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Traveling and standing waves in a laser with an injected signal
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A complex order parameter description of the spatiotemporal dynamics close to threshold for a single-
longitudinal-mode, large-aspect-ratio laser with a weak injected signal is presented in one transverse spatial
dimension and for a longitudinal cavity frequency smaller than the atomic resonance frequency. It is shown
that, when the frequency of the external signal is tuned close to the atomic resonance frequency, the spatiotem-
poral dynamics of the laser may be described by two coupled Ginzburg-Landau equations with parametric
terms analogous to those derived in hydrodynamics to study excitation of parametric waves in oscillatory
convection. As a result of the parametric terms, which physically arise by means of a four-wave-intercation
process mediated by the external signal, the bifurcating modes which are superimposed to théhéonzed
geneous mode may be either traveling or standing waves. In particular, it is shown that for small frequency
detunings of the injected signal standing waves are preferred to traveling waves close to threshold. Stability
analysis of traveling and standing waves beyond threshold within the amplitude equations reveals the emer-
gence of both phas@ckhau$ and amplitude instabilitie§S1050-29477)01308-3

PACS numbe(s): 42.65.Sf, 42.60.Mi

[. INTRODUCTION ing waves(a standing waves always unstable, collapsing to
one of the two traveling waves, which are global attractors of
Pattern formation in nonlinear optics has attracted muclihe laser equations. The effect of a weak injected signal on
interest in recent years and a lot of theoretical and experithe transverse laser dynamics was investigated by Mandel
mental work has been done in this fidld]. In particular, et al.[8], who derived in the negative-detuning case a com-
inclusion of diffraction in the nonlinear dynamics of laser plex Ginzburg-Landau equation for the order parameter. The
systems has revealed the appearance of symmetry-breakidgrivation of an order parameter equation in the positive-
bifurcations, spontaneous pattern formation, and complegetuning case was not given in a closed form in that paper. In
space-time behavior. Although in laser cavities with a smalRef. [9], a numerical analysis of the laser equations with a
Fresnel number the nonlinear dynamics is strongly influweak injected signal was given in the one-dimensional case
enced by external boundariése., spherical mirropsand in-  and for a positive detuning. The authors showed that the
volves few transverse cavity modg#|, a universal descrip- excitation of a single tilted wave is likely also when a weak
tion of the transverse laser dynamics may be obtained in thsignal is injected into the laser cavity, with the only differ-
large-aspect-ratio limit, where pattern-forming properties areence that in this case the traveling wave is superimposed to
boundary free and depend only upon the intrinsic symmetriethe spatially homogeneous state forced by the injected signal.
of the laser equationg3]. In the latter case the nonlinear That analysis, however, assumes implicitly that the fre-
dynamics of the laser may be reduced, under suitable apmjuency of the injected signal is detuned from the atomic
proximations, to that of simpler equations having a universatesonance frequency, which is exactly the frequency of the
form (order parameter equatigng he first derivation of an emerging tilted wave. When the frequency of the injected
order parameter equation for the single-longitudinal-modesignal is tuned close to the atomic resonance frequency, a
laser equations was given by Coulkdtal. [4], who showed four-wave interaction with conservation of both transverse
that the laser dynamics close to threshold can be describgzthoton momentum and energy may occur among the forced
by a complex Ginzburg-Landau equation whenever the semode and two counterpropagating traveling waves. Such an
lected longitudinal frequency is larger than the atomic resointeraction, which is forbidden when the external signal is
nance frequencynegative detuning Although in this case detuned from the atomic resonance frequency, is expected to
the bifurcating solution is homogeneous in space, the authoiiatroduce new features in the laser dynamics. From a math-
showed that optical vortices may exist when diffraction isematical point of view, this corresponds to the appearance in
included in the equation. This analysis was extended byhe amplitude equations of new resonant terms. In this paper
Newell and Moloney in the positive detuning case, where thave present a complex order parameter analysis of the laser
laser emission spontaneously occurs off-axis because of dynamics with a weak injected signal in the positive-
tilted-wave mechanisr3,5-7]. In this case the authors ob- detuning case when the frequency of the external signal is
tained coupled Newell-Whitehead-Segel-type equations irlose to the atomic resonance frequency. Using a weakly
the vicinity of the laser threshold. In the one-dimensionalnonlinear analysis of the laser equations close to threshold,
case, such equations reduce to two coupled Ginzburgn Sec. Il we generalize the amplitude equations describing
Landau equations describing the competition between twthe competition between traveling- and standing-wave pat-
counterpropagating traveling wavgs]. As shown in Ref. terns in one transverse spatial dimension previously derived
[5], a single tilted (traveling wave is able to dominate, by Jakobseret al. [5]. When the frequency of the external
whereas the superposition of two counterpropagating travekignal is slightly detuned from the atomic resonance fre-
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guency, parametric terms in the amplitude equations appedively, the decay rates of the electric fielg) and of the

as a result of a four-wave-mixing process among these wavgsopulation inversion §,), both scaled to the decay rate of
and the forced mode induced by the external signal. Theéhe polarization §,), t is the time variable scaled to+/,
structure of the resulting amplitude equations is analogous tand E is proportional to the amplitude of the plane-wave
that derived in hydrodynamics to study oscillatory convec-field externally injected in the cavity. Without loss of gener-
tion [10—12 and, more generally, parametric excitation of ality, we will assume that the amplitudé is a real and
waves in spatially extended systefii,13. The effects of positive number. In writing Eqs1)—(3), the reference fre-
the injected signal on the laser dynamics are studied in Sequency of the field-matter envelopes has been chosen coin-
1. It is shown that the amplitude equations have two fami-cident with that of the injected signal, and the detuning pa-
lies of solutions with one degree of freeddthe transverse rameters() and v are defined by

