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Theory of two-photon entanglement for spontaneous parametric down-conversion
driven by a narrow pump pulse
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Spontaneous parametric down-convergiBRDQ has been extensively studied for the case of a continuous
wave pump. In this paper SPDC is studied for the case in which the pump is a pulse. The pump pulse acts like
a clock with an uncertainty equal to its width. This makes it possible to distinguish pairs of photons born at
sufficiently different depths inside the crystal with a consequent decrease in two-photon interference. We study
this effect in detail for degenerate collinear type-l1l SPDC and degenerate type-I SPDC. It may be possible in
the type-Il case to eliminate the clock effect of the pump by judicious choice of materials and wavelengths.
[S1050-294{@7)00508-9

PACS numbd(s): 42.50.Dv, 42.65.Ky, 03.65.Bz

I. INTRODUCTION 2
Hi= deV§eO)(EiESEp, 1)

Spontaneous parametric down-conversi@PDQ may
be viewed as a coherent three-photon process where a crysigherey is the nonlinear electric susceptibility tensor and the
which is not centrosymmetric is illuminated by a pump integral is over the volume of the crystal. The electric field
beam. The pump beam is intense enough to drive the oscitor the pump,E,,, is taken to be classical, while the signal
lations of the electrons in the crystal into the nonlinear re-and idler fields are quantized. The pump beam is linearly
gime. The second order interaction results in the annihilatiopolarized and propagating in theedirection. It has a central
of a pump photon and the creation of two dow”"?‘)nverteqrequencyﬂp and an envelope of arbitrary shay,. Let
photons termed the signal and idler. The photon pairs that are
created are entangled in space-time or, equivalently, in wave E (zt)=e %E (z,1),
number and frequency. In most discussions of SPDC the P P 2
pump has been taken to be monochromatic. This means that s . , ,
the pair can be produced at any time. In this paper the nature Ep(Z,t)=f dvpEp(vp) e ot 2= ivpt,
of the down-converted photon pairs is studied when the
pump is a narrow pulse. This means that the pair can only bgsing the interaction Hamiltonian, we can now compute the
produced when the pump pulse is inside the crystal, consestate vector on the output face of the crystal. To first order in
quently, the pulse acts like a clock that can be used to dishe interaction, the state vector for the collinear case is
tinguish different pairs of the down-converted photons. Sincghown in Appendix A to be
in many two-photon interference experiments, the interfer-
ence occurs between the amplitudes for pairs born at differ-
ent times, this distinguishability leads to a decrease in two- |\If>=|0>+k§‘1<_ F(ks ki)ag(ks)a (k[0 ®)
photon interference. In type-Il SPDC this effect can be o
eliminanted for certain choices of crystals and pump frequenwherea' is a photon creation operator af@) is the vacuum
cies. state. The two-photon spectral function is given by

We shall examine two cases of SPDC. In both cases we
shall assume that the signal and idler beams are degenerate,F(k ) k(@)= JO Az KZE (ot o' — ()
that is, they have the same central frequency. In the type-lI s(w) ki(@’))=g % ploto’={p),
case, the pair of photons produced is orthogonally polarized. (4)
We will confine our study to the case in which the pair is
produced collinearly. In the type | case the signal and idlewhereA (kg ki) =k, —kj—Ks. This differs from earlier work
have the same polarization. The nature of the photon pal3] where the pump envelope was a constant. We shall com-
produced for nondegenerate type-l is similar to that of thepute this function for the case of both type-l and type-Il
type-ll case, but the degenerate type-I case is different, as wePDC.
shall see.

