phase has a sort of absolute characteristic.
state space of polarization cycles is the Poincare´ sphere,
S2. A vector parallel transported around a given curve
S2 is rotated through an angle equal to the solid angle s
tended by the area enclosed by the curve. The parallel tr
port law for a vectorsW is given by

dsi

dt
1G jk

i dx
j

dt
sk50, ~1!

wherexi(t), a<t<b defines a curve onS2 andG jk
i is the

Christoffel symbol. This much is known from differentia
geometry.

In the case of the Poincare´ sphere, any point on the su
face represents a definite state of polarization of monoc
matic light. Pancharatnam’s original derivation@3# is based
on the physical transmission of polarized light through a
lyzer P and interference phenomenon, using spherical tri
nometry to calculate the net phase difference between
polarization statesP1 andP2 . Pancharatnam’s theorem ca
be stated as follows: the geometrical phase depends on
solid angleV of the triangleP1P2P on the Poincare´ sphere
given by

G52 1
2V~P1P2P!. ~2!

Derivation of Eq. ~2! using the Hermitian polarization
matrix

H5 r̂ •sW , ~3!

wheresW is the Pauli spin matrix andr̂ is a unit vector pa-
rametrized by polar angles~u,f!, has been given by Berry
@11# analogous to the derivation of the Berry phase in qu
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tum mechanics. The appearance of a factor of1
2 in Eq. ~2! is

explained in terms of the two states of the polarization on
Poincare´ sphere. But, identification of SU~2! group transfor-
mations on the Poincare´ sphere is not proper, despite the fa
that one has a two-state polarization system of light. In fa
the Jones matrix is an appropriate description for this, a
one gets the correct phase relation~2! in this approach@12#.
It is known that SU~2! has a 2:1 homomorphism with th
rotation group SO~3! in real space, while the Poincare´ sphere
represents polarization states such that one direction, usu
the z axis, is fixed. Therefore, for a spin-half particle, e.g
electron or neutron, the SU~2! group is quite natural, but no
in the case of light. Rotation group SO~3! naturally leads to
phase holonomy of Reetov-Vladimirskii for light.

This problem of a factor of12 in Eq. ~2! is resolved by
noting that the Poincare´ sphere has the spherical polar coo
dinatesr ,u,f, where

r5I ,

u52z, ~4!

f52 arctanh.

z is the azimuth of the polarization ellipse and (12h) is the
ellipticity. The radius vector to a point on the sphere is cal
the polarization eigenvector. To derive the Pancharatn
phase we proceed in two steps:~i! calculate the phase ho
lonomy in the complex structure, and~ii ! since the phase
corresponds to the electric field vector, take the square
of the phase factor exp(2iV), since this corresponds to th
complex representation of intensity. This gives the corr
value~2!. Since Pancharatnam used intensity and phase f
light beam in the standard way, this anomaly did not arise
his derivation.

The experimental result in@4# is formally written as1
2

sV(c), wheres52 for parallel ands50 for orthogonal
states of polarization are identified with the measured valu
We have explained that the geometry of paths onS2 unam-
biguously gives rotation equal toV(c), and the role of spin
does not arise for the Poincare´ sphere. Therefore, a geometr
cal generalization is to consider a pair of paths in a prod
spaceS23S2. A physically motivated definition for any po
larization correlated light beams traversing circuitsC1 and
C2 can be stated as

G5 1
2 @V2~C1!1V2~C2!12V~C1!V~C2!cos2a#1/2,

~5!

where a is the angle between the polarization vectors
photons. In the usual homotopy theory of topological spac
products of loops and paths can be defined that are not
erally commutative, however this cannot be adopted dire
in our case since we have a pair of paths in a product sp
In fact, Aitchison and Wanelik@13# define a complex geo
metric phase in terms of a pair of paths in a single st
space. Equation~5! can be understood by first recalling th
on the Poincare´ sphere the polar angleu is equal to twice the
azimuth of the polarization ellipse; see Eq.~4!. Therefore,
the product space has one of the spheres rotated 2a with
respect to the other one. Parallel transport of the polariza
vectors completing circuitsC1 andC2 on these spheres give
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56 159PHASE AND TRANSITION-AMPLITUDE HOLONOMY IN OPTICS
direction holonomy, the composite of which can be forma
written as a scalar product giving Eq.~5!.

