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Renormalization group methods in quantum optics

Marco Frasca
Via Erasmo Gattamelata, 3, 00176 Roma, Italy

~Received 4 February 1997!

The velocity-dependent spontaneous emission of a two-level atom in a Fabry-Pe´rot cavity in the strong-
coupling regime and the deflection of a beam of two-level atoms in a classical standing wave inside a cavity
are discussed using a renormalization group approach. In this way we are able to renormalize the leading-order
solutions for both problems through calculations of the corrections at first order. In fact, the first-order terms
are not bounded for large times and no sense can be attached to this higher-order correction unless small times
are considered. These are like the divergences of quantum field theory. To make them harmless, the condition
for the Raman-Nath regime is recovered. The renormalization group methods permit one to eliminate those
divergences generating a renormalized leading-order wave function without any condition of applicability. For
the spontaneous emission of a two-level atom in a Fabry-Pe´rot cavity in the strong regime, using a Hamiltonian
without losses, it is shown that the unperturbed levels are shifted by a term proportional to the zeroth-order
Bessel function with an argument yielded by the ratio of the Rabi frequency and the Doppler-shifted frequency
of the mode of the cavity. When the detuning is zero, the correction to the leading-order wave function is not
present and known results are recovered. For the beam of two-level atoms in a classical standing wave, when
the detuning is much larger than the Rabi frequency, it is shown that the renormalization group equation, which
gives the correction for the renormalized leading-order wave function, is a time-dependent Schro¨dinger equa-
tion for a free particle that induces a spreading of the initial Gaussian wave packet.@S1050-2947~97!01108-6#

PACS number~s!: 42.50.Ct, 42.50.Hz, 64.60.Ak, 32.80.2t
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I. INTRODUCTION

In recent years an important way to apply the renorm
ization group has been devised@1#. The method originated
from the well-known fact that ordinary small perturbatio
theory can give rise to higher-order corrections that could
be bounded in the limit of very large times. This proble
was born quite a long time ago in celestial mechanics and
name of secularities was attached to such terms as thei
fect, in astronomy, is apparent on a time scale of a cen
and can generally be neglected. But small perturba
theory is ubiquitous and these divergent terms can give
to problems. In quantum mechanics this question was fa
for the very first time in@2# where a unified theory of quan
tum resonance for a system with a discrete spectrum
given. It was shown there that increasing the strength of
perturbation could take the rotating-wave approximation
show its limits: Resonance equations should apply inste
The problem of secularities was then solved through
multiple-scale analysis@3# that has been until now a standa
perturbation approach to obtain global solutions, that is,
lutions useful for any time, not just small times. The a
proach discussed in Ref.@1# improves the multiple-scale
analysis, showing that it gives equivalent results to a m
general renormalization group method. Besides, the re
malization group approach makes very simple the appl
tion of perturbation schemes to obtain global solutions a
has been recently applied in quantum mechanics@4#.

A lot of interesting problems in quantum optics cou
require the application of the renormalization group@5#. We
examine the problem of the velocity-dependent spontane
emission of a two-level atom in a Fabry-Pe´rot cavity dis-
cussed in Ref.@6# where the ‘‘bare’’ Rabi frequency largel
561050-2947/97/56~2!/1548~5!/$10.00
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overcomes the rate of spontaneous emission and the c
losses and, more generally, the problem of the deflection
beam of two-level atoms in a classical standing wave@7#, a
typical problem of atomic optics that is normally consider
in the Raman-Nath regime where the kinetic energy term
the atom can be neglected due to the small interaction ti
The latter condition is quite easily understood, as we w
see, as a device to neglect secular terms. While this wo
fine, experiments could be devised where an increasing
teraction time is considered.

