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Renormalization group methods in quantum optics
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The velocity-dependent spontaneous emission of a two-level atom in a FalotyeRgity in the strong-
coupling regime and the deflection of a beam of two-level atoms in a classical standing wave inside a cavity
are discussed using a renormalization group approach. In this way we are able to renormalize the leading-order
solutions for both problems through calculations of the corrections at first order. In fact, the first-order terms
are not bounded for large times and no sense can be attached to this higher-order correction unless small times
are considered. These are like the divergences of quantum field theory. To make them harmless, the condition
for the Raman-Nath regime is recovered. The renormalization group methods permit one to eliminate those
divergences generating a renormalized leading-order wave function without any condition of applicability. For
the spontaneous emission of a two-level atom in a FabrgtRavity in the strong regime, using a Hamiltonian
without losses, it is shown that the unperturbed levels are shifted by a term proportional to the zeroth-order
Bessel function with an argument yielded by the ratio of the Rabi frequency and the Doppler-shifted frequency
of the mode of the cavity. When the detuning is zero, the correction to the leading-order wave function is not
present and known results are recovered. For the beam of two-level atoms in a classical standing wave, when
the detuning is much larger than the Rabi frequency, it is shown that the renormalization group equation, which
gives the correction for the renormalized leading-order wave function, is a time-dependeitiSprequa-
tion for a free particle that induces a spreading of the initial Gaussian wave pggk860-294{@7)01108-4

PACS numbg(s): 42.50.Ct, 42.50.Hz, 64.60.Ak, 32.86

[. INTRODUCTION overcomes the rate of spontaneous emission and the cavity
losses and, more generally, the problem of the deflection of a
In recent years an important way to apply the renormalbeam of two-level atoms in a classical standing wgfik a
ization group has been devisgtl]. The method originated typical problem of atomic optics that is normally considered
from the well-known fact that ordinary small perturbation in the Raman-Nath regime where the kinetic energy term of
theory can give rise to higher-order corrections that could nothe atom can be neglected due to the small interaction time.
be bounded in the limit of very large times. This problem The latter condition is quite easily understood, as we will
was born quite a long time ago in celestial mechanics and theee, as a device to neglect secular terms. While this works
name of secularities was attached to such terms as their dfine, experiments could be devised where an increasing in-
fect, in astronomy, is apparent on a time scale of a centuryeraction time is considered.
and can generally be neglected. But small perturbation In quantum mechanics we can study the above systems by
theory is ubiquitous and these divergent terms can give risthe method described in R¢B], but this approach gives rise
to problems. In quantum mechanics this question was facetb secularities to higher orders; that is, we have terms that
for the very first time i 2] where a unified theory of quan- increase without bound with increasing time and so a serious
tum resonance for a system with a discrete spectrum wadsmitation appears in the method. The renormalization group
given. It was shown there that increasing the strength of theermits us to eliminate that problem. One obtains that the
perturbation could take the rotating-wave approximation tostrong-coupling limit of spontaneous emission of a two-level
show its limits: Resonance equations should apply insteacitom in a Fabry-Pet cavity has the levels of the unpertubed
The problem of secularities was then solved through gart of the Hamiltonian shifted due to interaction with the
multiple-scale analysig3] that has been until now a standard cavity, an effect that disappears when the detuning is zero,
perturbation approach to obtain global solutions, that is, sorecovering known resultgs]. A two-level atom beam in a
lutions useful for any time, not just small times. The ap-classical standing wave, when the detuning is much greater
proach discussed in Refl] improves the multiple-scale than the “bare” Rabi frequency, undergoes a spreading from
analysis, showing that it gives equivalent results to a mordts initial Gaussian form, described by the free-particle time-
general renormalization group method. Besides, the renodependent Schdinger equation. When this spreading is ne-
malization group approach makes very simple the applicaglected, well-known results are recovelé&d.
tion of perturbation schemes to obtain global solutions and The paper is organized as follows. In Sec. Il we discuss
has been recently applied in quantum mechap¢s the method and apply it to a toy model whose solution is
A lot of interesting problems in quantum optics could known; the renormalization group method is introduced here.
require the application of the renormalization grdg We  In Sec. Il we analyze the problem of a two-level atom in a
examine the problem of the velocity-dependent spontaneousabry-Peot cavity without losses. In Sec. IV we derive the
emission of a two-level atom in a Fabry+Be cavity dis- condition for the Raman-Nath regime and find the correction
cussed in Ref[6] where the “bare” Rabi frequency largely to the leading-order wave function for a beam of two-level
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atoms in a classical standing wave. In Sec. V the conclusions H=Hy+\V, )
are given.