Equation~5! is proposed to be valid for arbitrary pola
ization of photons in the pair, and sincea50 ~p/2! for par-
allel ~orthogonal! polarizations, we get the experimental va
ues V(C) ~0! reported in @4#. Klyshko gave a quantum
generalization of the Jones matrix calculus using the ide
a multiphoton polarization vector@5#. In general, for an
n-photon state the projection space of the polarization ve
is S2n, therefore classical correspondence is not obvious
all n photons have the same polarization, then the geome
phase isn times the classical phase. Experiments in@4# are
specialized to such a situation, thus being indistinguisha
from a classical interpretation. In contrast, definition~5! is
more general for a two-photon light field, and does not
quire quantum-optical description. Though Pancharatn
used great circles on the Poincare´ sphere to derive his theo
rem, recent calculations by Berry and Klein@14# show that
the geometrical phase for arbitrary paths~including small
circles! obeying Eq.~2! is valid in crystal optics. Geometri
cal origin of Eq. ~5! thus ensures its general validity an
experimental testability.

III. GEOMETRY OF TRANSITION PROBABILITY

An optical analog of the transition probability for
twisted Landau-Zener model has recently been demonstr
@6#. This is an interesting experiment for two reasons. Firs
classical optical system exhibits tunneling effects, and s
ond, local aspects of the geometrical phase can be stu
The two-level system is formed out of two orthogonal pol
ization states of a single longitudinal mode of an optical r
cavity. Time-dependent voltages applied to three elec
optic modulators simulate a Hamiltonian curve, for whi
the authors of@6# choose a twist function for the Gaussia
twisted Landau-Zener model. Laser light with definite pol
ization is injected into the ring cavity, which is tuned
resonance with it. For a specific intracavity intensity level
acousto-optic modulator switches off the injection ligh
Time-dependent optical elements drive this state to an
thogonal polarization state within the cavity decay time.

The correspondence of the Jones matrix formalism fo
two-level optical system and the Schro¨dinger formulation for
a two-level quantum system driven by a time-dependent
symmetric 232 matrix Hamiltonian is the basis of their the
oretical description. The authors are careful to point out
classical nature of their experiments. We ask the follow
question: is there a geometric description of the level tra
tion amplitude? We will attempt here to show that there

The geometric rendition of the transition probability am
plitude is inspired by the key role of the multivalued ener
eigenvalue in this process. Intuitively, a multiply connect
state space seems appropriate. In order to appreciate the
nificance of these observations, a brief discussion
Dykhne’s formula is first outlined.

Let us consider a two-state nondegenerate quantum
tem described by the time-dependent Schro¨dinger equation
with a time-dependent real symmetric 232 matrix Hamil-
tonian,H(t). If the time variation of the Hamiltonian is ver
slow, the adiabatic theorem shows that the system initially
a stateuC i& remains in this state for all time during its evo
of
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lution. Dykhne’s formula@15# gives a finite nonzero transi
tion probability to the stateuC f& having another eigenvalu
of H. The transition amplitude does not depend on the no
diabatic coupling responsible for the transition. Only the e
ergy phase integrals near the crossing point of poten
curves in the complex time plane are involved. For this r
son, Hwang and Pechukas@15# remarked that ‘‘Dykhne’s
formula is very simple, and very mysterious.’’ Davis an
Pechukas@15# have rigorously proved this formula, an
Hwang and Pechukas prove a generalization of the adiab
theorem in a complex time plane, and derive directly a no
diabatic amplitude along the real time axis.

Joyeet al. @7# expand on this by considering the Ber
phase for a loop in the complex plane around the eigenva
crossing. In a significant geometrical approach they int
duce a metric constructed with the eigenvalues ofH using
the theory of Teichmueller spaces. This metric is shown
be useful for deciding the question of eigenvalue crossin
Berry @7# also obtained a geometric adiabatic amplitude fo
complex Hermitian Hamiltonian. In Sec. III of his paper@7#,
it is shown that by a suitable transformation, the comp
Hamiltonian is transformed into a real symmetric one, a
Dykhne’s formula is applicable. This point has been noted
Ref. @6# for optical experiments. Let us state our propositi
@16#: the Weyl vector-length holonomy corresponds to t
transition amplitude, and the Weyl space is a natural s
space.

In the Weyl geometry one has the gauge transformati
defined by

ds→ds85Lds, ~6a!