wave number, which, with the terminology used in oscilla-

tory convection, correspond to traveling wav@¥V's) and wpA— Wc ws— wp

standing waveg§SW's). Because of the parametric interac- Q= T v= T (4)
tion, the TW solution does not correspond, however, to a

pure right- or left-traveling wave as in the case of a lasefyhere w,, wc, and ws are, respectively, the atomic reso-
without an injected signdb], but to a mixed-mode solution. pance frequency, the longitudinal cavity frequency, and the
While the TW solutions exist for any transverse wave nuM-njected signal frequency. As in Refl8], we consider the
ber and their frequency is not locked to that of the externakzse of a weak injected signal by assuming in B, E
signal, the SW solutions exist only in a narrow interval of the — Eye, € being a small parameter. At leading ordefrEgs.
transverse wave numbers and their frequency is locked t )—(3) reduce therefore to those studied in Ré&14). In

that of the external signal. Depending on the magnitude ofhjs case, it is known that, assuming the pump parameter as a
the detuning between the atomic resonance frequency aryrcation parameter, for a longitudinal cavity frequency
the injected signal frequency, the bifurcating mode may b&majler than the atomic resonance frequef§ey-0) the laser
either a TW or a SW. When a SW is selected at the threéshireshold is reached at=1 and the neutral modes are two
old, a secondary bifurcation to a TW state occurs as theounterpropagating TW’s with transverse wave numker
pump parameter is increased. The stability of TW and SW:(Q/a)lIZ; in the opposite casé(<0), the threshold is
solutions is investigated by use of standard linear stabilitye5:neq at = (1+02)¥2 and the bifurcating mode is homo-
methods, and it is shown that both amplitude and phase i”geneous in space. Following the analysis of H&l, the
stabilities may appear. As a general rule, it turns out that theect of a weak injected signal on the laser dynamics close
stability region of SW's in the parameter space lies belowy, threshold may be investigated by using a multiple-scale
the curve of existence of TW's, and it shrinks as the fre-neryrhation expansion of the laser equations. The negative
guency detuning between the external signal and the atoml‘fetuning case was investigated in Ri@] for different scal-
resonance is increased due to the appearance of an amplituﬁ@s of the signal detuning from resonance, and a complex
instability. In particular, SW’s are always unstable at highGinzburg—Landau equation for the order parameter was de-
vaIues_ of the frequgncy detuning. The stability region ofyed. As showed by Newell and Molongg], the derivation
TW's is unbounded in the parameter space and, away frorgs the amplitude equations in a closed form is possible also
the wave number region where SW's exist, it reduces 10 thé, the positive detuning case, which was not considered in

usual parabolic Eckhaus domain. Ref.[8]. Here we concentrate therefore on the derivation of
the amplitude equations in the positive detuning case. As we
Il. WEAKLY NONLINEAR ANALYSIS OF THE LASER want to study the influence of the inejcetd signal on the
EQUATIONS AND DERIVATION nonlinear selection mechanism of TW’s, we consider a pump

OF THE AMPLITUDE EQUATIONS parameter close to its threshold value by assuming 1

£t €. Such a dependence pbn e ensures that the amplitude

of the bifurcating modes and of the injected signal inside the
cavity be of the same order of magnitude. The derivation of
the amplitude equations is based on a standard weakly non-

The starting point of our analysis is provided by the set o
the Maxwell-Bloch equations for a single-longitudinal-mode,
homogeneously broadened two-level laser with flat mirrors

extended to include the injection in the cavity of a plane-l_ vsis of Eag1)—(3) simil h develooed i
wave field of frequency close to the atomic transition fre-inear analysis of Eqs1)—(3) similar to those developed in

guency[6—9]. In one transverse spatial dimension and usindqefs'[.G_s] and consists in IooI_<ing. for a solution of the laser
the same notations as in R§T], they read equations as a power expansionein

de=i(Q—v)e+iadie—oe+op+E, (1) v=ev+ ev@+ v+ )
ap=—p—ivp+(r—nje, (2)  Wherev= (e,p,n)T. The introduction of slow space and time
variables follows from a straightforward analysis of the lin-

dn=—bn+3i(pe* +p*e). (3 ear problem, which is discussed in Ref8,6]. In the one

transverse spatial dimension, the right scaling for the spatial
In these equation® andp are the normalized slowly vary- coordinate isx=Xy+ €X;, where the slow spatial coordinate
ing envelopes of the electric and polarization fields, respecX; is introduced in order to include in the dynamical equa-
tively, n is proportional to the difference between the atomictions the continuous band of modes that become active above
inversion and the unsaturated inversianis the diffraction threshold. A multiple scale for the time variable is then in-
parametery is the pump parameterr and b are, respec- troduced by setting=Ty+ eT;+€?T,+-+- . As in Refs.
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[5,6,8,9 we consider here a laser system belonging to thenalysis, two cases have to be distinguished depending on
so-called class C, for which the decay ratgs, y,, and the order of magnitude of the detuning parametdor the

v, for the cavity field, population inversion, and polarization external signal.
are of the same order of magnitude. Using the previous scal-

ing and the derivative rules;=dx_+2edx dx,+ €%, &

=gy, €dr + 623T2+ .-+, substitution of expansiofb) into In this case the detuning parameteis assumed to be of
Egs. (1)—(3) yields a hierarchy of equations for successive©(1). Theequations aD(e) read

corrections tos. The amplitude equations then arise combin- £vV=(E,0,07 6)
ing the solvability conditions in the perturbation expansion at S

