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Population transfer via a decaying state
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The paper examines the effect of irreversible dissipation from the intermediate state on the efficiency of
population transfer by partially overlapping delayed pulses in three-state systems. Several general approxima-
tions to the final-state population for both the intuitive and counterintuitive pulse sequences are derived. They
show that the loss of transfer efficiency is much stronger for the intuitive pulse sequence, as then the inter-
mediate state is significantly populated during the transfer. For the counterintuitive sequence, the damping of
the final-state population is found to be exponential for small decay rates and polynomial for large ones;
moreover, the range of decay rates, over which the transfer efficiency remains high, is proportional to the
squared pulse area. The paper also presents an analytically solvable model, involving smooth delayed pulses,
as well as numerical results and analytic approximations for Gaussian iB84€60-294®7)03708-9

PACS numbseps): 32.80.Bx, 33.80.Be, 42.50p

I. INTRODUCTION eral conclusions. In Sec. IV, we analyze, numerically and
analytically, population transfer with Gaussian pulses. Fi-

The stimulated Raman adiabatic passé§€IRAP) is a  nally, in Sec. V, we summarize the main results.
well established technique for selective and efficient popula-
tion transfer to a particular excited atomic or molecular state Il. DEFINITION OF THE PROBLEM
([1-3] and references therginSTIRAP transfers adiabati- AND GENERAL PROPERTIES
cally population between two statgk) and|3) via an inter-
mediate stat¢2) by means of two partially overlapping de-
layed laser pulses in a counterintuitive order. The initial state The three-state\ system under consideration is shown
|1) and the final staté3) have to be on two-photon reso- schematically in Fig. 1. Stat¢s) and|2) are coupled by the
nance, while the intermediate std® can be off resonance pump-laser puls€l,(t), while stateg2) and|3) are coupled
by a certain detunind. The population is transferred via an by the Stokes-laser puls@(t). The direct transition be-
eigenstaté0) of the Hamiltonian, which is a linear superpo- tween stateg1) and|3) is electric-dipole forbidden. Two-
sition of the bare stateld) and|3) only. In the adiabatic ~photon resonance between staftes and|3) is maintained.
limit, no population resides in stat@) at any time and The intermediate state) is off-resonance by a detuniny
hence, its properties do not influence the transfer efficiencyand decays out of the system by a certain mecharésm,
Beyond the adiabatic limiti.e., for finite pulse areasthe  Spontaneous emission, collisional relaxation, or ionization
transfer efficiency is generally less than unity and the interwith a total decay raté’>=0. The pulse durations are sup-
mediate statés populated during the excitatiofas well as  posed to be short compared with the relaxation times within
after it). We have recently showf8] that for fixed pulse the system, so that spontaneous emission from §2atéo
areas, the transfer efficiency is adversely affected by the destateg1) and|3) is neglected. The probability amplitudes of
tuning A as it deteriorates the adiabaticity of the processthe three states satisfy the Sotirmer equation which in the
Moreover, the detuning range over which the transfer effiTotating-wave approximation has the form
ciency remains high= 1) has been found to be proportional
to the squared pulse area.

Another factor, which is expected to deteriorate the popu-
lation transfer, is the dissipation from the intermediate state
[2). In this paper, we examine the dependence of the
STIRAP efficiency on the ratE of irreversible decay of this
state out of the three-state system. Besides being interesting

A. The three-state system

by itself, this problem is also closely related to population o)

transfer via a continuurfd—6] and to the problem of transi- p

tions in a dissipative two-state systdm,8]. The paper is

organized as follows. In Sec. Il, we provide the basic equa- — 13)

tions and definitions as well as some general approximations 1)
and conclusions about the effect of the intermediate-state de-
cay. In Sec. lll, we present an analytically solvable model FiG. 1. The three-statd system. The initial statgl) and the
involving smooth delayed pulses, which illustrates our genfinal state|3) are on two-photon resonance. The intermediate state
|2) is off single-photon resonance by a detunihgand decays out
of the system with a rat€. In STIRAP the Stokes puls€@ pre-
*Electronic address: vitanov@rock.helsinki.fi cedes the pump pulse, (counterintuitive pulse ordgr
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Cy 0 Qp 0 (o B. Adiabatic representation
idi Co|=|Qp A=l Qg]|cCy]|. (1) 1. Adiabatic states
t
C3 0 Qg 01lcs The adiabatic states are defined as the instantaneous