. THE TWO-PHOTON AMPLITUDE FOR TYPE-II
DOWN-CONVERSION
Il. THE INTERACTION HAMILTONIAN

AND THE STATE VECTOR In type-ll SPDC the signal and idler are orthogonally po-

larized. We shall take the extraordinary ragyr@y) to be the
The interaction Hamiltonian describing the down- signal and the ordinary rayo(ray) to be the idler. Consider
conversion procedd,2] is given by the experiment illustrated in Fig. 1. The beam splitter trans-
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Polarizing BS A(t+ ,t12)=v(t+)U(t12)W(t+ ,tlz). (11)
Crystal D1
11;2::1'; N where

v(t)=vee 't (12

D2 :7 u(t)=II(t), (13

- D,
cc W(t,t’)zE(O,t—t’F), (14
and

FIG. 1. Simplified two-photon anticorrelation experiment. An
intense laser pump beam incident on the crystal produces a pair of

1

orthogonally polarized photons. The pair emerge from the crystal DL for 0<t<DL
and are split by the polarizing beam splitter, B5L andD2 are I(t)= (15
photon detectors and CC is a coincidence counter. 0 otherwise,
mits the o ray and reflects the ray. The probability of 1 1
getting a coincidence count for each pulse is proportional to D= Uo(Q)) B Ue(Qy)’ (16)
[4]

. . D.— 1( 1 N 1 1 17

Rczf dTlf dT(W|E{ESVESVEN|WY,  (5) 20 ue(Q) T u(Q9))  up(Qp)
0 0

o . The u,(€) are group velocities evaluated at the frequency
where the electric fields are free space fields evaluated & for peams propagating along the length of the crystal. The
detectors 1 and 2. The field at detector 1 can be written a3, |, and D functions are the same functions that appear

1 when the pump is a plane way8]. When the pump is a
(+)— — —iot plane wavew is a constant, and, becausé) is a constant
By = 2% eoalk(@))e ™, © times a phase factor, the counting rate is independent of
t, . The width of the biphoton is given bpL, which is the
where a(k) is the annihilation operator of a photon with difference in time required for am ray and are ray to cross
wave number k at the output face of the crystal, the crystal.
ew:(ﬁw/eon)UZ, Vo is the quantization volume, The effect of the finite pulse width of the pump is con-
t,=T,—14/c, andl is the optical path length from the out- tained inw, which for type Il is given by Eq(14). Note that
put face of the crystal to detector 1. The fi€lgis definedin D, L is the difference in time for the center of momentum of
the same way except there is an extra factar wiultiplying  the biphoton and the pump to cross the crystal. If we assume
the field because of the reflection from the beam splitter. Théhat the pump envelope peaks when its argument is zero, we

expectation value computed using E8) is see that the peak of the pump pulse arrives at the output face
(=)= (=) () of the crystal when, =t,,D, /D. To understand the mean-
(V|EyE; 'E;VEY|W)=[(0|E;EY| W) ing of this note that whemD_, =0 the center of the pump

Z At )2 ) pulse arrives at the output face of the crystal at the same time
B LR AN as the center of mass of the biphoton.Of #0 then the

where the two-photon amplitude or biphoton is defined by Peak of the pulse arrives at a tirftg,D . /D| relative to the
center of momentum of the biphoton. If this is a positive

Aty tio) :<O|E(2+>E<l+)|\[f>, (8) number then the peak of the pulse arrives after the center of
mass of the biphoton. The magnitude g/D may be
where we have introduced the times thought of as the distance from the output face of the crystal

to the point at which the biphoton is born. In effect, the
pump pulse provides us with a clock with a timing uncer-
tainty equal to the pulse width that can be used to distinguish
different biphotons. This leads to a decrease in the indistin-
t=t;—t,. (10) guishability that can be observed in two-photon interference
experiments. We illustrate this in Fig. 2.
The interpretation of,, is simply the difference in the time To illustrate the effect of the finite pump width on inter-
of arrival of the idler and signal at the output face of theference experiments we consider the anticorrelation experi-
crystal. If it is positive, the idler arrives after the signal. We ment illustrated in Fig. 35]. We consider the case of a
may think oft, as the time at which the center of momen- negative uniaxial crystal so the group velocity of theay is
tum of the biphoton arrives at the output face of the crystalgreater than that of the ray. As shown in the figure a
When frequency filters centered arourd,=(); are compensator composed of phase plates is placed immedi-
placed in front of the detectors, it is shown in Appendix B ately after the crystal. The phase plates are oriented so that
that the o ray travels along the fast axis and teeay along the

1
t+:§(t1+t2)' 9
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Crystal / €