In quantum mechanics we can study the above system
the method described in Ref.@8#, but this approach gives ris
to secularities to higher orders; that is, we have terms
increase without bound with increasing time and so a seri
limitation appears in the method. The renormalization gro
permits us to eliminate that problem. One obtains that
strong-coupling limit of spontaneous emission of a two-le
atom in a Fabry-Pe´rot cavity has the levels of the unpertube
part of the Hamiltonian shifted due to interaction with th
cavity, an effect that disappears when the detuning is z
recovering known results@6#. A two-level atom beam in a
classical standing wave, when the detuning is much gre
than the ‘‘bare’’ Rabi frequency, undergoes a spreading fr
its initial Gaussian form, described by the free-particle tim
dependent Schro¨dinger equation. When this spreading is n
glected, well-known results are recovered@7#.

The paper is organized as follows. In Sec. II we discu
the method and apply it to a toy model whose solution
known; the renormalization group method is introduced he
In Sec. III we analyze the problem of a two-level atom in
Fabry-Pe´rot cavity without losses. In Sec. IV we derive th
condition for the Raman-Nath regime and find the correct
to the leading-order wave function for a beam of two-lev
1548 © 1997 The American Physical Society
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56 1549RENORMALIZATION GROUP METHODS IN QUANTUM OPTICS
atoms in a classical standing wave. In Sec. V the conclus
are given.

II. DESCRIPTION OF THE METHOD

In order to apply the renormalization group method
consider a perturbation scheme for an infinitely large per
bation. This approach was developed in Ref.@8# and the
following results were obtained. Let us consider a Ham
tonian
e
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H5H01lV, ~1!

with l→`, H0 the unperturbed part of the Hamiltonian, an
V the perturbation. A perturbation series for the equation

~H01lV!uc&5 i\
]

]t
uc& ~2!

is given, after rescaling the time ast→lt, by
uc~lt !&5U~lt,lt0!F I 2
1

l

i

\Elt0

lt

dt8U†~ t8,lt0!H0U~ t8,lt0!

1S 2
1

l

i

\ D 2E
lt0

lt

dt8E
lt0

t8
dt9U†~ t8,lt0!H0U~ t8,lt0!U†~ t9,lt0!H0U~ t9,lt0!1OS 1

l3D G uc~lt0!&, ~3!
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U(lt,lt0) being the time evolution operator solution of th
equation, forl51,

V~ t !U~ t,t0!5 i\
]

]t
U~ t,t0!. ~4!

This perturbation scheme can give divergent results in
limit t→` that can be evaded takingl→`, and so it does
not seem very useful. It is at this point that the renormali
tion group method can be useful to eliminate the div
gences. In order to see how the method works we consid
toy model, that is, a spin-1/2 particle in a constant magn
field with two components. The reason to consider suc
trivial example is that it gives problems to both the small a
strong perturbation schemes, as we are going to see.
Hamiltonian for such a simple system can be written as

H5Xs11Zs3 , ~5!

s1 ands3 being the Pauli matrices andX,Z the two compo-
nents of the magnetic field taken to beX@Z; that is,X is a
large perturbation for the other part of the Hamiltonian.

The solution of that problem is straightforward. We ha

uc~ t !&5FcosS V

\
~ t2t0! D2 i S X

V
s11

Z

V
s3D

3sinS V

\
~ t2t0! D G uc~ t0!& ~6!

whereV5AX21Z2. By taking H05Zs3 and V5Xs1 the
above perturbation scheme gives
e

-
-
r a
ic
a

d
he

uc~ t !&5 expS 2 i
X

\
s1@ t1f~ t0!# D

3H I 2eFexpS 2i
X

\
s1@ t1f~ t0!# D21Gs1s3

1e2FexpS 2i
X

\
s1@ t1f~ t0!# D21G

2e2
i

\
2Xs1~ t2t0!1O~e3!J uc~ t0!&, ~7!

with f(t0)52t0 ande5Z/2X. In the above series it shoul
be noticed that there is a term where the substitut
2t0→f(t0) is not done at all; this is the secular term. Th
parameterf(t0) enters just in the regular terms. This ru
permits us to get meaningful computations at any order
the method we are going to describe. The above result
also be obtained by the interaction picture, interchanging
role of H0 andV, so thatV is now a small perturbation; then
we have the same problem with both approaches. The p
lem is that we have a secular term that goes to infinity
t0→` at fixed t so that no meaning can be attached
higher-order corrections unless we are able to get rid o
The divergent partt0 is the analogous of the logarithm of th
cutoff in quantum field theory. By this analogy, we can co
sider applying the renormalization group as already devi
in Ref. @1#.

