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Theory of two-photon entanglement for spontaneous parametric down-conversion
driven by a narrow pump pulse

Timothy E. Keller and Morton H. Rubin
Department of Physics, University of Maryland Baltimore County, Baltimore, Maryland 21250

~Received 9 January 1997!

Spontaneous parametric down-conversion~SPDC! has been extensively studied for the case of a continuous
wave pump. In this paper SPDC is studied for the case in which the pump is a pulse. The pump pulse acts like
a clock with an uncertainty equal to its width. This makes it possible to distinguish pairs of photons born at
sufficiently different depths inside the crystal with a consequent decrease in two-photon interference. We study
this effect in detail for degenerate collinear type-II SPDC and degenerate type-I SPDC. It may be possible in
the type-II case to eliminate the clock effect of the pump by judicious choice of materials and wavelengths.
@S1050-2947~97!00508-8#

PACS number~s!: 42.50.Dv, 42.65.Ky, 03.65.Bz
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I. INTRODUCTION

Spontaneous parametric down-conversion~SPDC! may
be viewed as a coherent three-photon process where a cr
which is not centrosymmetric is illuminated by a pum
beam. The pump beam is intense enough to drive the o
lations of the electrons in the crystal into the nonlinear
gime. The second order interaction results in the annihila
of a pump photon and the creation of two down-conver
photons termed the signal and idler. The photon pairs tha
created are entangled in space-time or, equivalently, in w
number and frequency. In most discussions of SPDC
pump has been taken to be monochromatic. This means
the pair can be produced at any time. In this paper the na
of the down-converted photon pairs is studied when
pump is a narrow pulse. This means that the pair can only
produced when the pump pulse is inside the crystal, con
quently, the pulse acts like a clock that can be used to
tinguish different pairs of the down-converted photons. Sin
in many two-photon interference experiments, the interf
ence occurs between the amplitudes for pairs born at dif
ent times, this distinguishability leads to a decrease in tw
photon interference. In type-II SPDC this effect can
eliminanted for certain choices of crystals and pump frequ
cies.

We shall examine two cases of SPDC. In both cases
shall assume that the signal and idler beams are degene
that is, they have the same central frequency. In the typ
case, the pair of photons produced is orthogonally polariz
We will confine our study to the case in which the pair
produced collinearly. In the type I case the signal and id
have the same polarization. The nature of the photon
produced for nondegenerate type-I is similar to that of
type-II case, but the degenerate type-I case is different, a
shall see.

II. THE INTERACTION HAMILTONIAN
AND THE STATE VECTOR

The interaction Hamiltonian describing the dow
conversion process@1,2# is given by
561050-2947/97/56~2!/1534~8!/$10.00
tal

il-
-
n
d
re
ve
e
at
re
e
e
e-
s-
e
r-
r-
-

n-

e
ate,
II
d.

r
ir
e
we

H15E
V
dV

2

3
e0xEiEsEp , ~1!

wherex is the nonlinear electric susceptibility tensor and t
integral is over the volume of the crystal. The electric fie
for the pump,Ep , is taken to be classical, while the sign
and idler fields are quantized. The pump beam is linea
polarized and propagating in thez direction. It has a centra
frequencyVp and an envelope of arbitrary shape,Ẽp . Let

Ep~z,t !5e2 iVptẼp~z,t !,
~2!

Ẽp~z,t !5E dnpĒp~np!eikp~Vp1np!z2 inpt.

Using the interaction Hamiltonian, we can now compute
state vector on the output face of the crystal. To first orde
the interaction, the state vector for the collinear case
shown in Appendix A to be

uC&5u0&1 (
ks ,ki

F~ks ,ki !as
†~ks!ai

†~ki !u0&, ~3!

wherea† is a photon creation operator andu0& is the vacuum
state. The two-photon spectral function is given by

F„ks~v!,ki~v8!…5gE
2L

0

dzeiD~ks ,ki !zĒp~v1v82Vp!,

~4!

whereD(ks ,ki)5kp2ki2ks . This differs from earlier work
@3# where the pump envelope was a constant. We shall c
pute this function for the case of both type-I and type
SPDC.

