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Traveling and standing waves in a laser with an injected signal

Stefano Longhi
Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy

~Received 28 February 1997!

A complex order parameter description of the spatiotemporal dynamics close to threshold for a single-
longitudinal-mode, large-aspect-ratio laser with a weak injected signal is presented in one transverse spatial
dimension and for a longitudinal cavity frequency smaller than the atomic resonance frequency. It is shown
that, when the frequency of the external signal is tuned close to the atomic resonance frequency, the spatiotem-
poral dynamics of the laser may be described by two coupled Ginzburg-Landau equations with parametric
terms analogous to those derived in hydrodynamics to study excitation of parametric waves in oscillatory
convection. As a result of the parametric terms, which physically arise by means of a four-wave-intercation
process mediated by the external signal, the bifurcating modes which are superimposed to the forced~homo-
geneous! mode may be either traveling or standing waves. In particular, it is shown that for small frequency
detunings of the injected signal standing waves are preferred to traveling waves close to threshold. Stability
analysis of traveling and standing waves beyond threshold within the amplitude equations reveals the emer-
gence of both phase~Eckhaus! and amplitude instabilities.@S1050-2947~97!01308-5#

PACS number~s!: 42.65.Sf, 42.60.Mi
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I. INTRODUCTION

Pattern formation in nonlinear optics has attracted m
interest in recent years and a lot of theoretical and exp
mental work has been done in this field@1#. In particular,
inclusion of diffraction in the nonlinear dynamics of las
systems has revealed the appearance of symmetry-brea
bifurcations, spontaneous pattern formation, and comp
space-time behavior. Although in laser cavities with a sm
Fresnel number the nonlinear dynamics is strongly in
enced by external boundaries~i.e., spherical mirrors! and in-
volves few transverse cavity modes@2#, a universal descrip-
tion of the transverse laser dynamics may be obtained in
large-aspect-ratio limit, where pattern-forming properties
boundary free and depend only upon the intrinsic symmet
of the laser equations@3#. In the latter case the nonlinea
dynamics of the laser may be reduced, under suitable
proximations, to that of simpler equations having a univer
form ~order parameter equations!. The first derivation of an
order parameter equation for the single-longitudinal-mo
laser equations was given by Coulletet al. @4#, who showed
that the laser dynamics close to threshold can be descr
by a complex Ginzburg-Landau equation whenever the
lected longitudinal frequency is larger than the atomic re
nance frequency~negative detuning!. Although in this case
the bifurcating solution is homogeneous in space, the aut
showed that optical vortices may exist when diffraction
included in the equation. This analysis was extended
Newell and Moloney in the positive detuning case, where
laser emission spontaneously occurs off-axis because
tilted-wave mechanism@3,5–7#. In this case the authors ob
tained coupled Newell-Whitehead-Segel-type equations
the vicinity of the laser threshold. In the one-dimension
case, such equations reduce to two coupled Ginzb
Landau equations describing the competition between
counterpropagating traveling waves@5#. As shown in Ref.
@5#, a single tilted ~traveling! wave is able to dominate
whereas the superposition of two counterpropagating tra
561050-2947/97/56~2!/1553~11!/$10.00
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ing waves~a standing wave! is always unstable, collapsing t
one of the two traveling waves, which are global attractors
the laser equations. The effect of a weak injected signa
the transverse laser dynamics was investigated by Ma
et al. @8#, who derived in the negative-detuning case a co
plex Ginzburg-Landau equation for the order parameter. T
derivation of an order parameter equation in the positi
detuning case was not given in a closed form in that pape
Ref. @9#, a numerical analysis of the laser equations with
weak injected signal was given in the one-dimensional c
and for a positive detuning. The authors showed that
excitation of a single tilted wave is likely also when a we
signal is injected into the laser cavity, with the only diffe
ence that in this case the traveling wave is superimpose
the spatially homogeneous state forced by the injected sig
That analysis, however, assumes implicitly that the f
quency of the injected signal is detuned from the atom
resonance frequency, which is exactly the frequency of
emerging tilted wave. When the frequency of the inject
signal is tuned close to the atomic resonance frequenc
four-wave interaction with conservation of both transve
photon momentum and energy may occur among the for
mode and two counterpropagating traveling waves. Such
interaction, which is forbidden when the external signal
detuned from the atomic resonance frequency, is expecte
introduce new features in the laser dynamics. From a m
ematical point of view, this corresponds to the appearanc
the amplitude equations of new resonant terms. In this pa
we present a complex order parameter analysis of the l
dynamics with a weak injected signal in the positiv
detuning case when the frequency of the external signa
close to the atomic resonance frequency. Using a wea
nonlinear analysis of the laser equations close to thresh
in Sec. II we generalize the amplitude equations describ
the competition between traveling- and standing-wave p
terns in one transverse spatial dimension previously deri
by Jakobsenet al. @5#. When the frequency of the externa
signal is slightly detuned from the atomic resonance f
1553 © 1997 The American Physical Society
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1554 56STEFANO LONGHI
quency, parametric terms in the amplitude equations ap
as a result of a four-wave-mixing process among these wa
and the forced mode induced by the external signal. T
structure of the resulting amplitude equations is analogou
that derived in hydrodynamics to study oscillatory conve
tion @10–12# and, more generally, parametric excitation
waves in spatially extended systems@12,13#. The effects of
the injected signal on the laser dynamics are studied in S
III. It is shown that the amplitude equations have two fam
lies of solutions with one degree of freedom~the transverse
wave number!, which, with the terminology used in oscilla
tory convection, correspond to traveling waves~TW’s! and
standing waves~SW’s!. Because of the parametric intera
tion, the TW solution does not correspond, however, to
pure right- or left-traveling wave as in the case of a la
without an injected signal@5#, but to a mixed-mode solution
While the TW solutions exist for any transverse wave nu
ber and their frequency is not locked to that of the exter
signal, the SW solutions exist only in a narrow interval of t
transverse wave numbers and their frequency is locke
that of the external signal. Depending on the magnitude
the detuning between the atomic resonance frequency
the injected signal frequency, the bifurcating mode may
either a TW or a SW. When a SW is selected at the thre
old, a secondary bifurcation to a TW state occurs as
pump parameter is increased. The stability of TW and S
solutions is investigated by use of standard linear stab
methods, and it is shown that both amplitude and phase
stabilities may appear. As a general rule, it turns out that
stability region of SW’s in the parameter space lies bel
the curve of existence of TW’s, and it shrinks as the f
quency detuning between the external signal and the ato
resonance is increased due to the appearance of an amp
instability. In particular, SW’s are always unstable at hi
values of the frequency detuning. The stability region
TW’s is unbounded in the parameter space and, away f
the wave number region where SW’s exist, it reduces to
usual parabolic Eckhaus domain.