A. Detuned injected signal

orders €2 and €. To further proceed in the perturbation where the linear operataf is given by
|
dr,~1(Q=v)—iadg +o —0 0
L= -1 1+iv+dr, 0 |. (7
0 0 -b

|
As the linear operator is singular, the solutions of E¢6) e@=0,
are given by the superposition of the solution for the homo-
geneous problem and of the forced solution, and read 1 Jia

p(z):— a_l_le(l)_ JE— aXO&Xle(l)!
eV=Bexp(ikXq—ivTy) + Byexp(—ikXq—ivTy) + By, o o

2) __ . .
pM=B,expikXo—ivTo) +Boexp —ikXo—ivT) n®= g1+ BoexplivTo) + B exp( —ivTo),
Bo where
+ —,
1+iv ,
1 2 2 |BO| * .
nM=p B1=75 | IBal*+ B2l *+ 17— + B1BS exp(2ikXo)
where +B% Bexp — 2ikXo) |,
5 (1+v?)E,
0T 2t - 2 2+iv
ov-ti[fov+(v—Q)(1+v . .
[ov+(r=Q)(1+v7)] Bo=5p 11y LBIBoexi ~ikXo) + B3 Boexp(ikXo)].

is the amplitude of the forced modB; , are the amplitudes

(depending on slow space-time variabledg the counter- At order €2 we obtain the equations
propagating TW's, and=(Q)/a)? is their transverse wave

number. The equations at ordet are v =g,

Lv?=g?), (8)  where the driving term is given by

whereg®) depends on functions of previous approximation o= (—ar eV +iac e®,—ar p@—a; pH+e®
and is given explicitly by
—n@ea) La)n(2* L a(L)* 5(2)))T
n'<e'* (e +¢€ .
g?=(—dr,eM+2iady dx,e,—ar pY, 2(e7p P
The solvability conditions at this order yield
* *
%(e(l)p(l) +e(1) p(l)))T - 5 ) B
(1+ O') &TZBL2= |aaxlBlyz_ (91-181’2—'— 2akz9-|-1&x151’2+ (7'81’2
As the operatolC is singular, to avoid secular terms in Eq. )
(8) the driving termg(® must be orthogonal to the two sin- _ a[By|
gular eigenvectorsi; ,=(1,0,0)" exp(xikXy—ivTy) of the 2b
adjoint problem. This yields the solvability conditions

441240y
1+12

12

_z 2 2
(1+0)d7,By,=F2akdy By o, (9) b (IB12"+2[B1|9)B1,

and the solution aD(e?) may be chosen as which using Eq.(9) read, explicitly,
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(1+ O-)&TZBJ.,Z: (K+ ia)a§<181‘2+ UBl,Z

4412 +ip
1+ 12

0’|Bo|2
2b

1,2

g 2 2
_B(|Bl,2| +2|By1%)B1y, (10

where the diffusion coefficient is given by

4gQa

K= m (11)

The total time derivative of the amplitudd®;, and B, is
obtained by collecting all terms and looks lik&B; ,
=edr Byot 62(9T251,2- Reintroducing the original variables
E=€Ey, r=1+ €, redefiningeB; , asB; ,, and observing
that 9,B; o= €dx By », from Egs.(9) and(10) we finally ob-
tain the amplitude equations

(1+0)9B;+2aQs,B,=(ia+ k) 2B, + o(r—1)B;

o EI%B o
~ o[B8 ¢

X(|B4|?+2[By[%)B;, (12

(14 0)9,B,—2/aQd,B,=(ia+ k) 92B,+ o(r—1)B,

o EI%B oz
~ 55 [EI"B2— ¢
X(|B2|?+2|B1|*)B2, (13
where

B o(1+v?)(4+v2+iv)
v +ov+(v—Q)(1+1v7)]?

The electric field in the cavity is then given by
e(x,t)=Bexpikx—iwvt)+ Bexp(—ikx—iwvt)

(1+v?)E
T e i[ort (r—0) (1 D).

(14

The amplitude equation§l?2) and (13) are of Ginzburg-
Landau type and they reduce to those obtained in [Béin
the absence of the injected signal, i.e., Eor 0. In this case

it is known that stable solutions of the amplitude equations

are pure TW'yB;=0 andB,+ 0 or vice versa SW's being
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forced mode which oscillates at a different frequersge

Eq. (14)]. These results are in agreement with the numerical
simulations previously presented in R¢8]. It should be
noted that, although in the amplitude equations singularities
do not emerge when considering the resonant limaitO,

they fail to describe the nonlinear dynamics of the original
equations as new secular terms appear in the perturbation
expansion aO(e%). Physically, these terms originate as a
four-wave interaction with conservation of both energy and
photon momentum in the transverse plane is now allowed.