III. THE TWO-PHOTON AMPLITUDE FOR TYPE-II
DOWN-CONVERSION

In type-II SPDC the signal and idler are orthogonally p
larized. We shall take the extraordinary ray (e ray! to be the
signal and the ordinary ray (o ray! to be the idler. Consider
the experiment illustrated in Fig. 1. The beam splitter tra
1534 © 1997 The American Physical Society
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56 1535THEORY OF TWO-PHOTON ENTANGLEMENT FOR . . .
mits the o ray and reflects thee ray. The probability of
getting a coincidence count for each pulse is proportiona
@4#

Rc5E
0

`

dT1E
0

`

dT2^CuE1
~2 !E2

~2 !E2
~1 !E1

~1 !uC&, ~5!

where the electric fields are free space fields evaluate
detectors 1 and 2. The field at detector 1 can be written

E1
~1 !5

1

A2
(
v

eva„k~v!…e2 ivt1, ~6!

where a(k) is the annihilation operator of a photon wit
wave number k at the output face of the crysta
ev5(\v/e0VQ)1/2, VQ is the quantization volume
t15T12 l 1 /c, andl 1 is the optical path length from the ou
put face of the crystal to detector 1. The fieldE2 is defined in
the same way except there is an extra factor ofi multiplying
the field because of the reflection from the beam splitter. T
expectation value computed using Eq.~3! is

^CuE1
~2 !E2

~2 !E2
~1 !E1

~1 !uC&5u^0uE2
~1 !E1

~1 !uC&

5uA~ t1 ,t12!u2, ~7!

where the two-photon amplitude or biphoton is defined b

A~ t1 ,t12!5^0uE2
~1 !E1

~1 !uC&, ~8!

where we have introduced the times

t15
1

2
~ t11t2!, ~9!

t125t12t2 . ~10!

The interpretation oft12 is simply the difference in the time
of arrival of the idler and signal at the output face of t
crystal. If it is positive, the idler arrives after the signal. W
may think of t1 as the time at which the center of mome
tum of the biphoton arrives at the output face of the crys

When frequency filters centered aroundVs5V i are
placed in front of the detectors, it is shown in Appendix
that

FIG. 1. Simplified two-photon anticorrelation experiment. A
intense laser pump beam incident on the crystal produces a pa
orthogonally polarized photons. The pair emerge from the cry
and are split by the polarizing beam splitter, BS.D1 andD2 are
photon detectors and CC is a coincidence counter.
o

at
s

e

l.

A~ t1 ,t12!5v~ t1!u~ t12!w~ t1 ,t12!, ~11!

where

v~ t !5v0e2 iVpt, ~12!

u~ t !5P~ t !, ~13!

w~ t,t8!5Ẽ S 0,t2t8
D1

D D , ~14!

and

P~ t !5H 1

DL
for 0,t,DL

0 otherwise,

~15!

D5
1

uo~V i !
2

1

ue~Vs!
, ~16!

D15
1

2S 1

uo~V i !
1

1

ue~Vs!
D2

1

up~Vp!
. ~17!

The ur(V) are group velocities evaluated at the frequen
V for beams propagating along the length of the crystal. T
v, u, and D functions are the same functions that appe
when the pump is a plane wave@3#. When the pump is a
plane wavew is a constant, and, becausev(t) is a constant
times a phase factor, the counting rate is independen
t1 . The width of the biphoton is given byDL, which is the
difference in time required for ano ray and ane ray to cross
the crystal.

The effect of the finite pulse width of the pump is co
tained inw, which for type II is given by Eq.~14!. Note that
D1L is the difference in time for the center of momentum
the biphoton and the pump to cross the crystal. If we assu
that the pump envelope peaks when its argument is zero
see that the peak of the pump pulse arrives at the output
of the crystal whent15t12D1 /D. To understand the mean
ing of this note that whenD150 the center of the pump
pulse arrives at the output face of the crystal at the same
as the center of mass of the biphoton. IfD1Þ0 then the
peak of the pulse arrives at a timeut12D1 /Du relative to the
center of momentum of the biphoton. If this is a positi
number then the peak of the pulse arrives after the cente
mass of the biphoton. The magnitude oft12/D may be
thought of as the distance from the output face of the cry
to the point at which the biphoton is born. In effect, th
pump pulse provides us with a clock with a timing unce
tainty equal to the pulse width that can be used to distingu
different biphotons. This leads to a decrease in the indis
guishability that can be observed in two-photon interferen
experiments. We illustrate this in Fig. 2.