II. WEAKLY NONLINEAR ANALYSIS OF THE LASER
EQUATIONS AND DERIVATION

OF THE AMPLITUDE EQUATIONS

The starting point of our analysis is provided by the set
the Maxwell-Bloch equations for a single-longitudinal-mod
homogeneously broadened two-level laser with flat mirro
extended to include the injection in the cavity of a plan
wave field of frequency close to the atomic transition f
quency@6–9#. In one transverse spatial dimension and us
the same notations as in Ref.@7#, they read

] te5 i ~V2n!e1 ia]x
2e2se1sp1E, ~1!

] tp52p2 inp1~r 2n!e, ~2!

] tn52bn1 1
2 ~pe* 1p* e!. ~3!

In these equations,e andp are the normalized slowly vary
ing envelopes of the electric and polarization fields, resp
tively, n is proportional to the difference between the atom
inversion and the unsaturated inversion,a is the diffraction
parameter,r is the pump parameter,s and b are, respec-
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tively, the decay rates of the electric field (g0) and of the
population inversion (g1), both scaled to the decay rate o
the polarization (g2), t is the time variable scaled to 1/g2 ,
and E is proportional to the amplitude of the plane-wa
field externally injected in the cavity. Without loss of gene
ality, we will assume that the amplitudeE is a real and
positive number. In writing Eqs.~1!–~3!, the reference fre-
quency of the field-matter envelopes has been chosen c
cident with that of the injected signal, and the detuning p
rametersV andn are defined by

V5
vA2vC

g2
, n5

vS2vA

g2
, ~4!

wherevA , vC , and vS are, respectively, the atomic reso
nance frequency, the longitudinal cavity frequency, and
injected signal frequency. As in Ref.@8#, we consider the
case of a weak injected signal by assuming in Eq.~1!, E
5E0e, e being a small parameter. At leading order ine, Eqs.
~1!–~3! reduce therefore to those studied in Refs.@5,14#. In
this case, it is known that, assuming the pump parameter
bifurcation parameter, for a longitudinal cavity frequen
smaller than the atomic resonance frequency~V.0! the laser
threshold is reached atr 51 and the neutral modes are tw
counterpropagating TW’s with transverse wave numbek
5(V/a)1/2; in the opposite case~V,0!, the threshold is
reached atr 5(11V2)1/2 and the bifurcating mode is homo
geneous in space. Following the analysis of Ref.@8#, the
effect of a weak injected signal on the laser dynamics cl
to threshold may be investigated by using a multiple-sc
perturbation expansion of the laser equations. The nega
detuning case was investigated in Ref.@8# for different scal-
ings of the signal detuning from resonance, and a comp
Ginzburg-Landau equation for the order parameter was
rived. As showed by Newell and Moloney@3#, the derivation
of the amplitude equations in a closed form is possible a
in the positive detuning case, which was not considered
Ref. @8#. Here we concentrate therefore on the derivation
the amplitude equations in the positive detuning case. As
want to study the influence of the inejcetd signal on t
nonlinear selection mechanism of TW’s, we consider a pu
parameterr close to its threshold value by assumingr 51
1e2. Such a dependence ofr on e ensures that the amplitud
of the bifurcating modes and of the injected signal inside
cavity be of the same order of magnitude. The derivation
the amplitude equations is based on a standard weakly
linear analysis of Eqs.~1!–~3! similar to those developed in
Refs.@6–8# and consists in looking for a solution of the las
equations as a power expansion ine,

v5ev~1!1e2v~2!1e3v~3!1•••, ~5!

wherev5(e,p,n)T. The introduction of slow space and tim
variables follows from a straightforward analysis of the li
ear problem, which is discussed in Refs.@3,6#. In the one
transverse spatial dimension, the right scaling for the spa
coordinate isx5X01eX1 , where the slow spatial coordinat
X1 is introduced in order to include in the dynamical equ
tions the continuous band of modes that become active ab
threshold. A multiple scale for the time variable is then i
troduced by settingt5T01eT11e2T21••• . As in Refs.
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@5,6,8,9# we consider here a laser system belonging to
so-called class C, for which the decay ratesg0 , g1 , and
g2 for the cavity field, population inversion, and polarizatio
are of the same order of magnitude. Using the previous s
ing and the derivative rules]x

25]X0

2 12e]X0
]X1

1e2]X1

2 , ] t

5]T0
1e]T1

1e2]T2
1•••, substitution of expansion~5! into

Eqs. ~1!–~3! yields a hierarchy of equations for success
corrections tov. The amplitude equations then arise comb
ing the solvability conditions in the perturbation expansion
orders e2 and e3. To further proceed in the perturbatio
o

on

q.
-

e

l-

-
t

analysis, two cases have to be distinguished depending
the order of magnitude of the detuning parametern for the
external signal.