DL>1>0

Lz 0
t12

FIG. 2. Feynman diagram for a biphoton. For the case illustrated
the biphoton is born at,. The e ray leaves the crystal at a time
t=|z,D| ahead of the ray. In the case of a monochromatic pump,
the biphoton pair can be created at any time. For a pulsed pump, it
must be created during the time interval when the pump beam is
inside the crystal. This localizes the center of momentum of the
biphoton. The width of the biphoton is the maximum difference of  F|G. 4. Illustration of biphoton amplitudes. Wher=0 the two
the times at which the signal and idler photons exit the crystalparts of the biphoton do not overlap and so cannot interfere. When
DL. phase plates oriented as in Fig. 3 are added, the biphoton ampli-

tudes are shifted so that they partially overlap. The width of the
slow axis. In this experiment a 50—-50 beam splitter is usedpump and the particular valuesBfandD . determine the extent of
The linear polarizers placed in front of the detectors are orithe overlap. FobL < r, the two terms do not overlap and no inter-
ented at 45° relative to the ande axes. The biphoton for ference is observed.
this case becomes

ray relative to theo ray. This causes an overlap between the

1 first and second term in E@18). If the phase delay between
Aty i) = Su(t)[u(tat Wty tiat 7) the two beams is chosen to B4./2 the coincidences vanish
because the overlap between the two terms is complete.
—u(—tptnw(ty,—tp+7)]. (18 In the pulsed pump case this is not true in general because

of the presence ofr. For complete overlap of the two terms

When the coincidence counts are computedduhierm just in Eq. (18), it is necessary that=DL/2 and equating the
gives a constant. arguments ofw in the first and second term,D, /D=0

We briefly review the case for which the pump is a planewhich requires the vanishing & . This condition is dis-
wave,w=1. If the e ray emerges from the crystal before the cussed in Appendix D. Figure 4 illustrates the regions in
o ray when there is no compensater 0, there can be no which the two terms of Eq(18) are nonvanishing.
interference because there is no overlap betwegpn) and For a Gaussian pulse envelope,
u(—tyy). The compensator introduces a delayroh the e

E,(01)= Epe_tz/z‘fz, (19)
Crystal ;:l:tsees BS Iﬁil;::;zer we have

gump ] a'\/; y DL 7 0< <D|_
€am _ T bL

D n L er D L 1 T 2

Linear R.= 0_\/; |D+|L r L

Polari — - -

orarimer 1 D+Lerf{ 1-5r)|. 5 <7<DL
D2 \ 1 otherwise,

(20

where erf is the error function. Figure 5 shows plots of the

FIG. 3. Type-Il two-photon anticorrelation experiment. Phasecoincidence probability for different pulse widths. The ex-
plates inserted after the crystal have their fast axis parallel to themple plotted is for BBO with a 350 nm pulse and pulse
o ray. By adding plates, the-ray ando-ray beams may be time Widths of 10 fs, 100 fs, and 1 ps. The 1 ps pulse is similar to
shifted relative to one another. Linear polarizers oriented at 45% plane wave pulse in that it gives a “vee” shaped dip which
relative to thee ray are placed in front of the detectors. goes to zero at=DL/2. The effect of the Gaussian in this
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R wherewv is given by Eqg.(12), andt, andtq, are given by
° Egs.(9) and(10).

it2,/4D"z
Vz

where for the degenerate case in which the signal and idler
areo rays,

wi(ty ,t12)=fdezAEp(0,t++D+Z) (22)

1 1
TU(Q,2) uy(Qy)

D, 23

T T T T
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

andD" is the dispersion for an ray evalutated af) /2,

1/DL dZKO
D”:W . (24)
FIG. 5. Plot of Eq.(20) for different pulse widths of 10 fs, 100 Q=002
fs, and 1 ps for a 1.0-mm BBO crystal with a 350-nm pump. The
greater the pulse width the deeper the dip. Equation(22) shows that, if the biphoton is thought of as