The method of the renormalization group makes the f
lowing formal steps. First, let us consider two constantsZ1
andZ2 so defined:

uc~ t0!&5Z1~ t0 ,t!uc~t!&R ,

f~ t0!5fR~t!1Z2~ t0 ,t!, ~8!

with t an arbitrary time introduced to eliminate the diverge
part t0. Next, we expand in series ofe both the constants a

Z1~ t0 ,t!511ea1~ t0 ,t!1e2a2~ t0 ,t!1O~e3!,
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1550 56MARCO FRASCA
Z2~ t0 ,t!5eb1~ t0 ,t!1e2b2~ t0 ,t!1O~e3!, ~9!

with the coefficientsan andbn to be determined to eliminat
the divergences att0 at the various orders. There is a fre
dom in the choice of those renormalization constants@9# but
we make the minimal one by putting

a150, a252
i

\
2Xs1~ t02t!,

b150, b250. ~10!

Substituting the expressions obtained in this way forf(t0)
anduc(t0)& into Eq.~7!, we get the ‘‘renormalized’’ expres
sion

uc~ t !&5expS 2 i
X

\
s1@ t1fR~t!# D

3H I 2eFexpS 2i
X

\
s1@ t1fR~t!# D21Gs1s3

1e2FexpS 2i
X

\
s1@ t1fR~t!# D21G

2e2
i

\
2Xs1~ t2t!1O~e3!J uc~t!&R . ~11!

But uc(t)& should not depend ont; the same happens i
quantum field theory where observables should not dep
on the renormalization scale. So it must be that

duc~ t !&
dt

50. ~12!

As we have a dependence ont in bothfR anduc&R , we get
nontrivial equations to compute them. The last step cons
in taking t5t in Eqs. ~11! and ~12! as t can be chosen
arbitrarily. So the following renormalization group equatio
are obtained:

duc~ t !&R

dt
1O~e3!50,

dfR~ t !

dt
22e21O~e3!50, ~13!

where the terms going likeedfR /dt ande2dfR /dt are ne-
glected, being of orderO(e3) andO(e4), respectively. This
can be seen from the corresponding renomalization gr
equation forfR in Eqs.~13!. Then, the global solution up to
second order is
nd

ts

p

uc~ t !&5 expF2
i

\ S X1
Z2

2XDs1~ t2t0!G
3S I 2eH expF2

i

\ S X1
Z2

2XDs1~ t2t0!G21J s1s3

1e2H expF2
i

\ S X1
Z2

2XDs1~ t2t0!G21J
1O~e3! D3uc~ t0!&, ~14!

to be compared with the exact solution, Eq.~6!, in the same
limit X@Z. We note at this point that Eqs.~13! can be ob-
tained by computing the envelope of Eq.~7!, with uc(t)&
considered as a function of botht and t0, at the tangency
point t05t. In order to accomplish this task, we have
compute@10#

duc~ t,t0!&
dt0

U
t05t

50; ~15!

then, takinguc(t,t0)&, as given by Eq.~7!, at t05t, Eqs.~13!
and ~14! are easily recovered. Both methods give the sa
results, but while the former makes clear that we are usin
renormalization group method, the latter is surely simpler
use.

All we need to apply these methods is a naive pertur
tion series that is generally straightforward to compute. A
result we obtain improved asymptotic solutions witho
secular terms.