_ _ _ eigenstates of the Hamiltonian in Eq4). In the absence of
The functions(,(t) and Q4(t), representing the Rabi fre- decay {=0), they are given by2,3]
guencies of the two pulses, and tfmonstant detuningA

will be assumed positive as the populations do not depend on | +)=sing sin¥|1)+cosp|2)+sing cosd|3), (2a)
their signs. Furthermoré) ,(t) and()¢(t) are supposed to be
pulse-shaped functions that vanish at infinity and whose |0) = cosd| 1) — sind|3) (2b)

pulse areas are finitg,” .., (t) dt<ec. We assume that at

the initial imet— — o the three-state system is in its ground |—)=cosp sind|1)—sing|2)+cosp cosd|3), (20)

state|1),
Ci(—®)=1, cy(—2)=0, cz(—x)=0, where Euler’'s angles(t) and ¢(t) are defined as
and we are interested in the populations tat +oo, Q) 20(1)
Po=lch(+%)|? (n=1,2,3). Finally, we will suppose for tand(t)= ¢ D tan2rp(t)=w, 3
S

simplicity that the two pulses have the same peak strength

«/T and characteristic widd, and Qg(t)=Q2(1) T O%(1). The probability amplitudes
a, (1), ap(t), anda_(t) of the adiabatic states are connected

o o
Qpt)=FFp(t/T), Q)= FF(UT), to the bare(diabatig amplitudes by the orthogonal rotation
wherea is a dimensionless positive parameter proportional Cy sing sing  cosy  cosp sind || a,
to the pulse area, while the functiorig(t/T) and f(t/T) c,| = cosp 0 —sing a,
describe the pulse shapes. It is also useful to introduce the . .
dimensionless detuning and decay ratey, Cs Sing cosy —sind  cosp cos¥ ]l a-
5=AT, y=IT. In the adiabatic representation, E¢E) become
|
| a, Qqcoto—il cofe P sing e+ 5il sin2e a,
i 2 [= —i9 sing 0 —i9 cosp a |, (4)
a —ig+ Lil sin2g 9 cosp —Qotanp—il sirfe |La-

where an overdot denotes a time derivative. The adiabatit— +. Thus, in the absence of dissipation, both pulse or-
behavior is reached in the limit of large pulse amplitudesders produce complete population transfer fo£ 0 in the

and/or large pulse widths, i.e., for large pulse areas. adiabatic limit[2].
_ ) S It is intuitively clear that the intermediate-state decay
2. Population transfer in the absence of dissipation must reduce the transfer efficiency and that this effect is

In STIRAP the pulses are applied in tleunterintuitive  much stronger for the intuitive order. This is so because in
order, that is the Stokes pul$g, precedes the pump pulse the adiabatic regime no population visits the intermediate
Q,. Hence, lim_ _.[Qu(t)/Qt)]=0, lime_, [Qy(t)/ state at any time for the counterintuitive order, while this
Q(t)]=0», which implies  that J°(—«=)=0, stateis populated during the transfer for the intuitive order
9°'(+ o) =7/2. Hereafter the superscriptci” (“i”) de- [9]. From the adiabatic point of vieWEgs. (4)], the differ-
notes the counterintuitivéintuitive) pulse sequence. If the ence between the two orders arises from the fact that the
excitation is adiabatic then the population is transferred fromadiabatic statg0) does not decay, while-) does with a rate
state|1) to state|3) via the adiabatic stai®) which is equal T sirfe.
to state|1) att— —o and to statg3) att— + . From now on we will assume that we are in thear-