A. Detuned injected signal

In this case the detuning parametern is assumed to be o
O(1). Theequations atO(e) read

Lv~1!5~E0,0,0!T, ~6!

where the linear operatorL is given by
L5S ]T0
2 i ~V2n!2 ia]X0

2 1s 2s 0

21 11 in1]T0 0

0 0 2b
D . ~7!
As the linear operatorL is singular, the solutions of Eq.~6!
are given by the superposition of the solution for the hom
geneous problem and of the forced solution, and read

e~1!5B1exp~ ikX02 inT0!1B2exp~2 ikX02 inT0!1B0 ,

p~1!5B1exp~ ikX02 inT0!1B2exp~2 ikX02 inT0!

1
B0

11 in
,

n~1!50,

where

B05
~11n2!E0

sn21 i @sn1~n2V!~11n2!#

is the amplitude of the forced mode,B1,2 are the amplitudes
~depending on slow space-time variables! of the counter-
propagating TW’s, andk5(V/a)2 is their transverse wave
number. The equations at ordere2 are

Lv~2!5g~2!, ~8!

whereg(2) depends on functions of previous approximati
and is given explicitly by

g~2!5„2]T1
e~1!12ia]X0

]X1
e~1!,2]T1

p~1!,

1
2 ~e~1!p~1!* 1e~1!* p~1!!…T.

As the operatorL is singular, to avoid secular terms in E
~8! the driving termg(2) must be orthogonal to the two sin
gular eigenvectorsu1,25(1,s,0)T exp(6ikX02inT0) of the
adjoint problem. This yields the solvability conditions

~11s!]T1
B1,2572ak]X1

B1,2, ~9!

and the solution atO(e2) may be chosen as
-
e~2!50,

p~2!5
1

s
]T1

e~1!2
2ia

s
]X0

]X1
e~1!,

n~2!5b11b2exp~ inT0!1b2* exp~2 inT0!,

where

b15
1

b F uB1u21uB2u21
uB0u2

11n2 1B1B2* exp~2ikX0!

1B1* B2exp~22ikX0!G ,
b25

21 in

2b~11 in!
@B1* B0exp~2 ikX0!1B2* B0exp~ ikX0!#.

At order e3 we obtain the equations

Lv~3!5g~3!,

where the driving term is given by

g~3!5„2]T2
e~1!1 ia]X1

2 e~1!,2]T1
p~2!2]T2

p~1!1e~1!

2n~2!e~1!, 1
2 ~e~1!p~2!* 1e~1!* p~2!!…T.

The solvability conditions at this order yield

~11s!]T2
B1,25 ia]X1

2 B1,22]T1

2 B1,272ak]T1
]X1

B1,21sB1,2

2
suB0u2

2b S 41n21 in

11n2 DB1,2

2
s

b
~ uB1,2u212uB2,1u2!B1,2,

which using Eq.~9! read, explicitly,
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1556 56STEFANO LONGHI
~11s!]T2
B1,25~k1 ia !]X1

2 B1,21sB1,2

2
suB0u2

2b S 41n21 in

11n2 DB1,2

2
s

b
~ uB1,2u212uB2,1u2!B1,2, ~10!

where the diffusion coefficientk is given by

k5
4sVa

~11s!2 . ~11!

The total time derivative of the amplitudesB1 and B2 is
obtained by collecting all terms and looks like] tB1,2
5e]T1

B1,21e2]T2
B1,2. Reintroducing the original variable

E5eE0 , r 511e2, redefiningeB1,2 asB1,2, and observing
that ]xB1,25e]X1

B1,2, from Eqs.~9! and~10! we finally ob-
tain the amplitude equations

~11s!] tB112AaV]xB15~ ia1k!]x
2B11s~r 21!B1

2
d

2b
uEu2B12

s

b

3~ uB1u212uB2u2!B1 , ~12!

~11s!] tB222AaV]xB25~ ia1k!]x
2B21s~r 21!B2

2
d

2b
uEu2B22

s

b

3~ uB2u212uB1u2!B2 , ~13!

where

d5
s~11n2!~41n21 in!

s2n41@sn1~n2V!~11n2!#2 .

The electric field in the cavity is then given by

e~x,t !5B1exp~ ikx2 int !1B2exp~2 ikx2 int !

1
~11n2!E

sn21 i @sn1~n2V!~11n2!#. ~14!