III. VELOCITY-DEPENDENT SPONTANEOUS EMISSION
BY A TWO-LEVEL ATOM

Let us consider a two-level atom in a Fabry-Pe´rot cavity
having the Rabi frequencyg@k,g, k being the constant de
scribing the cavity losses andg the rate of spontaneous emi
sion. The equations for the probability amplitudescg(t) for
the ground state andce(t) for the excited state are@6#

dce~ t !

dt
52 ig cos~Vdt !e2 iDtcg~ t !,

dcg~ t !

dt
52 ig cos~Vdt !eiDtce~ t !2

k

2
cg~ t !, ~16!

Vd5vv/c being the Doppler shift of the frequency of th
field in the cavity if the atom motion along the axis of th
cavity is given byz5vt, and D5v02v is the detuning.
Taking the ideal lossless limit,k50 ~otherwise, a non-
Hermitian Hamiltonian should be considered!. We realize
very easily that Eqs.~16! can be derived from the effectiv
Hamiltonian

H5\Dsz1\g~s11s2!cos~Vdt !, ~17!

wheresz , s1 , ands2 are the pseudospin operators for
two-level atom@5#. That Hamiltonian can be used to descri
the strong-coupling regime. So we are in the situation wh
we find the first-order correction to the solution in Ref.@6#
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when the detuningD is not zero. We will find that a secula
term appears and we need to resort to the renormaliza
group method.

By consideringV5\g(s11s2)cos(Vdt) a strong pertur-
in
of

lly

e

h
a
ow

g

on
bation for the two-level atom and taking it starting at t
time t0 to avoid ordering problems, the perturbation sche
described in Sec. II gives, until first order,
goal
uc~ t !&5 expS 2 i
g

Vd
~s11s2!sin Vd@ t1f~ t0!# D F I 2 iD (

nÞ0
JnS 2g

Vd
D S sin nVd@ t1f~ t0!#

nVd

2 i ~s11s2!
cosnVd@ t1f~ t0!#21

nVd
Dsz2 iDJ0S 2g

Vd
D ~ t2t0!sz1OS D2

Vd
2D G ua~ t0!& ~18!

where, as before,f(t0)52t0 is a renormalizable parameter and use has been made of the relation@11#

eiz sin u5 (
n52`

1`

Jn~z!einu, ~19!

with Jn(z) the Bessel function of integer ordern. Equation~18! holds just for small times as a secular term appears. Our
is to get a global solution and get rid of the secularity. We can apply both the methods in Refs.@1,10# to obtain the
renormalization group equations. For example, consideringuc(t)& as a function of botht and t0 and applying Eq.~15! one
obtains

dua~ t !&
dt

1 iDJ0S 2g

Vd
Dszua~ t !&1OS D2

Vd
2D 50,

df~ t !

dt
1OS D2

Vd
2D 50. ~20!

Solving the above renormalization group equations and puttingt05t into Eq. ~18! gives the global solution

uc~ t !&5 expS 2 i
g

Vd
~s11s2!sin Vd~ t2t0! D F I 2 iD (

nÞ0
JnS 2g

Vd
D S sin nVd~ t2t0!

nVd
2 i ~s11s2!

cosnVd~ t2t0!21

nVd
Dsz

1OS D2

Vd
2D GexpF2 iDJ0S 2g

Vd
Dsz~ t2t0!G ua~ t0!&. ~21!
et
n
the

e
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en
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In the limit D→0 one gets the solution of Ref.@6# for the
strong-coupling regime in a lossless cavity at zero detun
It is not difficult to see a frequency shift of the two levels
the atom, proportional to the detuningD multiplied by the
factorJ0(2g/Vd). Then, we can conclude that a Fabry-Pe´rot
cavity produces a shift in the levels of the atom critica
dependent on the ratio between the coupling constantg, that
is, the ‘‘bare’’ Rabi frequency, and the Doppler shift of th
field frequency of the cavityVd .