To illustrate the effect of the finite pump width on inte
ference experiments we consider the anticorrelation exp
ment illustrated in Fig. 3@5#. We consider the case of
negative uniaxial crystal so the group velocity of thee ray is
greater than that of theo ray. As shown in the figure a
compensator composed of phase plates is placed imm
ately after the crystal. The phase plates are oriented so
the o ray travels along the fast axis and thee ray along the

of
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1536 56TIMOTHY E. KELLER AND MORTON H. RUBIN
slow axis. In this experiment a 50–50 beam splitter is us
The linear polarizers placed in front of the detectors are
ented at 45° relative to theo and e axes. The biphoton for
this case becomes

A~ t1 ,t12!5
1

2
v~ t1!@u~ t121t!w~ t1 ,t121t!

2u~2t121t!w~ t1 ,2t121t!#. ~18!

When the coincidence counts are computed thev term just
gives a constant.

We briefly review the case for which the pump is a pla
wave,w51. If the e ray emerges from the crystal before th
o ray when there is no compensator,t50, there can be no
interference because there is no overlap betweenu(t12) and
u(2t12). The compensator introduces a delay oft in the e

FIG. 2. Feynman diagram for a biphoton. For the case illustra
the biphoton is born atz0. The e ray leaves the crystal at a tim
t5uz0Du ahead of theo ray. In the case of a monochromatic pum
the biphoton pair can be created at any time. For a pulsed pum
must be created during the time interval when the pump beam
inside the crystal. This localizes the center of momentum of
biphoton. The width of the biphoton is the maximum difference
the times at which the signal and idler photons exit the crys
DL.

FIG. 3. Type-II two-photon anticorrelation experiment. Pha
plates inserted after the crystal have their fast axis parallel to
o ray. By adding plates, thee-ray ando-ray beams may be time
shifted relative to one another. Linear polarizers oriented at
relative to thee ray are placed in front of the detectors.
d.
i-

ray relative to theo ray. This causes an overlap between t
first and second term in Eq.~18!. If the phase delay betwee
the two beams is chosen to beDL/2 the coincidences vanis
because the overlap between the two terms is complete.

In the pulsed pump case this is not true in general beca
of the presence ofw. For complete overlap of the two term
in Eq. ~18!, it is necessary thatt5DL/2 and equating the
arguments ofw in the first and second termt12D1 /D50
which requires the vanishing ofD1 . This condition is dis-
cussed in Appendix D. Figure 4 illustrates the regions
which the two terms of Eq.~18! are nonvanishing.

For a Gaussian pulse envelope,

Ẽp~0,t !5Epe2t2/2s2
, ~19!

we have

Rc55
12

sAp

D1L
erfS uD1uL

s

t

DL D , 0,t,
DL

2

12
sAp

D1L
erfF uD1uL

s S 12
t

DL D G , DL

2
,t,DL

1 otherwise,
~20!

where erf is the error function. Figure 5 shows plots of t
coincidence probability for different pulse widths. The e
ample plotted is for BBO with a 350 nm pulse and pul
widths of 10 fs, 100 fs, and 1 ps. The 1 ps pulse is similar
a plane wave pulse in that it gives a ‘‘vee’’ shaped dip whi
goes to zero att5DL/2. The effect of the Gaussian in thi

d
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e
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e

°

FIG. 4. Illustration of biphoton amplitudes. Whent<0 the two
parts of the biphoton do not overlap and so cannot interfere. W
phase plates oriented as in Fig. 3 are added, the biphoton am
tudes are shifted so that they partially overlap. The width of
pump and the particular values ofD andD1 determine the extent o
the overlap. ForDL<t, the two terms do not overlap and no inte
ference is observed.
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56 1537THEORY OF TWO-PHOTON ENTANGLEMENT FOR . . .
case is simply to round off the corners att zero andDL. As
the pulse width decreases the dip becomes shallower.
depth is found from Eq.~20! by setting t/DL51/2. The
parameter that determines the depth is the ratio of maxim
time delay between the arrival of the pulse and the cente
momentum of the biphoton to the pump pulse wid
uD1uL/s.

IV. THE TWO-PHOTON WAVE FUNCTION FOR TYPE I

For type-I SPDC the signal and idler photons are crea
with the same polarization. For the degenerate case this c
plicates the computation of the biphoton. We begin as be
by first computing the biphoton for the case in which t
signal goes to detector 1 and the idler goes to detector 2,
6. In this case, although the signal and idler are again ta
to be degenerate, in order to separate them, they are
collinear. We ignore the coordinates transverse to the op
path from the crystal to each detector.