The amplitude equations~12! and ~13! are of Ginzburg-
Landau type and they reduce to those obtained in Ref.@5# in
the absence of the injected signal, i.e., forE50. In this case
it is known that stable solutions of the amplitude equatio
are pure TW’s~B150 andB2Þ0 or vice versa!, SW’s being
always unstable collapsing to one of the two TW’s. Furth
more, the stability of TW’s within the amplitude equations
determined by the usual Eckhaus criterion@6,14#. The effect
of an external signal detuned from the atomic resonance
quency is merely to modify the linear gain and the dispers
relation of TW’s through the parameterd in the amplitude
equations. These new terms, however, do not influence
stability properties of TW’s, which remain stable attracto
of the amplitude equations. The emerging TW, however
now detuned from the atomic resonance frequency by
amount Im(d)uEu2/2b(11s), and it is superimposed to th
s

-

e-
n

he

is
e

forced mode which oscillates at a different frequency@see
Eq. ~14!#. These results are in agreement with the numer
simulations previously presented in Ref.@9#. It should be
noted that, although in the amplitude equations singulari
do not emerge when considering the resonant limitn→0,
they fail to describe the nonlinear dynamics of the origin
equations as new secular terms appear in the perturba
expansion atO(e3). Physically, these terms originate as
four-wave interaction with conservation of both energy a
photon momentum in the transverse plane is now allowe

B. Near-resonant injected signal

We consider an injected signal whose frequency is cl
to the atomic resonance frequency by making the detuninn
of ordere, i.e., we assumen5en0 . In this case, the problem
at O(e) in the perturbation expansion becomes

Lv~1!5~E0,0,0!T,

where the linear operatorL is given by Eq.~7! wheren is set
equal to zero. The solution at this order is given by

e~1!5B1exp~ ikX0!1B2exp~2 ikX0!1B0 ,

p~1!5e~1!, n~1!50,

whereB05 iE0 /V is the amplitude of the forced mode an
B1,2 are the amplitudes of the two counterpropagating TW
At O(e2) one obtains

Lv~2!5~2]T1
e~1!12ia]X1

]X0
e~1!2 in0e~1!,2]T1

e~1!

2 in0e~1!,ue~1!u2!T.

The solvability conditions at this order yield

~11s!]T1
B1,2572ak]X1

B1,22 i ~11s!n0B1,2, ~15!

and the solution at this order may be chosen as

e~2!50, p~2!52]T1
e~1!2 in0e~1!, n~2!5

ue~1!u2

b
.

Finally, the problem atO(e3) is

Lv~3!5g~3!,

where

g~3!5„2]T2
e~1!1 ia]X1

2 e~1!,2]T2
e~1!2]T1

p~2!2 in0p~2!

1e~1!2e~1!n~2!, 1
2 ~p~2!e~1!* 1p~2!* e~1!!…T.

The solvability conditions at this order read

~11s!]T2
B1,25 ia]X1

2 B1,21s~ in01]T1
!~]T1

B1,21 in0B1,2!

1sB1,22
s

b
~ uB1,2u212uB2,1u212uB0u2!B1,2

2
s

b
B0

2B2,1* . ~16!
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56 1557TRAVELING AND STANDING WAVES IN A LASER . . .
Using the solvability conditions atO(e2) @Eq. ~15!#, Eq.~16!
may be cast in the form

~11s!]T2
B1,25~ ia1k!]X1

2 B1,21sB1,2

2
s

b
~ uB1,2u212uB2,1u212uB0u2!B1,2

2
s

b
B0

2B2,1* , ~17!

wherek is defined by Eq.~11!. The total time derivative of
the amplitudesB1 andB2 is obtained by collecting all term
and looks like] tB1,25e]T1

B1,21e2]T2
B1,2. Reintroducing

the original variablesE5eE0 , r 511e2, n5en0 , the nor-
malized amplitudes

A1,25A s

b~11s!
~r 21!B1,2,

and observing that]xB1,25e]X1
B1,2, from Eqs. ~15! and

~17! we finally obtain the amplitude equations

] tA11s]xA15d]x
2A11~a2 in!A11mA2*

2~ uA1u212uA2u2!A1 , ~18!

] tA22s]xA25d]x
2A21~a2 in!A21mA1*

2~ uA2u212uA1u2!A2 , ~19!

where the coefficientss, d, a, andm are defined by

s5
2AaV

11s
, ~20!

d5
ia1k

11s
, ~21!

a5
s

11s S r 212
2uEu2

bV2 D , ~22!

m5
sE2

b~11s!V2. ~23!

Equations~18! and ~19!, which represent the main result o
this section, describe the nonlinear dynamics of the la
equations near threshold when the weak injected field is q
siresonant with the atomic transition frequency. The m
distinctive feature of the amplitude equations in this case
the appearance of parametric terms in the interaction
tween the two counterpropagating TW’s. In their pres
form, these equations are generalized complex Ginzb
Landau equations with parametric terms that describe q
generally parametric excitation of waves in spatially e
tended nonlinear systems@12,13#; in particular, in hydrody-
namics these equations have been derived in oscillatory
vection to study parametric excitation of surface waves o
horizontal layer of fluid vertically vibrated@10–12#. In our
case, however, as we assume a fixed amplitude of the
jected signal and we ask what happen when the pump
er
a-
n
is
e-
t
g-
te
-

n-
a

n-
a-

rameterr is increased, the linear gaina ~and not the para-
metric gainm! plays the role of bifurcation parameter in th
equations.

III. TRAVELING- AND STANDING-WAVE SOLUTIONS
OF THE AMPLITUDE EQUATIONS

In this section we limit our analysis considering the ca
of a near-resonant injected signal. As previously observ
the detuned case does not introduce new features in the
dynamics with respect to the case where no external sign
injected in the cavity@9#; therefore, we will not consider this
case. In the near-resonant limit, the starting point of
analysis is provided by the amplitude equations~18! and
~19!. These equations have the trivial zero solution, wh
corresponds to the laser emitting in the forced mode. T
solution becomes unstable as the pump parameter is
creased and off-axis emission takes place. It should be n
that, since in the amplitude equations the two counterpro
gating waves are always linearly coupled, a pure TW st
does not exist and the bifurcating mode is always a mix
mode of the two TW’s. In this section we study the line
stability of the forced mode solution, deriving the neutr
stability curve for this mode in the wave-number space, a
we show that there exist two exact families of solutions
the amplitude equations in the form of SW’s and mix
TW’s. The stability of these solutions is investigated by u
of standard linear stability methods, and the emergence
both phase and amplitude instabilities is predicted.