Ai→Ai85Ai1] i~ lnL!, ~6b!

where the metric is

ds25gi j dx
idxj ~7!

andAidx
i is a linear ground form. Unlike the Riemannia

space, in this space a vector under parallel displacement f
point xi to xi1dxi undergoes changes in both direction a
length, the length change for a closed path being given b

L85L expS R Aidx
i D . ~8!

The proposition stated above reinterprets Eq.~8! by identi-
fying L andL8 to be the lengths of the state vector in state
and state 2, respectively. In quantum theory, the parent
bert state of the quantum states is (N11)-dimensional com-
plex vector space, and the physical state for the equivale
class of states under phase transformations is the proje
Hilbert space isomorphic to the complex projective spa
CPN. Since CPN is Kähler, the natural generalization inco
porating gauge transformations leads to the Weyl-Ka¨hler ge-
ometry. For a simply connected Weyl-Ka¨hler space, there is
no vector-length holonomy, however non-simply connec
Weyl-Kähler space admits such a structure; see@16# for de-
tails.

For a two-level optical system, letuE& anduE8& represent
orthogonal polarization states. The transition amplitude us
Eq. ~8! is
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160 56S. C. TIWARI
^EuE&5expS 2R Aidx
i D ^E8uE8&. ~9!

We first show that the polarization state space, i.e., the P
carésphere, does admit the Weyl structure. The natural m
ric on S2 is induced by the Euclidean metric onR3,

ds25dr21r 2~du21sin2u df2!. ~10!

Introducing gauge transformations~6!,

r5exp~S!, ~11a!

L5exp~2S!, ~11b!

Ai52] iS. ~12!

The 2-formF calculated from Eq.~12! is zero. Therefore,
only the multivalued scalar functionS will give a nonzero
transition amplitude.

As an illustrative example, the multiply connected spa
is constructed from two hemispherical regions (0<u<p/2
1e) and~p/22e,u<p!, the metrics being related the sca
transformation~11! such thatS52Bf, with B a positive
constant. Using Eq.~12!, the length holonomy is calculate
to be

R Aidx
i52pBN. ~13!

N is an integer, and the transition probability becomes

P5exp~24pBN!. ~14!

This result can be understood in terms of the analytic c
tinuation of phaseeif near the crossing point atf5p to the
orthogonal polarization state, which lives on the seco
hemisphere, i.e.,uE&→uE8&. Paths in one region only give
the Pancharatnam phase, and the scale transformation
not change the topology.

One can examine the Landau-Zener model and its va
tions geometrically. The Hamiltonian vector considered
Berry @7# is

H~t!5„D cosf~t!,D sinf~t!,At…. ~15!

The dynamical and geometrical parts in the exponent oP
are treated separately. The Landau-Zener model hasf50.
For this as well as forf5t, calculations show that the geo
metrical contribution toP is zero. The geometry of the
Hamiltonian curve is, however, not the same. We distingu
between these two cases by considering the Weyl struc
for S1. The metric forS1,

ds25dr21r 2du2, ~16!

admits the Weyl structure, and the length holonomy in t
case is also similar to Eq.~13! usingS52Bu. Hamiltonian
curve ~15! for f50 is topologically the same asS1, while
the uniform helix is locallyS13Z. That bothS1 andS2 are
not simply connected topological spaces is the reason
one gets the transition amplitude holonomy. A useful ref
ence on the topology of manifolds is@17#. An important
point regarding the Weyl space needs to be understood s
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the objects appearing in Eqs.~9! and~13! look similar to the
fiber bundles@17#, and might cause confusion. Weyl’s orig
nal theory was reinterpreted as a circle bundle over a Lor
zian manifold, so that instead of the gauge transformati
one had complex phase transformations compatible w
quantum mechanics. It is this version which has been use
non-Abelian generalizations and unified gauge theories
fundamental interactions. In the present paper, we have u
the original Weyl space to allow vector-length changes un
parallel transportation.

IV. DISCUSSION AND CONCLUSION

Experiments on the two-photon Pancharatnam phase@4#
and transitions in two-level optical systems@6# have been
analyzed in detail. Basically, the phenomenon regarding
changes in the polarization state of light is common to b
sets of the experiments. Geometrically the Poincare´ sphere
represents the polarization state, and therefore a unified
scription has to be based on the geometry ofS2. We have
introduced the idea of a pair of paths in a product Poinc´
space to account for the result on the Pancharatnam p
reported in@4#. Equation~5! suggests coupling of the phase
acquired in different paths for arbitrary polarization corre
tion, and contains the results obtained in@5# as special case
for identical and orthogonal polarizations.