In Appendix C, we show that the biphoton for this ca
can be written in the form

A~ t1 ,t12!5v~ t1!wI~ t1 ,t12!, ~21!

FIG. 5. Plot of Eq.~20! for different pulse widths of 10 fs, 100
fs, and 1 ps for a 1.0-mm BBO crystal with a 350-nm pump. T
greater the pulse width the deeper the dip.

FIG. 6. Type-I experiment. Degenerate pairs of photons are
lected by the apertures. In this case the crystal is cut so that t
beams are not emitted collinearly.
he
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wherev is given by Eq.~12!, and t1 and t12 are given by
Eqs.~9! and ~10!.

wI~ t1 ,t12!5E
2L

0

dzẼp~0,t11D1z!
eit 12

2 /4D9z

Az
, ~22!

where for the degenerate case in which the signal and i
areo rays,

D15
1

uo~Vp/2!
2

1

up~Vp!
, ~23!

andD9 is the dispersion for ano ray evalutated atVp/2,

D95
d2Ko

dV2 U
V5Vp/2

. ~24!

Equation~22! shows that, if the biphoton is thought of a
being created at the pointz inside the crystal, the width o
the biphoton, described byt12, oscillates and increases be
cause of the dispersion. At the exit face of the crystal
biphoton width is approximatelyA4uD9zu. The length of the
biphoton is determined by the pulse width. If the biphoton
imagined to be created atz, its center of momentum, locate
at t1 , lags or leads the pulse byuD1zu depending on the sign
of D1 .

In our calculations we ignore the dispersion of the pum
beam since it will be negligible except for very narrow pum
widths. For Gaussian pump envelopes, Eq.~19!, and the type
of crystals used in SPDC, dispersion will be negligible f
s/AL.20 fs mm21/2 whereL is the length of the crystal
However, we must include dispersion in the calculation
the width of the biphoton for degenerate type-I SPDC. T
reason for this is that in the standard Hamiltonian the pair
photons is considered to be created at a single point. If
two photons are nondegenerate the difference in their gr
velocity will cause them to spread apart and this will det
mine the width of the biphoton. This is what happens in t
type-II case. For the degenerate type-I case the group ve
ity of the signal and idler is the same and so the width of
biphoton is determined by the next order in the expansion
the wave numbers. As is shown in Appendix C this is just
dispersion of the signal and idler.

To illustrate the effect of the finite pump width on inte
ference, we consider the experiment shown in Fig. 7@6#. The
crystal is cut to provide signal and idler degenerate phot
at particular angles which are selected by pinholes. A v
able optical delayt is inserted into the interferometer, whic
is terminated by a 50–50 beam splitter. In the case o
continuous pump, the state emerging from the beam spl
is of the form uc&5eiv itu i & tus& t2e2 iv itu i & r us& r . The sub-
scripts refer to the case in which both beams are transm
or both are reflected. We omit the terms which do not lead
coincidences. The negative sign comes from the two
phase shifts upon reflection at the beam splitter. For eq
optical path lengths,t50, the two terms cancel and there a
no coincidences@6#.

To do the detailed calculation of the biphoton, Eq.~8!, the
field at each detector must be written in terms of the crea

e-
se
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1538 56TIMOTHY E. KELLER AND MORTON H. RUBIN
and annihilation operators at the output face of the crys
We again ignore the transverse coordinates,

E15
1

A2
(
v

ev@ ias„k~v!…1eivtai„k~v!…#e2 ivt1,

~25!

E25
1

A2
(
v

ev@as„k~v!…1eivtiai„k~v!…#e2 ivt2.

In computing the biphoton, we take the signal and idler to
o rays and the pump to be ane ray inside the crystal. It is
shown in Appendix C that the biphoton is

A~ t1 ,t12!5
1

2
vS t12

t

2D FwIS t12
t

2
,t122t D

2wIS t12
t

2
,2t122t D G . ~26!

The first term in the square brackets in Eq.~26! corresponds
to the case when the signal and idler are transmitted by
beam splitter, while the second term corresponds to t
reflection. From this it follows that biphotons that are crea
farther apart than the pulse width do not interfere because
wI terms in Eq.~26! do not overlap. Alternatively, we ma
attribute the disappearance of interference to the fact tha
two terms in each biphoton are distinguishable by the ti
their center of momentum leaves the crystal relative to
time the pulse leaves the crystal. Since the pulse is class
we do not need to worry about any refinements due to
quantum theory of measurement when detecting it.