B. Near-resonant injected signal

We consider an injected signal whose frequency is close
to the atomic resonance frequency by making the detuning
of ordere, i.e., we assume= evq. In this case, the problem
at O(e) in the perturbation expansion becomes

LV =(Ey0,07,

where the linear operatat is given by Eq(7) wherev is set
equal to zero. The solution at this order is given by

eV=BexpikXy) + B,exp —ikXy) + By,
pH=e®),

whereB,=1E,/Q is the amplitude of the forced mode and
B, , are the amplitudes of the two counterpropagating TW’s.
At O(€?) one obtains

LV = (a7 M +2iady dx et —ivee”, — oy e
—ivoe(l),|e(l)|2)T.
The solvability conditions at this order yield
(1+ U)&TIBM: ¥ ZakaxlBl,z_ i(1+0)veBy,, (15
and the solution at this order may be chosen as

et
b

(2)

e?=0, p®=-oreV—ivee®, n
Finally, the problem aO(€d) is
Lvd=gd),
where
g¥=(-or,eP+iady e, —dr,e™— o p? ~ivgp?

+ e(l)_ e(l)n(z),%(p(z)e(l)* + p(z)*e(l)))T

always unstable collapsing to one of the two TW’s. Further-
more, the stability of TW’s within the amplitude equations is
determined by the usual Eckhaus criter[@yl4]. The effect
of an external signal detuned from the atomic resonance fre
guency is merely to modify the linear gain and the dispersio
relation of TW’s through the parametérin the amplitude
equations. These new terms, however, do not influence the
stability properties of TW’s, which remain stable attractors
of the amplitude equations. The emerging TW, however, is
now detuned from the atomic resonance frequency by the
amount Im@)|E|¥2b(1+ ), and it is superimposed to the b

The solvability conditions at this order read

-1+ 0') (91'281’2: ia(?)z(lBl‘z'f‘ O'(| V0+ &Tl)(&TlBL2+ i VOBl,Z)
g
B (| B1.d%+2[B21*+2|Bo|*)By

o

B3B3} .. (16)
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Using the solvability conditions @(€?) [Eq.(15)], Eq.(16) rameterr is increased, the linear gaim (and not the para-
may be cast in the form metric gainu) plays the role of bifurcation parameter in the
equations.
(1+0)d7,B1o=(ia+ )% Biot oBy,
o IIl. TRAVELING- AND STANDING-WAVE SOLUTIONS
-5 (| Bl,2|2+ 2| Bz,1|2+ 2|Bo|2)51,2 OF THE AMPLITUDE EQUATIONS

In this section we limit our analysis considering the case
o 525 of a near-resonant injected signal. As previously observed,
T p "oF21 (17 the detuned case does not introduce new features in the laser
dynamics with respect to the case where no external signal is
wherek is defined by Eq(11). The total time derivative of injected in the cavity9]; therefore, we will not consider this
the amplitudes8; andB, is obtained by collecting all terms case. In the near-resonant limit, the starting point of the
and looks liked,By o= €dr By o+ €°d7 By ,. Reintroducing analysis is provided by the amplitude equatidis) and
the original variable€ = eE, r=1+ €2, v=ew,, the nor- (19). These equations have the trivial zero solution, which

malized amplitudes corresponds to the laser emitting in the forced mode. This
solution becomes unstable as the pump parameter is in-

- creased and off-axis emission takes place. It should be noted

A= b(1to) (r=1)By,, that, since in the amplitude equations the two counterpropa-

gating waves are always linearly coupled, a pure TW state
does not exist and the bifurcating mode is always a mixed
mode of the two TW’s. In this section we study the linear
stability of the forced mode solution, deriving the neutral
stability curve for this mode in the wave-number space, and
we show that there exist two exact families of solutions for

and observing thaw,B; ;= edy B, from Egs. (15 and
(17) we finally obtain the amplitude equations

AL+ SO A =do2A + (a—iv) A+ uAS

—(|AL2+2|A51PA;, (18)  the amplitude equations in the form of SW’'s and mixed
TW’s. The stability of these solutions is investigated by use
A, — 9 A, =dd2A,+ (a—iv) Ayt uA¥ of standard linear stability methods, and the emergence of

both phase and amplitude instabilities is predicted.
—(|Ax]2+2|A19)A,, (19

. . A. Stability analysis of the forced mode: Neutral stability curve
where the coefficients, d, «, andu are defined by

Linear stability analysis of the force mode is easily done
2./a0 by linearizing the amplitude equatio$8) and (19) around

S= 110’ (200 the zero solution and looking for exponential gwowth of the
perturbations. The most general solution of the linearized
2tk problem is given by a superposition of solutions of the form
T1to’ 21 1 )
A* ~expAt+iQXx), (24)
o 2|E2 2
T 140 r—1- bQ?2 /)’ (22) whereQ is the transverse wave number of the perturbation
and the two eigenvalues.. are given by
PRS- N=(Q)=—drQ%+ ax V= (diQ7+sQ+ )%, (25
b(1+0)0% (23) * R VAT '

. . . wheredg andd, are the diffusion and diffraction coefficients
Equations(18) and (19), which represent the main result of in the amplitude equation@.e., the real and imaginary parts
this section, describe the nonlinear dynamics of the Iase{)]c d, respectively. From Eq '(’25) it follows that. for small
equations near threshold when the weak injected field is qu’?l/'alu'es of the purﬁp paramétére of @), the twc; eigenval-
siresonant with the atomic transition frequency. The mai " !