In the intuitive pulse order, the pump puls@, comes adiabatic regime where the transfer efficiency is almost
first, which means that}'(—«)=a/2, 9'(+«=)=0 . For unity in the absence of dissipationy£0) (for the intuitive
A =0, the adiabatic states are given by superpositions of barerder we also suppose thé# 0). To ensure a large transfer
states at both— —o andt— +o; this gives rise to oscilla- for y=0, we have to assume that> 8,1 [3]. Given this,
tions in the populations. Fak #0, the population is trans- we wish to findhow the transfer efficiency decreases with
ferred from state|1) to state|3) via the adiabatic state vy [10] and for any fixed set of pulse parameters, we wish to
|—), which is equal to statfl) att— — and to staté3) at  determine the value,,, at whichP;=3.
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C. Population transfer by the intuitive pulse sequence as a result of the overdampinB;' is expected to increase at
in the presence of dissipation largeI" and eventually to tend to unity at very largje The
The adiabatic staté—), which transfers the population Population losP;=1—P7'—PS' should increase initially,
from state|1) to state|3) for A#0 for the intuitive se- reach a maximum at some moder&teand then decrease at
quence, decays with a rafé sirfe. As follows from Egs. largeI'. Below, we consider several general approximations
(4), in the adiabatic limit the final population of stg@) for ~ to P3' in the limiting cases of weak and strong dissipation.
intuitive pulses is
2. Weak dissipation
piamexi{ _zrf sin%(t)dt} When« is large compared with, the diagonal elements
- in the equations foa, anda_ in Egs.(4) dominate over the
nondiagonal ones. Then we can carry out adiabatic elimina-
] (5)  tion of stateg+) and|—) by settinga = a_=0in Egs.(4)
and eliminatinga, anda_ from the resulting set of two
algebraic equations. Sind&}'(«) =|ay()|?, we obtain

o A
=exp| —Ff_w{l—m dt

Certainly, losses irPi3 may also occur due to nonadiabatic .
transitions from statg—) to stateg0) and|+), butthe main i ZFJW BA(1) d =1
.o ) ) ' . ) ~expg — —_ >\[y2+ 82,1),
loss mechanism in the near-adiabatic regime is the direct 3 ﬂcQg(t)-{-(pz(t) (a>\y )
dissipation from|—). Thus we expect aexponentialdecay (6)
of P againsfl’. Moreover,P} increaseswith A [unlessA is
too large and deteriorates the adiabaticity; then @&).is  assuming that the integral converges. Similarly to &g for
invalid], which has to be expected as suppresses the the intuitive sequence, E¢6) shows arexponentialdepen-
intermediate-state population. Finaljy decreasesvith «, ~ dence ofP§' on I', but the damping rate is considerably
which means that improving adiabaticity reduces, rather thasmaller. It also exhibits rather different dependencesaon
enhances, the transfer. and 8. Namely, P§' increaseswith « as the adiabaticity im-
proves, whileP§' depends(via ¢) very weaklyon & (de-
D. Population transfer by the counterintuitive pulse sequence c;rease}s because in the denominatél; dominates over
in the presence of dissipation ©? in the near-adiabatic regime.

1. Loss mechanisms 3. Strong dissipation: effective two-state problem, dark

It is less obvious how the transfer efficiency decreases and bright states

with T" for the counterintuitive order. Then the losses in the For large decay rates, we can eliminate adiabatically the

transfer efficiency occur in two ways. First, inasmuch as thqntermediate staté2) by settingdc,/dt=0 in Eqgs.(1), de-
excitation is never perfectly adiabatic, during the tranSferterminingcz from the resulting algebraic equation, a;nd sub-

some population visits the intermediate state where it is eXtituting it in the other two equation€.3]. Adiabatic elimi-
posed todissipation In the adiabatic picture, this loss 9 q 23]

hani ds t diabatic t it f nation of the intermediate states is a widely used
mechanism corresponas 10 -honadiabatic ransftions Wordy,, qyimation inN-state systems onN(— 1)-photon reso-
state|0) to stateg —) and|+) with subsequent dissipation

: nance[13]. In this approximation, our three-state system on
from these latter states. The difference between the cases ﬁ\?/lo-photon resonance is reduced to a two-state system con-
I'=0 andI"#0 arises from the fact that fdfr =0, some of

the population transferred to stats) and|+) retums to sisting of state$1) and|3) and described by the equations

state|0) by the end of the excitation. This derives from dlc 1 02 0.0lc
higher-order adiabatic processes and can be understood by j—| 1}%_ _ P eS|t

means of the superadiabatic approach of Bétrdj. For T’ dt{cs A-iT[ 0,0, 0F |[cs

#0, the population in states-) and|+) is exposed to

irreversible dissipation and the probability for such a return (Ny*+ 6> a,1). (7)

is much smallef12].

The second, more subtle, mechanism of transfer effiSimilar equations appear in the problem of population trans-
ciency loss is theuantum overdampindt is similar to that  fer via a continuuni4-6).
in two-state systemf8] and shows up as effective decou- The time-dependent transformation
pling of the three states at largde Consequently, at large
I' the population remains predominantly in the initial state,
both the transfer to stat@) and the dissipation losses being
suppressed.