with A —o0, Hj the unperturbed part of the Hamiltonian, and
[l. DESCRIPTION OF THE METHOD V the perturbation. A perturbation series for the equation

In order to apply the renormalization group method we P
consider a perturbation scheme for an infinitely large pertur- (Ho+ AV) | ) =i —| ) )
bation. This approach was developed in R&] and the gt
following results were obtained. Let us consider a Hamil-
tonian is given, after rescaling the time &s-\t, by

1
|¢(>\t)>=U(>\t,>\to)[l——'—fmdt'uT(t’,Mo)HoU(t’,Mo)
N g

1i0\2 , 1
+l-== f dt’ft dt"UT(t" Mto)HoU(t" A to)UT(t" Atg)HoU (1" Ato) + O =5 | || #(\tg)),  (3)
N Iy I \
|
U(M\t,\tp) being the time evolution operator solution of the X
equation, forn=1, lp(t))= exp —i 7 oalt+ d(to)]
X
9 X{l—e€ exﬁ{2|%ﬂ'1[t+¢(to)])_l 0103
V(OU(t,tp) =i —U(t,tg). (4
at X
+€2 eXF{ 2| %O’l[t"‘ ¢(t0)]> _1:|

This perturbation scheme can give divergent results in the i
limit t—o that can be evaded taking—, and so it does —62g2X01(t—to)+0(63)]|¢(to)>, (7
not seem very useful. It is at this point that the renormaliza-
tion group method can be useful to eliminate the diver-jth ¢(t,)= —t, ande=2z/2X. In the above series it should
gences. In order to see how the method works we considerige noticed that there is a term where the substitution
toy model, that is, a spin-1/2 particle in a constant magnetic-t,— ¢(t,) is not done at all; this is the secular term. The
field with two components. The reason to consider such @arameterg(t,) enters just in the regular terms. This rule
trivial example is that it gives problems to both the small andpermits us to get meaningful computations at any order by
strong perturbation schemes, as we are going to see. Thlhe method we are going to describe. The above result can
Hamiltonian for such a simple system can be written as  also be obtained by the interaction picture, interchanging the
role of Hy andV, so thatV is now a small perturbation; then,
we have the same problem with both approaches. The prob-
H=Xo,+Zos, (5 lem is that we have a secular term that goes to infinity as
to—oe at fixedt so that no meaning can be attached to
higher-order corrections unless we are able to get rid of it.
o, and o3 being the Pauli matrices aniZ the two compo-  The di_vergent party is the analogous_ of the logarithm of the
nents of the magnetic field taken to Ke-Z; that is,X is a  Cutoff in quantum field theory. By this analogy, we can con-
large perturbation for the other part of the Hamiltonian. ~ Sider applying the renormalization group as already devised

The solution of that problem is straightforward. We havein Ref. [1].
g 9 The method of the renormalization group makes the fol-

lowing formal steps. First, let us consider two constagys
7 andZ, so defined:
0'3)

{Q(t t)) '(X +
co§ —(t—to) | —i| s o1+~
R R R |(to)) = Za(to, )| (7).

Q
z(t—to)”h,//(to)) (6) #(to) = Pr(7) +Z5(to,7), 8

l(t))=

X sin

with 7 an arbitrary time introduced to eliminate the divergent
partty. Next, we expand in series @fboth the constants as
where Q= \/X?+Z2. By taking Hy=Zo3 andV=Xo,; the
above perturbation scheme gives Z1(to,7) =1+ €ay(ty, )+ €?ay(ty, 7) + O(€%),
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2

Zo(ty,7)=€by(tg, 7)+ €2b,(ty,7) + O(€°), 9) z
2(tg,7) = €by(ty, 7) + €°by(ty, 7 (€”) X‘l‘ﬁ)ffl(t—to)}

[
ly(t))= eXF{ %
with the coefficients,, andb, to be determined to eliminate i 72
the divergences dt, at the various orders. There is a free- X | 1= e[exr{ 2%(X+ X
dom in the choice of those renormalization constafitdbut