Lo ; . N .ues have a negative real part and the forced mode is linearly
distinctive feature of the amplitude equations in this case IStable. As the pump parameter is increased, at least one of

the appearance of parametric terms in the interaction bethe two eigenvalues becomes unstable. In particular, for

tween the two counterpropagating TW's. In their presen e : '
form, these equations are generalized complex Ginzburé’-\’a\/e numbers) satisfying the inequality

Landau equations with parametric terms that describe quite |d,Q%+sQ+ v|<pu, (26)
generally parametric excitation of waves in spatially ex-

tended nonlinear systemi$2,13; in particular, in hydrody- the most unstable eigenvalues\is and, as the pump param-
namics these equations have been derived in oscillatory corter is increased, it leads tosteady-statéifurcation. In this
vection to study parametric excitation of surface waves on &ase, the neutral stability curve, corresponding.to=0, is
horizontal layer of fluid vertically vibrate@ll0-12. In our  given by
case, however, as we assume a fixed amplitude of the in-

jected signal and we ask what happen when the pump pa- an(Q)=drQ%— Vu?— (d,Q%+sQ+ )2 (27
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is satisfied, and the threshold for instability is reached at
(a) ay=0. The bifurcating mode is hence uniform in space, but
is oscillating in time, i.e., its frequency is not locked to that
of the injected signal. Furthermore, the solution of the linear
N problem shows that the two emerging TW’s have different
intensities(mixed-mode solution On the contrary, when in-
equality (30) is not satisfied, a threshold lowering is pre-
dicted at the valuery,=dg(v/s)?— u, and the most unstable
wave number is a@= Q. As this is a steady-state bifurca-

T I T tion, the emerging mode is frequency locked to the injected
040 0.00 0.40 signal. The intensities of the emerging_ TW's are in this case

’ ‘ ‘ the same, and hence a SW pattern will emerge.
Wave Number Q

[
—

Pump parameter o

=
I

0.1

(b) B. Standing and mixed traveling waves

The stability analysis of the forced-mode solution sug-
- gests that two different kinds of solutions for the amplitude
equations should exist. The existence and stability of these
solutions have been previously investigated in oscillatory
convection when diffusion and diffraction terms are ne-
0 — glected in the amplitude equatiofl]; in that context, such
solutions were called standing afixed) traveling waves.

' | ' Here we extend the analysis by including diffusion and dif-
-0.50 0.00 0.50 fraction effects. Let us look for a solution of Eq4.8) and

Wave Number Q (19) of the form

FIG. 1. Behavior of the neutral stability curve f@ »=0.1 and
(b) for »=0.3. The values of the other parameters are0.02,a (Al>
=1, ando=1. In (a) the bifurcating mode is a SW whose frequency A’z‘
is locked to that of the injected signal, whereagbhthe emerging
mode is a mixed TW which is not frequency locked to the signal. whereR;, R,, ¢, and¢, are the amplitudes and phases of

the counterpropagating TW’sQ is their wave number

On the other hand, for wave numbé®swhich do not satisfy  (which represents the family paraméteand w= w(Q) is
the inequality(26), as the pump parameter is increased, thehe dispersion relation of TW’s which has to be determined.
forced mode loses its stability throughHopf bifurcation  |nserting the ansat{81) into Egs.(18) and(19) and defining
corresponding to the vanishing of the real part of two com-¢= ¢, + ¢,, one finds the set of equations
plex conjugate eigenvalues. In this case the neutral stability

Pump parameter o

Riexpli 1)
Roexpl—i¢y)

expliot+iQXx), (31

curve, obtained by making Re=0, is given by wR;+QsR =—d,Q’°R;—vR; — uR,sing,
— 2
an(Q)=drQ 28 —drQ?R; + @R + uR,CO8p =Ry (RE+2R5),
and the frequency of the Hopf bifurcation is given by

—wR,+QsR=—d,Q?R,— vR,— uR;sing,

o(Q)==% = p®+(dQ*+sQ+ )%, (29

The neutral stability curve for the forced mode is hence com-

posed by two parts, one of which has the usual parabolighich may be solved with respect ®,, R,, &, and .

shape and extends at infinity in the wave-number space, th€jiminating  from the second and fourth equations, one
other one being limited in the wave-number region defined,pt5ins

by the inequality(26). A typical behavior of the neutral sta-

bility curve is shown in Fig. 1. As the amplitude equations 2_p2 _ _

have been derived under the scaling-€?, u~€?, and (Ri~Ro)(RiR,~ 1 cos$) =0, (32
v~e, it is easy to show that the inequalit6) is satisfied in
a narrow interval of width oD(€?) around the wave number

Qc=—vls. The threshold for the emergence of off-axis

— drQ?R,+ aR,+ uR;cosp= R,(R5+ 2R?),

so that two kinds of solutions, corresponding eitherRp
=R, or R,R;=u cosp, may exist.

waves is determined by the minimum of the neutral stability 1. Standing waves (R=R,)

curve. It is easy to show that the most unstable wave number

is Q=0 whenever the inequality In this case one finds two branches of SW’s given by
1+o _Epu cosp+ a— dgQ?

”2>T w (30) R? (33

3 ’
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2
sing= — M—deT+SQ (34

whereR denotes eitheR; or R, and we have assumed for
definitness cag>0 in Eq. (33); the dispersion relation for
SW’s is then given by

o(Q)=0; (35

i.e., SW’'s are frequency locked to the external signal. From
Eqg. (34) it follows that the SW solutions exist only in the
interval of the wave-number space defined by Exf). In

this case the boundary of existence for SW’s for the upper 0.0 0.1 0.2
branch[corresponding to the upper sign in E&3)] coin- Wave Number Q

cides with the neutral stability curve given by E@7),

whereas the lower branch of SW's exists far(Q) _F'(f;r\z/\},Na”trﬁ' Zt?bgty C;r(;’@o”_d “?e)' curve OfbeXiSte”t?efy(?f
> 7 7 z . . mixed TW's(dashed ling and domain of wave numbers satisfying
aN(Q)+2\/’M (v+diQ"+sQ)°. As will be shown be inequality (26) (shaded argdor parameter values=0.1, ©=0.02,

low, the SW solutions corresponding to the lower branch ar%: 1, ando=1. SW solutions exist above the neutral stability curve

alvlvays unStiblef’ I?nd. therefore we will not consider thes(?nside the shaded area, and they are frequency locked to the external
solutions in the following. signal. Note also that the neutral stability curve and the curve of
existence of TW'’s coincide outside the shaded area.