L being created at the poiatinside the crystal, the width of
case is simply to round off the corners@azero andDL. AS o pinhoton, described hy,, oscillates and increases be-
the pulse width decreases the dip becomes shallower. The,;se of the dispersion. At the exit face of the crystal the
depth is found from Eq(20) by setting 7/DL=1/2. The biphoton width is approximately4|D"z|. The length of the
parameter that determines the depth is the ratio of maximu iphoton is determined by the pulse width. If the biphoton is
time delay between the arrival of the pulse and the center Qq agined to be created at its center of momentum, located

momentum of the biphoton to the pump pulse Width'att+, lags or leads the pulse bR .. z| depending on the sign

D, |L/o. ofD. .
In our calculations we ignore the dispersion of the pump
IV. THE TWO-PHOTON WAVE FUNCTION FOR TYPE | beam since it will be negligible except for very narrow pump

For tvpe-1 SPDC the sianal idl hot t idths. For Gausgian pump e_nvelopes, El@) and th.e.type
or type-1 SPDC the signal and idler photons are crea eéj"f crystals used in SPDC, dispersion will be negligible for

with the same polarization. For the degenerate case this corf: 1 :
plicates the computation of the biphoton. We begin as beford” JL>20 fs mn 2 whereL is the length of the crystal.

by first computing the biphoton for the case in which theHowever, we must include dispersion in the calculation of

signal goes to detector 1 and the idler goes to detector 2, Fig?® Width of the biphoton for degenerate type-1 SPDC. The

6. In this case, although the signal and idler are again takelason for this is that in the standard Hamiltonian the pair of

to be degenerate, in order to separate them, they are nBhotons is considered to be created at a smglc_a point. If the
collinear. We ignore the coordinates transverse to the opticdV0 Photons are nondegenerate the difference in their group

path from the crystal to each detector. velocity will cause them to spread apart and this will deter-
In Appendix C, we show that the biphoton for this caseMine the width of the biphoton. This is what happens in the
can be written in the form type-1l case. For the degenerate type-1 case the group veloc-
ity of the signal and idler is the same and so the width of the
Aty t)=o(t)w(ts ,ty), (22) biphoton is determined by the next order in the expansion of

the wave numbers. As is shown in Appendix C this is just the
dispersion of the signal and idler.

pamp To illustrate the effect of the finite pump width on inter-
ference, we consider the experiment shown in Figh]7 The
D1 crystal is cut to provide signal and idler degenerate photons
gfygtal | Es at particular angles which are selected by pinholes. A vari-

able optical delayr is inserted into the interferometer, which
is terminated by a 50-50 beam splitter. In the case of a
continuous pump, the state emerging from the beam splitter
Ej is of the form |¢)=¢€"“i"|i)s)—e '“"|i),|s),. The sub-
scripts refer to the case in which both beams are transmitted
or both are reflected. We omit the terms which do not lead to
E? D2 coincidences. The negative sign comes from the two 90°
(cc phase shifts upon reflection at the beam splitter. For equal
optical path lengths;=0, the two terms cancel and there are
FIG. 6. Type-l experiment. Degenerate pairs of photons are seR0 coincidence$6].
lected by the apertures. In this case the crystal is cut so that these To do the detailed calculation of the biphoton, &), the
beams are not emitted collinearly. field at each detector must be written in terms of the creation
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pump Re(1)/Rc(0)
1.2

BBO 1.07

[ 0.8T

E 0.61
s D1
BS 0.41

Ep

Ey

0 2 4 6 8
2/D"L

D2

FIG. 8. Plot of R.(7)/R.(0) defined in Eq(28) for Gaussian
) ) pulses. The three curves are fob (L/2¢)%2=0, 1, and 5. The
FIG. 7. Type-| HOM[6] experiment. The crystal is cut to pro- plane-wave case;=, has the greatest width. The width of the dip

vide the signal and idler degenerate photons at two distinct anglegecreases as the pulse width decreases. The oscillatory nature is a
which are selected by pinholes. A variable detays introduced  result of the dispersion of the biphoton.

into the interferometer. The detection system is the same as in
Fig. 1.