Ul(t_to)}_l]a'l(fg

we make the minimal one by putting , i 72
+e€ eXF{Z% X+ﬂ Ul(t_to):|_1}
i
M=0 BT pHXenllom ), +0(&) | x|u(to), 14
b,=0, b,=0. (10) to be compared with the exact solution, E6), in the same

limit X>Z. We note at this point that Eqél3) can be ob-

tained by computing the envelope of E), with |#(t))
Substituting the expressions obtained in this way d¢dt,) considered as a function of bothandt,, at the tangency
and|¢(to)) into Eq.(7), we get the “renormalized” expres- point t,=t. In order to accomplish this task, we have to
sion compute[10]

|¢(t)>:eXF{_i%01[H’ ¢R(T)]) dto to=t

Jine

+ €2

=0; (15

then, taking #(t,to)), as given by Eq(7), atto=t, Egs.(13)
and (14) are easily recovered. Both methods give the same
0103 results, but while the former makes clear that we are using a
renormalization group method, the latter is surely simpler to
X use.
ex;{ 2i g‘fl[H ¢l T)]) - 1} All we need to apply these methods is a naive perturba-
tion series that is generally straightforward to compute. As a

| 3 result we obtain improved asymptotic solutions without
— € 52Xy (t=7)+0(€) ([h(7)r- (1D secular terms.

X
ex% 2i %O'l[t‘f‘ qBR(T)]) -1

Ill. VELOCITY-DEPENDENT SPONTANEOUS EMISSION

But |(t)) should not depend om; the same happens in BY A TWO-LEVEL ATOM

guantum field theory where observables should not depend

on the renormalization scale. So it must be that Let us consider a two-level atom in a Fabryrétecavity
having the Rabi frequenay> «, v, « being the constant de-
scribing the cavity losses andthe rate of spontaneous emis-

d%(t) =0. (12) sion. The equations for the probability amplitudggt) for
dr the ground state ancl(t) for the excited state afé]
. dcg(t) . .
As we have a dependence orin both ¢ and|#)g, we get =—ig cogQ4t)e '“cg(t),
nontrivial equations to compute them. The last step consists dt
in taking 7=t in Egs. (11) and (12) as = can be chosen de.(t)
arbitrarily. So the following renormalization group equations 9 _ g cog Q.t)elde (t)— Ec t 16
Q4= wv/c being the Doppler shift of the frequency of the
d|l//(t)>re+o 50 field in the cavity if the atom motion along the axis of the
dt (€=0, cavity is given byz=vt, and A= wy— o is the detuning.
Taking the ideal lossless limitx=0 (otherwise, a non-
Hermitian Hamiltonian should be consideredVe realize
der(t) 9 3 very easily that Eqs(16) can be derived from the effective
gt 2€ +0(e)=0, 13 Hamiltonian
H=hAo,+hg(o.+o_)cogQ4t), 17

where the terms going liked ¢ /dt and e’d ¢ /dt are ne-

glected, being of orde®(€e®) andO(e?), respectively. This whereo,, o, ando_ are the pseudospin operators for a
can be seen from the corresponding renomalization groufwo-level atom5]. That Hamiltonian can be used to describe
equation for¢g in Egs.(13). Then, the global solution up to the strong-coupling regime. So we are in the situation where
second order is we find the first-order correction to the solution in REg]
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when the detuning\ is not zero. We will find that a secular bation for the two-level atom and taking it starting at the
term appears and we need to resort to the renormalizatiofime t, to avoid ordering problems, the perturbation scheme
group method. described in Sec. Il gives, until first order,

By consideringv=7%g(o, + o_)cosf}t) a strong pertur-

g . . 29 [sinnQg[t+ ¢ (to)]
ly(t)) = exp( —i Q—d(0'++0'_)sm Qgt+ ¢(t0)]>{|—m§0 JH(Q—d)( "y
_ cosnQy[t+ ¢(tg)]—1 _ 2 A?
—i(o,+0o.) d[nﬂj( o)l )O’Z—IAJO Q—i)(t—to)az-l-o Q—zd) |a(ty)) (18

where, as beforep(ty) = —tg is a renormalizable parameter and use has been made of the r¢ldflon

—+ oo

gz sinfd_ 2 Jn(z)einG’ (19)
n=-—o

with J,(z) the Bessel function of integer order Equation(18) holds just for small times as a secular term appears. Our goal
is to get a global solution and get rid of the secularity. We can apply both the methods in[R&f}.to obtain the
renormalization group equations. For example, considduirft)) as a function of both andt, and applying Eq(15) one

obtains
2 2
A )=O, d¢(t)+O(A )=O. (20

dla®) A%\ 92 (A%
Q03 dt 05

. 29
T +IAJO(— o,a(t))+0

Qq

Solving the above renormalization group equations and putag into Eq. (18) gives the global solution