Pump Parameter g

2. Mixed traveling waves (R# R,)

In this case the amplitudes and phases of TW'’s are given
by C. Linear stability analysis of traveling and standing waves
a—dgQ%+ J(a—dgQ?)*— 4D
2 .

Rf = (36) In the previous subsections it has been shown that the
' amplitude equation$18) and (19) admit of traveling- and
4,02+ 50+ v standing-wave solutions and that the emerging mode will
'—2, (37) depend on the signal detuning parameter. According to Eq.
a—dgQ (30), the bifurcating mode is a mixed TW when E®O) is
satisfied and a SW in the opposite case. The central question
is to determine the region in the plan®,) of stable trav-
wi(a—dgQ?)? eling and standing waves beyond the neutral stability curve,
_ 22 2 2 what is called théBusse balloonusing a hydrodynamic ter-
(a=drQ)"+4(dQ7+5Q+ ) minology [6]. In the case where no signal is injected in the
The dispersion relation for the mixed TW solutions is thenlaser cavity, the Busse balloon for the amplitude equations is
given by merely determined by the usual Eckhaus criterion and insta-
bility of TW’s is due only to long-wavelengtfior phase
o(Q)=3tanp(RZ—RJ). (38)  perturbation$5,6,14. In this case a phase-diffusion equation
is able to capture all sources of instabilitiest least near
It is easy to show that the mixed TW solution exists for anythreshold, where the amplitude equations are yakor the
value of the transverse wave numli§grand that, outside the amplitude equation&l8) and(19), the scenario is more com-
interval defined by Eq(26), the boundary of existence coin- plicated and it turns out that a global stability analysis of
cides with the neutral stability curve given by EQ8). In  both traveling and standing waves has to be done by a full
this case the frequency of TW's, given by E§8), reduces linearization of the amplitude equations around these solu-
to the frequency of the Hopf bifurcation given by HQ9)  tions. We consider therefore perturbations of the steady-state
when a approachesyy . On the contrary, in the interval of solutions by setting
wave numbers aroun@. defined by Eq(26), the existence

tanp=—2

where, in Eq.(36), the paramete® is defined by

&= plcodp=

curve of mixed TW solutions is given by A= (Agt A exp(iQx+iwt),
ag(Q)=0drQ%*+2Vu?— (d|Q*+sQ+r)* (39
and, on this curve, SW’s and mixed TW’s coincide. A typi- Az=(Agst Az)exp(—iIQx—iwt) (40)

cal behavior of the neutral stability curve and of the curves

for existence of SW’s and mixed TW'’s is shown in Fig. 2.

Before further proceeding in the analysis, it is interesting towhere A;s=R;exp(¢;) and A,s=R,exp(¢,) denote the
observe that, when considering the limit-0, the domain of steady-state complex amplitudes, defined by Eg3) and
existence of SW's shrinks and disappears, whereas the mixd84) for SW’s and by Eqgs(36) and (37) for mixed TW’s,
TW solution becomes pureright or left TW, thus recover- respectively. Insertion of Eq40) into Egs.(18) and (19)
ing the well-known scenario for the off-axis laser emission inyields the following linearized equations for the perturba-
absence of external signig]. tions 5A; and 8A,:
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9 0A;=[—i(w+sQ+r+d Q% —drQ? 0.20
+a—2|A1g/?—2|Axd?]5A, + (2idQ—5) 3, 6A; 3
+ddZ A+ (= 2A15A05) SAS % |
* 2 * g
—2A1A550A, — ATsOAT (41) S 0.10 -
(=W
f7t5A2=[i(w_3Q_V_d|Q2)_dRQ2 §
= i
+a—2|Arg|?—2|Az8|?] A, (2idQ—5) 94 5A, 2
+dd;0A+ (= 2A15A08) SAT 0.00
—2A,sATs0A, — ASsOAS . (42) 0.4 0.2 0.0 0.2

The most general solution of Eqg.l) and(42) is given by a Wave Number Q

linear combination of solutions of the form FIG. 3. Stability domains(Busse ballons for traveling and

standing waves as computed from the linear stability analysis for
the same parameter values as in Fig. 2. The solid line is the neutral
stability curve, the thin dashed lipartially obscured by the solid
ong is the curve of existence for TW’s, the black area is the sta-
. . bility domain for SW’s, and the thick dashed line defines the bound-
where q is tThe wave number of the perturbation and 4 of stanility for mixed TW's(TW's are stable above this line
(£1,€2,83,€4) are the eigenvectors and=A(q) the corre-  The dotted line indicates the usual Eckhaus parabolic boundary for
sponding eigenvalues of the fourth-order matri®%t  Tw’s when parametric terms are absent in the amplitude equations
=[m; «Ji k=123 40defined by (18 and(19). The inset in the figure shows an enlargment of the
stability domain for SW’s. Here and in the following figures, we
refer « as pump parameter.