J(T):ReJl dt+f7 dtow(ty to— M)W (ty ,—to— 7)

_ 2/Drr
[ on [ a0, o8

and annihilation operators at the output face of the crystal.
We again ignore the transverse coordinates,

_ 1 H ioT —ilwty
El_ﬁ ® eoliaslk(w))+eak(w))]e ' (25 wherez_=2z,—-z, and
1 , , cp(z_)=fw dt,Ep(Ot, +D,z)E5(Ot,) (29
Ezzﬁ ~ e.Lask(w))+e“Tajk(w))]e' 2 o

is the autocorrelation of the pump envelope. If the pump

In computing the biphoton, we take the signal and idler to be gnvelope is taken to be a real Gaussian given by(Eg.

o rays and the pump to be anray inside the crystal. It is 11y 2 o
shown in Appendix C that the biphoton is J(T):JOJ dg—cos{T— _) e~ (D4L20)%2
RN D'L{ 4
A(t,,t (t TH (t z t ) 40
H =5 Y W T A - . . . .
(Lot =gu{tm g Wit mg e 7 where/=z_ /L. The functionR.(7)/R.(0) is plotted in Fig.

8 for Gaussian pumps. The physics X{fr) may be under-
—W|(t+— Z:_tlz_ T) ) (26)  stood as follows. For=0 the cancellation of the two am-

2 plitudes in Eq.(26) is always complete because each bipho-

ton created at a given point in the crystal interferes

The first term in the square brackets in E26) corresponds  destructively with itself. Forr#0 the interference occurs
to the case when the signal and idler are transmitted by theetween the amplitudes for the biphoton created at different
beam splitter, while the second term corresponds to theitimes. The exponential term shows that the interference be-
reflection. From this it follows that biphotons that are createdween the amplitudes for pairs createdzatandz, becomes
farther apart than the pulse width do not interfere because themall when|D | ||z;—z,| becomes large compared to the
w; terms in Eq.(26) do not overlap. Alternatively, we may pulse width. As explained above, the pairs created are then
attribute the disappearance of interference to the fact that thdistinguishable because their wave packets do not overlap.
two terms in each biphoton are distinguishable by the timeThe quantityD |z, —z,| measures the different times of ar-
their center of momentum leaves the crystal relative to theival of the pairs relative to the clock provided by the pulse.
time the pulse leaves the crystal. Since the pulse is classicafhe cosine term comes from the dispersion of the signal and
we do not need to worry about any refinements due to thédler beam. Forr=0 the dispersion gives rise to a term

quantum theory of measurement when detecting it. 1/J/D"¢. The decrease in the interference here is due to the
We can now compute the probability of a coincidencefact that the amplitude for a pair created near the input face
count using Eq(5): of the crystal broadens due to dispersion, while the ampli-

tude for a pair created at the output face does not, therefore
R.(7)=R(0)[1—-J(7)/I(0)], (27 the overlap between these amplitudes is less than the overlap
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between amplitudes for pairs created nearby to one anothawrhere y is the nonlinear electric susceptibility tensor, and
This leads to the decrease in the width of the interferencél.c. stands for the Hermitian conjugate. In defining the sig-
pattern seen in Fig. 8. When we delay the signal relative tmal and idler field, we confine ourselves to the collinear case.
the idler, the overlap of the amplitudes oscillates because ofhe signal field is defined by
the oscillations in the biphoton width.

From Eq.(30) we see that the width of peak is determined ) €, iTKe( ) 7— ot
by the dimensionless parameters=A7?/(D"L) and = )_Ea,: Ng(w) a(ky(w))e ez, (A2)
b=D,L/(20). From numerical calculations, we have found
that the width of the interference patterhy, as measured whereag(ks(w)) is the annihilation operator for the signal
from the dip to the first maximum is accurately described bymode with frequency,

1/&2201b2+C2, ks(w) =ng(w)wlc, (A3)

31
S N is the index of refraction of the signal beamis the speed
1 D+ 2 1 C, of ||ght,

_+—’
NG NS
e~ Vzewg (A2)

wherec; andc, are numerical constants taken from the nu-
merical calculations. We see that for a steady-state pummandVy, is the quantization volume. The idler field is defined
o—», the width of the interference is determined by in an analogous fashion. The pump beam may be treated
D"L. classically.
The state vector is computed using first order perturbation

theory[3]. In the interaction picture, we have
V. CONCLUSION

©

We have provided a detailed discussion of SPDC for |\p>:|o>_l_f H,(t)dt0). (A5)
pumps with finite pulse widths. A pump with a finite width h

was shown to act like a clock with an uncertainty given by o ] ] ] . )
the pump width. This allows us to distinguish amplitudes forSubstituting the expressions for thel fields into this expression
photon pairs that are born at different depths inside the cryst/e can compute the spectral function E4).