We can now compute the probability of a coinciden
count using Eq.~5!:

Rc~t!5Rc~0!@12J~t!/J~0!#, ~27!

FIG. 7. Type-I HOM@6# experiment. The crystal is cut to pro
vide the signal and idler degenerate photons at two distinct an
which are selected by pinholes. A variable delayt is introduced
into the interferometer. The detection system is the same a
Fig. 1.
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J~t!5ReE
2`

`

dt1E
2`

`

dt12wI~ t1 ,t122t!wI* ~ t1 ,2t122t!

5E
2L

0

dz1E
2L

0

dz2

exp~2 i t2/D9z!

Aiz2

Cp~z2!, ~28!

wherez25z12z2 and

Cp~z2!5E
2`

`

dt1Ẽp~0,t11D1z2!Ẽp* ~0,t1! ~29!

is the autocorrelation of the pump envelope. If the pum
envelope is taken to be a real Gaussian given by Eq.~19!

J~t!5J0E
0

1

dz
12z

Az
cosS t2

D9Lz
2

p

4 De2~D1L/2s!2z2
,

~30!

wherez5z2 /L. The functionRc(t)/Rc(0) is plotted in Fig.
8 for Gaussian pumps. The physics ofJ(t) may be under-
stood as follows. Fort50 the cancellation of the two am
plitudes in Eq.~26! is always complete because each biph
ton created at a given point in the crystal interfer
destructively with itself. FortÞ0 the interference occur
between the amplitudes for the biphoton created at differ
times. The exponential term shows that the interference
tween the amplitudes for pairs created atz1 andz2 becomes
small when uD1uuz12z2u becomes large compared to th
pulse width. As explained above, the pairs created are t
distinguishable because their wave packets do not over
The quantityD1uz12z2u measures the different times of a
rival of the pairs relative to the clock provided by the puls
The cosine term comes from the dispersion of the signal
idler beam. Fort50 the dispersion gives rise to a ter
1/AD9z. The decrease in the interference here is due to
fact that the amplitude for a pair created near the input f
of the crystal broadens due to dispersion, while the am
tude for a pair created at the output face does not, there
the overlap between these amplitudes is less than the ove

es

in

FIG. 8. Plot ofRc(t)/Rc(0) defined in Eq.~28! for Gaussian
pulses. The three curves are for (D1L/2s)250, 1, and 5. The
plane-wave case,s5`, has the greatest width. The width of the d
decreases as the pulse width decreases. The oscillatory natur
result of the dispersion of the biphoton.
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56 1539THEORY OF TWO-PHOTON ENTANGLEMENT FOR . . .
between amplitudes for pairs created nearby to one ano
This leads to the decrease in the width of the interfere
pattern seen in Fig. 8. When we delay the signal relative
the idler, the overlap of the amplitudes oscillates becaus
the oscillations in the biphoton width.

From Eq.~30! we see that the width of peak is determin
by the dimensionless parametersa5Dt2/(D9L) and
b5D1L/(2s). From numerical calculations, we have foun
that the width of the interference pattern,Dt, as measured
from the dip to the first maximum is accurately described

1/a25c1b21c2 ,
~31!

1

Dt4 5c1S D1

2D9D
2 1

s2 1
c2

~D9L !2 ,

wherec1 andc2 are numerical constants taken from the n
merical calculations. We see that for a steady-state pu
s→`, the width of the interference is determined b
AD9L.

V. CONCLUSION

We have provided a detailed discussion of SPDC
pumps with finite pulse widths. A pump with a finite widt
was shown to act like a clock with an uncertainty given
the pump width. This allows us to distinguish amplitudes
photon pairs that are born at different depths inside the c
tal. Consequently, there is a decrease in two-photon inte
ence effects. For the type-II case this is manifested in a
crease in the visibility for the experiment discussed. In
type-I HOM @6# experiment, the width of the interference d
is decreased. In type-II SPDC, the distinguishability dis
pears if the crystal and the wavelengths can be chose
D1 , defined in Eq.~17!, vanishes. The physics of degenera
type-I SPDC is different from that of type II and nondege
erate type I. In degenerate type I the width of the biphoton
determined by dispersion and is inherently narrower than
other cases. This may have advantages in preparing
tangled four-photon states@11#.

ACKNOWLEDGMENTS

We have benefited from many discussions with Y.
Shih and T. Pittman for which we wish to express our gra
tude. This work was supported, in part, by the U.S. Office
Naval Research, Grant No. N00014-91-J-1430.