A. Stability analysis of the forced mode: Neutral stability curve

Linear stability analysis of the force mode is easily do
by linearizing the amplitude equations~18! and ~19! around
the zero solution and looking for exponential gwowth of t
perturbations. The most general solution of the lineariz
problem is given by a superposition of solutions of the fo

S A1

A2*
D;exp~l6t1 iQx!, ~24!

whereQ is the transverse wave number of the perturbat
and the two eigenvaluesl6 are given by

l6~Q!52dRQ21a6Am22~dIQ
21sQ1n!2, ~25!

wheredR anddI are the diffusion and diffraction coefficient
in the amplitude equations~i.e., the real and imaginary part
of d, respectively!. From Eq.~25! it follows that, for small
values of the pump parameter~i.e., of a!, the two eigenval-
ues have a negative real part and the forced mode is line
stable. As the pump parameter is increased, at least on
the two eigenvalues becomes unstable. In particular,
wave numbersQ satisfying the inequality

udIQ
21sQ1nu,m, ~26!

the most unstable eigenvalues isl2 and, as the pump param
eter is increased, it leads to asteady-statebifurcation. In this
case, the neutral stability curve, corresponding tol250, is
given by

aN~Q!5dRQ22Am22~dIQ
21sQ1n!2. ~27!
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On the other hand, for wave numbersQ which do not satisfy
the inequality~26!, as the pump parameter is increased,
forced mode loses its stability through aHopf bifurcation
corresponding to the vanishing of the real part of two co
plex conjugate eigenvalues. In this case the neutral stab
curve, obtained by making Rel650, is given by

aN~Q!5dRQ2 ~28!

and the frequency of the Hopf bifurcation is given by

v~Q!56A2m21~dIQ
21sQ1n!2. ~29!

The neutral stability curve for the forced mode is hence co
posed by two parts, one of which has the usual parab
shape and extends at infinity in the wave-number space
other one being limited in the wave-number region defin
by the inequality~26!. A typical behavior of the neutral sta
bility curve is shown in Fig. 1. As the amplitude equatio
have been derived under the scalinga;e2, m;e2, and
n;e, it is easy to show that the inequality~26! is satisfied in
a narrow interval of width ofO(e2) around the wave numbe
QC.2n/s. The threshold for the emergence of off-ax
waves is determined by the minimum of the neutral stabi
curve. It is easy to show that the most unstable wave num
is Q50 whenever the inequality

n2.
11s

s
m ~30!

FIG. 1. Behavior of the neutral stability curve for~a! n50.1 and
~b! for n50.3. The values of the other parameters arem50.02, a
51, ands51. In ~a! the bifurcating mode is a SW whose frequen
is locked to that of the injected signal, whereas in~b! the emerging
mode is a mixed TW which is not frequency locked to the sign
e
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-
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is satisfied, and the threshold for instability is reached
a th50. The bifurcating mode is hence uniform in space, b
is oscillating in time, i.e., its frequency is not locked to th
of the injected signal. Furthermore, the solution of the line
problem shows that the two emerging TW’s have differe
intensities~mixed-mode solution!. On the contrary, when in-
equality ~30! is not satisfied, a threshold lowering is pr
dicted at the valuea th5dR(n/s)22m, and the most unstable
wave number is atQ5QC . As this is a steady-state bifurca
tion, the emerging mode is frequency locked to the injec
signal. The intensities of the emerging TW’s are in this ca
the same, and hence a SW pattern will emerge.

B. Standing and mixed traveling waves

The stability analysis of the forced-mode solution su
gests that two different kinds of solutions for the amplitu
equations should exist. The existence and stability of th
solutions have been previously investigated in oscillat
convection when diffusion and diffraction terms are n
glected in the amplitude equations@11#; in that context, such
solutions were called standing and~mixed! traveling waves.
Here we extend the analysis by including diffusion and d
fraction effects. Let us look for a solution of Eqs.~18! and
~19! of the form

S A1

A2*
D5S R1exp~ if1!

R2exp~2 if2! Dexp~ ivt1 iQx!, ~31!

whereR1 , R2 , f1 , andf2 are the amplitudes and phases
the counterpropagating TW’s,Q is their wave number
~which represents the family parameter!, and v5v(Q) is
the dispersion relation of TW’s which has to be determin
Inserting the ansatz~31! into Eqs.~18! and~19! and defining
f5f11f2 , one finds the set of equations

vR11QsR152dIQ
2R12vR12mR2sinf,

2dRQ2R11aR11mR2cosf5R1~R1
212R2

2!,

2vR21QsR252dIQ
2R22nR22mR1sinf,

2dRQ2R21aR21mR1cosf5R2~R2
212R1

2!,

which may be solved with respect toR1 , R2 , f, and v.
Eliminating v from the second and fourth equations, o
obtains

~R1
22R2

2!~R1R22m cosf!50, ~32!

so that two kinds of solutions, corresponding either toR1
5R2 or R2R15m cosf, may exist.

1. Standing waves (R15R2)

In this case one finds two branches of SW’s given by

R25
6m cosf1a2dRQ2

3
, ~33!