IV. TWO-LEVEL ATOM IN A STANDING WAVE:
THE RAMAN-NATH REGIME

We consider a beam of two-level atoms interacting wit
classical standing wave in a cavity, in a largely nonreson
regime in order to neglect spontaneous emission. The foll
ing Hamiltonian holds for this model@5,7#:

H5\v0sz1
p2

2m
1\g~s2eivt1s1e2 ivt!cos~kx!,

~22!

which, transforming in the interaction picture by takin
H05\v0sz , becomes
g.

a
nt
-

H5
k2

2m
pj

21\g~s2e2 iDt1s1eiDt!cos~j!, ~23!

where, as above,D5v02v is the detuning and we have s
j5kx and pj52 i\]/]j. By the perturbation scheme i
Sec. II, we have to solve, for the time evolution operator,
equation

i
]U~ t,t0!

]t
5g cos~j!~s2eiDt1s1e2 iDt!U~ t,t0!. ~24!

The solution of this equation is not straightforward, but w
can rewrite it as an integral equation and try to see w
happens in the limit of a very large detuning, that is, wh
D@g. We have

U~ t,t0!5I 2 ig cos~j!E
t0

t

dt8~s2eiDt8

1s1e2 iDt8!U~ t8,t0!, ~25!

an integral equation to be solved iteratively. We get the sm
perturbation series in the parameterg/D,
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U~ t,t0!5I 1g cos~j!S s2

e2 iDt2e2 iDt0

D
2s1

eiDt2eiDt0

D D
2 i

2g2 cos2~j!

D
sz~ t2t0!1OS g2

D2D , ~26!

where a secular term is evident. We can eliminate it by
renormalization group methods by rewriting Eq.~26! as

U~ t,t0!5eif~ t0!F I 1g cos~j!S s2

e2 iDt2eiDu~ t0!

D

2s1

eiDt2e2 iDu~ t0!

D D 2 i
2g2 cos2~j!

D
sz~ t2t0!

1OS g2

D2D G , ~27!

u(t0)52t0 andf(t0) being renormalizable parameters. W
take the derivative of Eq.~27! with respect tot0 and put
t05t so that the renormalization group equations are

df~ t !

dt
1

2g2 cos2~j!

D
sz1OS g3

D3D50,

du~ t !

dt
1OS g2

D2D50. ~28!

Then, solving those equations and puttingt05t into Eq.~27!,
we obtain the known result at leading order@5,7#:

U~ t,t0!' expS 2 i
2g2 cos2~j!

D
sz~ t2t0! D . ~29!

So, as expected, in the small-recoil and large-detuning lim
we find again the solution that holds in the Raman-N
regime. The higher-order correction, in the same approxi
tion of Eq. ~29!, gives
o.

s

e

it,
h
a-

uc~j,t !&5U~ t,t0!F I 1 i
\k2

2m
~ t2t0!

]2

]j2 1OS g

D D G uj,t0&,

~30!

where again a secular term appears. We see that this term
be made harmless if we take (\k2/2m)(t2t0)!1, that is, the
condition for the Raman-Nath regime. Otherwise, we c
apply the renormalization group methods as above and
tain the renormalization group equation

i\
]uj,t&

]t
52

\2k2

2m

]2uj,t&
]j2 , ~31!

i.e., the Schro¨dinger equation for a free particle. Then, if th
beam has an initial Gaussian shape, a spread occurs a
particles would be free, independently of the interacti
time.

V. CONCLUSIONS

The improvement of the method of strong perturbatio
@8# by use of renormalization group methods@1,10# has per-
mitted us to study two interesting problems of quantum o
tics. Particularly, higher-order corrections to the known
sults at leading order@6,7# can now be obtained withou
difficulty. We have computed the shift in a two-level atom
a Fabry-Pe´rot cavity and the effect of the spreading in
two-level atom interacting with a classical standing wa
without resorting to the Raman-Nath regime condition o
tained from the secular terms of the higher-order correcti
in the perturbation series. This is just a first step toward
improved study of the application of perturbation methods
problems of quantum optics.
.
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