APPENDIX A: STATE VECTOR

We begin with a linearly polarized input pulse propag
ing in the z direction. The pump has a central frequen
Vp and an envelope of arbitrary shape,Ẽp , given by Eq.~2!.

The interaction Hamiltonian~1! may be written using the
rotating wave approximation as

H15E
V
dxdydzS 2

2

3
e0xEi

~2 !Es
~2 !Ep

~1 !1H.c.D , ~A1!
er.
e
o
of

y

-
p,

r

r
s-
r-
e-
e

-
so

-
is
e
n-

.
-
f

-

where x is the nonlinear electric susceptibility tensor, a
H.c. stands for the Hermitian conjugate. In defining the s
nal and idler field, we confine ourselves to the collinear ca
The signal field is defined by

Es
~1 !5(

v

ev

ns~v!
as„ks~v!…ei [ks~v!z2vt] , ~A2!

whereas„ks(v)… is the annihilation operator for the signa
mode with frequencyv,

ks~v!5ns~v!v/c, ~A3!

ns is the index of refraction of the signal beam,c is the speed
of light,

ev5A \v

2e0VQ
, ~A4!

andVQ is the quantization volume. The idler field is define
in an analogous fashion. The pump beam may be trea
classically.

The state vector is computed using first order perturba
theory @3#. In the interaction picture, we have

uC&5u0&2
i

\E2`

`

H1~ t !dtu0&. ~A5!

Substituting the expressions for the fields into this express
we can compute the spectral function Eq.~4!.

APPENDIX B: TYPE II-EQUATIONS

We consider the experiment illustrated in Fig. 1. The
photon defined in Eq.~8! is given by

A~ t1 ,t12!5
i

2 (
v,v8

evev8e
2 ivt1e2 iv8t2F„ks~v!,ki~v8!…,

~B1!

wheret1 and t12 are defined in Eqs.~9! and ~10!.

1. Phase matching

Suppose the crystal is cut so that

Vs1V i5Vp , ~B2!

Ks1Ki5Kp , ~B3!

Kr5nrV r /c, r 5s,i ,p. ~B4!

Now let v5V i1n i , v85Vs1ns , andvp5Vp1np where,
even for femtosecond pulses, we may assume that
un r u!V r . Using these results, we have to first order

kr5Kr1
n r

ur~V r !
, ~B5!

whereur(V r) is the group velocity of ther beam.
We now computeD(ks ,ki) to first order,

D~ks ,ki !5kp2ki2ks , ~B6!
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D~ks ,ki !5Kp2Ki2Ks1
np

up~Vp!
2

n i

ui~V i !
2

ns

us~Vs!
.

~B7!

When we use Eq.~B3! and the fact thatnp5ns1n i , we find
that

D~ks ,ki !52S npD11
1

2
n2D D , ~B8!

where

n25n i2ns , ~B9!

D5
1

ui~V i !
2

1

us~Vs!
, ~B10!

D15
1

2S 1

ui~V i !
1

1

us~Vs!
D2

1

up~Vp!
. ~B11!

2. Evaluation of the type-II biphoton

We can now evaluate the biphoton

A~ t1 ,t12!5v1e2 iVpt1I , ~B12!

where the slowly varying quantities have been absorbed
v1 and

I 5E
2L

0

dzE
2`

`

dn2E
2`

`

dnpe2 i ~1/2!n2~ t121Dz!

3e2 inp~ t11D1z!Ēp~np!. ~B13!

The integral overn2 gives a Diracd function of argument
Dz1t12 which may be interpreted by saying that if a pair
created at the pointz inside the crystal,2L,z,0, for D
positive, the idler will be detected at a timeDuzu after the
signal. This is the case for a negative uniaxial crystal wh
the group velocity of theo ray is less than that of thee ray.
We can now write

A~ t1 ,t12!5v~ t1!u~ t12!w~ t1 ,t12!, ~B14!

where

v~ t !5v0e2 iVpt, ~B15!

u~ t !5P~ t !, ~B16!

w~ t,t8!5ẼS 0,t2t8
D1

D D , ~B17!

and

P~ t !5H 1

DL
for 0,t,DL

0 otherwise.