.
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sinf52
n1dIQ

21sQ

m
, ~34!

whereR denotes eitherR1 or R2 and we have assumed fo
definitness cosf.0 in Eq. ~33!; the dispersion relation fo
SW’s is then given by

v~Q!50; ~35!

i.e., SW’s are frequency locked to the external signal. Fr
Eq. ~34! it follows that the SW solutions exist only in th
interval of the wave-number space defined by Eq.~26!. In
this case the boundary of existence for SW’s for the up
branch@corresponding to the upper sign in Eq.~33!# coin-
cides with the neutral stability curve given by Eq.~27!,
whereas the lower branch of SW’s exists fora(Q)
.aN(Q)12Am22(n1dIQ

21sQ)2. As will be shown be-
low, the SW solutions corresponding to the lower branch
always unstable, and therefore we will not consider th
solutions in the following.

2. Mixed traveling waves (R1ÞR2)

In this case the amplitudes and phases of TW’s are gi
by

R1,2
2 5

a2dRQ26A~a2dRQ2!224F

2
, ~36!

tanf522
dIQ

21sQ1n

a2dRQ2 , ~37!

where, in Eq.~36!, the parameterF is defined by

F5m2cos2f5
m2~a2dRQ2!2

~a2dRQ2!214~dIQ
21sQ1n!2 .

The dispersion relation for the mixed TW solutions is th
given by

v~Q!5 1
2 tanf~R1

22R2
2!. ~38!

It is easy to show that the mixed TW solution exists for a
value of the transverse wave numberQ and that, outside the
interval defined by Eq.~26!, the boundary of existence coin
cides with the neutral stability curve given by Eq.~28!. In
this case the frequency of TW’s, given by Eq.~38!, reduces
to the frequency of the Hopf bifurcation given by Eq.~29!
when a approachesaN . On the contrary, in the interval o
wave numbers aroundQC defined by Eq.~26!, the existence
curve of mixed TW solutions is given by

aE~Q!5dRQ212Am22~dIQ
21sQ1n!2 ~39!

and, on this curve, SW’s and mixed TW’s coincide. A typ
cal behavior of the neutral stability curve and of the curv
for existence of SW’s and mixed TW’s is shown in Fig.
Before further proceeding in the analysis, it is interesting
observe that, when considering the limitm→0, the domain of
existence of SW’s shrinks and disappears, whereas the m
TW solution becomes apure right or left TW, thus recover-
ing the well-known scenario for the off-axis laser emission
absence of external signal@5#.
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C. Linear stability analysis of traveling and standing waves

In the previous subsections it has been shown that
amplitude equations~18! and ~19! admit of traveling- and
standing-wave solutions and that the emerging mode
depend on the signal detuning parameter. According to
~30!, the bifurcating mode is a mixed TW when Eq.~30! is
satisfied and a SW in the opposite case. The central ques
is to determine the region in the plane (Q,a) of stable trav-
eling and standing waves beyond the neutral stability cur
what is called theBusse balloon, using a hydrodynamic ter
minology @6#. In the case where no signal is injected in t
laser cavity, the Busse balloon for the amplitude equation
merely determined by the usual Eckhaus criterion and in
bility of TW’s is due only to long-wavelength~or phase!
perturbations@5,6,14#. In this case a phase-diffusion equatio
is able to capture all sources of instabilities~at least near
threshold, where the amplitude equations are valid!. For the
amplitude equations~18! and~19!, the scenario is more com
plicated and it turns out that a global stability analysis
both traveling and standing waves has to be done by a
linearization of the amplitude equations around these s
tions. We consider therefore perturbations of the steady-s
solutions by setting

A15~A1S1dA1!exp~ iQx1 ivt !,

A25~A2S1dA2!exp~2 iQx2 ivt ! ~40!

where A1S5R1exp(if1) and A2S5R2exp(if2) denote the
steady-state complex amplitudes, defined by Eqs.~33! and
~34! for SW’s and by Eqs.~36! and ~37! for mixed TW’s,
respectively. Insertion of Eq.~40! into Eqs. ~18! and ~19!
yields the following linearized equations for the perturb
tions dA1 anddA2 :

FIG. 2. Neutral stability curve~solid line!, curve of existence of
mixed TW’s ~dashed line!, and domain of wave numbers satisfyin
inequality~26! ~shaded area! for parameter valuesn50.1, m50.02,
a51, ands51. SW solutions exist above the neutral stability cur
inside the shaded area, and they are frequency locked to the ext
signal. Note also that the neutral stability curve and the curve
existence of TW’s coincide outside the shaded area.
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] tdA15@2 i ~v1sQ1n1dIQ
2!2dRQ2

1a22uA1Su222uA2Su2#dA11~2idQ2s!]xdA1

1d]x
2dA11~m22A1SA2S!dA2*

22A1SA2S* dA22A1S
2 dA1* , ~41!

] tdA25@ i ~v2sQ2n2dIQ
2!2dRQ2

1a22uA1Su222uA2Su2#dA22~2idQ2s!]xdA2

1d]x
2dA21~m22A1SA2S!dA1*

22A2SA1S* dA12A2S
2 dA2* . ~42!

The most general solution of Eqs.~41! and~42! is given by a
linear combination of solutions of the form

dA15j1exp~lt1 iqx!1j2* exp~l* t2 iqx!,

dA25j3 exp~lt1 iqx!1j4* exp~l* t2 iqx!,

where q is the wave number of the perturbation a
(j1 ,j2 ,j3 ,j4)T are the eigenvectors andl5l(q) the corre-
sponding eigenvalues of the fourth-order matrixM
5@mi ,k# i ,k51,2,3,4defined by

m1152m
A2S*

A1S
2uA1Su21 iq~2idQ2s!2dq2,

m1252A1S
2 , m13522A1SA2S* , m145m22A1SA2S ,

m215m12* , m225m11* 22iq~s12iQd* !,

m235m14* , m245m13* , m315m13* , m325m14,

m3352m
A1S*

A2S
2uA2Su21 iq~s22iQd!2dq2,

m3452A2S
2 , m415m14* , m425m13, m435m34* ,

m445m33* 12iq~s12iQd* !.