Both mechanisms—@i;sipation and overdamping — leaqyhere (1) is given by Eq.(3), casts Eqgs(7) into their
to a loss of transfer efficiency. ThuBg' should decrease adiabatic representation

steadily withI". We expect the dissipation to dominate at

cosy sind
—sind cosY

C1 aq

cal” ap|’ ®

small to moderatd’, while we expect the overdamping to dla 0 —idla
show up at largd’. We will see that these two mechanisms j—| d_ o d , (9)
lead to different dependences®§ onT". On the other hand, d{as] |i9 A-ir]las
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- rodt) AQA(1) whereS=[”_0,(1) Q4(t)dt, S, = [7..Q5 (t)dt. For sim-
Ft)=mr2 AO=—m 72 plicity, we assume equal areas$,=S;. As S,S,,
Ir<+A r<+A ) X o P,
x a?<\[y?+ &2, this approximation has the asymptotic be-
havior
The amplitudes a, and ay correspond to states
|b)=sind|1)+cos8(3) and|d) = cosd|1)—sind|3), referred to s? ) —
as thebright and dark statgsrespectively. Notice that the P3~m, (a°<<\y"+59). (13)

dark state coincides with the adiabatic stf¢, Eq. (2b).

Equationg9) show that in the adiabatic-elimination approxi- Hence, at very large, the transfer efficiency vanishes in a
mation the three-state system is equ_ivalent to a~system cfforentzianpowerlaw, rather than exponentially.

two states|b) and|d), with couplingi®, detuningA and

decay ratel' of state|b). As follows from Egs.(8), the I1. ANALYTIC MODEL

counterintuitive pulse order corresponds to initial conditions
aq(—>)=1, ay(—*)=0, and the populatiorP§' of state
|3) is equal to the probability of remaining in the dark state  The model is introduced by means of the functions
d). In contrast, the intuitive order requires initial conditions

le>(—oc)=1, ag(—)=0, andP} is equal to the probability Q4(t) =Qo(t)cog 7s(1)/2], (129
of remaining in the(decaying bright state|b).

For a?<\»?+ &%, the two-state problent9) is nearly
resonant. Since the area of the couplifigs /2, the two-  \where
state system is almost inverted which implies that begh
and P} vanish, as should be the case. k&> \/y*+ &2, the a [t
two stategb) and|d) are effectively decoupled and the tran- Qo(t)= ?f(T) '
sition between them is suppressed. Thus,cagncreases,

PS' approaches unity while®}, vanishes. Hence, for the 1 [t t! T
s(t)=?J fz( )dt’=f f2(x)dx.

A. The model

Q,(t) = Qy(t)sin 7s(t)/2], (120

counterintuitive order, Eqgs(7) and (9) have the correct T (13
y=0 limit and should provide a good approximation even
for small v, although formally they do not have to. For the

intuitive order, Egs(7) do not give the correct limit for small The parametew is dimensionless and is proportional to the

and can onlv be used for lar pulse area. It plays the role of the adiabaticity parameter, i.e.,
Y E uations(7); show that the g):)e ulations depend ans the largera, the stronger the adiabaticity. The paraméfer
q Pop b Ao, has the dimension of time and determines the time and fre-

and y only through the ratiax?/(8—ivy). For the counterin- . . L
tuitive order, this should be the case practically for any val-Juency scales. Bothr and T will be assumed positive with

ues ofa, &, andy (given thata is large, which is assumed out loss of generality. We also suppose that) is anarbi-

throughout the papgr This suggests that on resonance, thetrary smooth pulse-shaped function which vanishes at

populations depend on the ratie?/y only and hence, the infinity, f(*¢)=0, ~and s normalized to unity,

: . C _J7.f2(x)dx=1. Then, as time runs from o to +, s(t)
r:g::ui);il\’feogsEz;ar?]gitcgcglgehagamfer efficiency for coun changes from 0 to 1. We emphasize that E4®) define a

classof models rather than a single model; the members of

) this class can be obtained by choosing different functions
yuz~ca® (6=0), (100 f(x) with the properties specified above. The final popula-

tions for all models of this class are the same and depend on

wherec is a coefficient that may depend on the specific pulsex only; their time evolutions, however, depend on the spe-

shapes and the pulse delay but not prand . This qua-  Cific model becauses(t) is different. As an example, let

dratic dependence is similar to that&j, on a for y=0[3].  f(x)=1/y2 sech; then

For 6+ 0, a more complicated dependence is to be expected.