~B18!
to

e

APPENDIX C: TYPE-I EQUATIONS

Consider the experiment illustrated in Fig. 6. The sign
and idler beams are not collinear; however, we shall assu
that they emerge at small angles so that we can ignore tr
verse walkoff effects. In addition, we assume that we c
ignore the coordinates that are transverse to the optical
lengths. The effects of these coordinates for a steady-s
pump have been discussed in@7#. Using Eqs.~8!, ~3!, and~4!
we obtain

A~ t1 ,t12!5g (
ks ,ki

E
2L

0

dzeiD~ks ,ki !zĒp~vs1v i2Vp!

3e2 i ~v i t11vst2!eiv it, ~C1!

where the arguments ofA are related tot1 andt2 by Eqs.~9!
and ~10!. As usual, all the slowly varying factors are a
sorbed intog.

1. Phase matching

Following the path set out in Appendix B we assume th
the crystal has been cut so Eqs.~B2!–~B4! hold. The signal
and idler beams are not collinear, however, we ignore
transverse coordinates. Furthermore, in this case we s
assume that the signal and idler are degener
Vs5V i5Vp/2, and that they areo rays. Introduce
v i5V i1n i , vs5Vs1ns , andvp5Vp1np and substitute
them into Eq.~B7!. Using the definitionsns1n i5np and
n25n i2ns , we find that the first order dependence inn2 is
not present becauseD defined in Eq.~B10! vanishes. There-
fore it is necessary to carry out the expansion of the w
numbers~B5! to higher order to get the leading term
n2 . For r 5s,i ,

kr5Ko1
n r

uo~Vp/2!
1

1

2
D9n r

2 , ~C2!

whereD9 is the dispersion for ano ray evaluated atVp/2,

D95
d2Ko

dV2 U
V5Vs

. ~C3!

This gives

D~ks ,ki !52S npD11
1

4
n2

2 D9D , ~C4!

with D1 defined in Eq.~17!. The second order term innp
may be neglected since it is small compared to the first te
for the crystal lengths used in typical experiments. Since
signal and idler group velocities are equal,D1 reduces to the
result given in Eq.~23!.

2. Evaluation of the type-I biphoton

Substituting Eq.~C4! into Eq. ~C1! and converting the
sums over the wave numbers to integrals over the freque
gives
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A~ t1 ,t12!5
1

2
geVp~ t12t/2!E

2L

0

dzE
2`

`

dn2

3E
2`

`

dnpe2 i [npD11~1/4!n2
2 D9]zĒp~np!

3$e2 inp~ t12t/2!e2 i ~n2/2!~ t122t!2~ t1↔t2!%.

~C5!

We can now write the biphoton in the form~26! with

wI~ t,t8!5E
2L

0

dzE
2`

`

dnp

3E
2`

`

dn2e2 i [npD11~1/4!n2
2 D9]z

3Ẽp~np!e2 inpte2 i ~1/2!n2t8. ~C6!

Evaluating the integral over the frequencies and putting
irrelevant constants inv gives Eq.~22!.

APPENDIX D: D1 CALCULATION

This appendix illustrates how material selection and
choice of a suitable pump frequency can eliminate the cl
effect of the pump for type-II SPDC. This occurs ifD1 ,
defined in Eq.~17!, vanishes. We refer to this as group v
locity matching, i.e., the inverse of the pump group veloc
equals the mean of the idler and signal inverse group ve
ity. Consequently, the center of momentum of the bipho
and the center of pump pulse arrive at the exit face of
crystal at the same time.

For a uniaxial birefringent crystal, we take the signal ph
ton to have extraordinary polarization and the idler photon
have ordinary polarization@8#. The wave vectors are
,

c.
e

e
k

c-
n
e

-
o

ko~l!5
2pno~l!

l
, ke~l!5

2pNe~l,g!

l
,

Ne
2~l,g!5S g2

no
2~l!

1
12g2

ne
2~l! D , ~D1!

with g5cosu whereu is the angle between the crystal op
cal axis and thez axis andno andne are the principal refrac-
tive indices.

The phase matching equations are iterated for a gi
wavelength to determine the angleu between the optical axis
and the z direction~remember this is the collinear case!
Then, D1 is calculated. Plots for two different material
BBO @9# and potassium dihydrogen phosphate~KDP! @10#,
are shown in Fig. 9.

FIG. 9. D1 is plotted as a function of the pump central wav
length. The wavelength at which the group velocity matching c
dition, D150, is satisfied is 0.54 nm for KDP~dashed curve! and
0.75 nm for BBO~solid curve!.
Ad-
,
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