Instability of steady-state solutions to the growth of a tra
verse modulation with wave numberq arises when the rea
part of at least one of the matrix eigenvalues becomes p
tive. We can distinguish in general two kinds of instabiliti
arising from spatiallyhomogeneousperturbations~corre-
sponding toq50! and from spatiallyinhomogeneouspertur-
bations ~corresponding toqÞ0!. Stability analysis for
traveling- and standing-wave solutions with respect to hom
geneous perturbations may be done analytically and the
tails of the calculations are given in the Appendix. It tur
out that mixed TW solutions are always stable against
growth of homogeneous perturbations in the entire dom
of existence, whereas there are two sources of instabil
for SW solutions. The first one is related to bistability
SW’s and indicates that the lower branch@corresponding to
the lower sign in Eq.~33!# is always unstable. The secon
source of instability appears above the neutral stability cu
for the upper branch whena approaches the curveaE(Q)
defined by Eq.~39!. Such an instability indicates the exis
-

si-

-
e-

e
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es

e

tence of a steady-state bifurcation ata5aE(Q), resulting in
the transition from a SW to a mixed TW solution. Therefo
the stability domains for traveling and standing waves
mutually exclusive. Stability analysis with respect to inh
mogeneous perturbations~pattern-forming instabilities! is
more involved and in general it requires numerical deter
nation of the matrix eigenvalues. The translational invarian
of the amplitude equations ensures the existence of a ne
mode with zero eigenvalue atq50, and this is also directly
shown in the Appendix. This allows classification of inst
bilities arising from spatially inhomogeneous perturbatio
in two classes:phase instabilities, arising from long-
wavelength unstable growth bands emanating from this n
tral mode, andamplitude instabilities, which occur at shorter
wavelengths and correspond to modes that are stabl
q50 @6#. The numerical analysis of the matrix eigenvalu
in the linearized problem shows that for both traveling- a
standing-wave solutions there exist phase and amplitude
stabilities. Furthermore, the stability properties for these
lutions strongly depend on the signal detuning parameten.
Figure 3 shows a typical behavior of the Busse ballon
both TW’s and SW’s in the case of a small signal detunin
for which inequality~30! is not satisfied and the bifurcatin
mode is a SW. The Busse ballon for SW’s is represented
the black area in the figure, and it turns out that it is det
mined solely by the emergence of a long-wavelength ph
instability ~Eckhaus instability!. For mixed TW’s, the stabil-
ity domain is delimited below by the thick dashed cur
shown in the figure, and in this case either phase or am
tude instabilities determine the stability boundary. In partic
lar, analysis of the matrix eigenvalues in the linearized pr
lem indicates that for wave numbersQ either far away from
QC or close toQC the stability boundary for TW’s is limited

FIG. 3. Stability domains~Busse ballons! for traveling and
standing waves as computed from the linear stability analysis
the same parameter values as in Fig. 2. The solid line is the ne
stability curve, the thin dashed line~partially obscured by the solid
one! is the curve of existence for TW’s, the black area is the s
bility domain for SW’s, and the thick dashed line defines the bou
ary of stability for mixed TW’s~TW’s are stable above this line!.
The dotted line indicates the usual Eckhaus parabolic boundary
TW’s when parametric terms are absent in the amplitude equat
~18! and ~19!. The inset in the figure shows an enlargment of t
stability domain for SW’s. Here and in the following figures, w
refer a as pump parameter.
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FIG. 4. Typical behavior of the largest real part of the marix eigenvalues in the linearized problem as a function of the perturbi
numberq for four TW’s close to the instability boundary and for the same parameter values as in Fig. 3.~a! Q520.15 anda50.1, ~b!
Q520.4 anda50.24, ~c! Q520.2 anda50.102, and~d! Q520.3 anda50.14. ~a!, ~b! correspond to the emergence of a lon
wavelength phase instability, whereas in~c! and ~d! a short-wavelength amplitude instability takes place.
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by the emergence of long-wavelength phase instabilities
it reduces to the usual parabolic Eckhaus boundarya
53dRQ2 ~shown in the figure with a dotted line! at large
wave numbers@see Figs. 4~a! and 4~b!#. On the contrary,
amplitude instabilities at intermediate values of wave nu
bers are most dangerous and they delimite the stab
boundary in this region@see Figs. 4~c! and 4~d!#. It is inter-
esting to note that the stability domains for SW’s and TW
intersect aroundQ5QC , where a steady-state bifurcatio
from SW’s to mixed TW’s occurs. A limiting case is that o
an exact resonant signal~n50!, which is shown in Fig. 5. In
this case the stability domains for SW’s and TW’s beco
symmetric in the wave-number space and they have in c
mon only one point atQ50.

The stability properties change at larger signal detunin
for which inequality~30! is satisfied. In this case it turns ou
that the stability domain for SW’s shrinks due to the appe
ance of an amplitude instability, whereas the stability dom
for mixed TW’s gets closer to the usual parabolic Eckha
domain, as shown in Figs. 6 and 7. In particular, in Fig.
SW’s are always unstable in their domain of existence a
consequence of a short-wavelength instability which inva
the entire domain above the neutral stability curve. This
stability is shown in Fig. 8, where the largest real part of
matrix eigenvalues in the linearized problem is plotted a
function of the perturbing wave numberq.