However, we will see in Sec. IV that,,, depends only very @ t T t
slightly on é. Q4(t)= T—\/Esec T|cog 7| tanh-+1]), (143
4. Very strong dissipation: the Magnus approximation ¢ ¢
a |
For \y?+ %> a?, P; can be estimated by means of the Oy(t)= ﬁeds ?) sin | tanh=+1 /|, (14b)

Magnus approximatiofil4], applied to Egs(7). It gives, for

either pulse orders,
1 2yS, 2yS

Ps~5exp — v+ 82 cosh — Y2+ &2 point out that model12) is not the same as the analytic

models used in Ref$2,3].

cod — 25S By applying either{); on the pump transition an@, on
Y2+ 82 the Stokes transition or vice versa, we can realize both pulse

The pulse)4(t) precedes the puls@,(t) and their maxima
are separated by a fixed pulse delay of about 0.772 T. The
pulse areas are both approximately equal to 1a33@/e
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orders. Namely, fof),= (), and(Qs=(); we have the coun-
terintuitive order, while forQ),=Q, and Q;=(, we have
the intuitive order.

Model (12) allows exact analytic solution of Eqé7) [al-
though this solution is approximate for Eq4) since Egs.
(7) are an approximation to Eqgl)]. The derivation is
straightforward and we do not present it explicitly here. It is
obtained by changing the independent variable in Egks.
from t to s. Then we go to the adiabatic representati®n

where the Hamiltonian becomes constant and the equations

are easily solved.

B. On-resonance solution

On resonanceX=0), the population evolutions of the
dark and bright states fazounterintuitivepulses (=5,
Q,=Q,) are given by

Pg (1) =|aqg(t)?, (15)
PRt =lan(t)]?, (16)
while those of statefl) and|3) read
PSi(t) =[ay(t)cosd(t) +ap(Dsind ()], (17)
PS'(t) = —aq(t)sind(t) +ay(t)cosH(t) ]2, (18)

with

ag(t)= efﬁm[ cosh 9(t) V&2 —1]

&
+ \/msmk[ V(1) \/fz— 1]] ,

o 00 sinj 9(t)Vér—1]
&—1

ap(t)=

where 9(t)=ms(t)/2, and é&=a?/7y. In the above equa-
tions, the relationsy&?—1=i1— &2, sinh{x)=i sinx and
cosh({x)=cosx have to be used faf<1. The time evolutions
of the populations for the specific puls€sl) are plotted in
Fig. 2 for «=10 andy= 10, along with the pulse shapes. A
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Pulse Shapes

Populations

Time (units of T)
FIG. 2. (a) The pulse shapgd4). (b) The population evolutions
of the dark and bright stated) and|b) and those of statd4) and
|3) for the pulseg(14), applied in the counterintuitive order, with
a=10 and y=10. The exact values, obtained by the numerical

integration of Eqs(1), are plotted by solid curves, while the dashed
curves show the analytic formuld$5)—(18).

1 2
cos 5T & —1)

g . 1 2
- ﬁlnf{i’ﬁ &—1
The population of statgl) is the same for both pulse orders,

1
. Sin.’(z’ﬂ £2— 1)
£-1

Py=e ¢

2
. (20)

2

P{'=Pi=e : (21)

very good agreement between the exact numerical results

and our analytic approximatior(§5)—(18) is observed.
The population of stat¢3) att—o for counterintuitive
pulses (1,=,, Qs=Q,) is

PSi=e ¢

cosf{%wd?—l)
2
+ '

1
\/%sinl—(irr\/g?—l)] (19

while for theintuitive pulse order ;= 4, Qs=1),) itis

which is a consequence of the symmetry of the prodl2in
Equations(19)—(21) depend ona and y only through the
ratio €= «?/ vy, since they are derived from Eqg).

In the limit £>1, i.e., for a®> 7y, we obtain from Eq.
(19) that

Pi~e "= "2 (P>my). (22

This is exactly the result predicted by the approximatién
for model (12), i.e., we find an exponential dependence of
PS' on vy for small y.