B g ) ) 29\ [sinnQ4(t—ty) . cosnQqy(t—tg)—1
|l//(t)>— EXF<—IQ—d(O'++O'_)SInQd(t—tO)) |—IAn§0 Jn<9—d)<n—ﬂd—l(0’++0_) N0y o,
2 - zg
+0 Q_é ex _|AJO Q_d O'Z(t_to) |C¥(t0)> (21)
|
In the limit A—0 one gets the solution of Refi6] for the k2 5 A n
strong-coupling regime in a lossless cavity at zero detuning. H=5 P:thg(o-e 'Yt o,eeogé), (23

It is not difficult to see a frequency shift of the two levels of
the atom, proportional to the detunirg multiplied by the
factorJo(2g/Q4). Then, we can conclude that a Fabryrdte
cavity produces a shift in the levels of the atom critically
dependent on the ratio between the coupling congiatitat

is, the “bare” Rabi frequency, and the Doppler shift of the
field frequency of the cavitf).

where, as above) = wy— w is the detuning and we have set
é=kx and p;=—ihdl9§. By the perturbation scheme in
Sec. Il, we have to solve, for the time evolution operator, the
equation

) g cogby ot e UL, (24

IV. TWO-LEVEL ATOM IN A STANDING WAVE:

THE RAMAN-NATH REGIME . . . . .
The solution of this equation is not straightforward, but we

We consider a beam of two-level atoms interacting with acan rewrite it as an integral equation and try to see what
classical standing wave in a cavity, in a largely nonresonantappens in the limit of a very large detuning, that is, when
regime in order to neglect spontaneous emission. The followA>g. We have
ing Hamiltonian holds for this modé¢b,7]:

t o
p2 _ _ U(t,tg)=1—ig cos(g)J dt’(o_e'
H=%woo,+ ﬁ+ﬁg(cr,e"°‘+o+e*""t)cos(kx), to

(22) +o,e MU L), (25)

which, transforming in the interaction picture by taking an integral equation to be solved iteratively. We get the small
Ho=fwqo,, becomes perturbation series in the parametgn,
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—iAt_e—iAto eiAt_eiAto th 2 g
(30)
29? cog 2
—iw@(t—to)—kO %2-) 26

] ) o ] where again a secular term appears. We see that this term can
where a secular term is evident. We can eliminate it by thg)q made harmless if we takgK2/2m) (t—to) <1, that is, the

renormalization group methods by rewriting E@6) as condition for the Raman-Nath regime. Otherwise, we can
_ e 1At oiAd(to) apply the renormalization group methods as above and ob-
U(t,tg)=€e?t)|1+g cos{f)( o tain the renormalization group equation
el At g—idd(ty) 202 coL
0, TS )—i T tto LAlen 1% 7l a
ot 2m  9£%
g2

i.e., the Schrdinger equation for a free particle. Then, if the
0(tg) = —ty and ¢(tg) being renormalizable parameters. We beam has an initial Gaussian shape, a spread occurs as the
take the derivative of Eq(27) with respect toty and put particles would be free, independently of the interaction

to=t so that the renormalization group equations are time.
dg(t) 2g° cos(£) (gs)
+ +0 =0,
dt A TN V. CONCLUSIONS
deo(t) g® The improvement of the method of strong perturbations
T O(P) =0. (28)  [8] by use of renormalization group methdds10] has per-

mitted us to study two interesting problems of quantum op-

Then, solving those equations and putttpe t into Eq.(27), tics. Particularly, higher-order corrections to the known re-
we obtain the known result at leading ord&7]: sults at leading ordef6,7] can now be obtained without
difficulty. We have computed the shift in a two-level atom in
_29° coS(£)

a Fabry-Peot cavity and the effect of the spreading in a
U(t,to)~ ex%_'TUz(t_tO)» 29 two-level atom interacting with a classical standing wave
without resorting to the Raman-Nath regime condition ob-
So, as expected, in the small-recoil and large-detuning limittained from the secular terms of the higher-order corrections
we find again the solution that holds in the Raman-Nathin the perturbation series. This is just a first step toward an
regime. The higher-order correction, in the same approximaimproved study of the application of perturbation methods to

tion of Eq. (29), gives problems of quantum optics.
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