We can physically understand the dynamical propertie
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traveling and standing waves by observing that, as the de
ing parameter is zero or small, the SW’s are preferred
TW’s near threshold as the four-wave-interaction proc
mediated by the injected signal allows for a threshold lo
ering. Only at higher values of the pump parameter does
gain saturation mechanism typical of the laser equations
lect TW’s instead of SW’s and a bifurcation takes plac
However, as the signal detuning is increased, the conse

FIG. 5. Stability domains for traveling and standing waves
the resonant casen50. The values of other parameters a
m50.0242,a51, ands51. The meaning of the various curves
the same as in Fig. 3.
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1562 56STEFANO LONGHI
tion of photon energy in the interaction process requested
the existence of frequency-locked SW’s selects waves hig
detuned from the atomic resonance frequency. When the
equality ~30! is satisfied, the threshold lowering due to t
frequency-locking mechanism becomes less effective and
laser dynamics prefers to ‘‘ignore’’ the external signal and
emit a frequency unlocked wave.

IV. CONCLUSIONS

In this paper we have investigated analytically the non
ear dynamics close to the threshold describing the comp
tion among traveling and standing waves in a sing
longitudinal-mode, large-aspect-ratio laser with a we
injected signal in one transverse spatial dimension. By us
a multiple scale perturbation method, we have derived
amplitude equations for the laser equations extending
analysis developed in Ref.@5# to the case where an extern
signal is injected in the laser cavity. It has been shown t
when the frequency of the external signal is tuned close
the resonance frequency of the two-level system, the com
tition among traveling and standing waves may be descri
by two coupled Ginzburg-Landau equations with parame
terms analogous to those derived in hydrodynamics to st
paramteric excitation of waves in oscillatory convection. T
presence of the parametric terms, which physically a
from a four-wave-intercation process with conservation

FIG. 7. Same as Fig. 3 forn50.3. Note that in this case SW’
are always unstable.

FIG. 6. Same as Fig. 3 forn50.2.
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both photon momentum and photon energy, introduces n
features in the laser dynamics even near threshold where
validity of the amplitude equations is restricted. We ha
shown that there exist two families of solutions for the a
plitude equations corresponding to standing and mixed tr
eling waves, and we have studied the bifurcation proper
among these solutions. In particular, when the signal de
ing is small, SW’s are preferred to TW’s close to the thres
old, but a secondary instability leading to an exchange
stability occurs at higher values of the pump parameter. L
ear stability analysis of traveling and standing waves has
revealed the emergence of both amplitude and phase in
bilities.

APPENDIX: LINEAR STABILITY ANALYSIS
OF TRAVELING AND STANDING WAVES AGAINST

SPATIALLY HOMOGENEOUS PERTURBATIONS

In this appendix we derive analytically the stability co
ditions for both traveling- and standing-wave solutions of t
amplitude equations considering the limiting case of spatia
homogeneous perturbations. If this is the case, it may
shown that the characteristic polynomial of the matrixM in
the linearized problem is given by

l~c0l31c1l21c2l1c3!50 , ~A1!

where

c05R1
2R2

2,

c152R1R2~R1
21R2

2!~m cosf1R1R2!,

c25m2~R1
22R2

2!2112R1
3R2

3~m cosf2R1R2!,

c352mR1
2R2

2~R1
21R2

2!~2m16m cos2f26R1R2cosf!

12m2~R1
61R2

6!.

An instability arises when at least one of the following co
ditions is violated~Routh-Hurwitz criterion!:

FIG. 8. Short-wavelength instability of SW’s for large sign
detunings. The figure shows the real part of the most unstable
genvalue in the linearized problem as a function of the perturb
wave numberq for the SW solution corresponding toQ520.35,
a50.06, and for the same parameter values as in Fig. 7.
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c1.0, c2.0, c3.0, ~A2!

H25c1c22c0c3.0. ~A3!

1. Standing-wave solution

In this case,R15R25R and the polynomial coefficient
become

c05R4,

c154R4~m cosf1R2!,

c2512R6~m cosf2R2!18R6m cosf14R2m2cos2f,

c3524R6m cosf~m cosf2R2!.

Considering the lower branch of SW’s@corresponding to the
lower sign in Eq.~33!#, it is easy to show that the two con
ditions c1.0 andc2.0 are incompatible each other; ther
fore, the lower branch is always unstable. For the up
branch of SW’s, of conditions~A2! only the last one may be
violated and this occurs whena.aE , where aE is the
boundary of existence of mixed TW’s defined by Eq.~39!. It
is easy to show that, once conditions~A2! are satisfied, also
condition ~A3! is satisfied as well. In conclusion, SW’s a
unstable in the phase space domain where mixed TW’s e
cs
su
o

o,

ik,

ey
r

st.

2. Mixed traveling waves

In this case,R1R25m cosf and the polynomial coeffi-
cients may be written as

c05R1
2R2

2,

c154R1
2R2

2~R1
21R2

2!,

c25m2~R1
22R2

2!214R1
2R2

2~R1
41R2

41R1
2R2

2!,

c352m2~R1
21R2

2!~R1
22R2

2!2.

Conditions ~A2! are manifestely satisfied, whereas aft
some algebra the Hurwitz determinatH2 may be written in
the form

H252R1
2R2

2~R1
21R2

2!@m2~R1
22R2

2!2

18R1
2R2

2~R1
41R2

41R1
2R2

2!#,

which is always positive. Therefore mixed TW’s are alwa
stable in their domain of existence against the growth
spatially homogeneous perturbations.
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