For é<1, i.e., fora®<my, we have
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Intermediate-State Decay Rate (units of 77) Intermediate-State Detuning (units of 7-1)
FIG. 3. The populations of the initial stai', the final state FIG. 4. The populations of the statd$ and|3) for the intuitive

PS', and the population los®j;, against the intermediate-state ang counterintuitive pulse orders plotted against the intermediate-

decay rate for the puls€42), applied in the counterintuitive order, giate detuning for model12) with «=10 and y=1. The exact

for =10 and6=0. values, obtained by numerical integration of Ed3, are plotted by
solid curves, while the short-line dashed curves show the analytic
formulas (23), (24), and (26). The long-line dashed curve is the

Ci_pi__1_ 2
Pi=P1~1-m{+0(£), approximation(25) for Py.

i .2 ) yaz Sa?
PS~ {1 mel2+0(&)], = TR
) 1
Ph~ £[1-3m¢/2+0(£)]. u= ST AR+ -1l

. - _ E 2212 27 (g2 2
Thus, in the limit of largey, we come across the effect of v 2[\/(§ n =1 +4&p—(E—n—1)].
quantum overdamping &;'= P’ — 1. We also see that then

E’3~(a2/w7)2, in agreement with the Magnus approxima- For theintuitive pulse order Q,=Q;, Q.=Q,), the final-
tion (11) [sinceS= a?/a for model (12)]. state population is given by
In Fig. 3, we have plotted the populatiofl) and(19) of ;
states [1) and [3) and the population lossPy i e’ " 2 PO 2
X . . o . - T _ + _ + T +
=1-P{'—P§ for the counterintuitive sequence against the Ps 4(u+ Vz){e [(n=&) (= ]te ™ (n+e)
decay ratey for a=10. Our analytic results almost coincide 5 5 2 2 o
with the exact valuegnot shown. The ultimate decrease of (vt )]+ 2(p + v = &7 n°)cosTy
the population loss at large is a rgsultciof quanctium_ over- +4(un— vé)sinm}. (24)
damping. The overall behavior d#7, P3 and P, is in
complete agreement with the general conclusions of Seds we discussed in Sec. Il D 3, EqF) do not produce the
II D 1. Finally, Eq. (22) gives the value (2+?)In2~0.1405 correct final-state population for the intuitive order for
for the coefficient in Eq. (10), which reproduces fairly well Y2+ 6°<a?; thus, Eqs(20) and( 24) do not give the cor-
the numerically obtained value 0.1591. rect results either. The relevant approximation in this case is
Eq. (5) which gives for model14)

. ) 2(X2 -y
C. Nonzero detuning Pi~|1+ ?)  (a?> \/m,l)- (25)

For A#0, the final-state population farounterintuitive

pulses (1p=105, s=10,) is The initial-state population is the same for both pulse or-
. e ¢ ders,
ci_ T 2 2 — T _ a2
PS=atazr oy (e Lkt &7 (vt )+ e ™ [(n=9)

) . e ¢
P, =P{'=—>——(coshru—cosrv). 26
(v 9)2]+ 22+ 12— E2— p?)cosmy 1=P1 2(M2+V2)( I v) (26)
—4(un—vé)sinmTv}, (23 In Fig. 4, the population&3)—(26) are plotted against the

intermediate-state detuningjfor «=10 andy=1 and com-
pared to the exact numerical values. As expected, the final-
where state populatiorP} for the intuitive order is approximated
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15 L S B. Counterintuitive pulse order

The analytic approximatiof6), shown to give the correct
behavior for model(12) and a good approximation to the
coefficientc in Eq. (10), does not apply to Gaussians be-
cause then, as one can easily check, the integral if@tds
divergent. It is possible to modify this approximation by tak-
ing finite integration limits. This requires careful determina-
tion of the time interval where the “essential” changes in the
population dynamics take place. However, this approach is
B very sensitive to the choice of these limits and hence, am-
5= 10 1 biguous. _

We have estimated®§' analytically using another ap-

00 T T T T s 20 proach presented below. It is similar to that in §&.and is

. ' . o based on Eqg7). We cannot find analytically the exact so-
Intermediate-State Decay Rate (units of T~) lution of Eqgs.(7) for model (27), but we can approximate it
FIG. 5. The final-state population as a function of the BY using some of the known two-state solutions. The most

intermediate-state decay rate for the Gaussian m¢@2i8l with relevant to our problem is the model
7=—0.5 T (intuitive pulse ordey, for several values ofr and & 1

~ t
(shown nearby each curnerhe full curves show the exact results, Qp(t) _ ?f( ?) / /xz(t) F14x(1), (283

obtained by numerical integration of Eqggl), while the dashed
curves derive from our analytic approximati¢s).