tal. Consequently, there is a decrease in two-photon interfer-

ence effects. For the type-Il case this is manifested in a de- APPENDIX B: TYPE II-EQUATIONS

crease in the visibility for the experiment discussed. In the
type-I HOM[6] experiment, the width of the interference dip
is decreased. In type-ll SPDC, the distinguishability disap
pears if the crystal and the wavelengths can be chosen so i . .
D, , defined in Eq(17), vanishes. The physics of degenerate A(t, ,t;,)= 52 e,e, e e " 2F (k(w),ki(w")),
type-l1 SPDC is different from that of type Il and nondegen- 0,0

— o

We consider the experiment illustrated in Fig. 1. The bi-
photon defined in Eq®8) is given by

erate type I. In degenerate type | the width of the biphoton is (B1)
determined by dispersion and is inherently narrower than thg\lheret andt,, are defined in Eqg9) and (10)
other cases. This may have advantages in preparing en- * 12 '
tangled four-photon statg¢41]. )
1. Phase matching
Suppose the crystal is cut so that
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Naval Research, Grant No. N00014-91-J-1430. K,=nQ,/c, r=si.p. (B4)
APPENDIX A: STATE VECTOR Now let w=Q;+ v;, o' =Qg+ v, andwp=Qp+ Vp where,

even for femtosecond pulses, we may assume that the
We begin with a linearly polarized input pulse propagat-|y |<(), . Using these results, we have to first order
ing in the z direction. The pump has a central frequency
), and an envelope of arbitrary shaﬁ%,, given by Eq.(2).
The interaction Hamiltoniafil) may be written using the
rotating wave approximation as

k=K, + (B5)

Vy
u(Qy)’
whereu,((,) is the group velocity of the beam.
We now computeA (kg ,k;) to first order,

2
H1=f dxdydz(——eoXEf‘)Eg‘>Eg+>+H.c. , (A1)
\Y

3 Ak, ki) =kp—ki—ks, (B6)
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v v; Vs APPENDIX C: TYPE-I EQUATIONS
Ak k) =Kp— K= Kg+ —E—— - . . o o _
Up(Qp)  Ui(€))  ug(Qy) Consider the experiment illustrated in Fig. 6. The signal
(B7) and idler beams are not collinear; however, we shall assume

that they emerge at small angles so that we can ignore trans-
When we use EqB3) and the fact that,= vs+v;, we find  verse walkoff effects. In addition, we assume that we can
that ignore the coordinates that are transverse to the optical path

lengths. The effects of these coordinates for a steady-state

1 ump have been discussed if]. Using Eqs(8), (3), and(4
where 0 -
At ,tlz)zgk%_ 7Ld2é sHE (wgt wj— Q)
Vo=V~ s, (B9)
Xefi(witl+wst2)eiwi7, (Cl)
1 1
D= (B10)

where the arguments &f are related ta, andt, by Egs.(9)
and (10). As usual, all the slowly varying factors are ab-

5 _1( 1 N 1 ) 1 @10 sorbed intog.
T2lu(Q)  uglQg)) up(Qp)°

u(Q)  uglQy)’

1. Phase matching

Following the path set out in Appendix B we assume that
i the crystal has been cut so E@B2)—(B4) hold. The signal
We can now evaluate the biphoton and idler beams are not collinear, however, we ignore the
i transverse coordinates. Furthermore, in this case we shall
— 1Qpt ’
Alty t) =vse el (B12) assume that the signal and idler are degenerate,
Q,=Q0;=Q,/2, and that they areo rays. Introduce

where the slowly varying quantities have been absorbed '”t%, = Qi+, we=Qq+ vg, andw,=,+ v, and substitute