SA = &rexp(At+igx) + ES exp A t—igx),
2

SA,= &3 exp(Nt+igx) + &y expA*t—igx),

*

Azs .
my=—u A |A1g]?+iq(2idQ—s)—d0?,

2 N tence of a steady-state bifurcationeat ag(Q), resulting in
M= —Als  Miz= —2A1A%s, M= u—2A15Ass, the transition from a SW to a mixed TW solution. Therefore
the stability domains for traveling and standing waves are
mutually exclusive. Stability analysis with respect to inho-

. . . mogeneous perturbationgattern-forming instabilitios is
M23=Myy,  Mpg=My3, Mz1=Myz,  M3a=Myy, more involved and in general it requires numerical determi-
nation of the matrix eigenvalues. The translational invariance
of the amplitude equations ensures the existence of a neutral
mode with zero eigenvalue gt=0, and this is also directly
shown in the Appendix. This allows classification of insta-

My =Mi,,  My=my;—2iq(s+2iQd*),

*

Al , .
Ma3= — 1 A_:s_ |Azgl?+iq(s—2iQd) —dg?,

My,= _Ags, My =M}, My=My3, Myz=mj,, _biIities arising from spati.ally inhqmoge_n_eous perturbations
in two classes:phase instabilities arising from long-
M= Mis+ 2iq(s+2iQd*). wavelength unstable growth bands emanating from this neu-

tral mode, anchmplitude instabilitieswhich occur at shorter
Instability of steady-state solutions to the growth of a transwavelengths and correspond to modes that are stable at
verse modulation with wave numbgrarises when the real g=0 [6]. The numerical analysis of the matrix eigenvalues
part of at least one of the matrix eigenvalues becomes posin the linearized problem shows that for both traveling- and
tive. We can distinguish in general two kinds of instabilities standing-wave solutions there exist phase and amplitude in-
arising from spatiallyhomogeneouserturbations(corre-  stabilities. Furthermore, the stability properties for these so-
sponding tag=0) and from spatiallinhomogeneoupertur-  lutions strongly depend on the signal detuning parameter
bations (corresponding tog#0). Stability analysis for Figure 3 shows a typical behavior of the Busse ballon for
traveling- and standing-wave solutions with respect to homoboth TW’s and SW's in the case of a small signal detuning,
geneous perturbations may be done analytically and the dder which inequality(30) is not satisfied and the bifurcating
tails of the calculations are given in the Appendix. It turnsmode is a SW. The Busse ballon for SW’s is represented by
out that mixed TW solutions are always stable against théhe black area in the figure, and it turns out that it is deter-
growth of homogeneous perturbations in the entire domaimined solely by the emergence of a long-wavelength phase
of existence, whereas there are two sources of instabilitiemstability (Eckhaus instability For mixed TW'’s, the stabil-
for SW solutions. The first one is related to bistability of ity domain is delimited below by the thick dashed curve
SW’s and indicates that the lower bran@orresponding to shown in the figure, and in this case either phase or ampli-
the lower sign in Eq(33)] is always unstable. The second tude instabilities determine the stability boundary. In particu-
source of instability appears above the neutral stability curvéar, analysis of the matrix eigenvalues in the linearized prob-
for the upper branch whea approaches the curveg(Q) lem indicates that for wave numbeg@seither far away from
defined by Eq.39). Such an instability indicates the exis- Q¢ or close toQ the stability boundary for TW’s is limited
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FIG. 4. Typical behavior of the largest real part of the marix eigenvalues in the linearized problem as a function of the perturbing wave
numberq for four TW'’s close to the instability boundary and for the same parameter values as in Fg.B= —0.15 anda=0.1, (b)
Q=-0.4 anda=0.24, (c) Q=-0.2 and@=0.102, and(d) Q=—0.3 and«=0.14. (a), (b) correspond to the emergence of a long-
wavelength phase instability, whereas(@) and(d) a short-wavelength amplitude instability takes place.

by the emergence of long-wavelength phase instabilities anttaveling and standing waves by observing that, as the detun-
it reduces to the usual parabolic Eckhaus boundary ing parameter is zero or small, the SW’s are preferred to
=3drQ? (shown in the figure with a dotted lineat large TW'’s near threshold as the four-wave-interaction process
wave numbergsee Figs. 4) and 4b)]. On the contrary, mediated by the injected signal allows for a threshold low-
amplitude instabilities at intermediate values of wave num-ering. Only at higher values of the pump parameter does the
bers are most dangerous and they delimite the stabilitgain saturation mechanism typical of the laser equations se-
boundary in this regiofisee Figs. &) and 4d)]. It is inter-  lect TW’s instead of SW’s and a bifurcation takes place.
esting to note that the stability domains for SW’s and TW’sHowever, as the signal detuning is increased, the conserva-
intersect around)=Q., where a steady-state bifurcation
from SW’s to mixed TW’s occurs. A limiting case is that of
an exact resonant signat=0), which is shown in Fig. 5. In
this case the stability domains for SW’s and TW’s become
symmetric in the wave-number space and they have in com-
mon only one point aQ=0.