Final-State Population

~ 1/t
well by Eq. (25) for small § and by Eq.(24) for large §. It Q4t)= —f(— VVX2(1)+1—x(t), (28b)
increases initially as$h reduces the intermediate-state popu- TAT
lation and hence, the population loss. At la@éP5 is nearly 72(t) 10t
the same for both pulse orders and decreases &vile to X(t)=k tan———, z(t)= _f £2 —)dt’,
the deteriorating adiabaticity. This behavior is similar to that 2¢ T T

in the absence of dissipatidB]. ] ) .
where f(t) is a symmetric pulse-shaped function and

{=2z(). As time runs from—« to o, z changes from- { to

IV. GAUSSIAN PULSES {. By means of the transformation

The experimentally most interesting pulse shape is Gauss-

i t o~ ~
ian. We consider two Gaussian pulses of the same widthsq. (t)=p, 4t exp{ ! _ f Q2(t")+ 02t dt' !,
and strengths but separated by a time delay nf 2 14 =bsdl) 2(A—il) 0[ p(t)+ (1Y)
Egs.(7) take the form

2 2

o) o F{ (t—T g o F{ t+71
=—expg—|—= =—exg —
P T T/ 7 T T)) A..0
d {bl} —Aert Qe [bl}
i— ~ _ ,
. . . dt b Qs Aet bs

wherea andT are positive parameters whitecan be posi-
tive (counterintuitive pulse ordgror negative(intuitive or-  where
den. The parametew is dimensionless whild and 7 have
the dimension of time. 5 - Q,(H0O(1) ~ f2(t/T)

eff(t)__ A—il __TZ(A_iI‘)v (296)

A. Intuitive pulse order
In Fig. 5, the final-state populatioR}; is plotted as a - 5§(t)—5§(t) «f2(tIT)  wz(t)

function of y=I'T for several combinations ofx and Aet(t) = 2(A=iT) :TZ(A—iF)tan 27
6=AT, chosen to ensure near-adiabatic regime and almost (29b)
complete transfer ay=0. The time delay is=—0.5T. The
simple analytic approximatiofb) is seen to be very accurate The same quantities for the Gaussian md@&) are
and the exponential dependence ¢nis clearly demon- )
strated. As Eq(5) predicted,P}; decreases with the pulse _ a (124 )T

Qepe(t)= : (309

area, while it increases with the detuniagnless the detun- - T(A-iT)
ing is very large and violates the adiabatigitiye have also
calculated the exadP for a= =30 (not shown and we a
have found that it practically coincides with the curve for Aesi(t)= T2(A—il)
a=6=10, in agreement with Ed5), which suggests that in

the near-adiabatic reginf®; depend orw and s only viathe ~ Model (29) is a generalizatiofifor complex parameters and

ratio a/ 8. f2(t)xsech(/T,)] of the Allen-Eberly mode[15], Qg(t)

2
47t
e*2<t2+72>’TzsinhT—2. (30b)
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1.0

xsechf/Ty), Axe(t)xtanh{/Ty), which is a particular case
of the Demkov-Kunike mod€e]16] and can be solved ana-
lytically.

Model (28) resembles model27) in the sense that
Q,(t) and Q4(t) are pulse shaped, have equal areas, and

Q(t) precedes(,(t). Their shapes, however, are not
Gaussian. In order to compensate this difference as much a:
possible, we have determined the free parameters in such

way that the maxima(at t=0) and the pulse areas of

Qq4(t) and Qq44(t) as well as the slopes af;+(t) and
Aet1(t) at the crossingtE=0) are the same. This leads to

r
§=a2\/77/8€_2<T/T)2, K=f 8/, f2(0)=a29_2(T/T)2.

Equations(7) with model (28) can be solved in a similar
fashion as in Refd.16,17]; the solution is

B+ !
ci__ 2

I T(B+ VBZ-AY)I'(B— VBZ-A?)

1‘*2

2

X @~ 2B In(2B/A) +2VB?~ A%In[B/A+V(B/A)*—1] . (3D
where
A 2¢ 1 aze—Z(T/T)Z . 2 - aze—z(r/T)Z
T 27 ytid TMTET v+id

This solution is exact for modéR8) but it is approximate for
the Gaussian puls€27). Equation(31) is plotted in Fig. 6,

along with the exact numerical solution for the Gaussian

pulses(27), for several values of the pulse delayn the case
when @=20 and§=0. The analytic approximatio(B1) is

very accurate throughout except for some discrepancy for

Final-State Population

100

50 150 200
Intermediate-State Decay Rate (units of 771)

FIG. 6. The final-state population as a function of the
intermediate-state decay rate for Gaussian pul@sin the coun-
terintuitive order with =20 and6=0 for several pulse delays
The full curves show the exact results, obtained by numerical inte-
gration of Egs.(1), while the dashed curves derive from our ana-
lytic approximation(31).