2. Evaluation of the type-Il biphoton

vy and them into Eq.(B7). Using the definitionsvs+ »;=v, and

o . . v_=v;— vg, We find that the first order dependencevin is
|:f dzf d,,_f dy.e (1Dv_(tp+D2) not present becaud2 defined in Eq(B10) vanishes. There-
-L —o —o P fore it is necessary to carry out the expansion of the wave
, _ numbers(B5) to higher order to get the leading term in
xe et *DLDE (), (B13)  »_. Forr=sii,
The integral over_ gives a Diracé function of argument _ Vy 1.5
Dz+t4, which may be interpreted by saying that if a pair is K =Ko+ Uo(Qy/2) + ED Vi (C2)

created at the poirtt inside the crystal-L<z<0, for D

positive, the idler will be detected at a tini2z| after the  \yhereD” is the dispersion for an ray evaluated af) /2,
signal. This is the case for a negative uniaxial crystal where

the group velocity of the ray is less than that of the ray. d2K
We can now write D'=—"7 . (C3)
df) Q=0
Aty ti) =v(t)u(tw(t, ,tgp), (B14)
This gives
where
. 1,
v(t)=vee ', (B15) A(Kg ki) =— va++Zv,D” , (C4
u(t) =TI(t), (B16)

with D, defined in Eq.(17). The second order term inj,
may be neglected since it is small compared to the first term

w(t,t=E| o=t YU+ , (B17) fo_r the crys_tal lengths used_n_’n typical experiments. Since the
D signal and idler group velocities are equal, reduces to the
result given in Eq(23).
and
1 2. Evaluation of the type-I biphoton
— for 0O<t<DL Substituting Eq.(C4) into Eqg. (C1) and converting the
I(t)=4 DL (B18)  sums over the wave numbers to integrals over the frequency

0 otherwise. gives
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1 0 ®
A(t+ ,tlz)zigeﬂp(t_,_*T/Z)f dZJ’ dv_ 0.08
—L — -
0.04 | e
“ i 2 N — _’_,-""
8 ﬁm e = Y 0 t ——=t S ' '
D+ 0.45,-0:50 0.55 0.60 0.70 0.75 0.B0
X{efiVp(t+77'/2)efi(11_/2)(t1277')_(tlth)}. -0.04 _"",’
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We can now write the biphoton in the for(@6) with
-0.12
0 o Pump Wavelength (tm)
Wl(tvt,):J' dzf de ump v gth (w
—L — %
FIG. 9. D, is plotted as a function of the pump central wave-

oD, + (1402 D]z length. The wavelength at which the group velocity matching con-
X . dv_e =+ - dition, D =0, is satisfied is 0.54 nm for KDRlashed curveand
0.75 nm for BBO(solid curve.

X'Ep( Vp)e—ivpte—i(1/2)v,t’. (C6)
. : . . 27Ng(N 27N\,
Evaluating the integral over the frequencies and putting the Ko(N)= W—O() kKe(N)= M
irrelevant constants in gives Eq.(22). A A
APPENDIX D: D, CALCULATION 2 1— 2
N2, y) = | gt =yt (D1)
This appendix illustrates how material selection and the ety na(\)  ni(\)/’

choice of a suitable pump frequency can eliminate the clock

effect of the pump for type-ll SPDC. This occursDf, ,

defined in Eq.(17), vanishes. We refer to this as group ve- with y=cosd where 6 is the angle between the crystal opti-

locity matching, i.e., the inverse of the pump group velocitycal axis and the axis andn, andn, are the principal refrac-

equals the mean of the idler and signal inverse group velodive indices.

ity. Consequently, the center of momentum of the biphoton The phase matching equations are iterated for a given

and the center of pump pulse arrive at the exit face of thevavelength to determine the angldetween the optical axis

crystal at the same time. and the z directionremember this is the collinear case.
For a uniaxial birefringent crystal, we take the signal pho-Then, D, is calculated. Plots for two different materials,

ton to have extraordinary polarization and the idler photon td8BO [9] and potassium dihydrogen phosphé@P) [10],

have ordinary polarizatiof8]. The wave vectors are are shown in Fig. 9.
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