The stability properties change at larger signal detunings
for which inequality(30) is satisfied. In this case it turns out
that the stability domain for SW’s shrinks due to the appear-
ance of an amplitude instability, whereas the stability domain
for mixed TW’s gets closer to the usual parabolic Eckhaus
domain, as shown in Figs. 6 and 7. In particular, in Fig. 7, T
SW's are always unstable in their domain of existence as a

- - L -0.2 -0.1 0.0 0.1 0.2
consequence of a short-wavelength instability which invades Wave Number Q
the entire domain above the neutral stability curve. This in-
stability is shown in Fig. 8, where the largest real part of the F|G. 5. Stability domains for traveling and standing waves in
matrix eigenvalues in the linearized problem is plotted as ahe resonant case=0. The values of other parameters are
function of the perturbing wave numbgr u=0.0242,a=1, ando=1. The meaning of the various curves is

We can physically understand the dynamical properties ofhe same as in Fig. 3.
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FIG. 6. Same as Fig. 3 far=0.2. FIG. 8. Short-wavelength instability of SW's for large signal

detunings. The figure shows the real part of the most unstable ei-
tion of photon energy in the interaction process requested fagenvalue in the linearized problem as a function of the perturbing
the existence of frequency-locked SW's selects waves highlywave numbeiq for the SW solution corresponding ©@= —0.35,
detuned from the atomic resonance frequency. When the irr=0.06, and for the same parameter values as in Fig. 7.
equality (30) is satisfied, the threshold lowering due to the
frequency-locking mechanism becomes less effective and theoth photon momentum and photon energy, introduces new
laser dynamics prefers to “ignore” the external signal and tofeatures in the laser dynamics even near threshold where the

emit a frequency unlocked wave. validity of the amplitude equations is restricted. We have
shown that there exist two families of solutions for the am-
V. CONCLUSIONS plitude equations corresponding to standing and mixed trav-

eling waves, and we have studied the bifurcation properties

In this paper we have investigated analytically the nonlin-among these solutions. In particular, when the signal detun-
ear dynamics close to the threshold describing the competing is small, SW’s are preferred to TW's close to the thresh-
tion among traveling and standing waves in a single-old, but a secondary instability leading to an exchange of
longitudinal-mode, large-aspect-ratio laser with a weakstability occurs at higher values of the pump parameter. Lin-
injected signal in one transverse spatial dimension. By usingar stability analysis of traveling and standing waves has also
a multiple scale perturbation method, we have derived theevealed the emergence of both amplitude and phase insta-
amplitude equations for the laser equations extending thbilities.
analysis developed in Rd5] to the case where an external
signal is injected in the laser cavity. It has been shown that, APPENDIX: LINEAR STABILITY ANALYSIS

when the frequency of the external signal is tuned close t0 OF TRAVELING AND STANDING WAVES AGAINST

the resonance frequency of the two-level system, the compe- sSpATIALLY HOMOGENEOUS PERTURBATIONS
tition among traveling and standing waves may be described

by two coupled Ginzburg-Landau equations with parametric In this appendix we derive analytically the stability con-

terms analogous to those derived in hydrodynamics to studgfitions for both traveling- and standing-wave solutions of the
paramteric excitation of waves in oscillatory convection. Theamplitude equations considering the limiting case of spatially
presence of the parametric terms, which physically arisélomogeneous perturbations. If this is the case, it may be

from a four-wave-intercation process with conservation ofShown that the characteristic polynomial of the mai in
the linearized problem is given by

\ 7
5 \ J AN+ CiA2+Coh+C3) =0, (A1)
= 040
2 A\l where
= \

\
S \ co=RIR3,
~
= C1=2R;Ry(R; +R3) (1 cosp+RyRy),
=
[~

co=u?(R2—R3)%+ 12R3R3(u cosp— R1Ry),
0.00 S

C3=2uRIRS(R2+R3)(— u+ 64 coSp—6R;R,C0p)

0.0 ' 2/ 6 b
Wave Number Q +2p5(R7+R).

FIG. 7. Same as Fig. 3 far=0.3. Note that in this case SW’s An instability arises when at least one of the following con-
are always unstable. ditions is violated(Routh-Hurwitz criteriom:
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c;>0, c,>0, c3>0, (A2) 2. Mixed traveling waves
In this case,R;R,=u cosp and the polynomial coeffi-
H2=C1C2—CoC3>0. (A3)  cients may be written as

2p2

1. Standing-wave solution Co=RIR5,

In this caseR;=R,=R and the polynomial coefficients
become C1=4RIR5(RE+R5),
C0: R4,

co=u?(R2—R3)?+4RIR5(R}+ R+ R2R)),
c;=4R* u cosp+R?),
— 2 2 2 2 p2\2
C,=12R%( 1 cosp—R?)+ 8ROy cosp+ 4RZu?cod e, Ca=2u (R + Rp) (R~ Ry)™
C3=24R%u cosp(u cosp—R?). Conditions (A2) are manifestely satisfied, whereas after

some algebra the Hurwitz determintdp may be written in

Considering the lower branch of SWsorresponding to the  ha torm

lower sign in Eq.(33)], it is easy to show that the two con-

ditionsc,>0 andc,>0 are incompatible each other; there- 222 ot 22 oo
fore, the lower branch is always unstable. For the upper H,=2R1R3(R1+ R3)[ 1 (R1—R3)
branch of SW's, of condition§A2) only the last one may be 2 5. A 4 22
violated and this occurs whea>ag, where ag is the TBRIRG(RI TRz T RiRY)],
boundary of existence of mixed TW'’s defined by E8p). It
is easy to show that, once conditioffs2) are satisfied, also which is always positive. Therefore mixed TW's are always
condition (A3) is satisfied as well. In conclusion, SW’s are stable in their domain of existence against the growth of
unstable in the phase space domain where mixed TW's exisspatially homogeneous perturbations.
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