In the present paper an interpretation of the Weyl conn
tion representing the transition amplitude is proposed,
the geometry of the Poincare´ sphere is shown to admit Wey
structure. In this Poincare´-Weyl space, the curvature 2-form
is zero, therefore only for multi-valued scalar fields does o
get nontrivial multiply connected space allowing transitio
from one space to another. A simple illustrative example
given to obtain Eq.~14!. The constantB is not determined by
geometry, rather it is fixed by a physical problem. In the ca
of the Landau-Zener model, Eq.~15!, the scalar field is cal-
culated to beS5 1

2 ln(D
21z2) using Eq.~11a! and transform-

ing Eq. ~15! to a spherical coordinate system. Joyeet al. @7#
have given several geometries for which investigating W
structure would be interesting.

During the past few years, an entangled two-photon s
has been used to study the foundational problems of quan
mechanics. In the final section of their paper@4#, Brendel,
Dultz, and Martienssen have given a tentative suggestion
their work on the geometric phase of two-photon light fiel
could be used for testing Bell’s inequality and quantum no
locality. In the present paper we have argued that the g
metric phase for a two-photon state also has a geomet
interpretation rendering quantum-mechanical description
necessary. In the optical level transitions, Bouwmeester
co-workers@6# indicate that that precise time evolution of th
optical wave function is measurable in contrast to the pr
lem of the collapse of quantum-mechanical state evoluti
However, they note that Planck’s constant in the descript
of the optical dynamics is a superfluous constant. In fact,
its very nature the state function in@6# is classical, therefore
it cannot give information regarding histories of adiaba
quantum transitions. In quantum optics there is a problem
distinguishing a quantum state from a classical one@18#. In
another context, Suter@19# demonstrated an optical analog
a ‘‘quantum time-translation machine’’ experimentally an
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56 161PHASE AND TRANSITION-AMPLITUDE HOLONOMY IN OPTICS
explained it classically. Bouwmeesteret al. @6# are careful to
point out that although the Landau-Zener transition is s
posed to be a quantum-mechanical effect, classical wa
can exhibit tunneling. It is reasonable to conclude from t
discussion that apparently both experiments@4,6# invoke
quantum mechanics, but do not yield an unambigu
quantum-mechanical effect.

Instead of the approach adopted to study fundame
questions on quantum mechanics, we suggest that the ro
angular momentum exchange in these experiments ma
crucial @18#. Indeed, it is surprising that the mean value
the angular momentum’s projection, Eq.~9! of Ref. @5#,
arises in the description of the geometric phase, but its
has not been sufficiently stressed. Van Enk calculated
Pancharatnam phase for transformations of Gaussian
beams@20# and confirmed the suggestion of angular mom
tum exchange@18#. Further plausibility argument can b
given by an analogy. Provost and Vallee@21# considered the
Riemannian structure of the quantum state space, and c
lated metrics for some illustrative examples. The metric
the atomic coherent states having an angular momen
component equal toJ in the ~u,f! direction is given by

ds25
J

2
@du21~sin2u!df2#. ~17!

It has a Riemannian structure ofS2 with scalar curvature
equal to 2/J. Comparing with Eq.~10!, a gauge field appear
to affect angular momentum transfer. In optical experime
involving geometric phases, polarization cycles indicate
. P
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gular momentum transfer to the optical elements@8,18#,
while in level transitions, time-dependent optical modulato
@6# may transfer angular momentum from one state of lig
to another. It may be noted that there is a renewed intere
the problem of the angular momentum of light; see@22# for
further references. The physical significance of the sep
tion of spin and orbital parts of the angular momentum
light beams, and the meaning of the spin of photons,
being debated. Any attempt to visualize a light beam in ter
of constituent photons necessarily leads to the follow
questions: Is a light field some kind of photon fluid? Do
the internal structure of a photon make sense? Post has
phasized the role of angular momentum quantization in
early developments of quantum theory@23#. It has also been
pointed out that rather than action, it would be more usefu
treat Planck’s constant as an angular momentum unit.
interesting work on the de Broglie wavelength of light bea
@24# shows that the wavelength depends on the internal st
ture of the Bose condensate of photons. A possible appro
to model the photon as an extended space-time object
internal structure has also been outlined@25#. It seems that
the questions related to the optical phase holonomy and
phase of a photon could be significant for assessing s
speculations.
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