A(7IT)?+ wld

22 Y _3
3(7./1') € a2+0(|A| ) ’

(|A|>1). (32

7=0.25 T. Note the huge difference in the decay rate scales

in Fig. 5, where the pulse order is intuitive, and Fig. 6.
We now turn to the derivation of the valug,,, at which
P$'= 3. We have obtained it numerically by solving Eqs)
for various fixeda. Then, by plottingy,,, againste we have
checked that the dependenc¥0) holds very well at large
a, from where we have determined the coefficientThis

From here we find that

3(7/T)In2

NI RTE —2(6T)2
4(7IT)’+ wld ‘

o(#T)~ (33

Insofar as the detuning does not appear in the leading term

coefficient depends on the pulse delay, which can also bef Eq. (32), the coefficientc(7/T) does not depend on it in

concluded from Fig. 6, where the rate of dampingP@ifwith

the lowest order. This is consistent with our conclusions in

v is seen to depend on On the other hand, the dependenceSec. Il D 2 thatP§' depends ons very weakly for largeo;

of ¢ on 7/T can be determined approximately from Eg1)
when for any fixedr/T, we solve the equatioR$' =3 for

we have also checked this numerically. Form(88) sug-
gests thatc(7/T) rises from zero at-=0 to its maximum

A. It is possible to obtain a simple approximate expressionvalue of about 0.455 at~0.302 T and then decreases in a

By applying the Stirling’s asymptotic expansifh8]

InNC(z2)~ 3In(27) + (z— %) Inz— z+ 2

+0(|z|7%), (larg|<m,|z|>1)

to the gamma functions in E¢31), we obtain

near-Gaussian fashion with In Fig. 7, Eq.(33) is compared

to the exact numerical valueEalculated for§=0). The
agreement observed in the overall behaviorc6f/T), the
maximum position, and the maximum value, is very good,
particularly in view of the fact that Eq33) has been derived

by using several successive approximations: replacing Egs.
(1) with Egs.(7) by adiabatic elimination of the intermediate
state|2); matching the Gaussian mod@?7) to the analytic
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0S5——————F————————————————— V. CONCLUSIONS

approximation | We have examined the effect of the irreversible dissipa-
. o exact . tion from the intermediate stat?) on the efficiency of

1 population transfer by delayed pulses in three-state systems.
We have shown that this effect is much more pronounced for
the intuitive pulse sequence because then the intermediate
1 state is significantly populated during the transfer. For intui-
] tive pulses, the transfer efficiency decreases exponentially
] with the decay ratd’, the dominant loss mechanism being
the direct dissipation from stat@). For the counterintuitive

04f

03}

c(t/T)

02}

0.1¢ ] pulse sequence, the losses occur by two mechanisms. The
I ] first, which dominates at small and medium decay rates, is
0 Seseea/ the dissipation of the population which visits stf2¢ due to
0 0.5 1.0 15 imperfect adiabaticity. The second is the quantum overdamp-

/T ing, which dominates for largE and shows up as effective
decoupling of the three-state system from the external fields.
These two mechanisms lead to different damping of the
ransfer efficiency witH': exponential at small' and poly-
omial at largel’. Several general approximations to the
final-state population have been derived. Moreover, the
range of decay rates, over which the transfer efficiency re-
model (28); replacing they functions in Eq.(31) by their  mains high, has been found to be proportional to the squared
Stirling asymptotics. The decreaseaffr/T) at small7/T is  pulse area. We have checked our general conclusions with an
because of the larger pulse area needed to avoid the popularalytically solvable model in Sec. Ill and for Gaussian
tion loss, which gets stronger when the pulses overlap topulses in Sec. IV. In the case of Gaussians, we have derived
much. The decrease af(7/T) at large 7/T is due to the analytic approximations for the final-state population and for
larger pulse area needed to ensure sufficient adiabaticity. the width of the region of high transfer efficiency.

FIG. 7. The coefficient(7/T) in Eq. (10) plotted as a function
of the pulse delay for Gaussian puld@3) in the counterintuitive
order. The dots show the exact numerical values, while the soli
curve is our analytic approximatiof33).
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