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Population transfer via a decaying state

N. V. Vitanov* and S. Stenholm
Helsinki Institute of Physics, P.O. Box 9, Siltavuorenpenger 20C, FIN-00014 University of Helsinki, Helsinki, Finland

~Received 31 March 1997!

The paper examines the effect of irreversible dissipation from the intermediate state on the efficiency of
population transfer by partially overlapping delayed pulses in three-state systems. Several general approxima-
tions to the final-state population for both the intuitive and counterintuitive pulse sequences are derived. They
show that the loss of transfer efficiency is much stronger for the intuitive pulse sequence, as then the inter-
mediate state is significantly populated during the transfer. For the counterintuitive sequence, the damping of
the final-state population is found to be exponential for small decay rates and polynomial for large ones;
moreover, the range of decay rates, over which the transfer efficiency remains high, is proportional to the
squared pulse area. The paper also presents an analytically solvable model, involving smooth delayed pulses,
as well as numerical results and analytic approximations for Gaussian pulses.@S1050-2947~97!03708-6#

PACS number~s!: 32.80.Bx, 33.80.Be, 42.50.2p
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I. INTRODUCTION

The stimulated Raman adiabatic passage~STIRAP! is a
well established technique for selective and efficient popu
tion transfer to a particular excited atomic or molecular st
~@1–3# and references therein!. STIRAP transfers adiabati
cally population between two statesu1& andu3& via an inter-
mediate stateu2& by means of two partially overlapping de
layed laser pulses in a counterintuitive order. The initial st
u1& and the final stateu3& have to be on two-photon reso
nance, while the intermediate stateu2& can be off resonance
by a certain detuningD. The population is transferred via a
eigenstateu0& of the Hamiltonian, which is a linear superpo
sition of the bare statesu1& and u3& only. In the adiabatic
limit, no population resides in stateu2& at any time and
hence, its properties do not influence the transfer efficien
Beyond the adiabatic limit~i.e., for finite pulse areas!, the
transfer efficiency is generally less than unity and the in
mediate stateis populated during the excitation~as well as
after it!. We have recently shown@3# that for fixed pulse
areas, the transfer efficiency is adversely affected by the
tuning D as it deteriorates the adiabaticity of the proce
Moreover, the detuning range over which the transfer e
ciency remains high (> 1

2! has been found to be proportion
to the squared pulse area.

Another factor, which is expected to deteriorate the po
lation transfer, is the dissipation from the intermediate st
u2&. In this paper, we examine the dependence of
STIRAP efficiency on the rateG of irreversible decay of this
state out of the three-state system. Besides being intere
by itself, this problem is also closely related to populati
transfer via a continuum@4–6# and to the problem of transi
tions in a dissipative two-state system@7,8#. The paper is
organized as follows. In Sec. II, we provide the basic eq
tions and definitions as well as some general approximat
and conclusions about the effect of the intermediate-state
cay. In Sec. III, we present an analytically solvable mo
involving smooth delayed pulses, which illustrates our g
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eral conclusions. In Sec. IV, we analyze, numerically a
analytically, population transfer with Gaussian pulses.
nally, in Sec. V, we summarize the main results.

II. DEFINITION OF THE PROBLEM
AND GENERAL PROPERTIES

A. The three-state system

The three-stateL system under consideration is show
schematically in Fig. 1. Statesu1& andu2& are coupled by the
pump-laser pulseVp(t), while statesu2& andu3& are coupled
by the Stokes-laser pulseVs(t). The direct transition be-
tween statesu1& and u3& is electric-dipole forbidden. Two-
photon resonance between statesu1& and u3& is maintained.
The intermediate stateu2& is off-resonance by a detuningD
and decays out of the system by a certain mechanism~e.g.,
spontaneous emission, collisional relaxation, or ionizati!
with a total decay rateG>0. The pulse durations are sup
posed to be short compared with the relaxation times wit
the system, so that spontaneous emission from stateu2& to
statesu1& andu3& is neglected. The probability amplitudes o
the three states satisfy the Schro¨dinger equation which in the
rotating-wave approximation has the form

FIG. 1. The three-stateL system. The initial stateu1& and the
final stateu3& are on two-photon resonance. The intermediate s
u2& is off single-photon resonance by a detuningD and decays out
of the system with a rateG. In STIRAP the Stokes pulseVs pre-
cedes the pump pulseVp ~counterintuitive pulse order!.
1463 © 1997 The American Physical Society
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i
d

dtF c1

c2

c3

G5F 0 Vp 0

Vp D2 iG Vs

0 Vs 0
GF c1

c2

c3

G . ~1!

The functionsVp(t) and Vs(t), representing the Rabi fre
quencies of the two pulses, and the~constant! detuningD
will be assumed positive as the populations do not depen
their signs. Furthermore,Vp(t) andVs(t) are supposed to b
pulse-shaped functions that vanish at infinity and wh
pulse areas are finite,*2`

` Vp,s(t) dt,`. We assume that a
the initial timet→2` the three-state system is in its groun
stateu1&,

c1~2`!51, c2~2`!50, c3~2`!50,

and we are interested in the populations att→1`,
Pn5ucn(1`)u2 (n51,2,3). Finally, we will suppose fo
simplicity that the two pulses have the same peak stren
a/T and characteristic widthT,

Vp~ t !5
a

T
f p~ t/T!, Vs~ t !5

a

T
f s~ t/T!,

wherea is a dimensionless positive parameter proportio
to the pulse area, while the functionsf p(t/T) and f s(t/T)
describe the pulse shapes. It is also useful to introduce
dimensionless detuningd and decay rateg,

d5DT, g5GT.
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B. Adiabatic representation

1. Adiabatic states

The adiabatic states are defined as the instantan
eigenstates of the Hamiltonian in Eqs.~1!. In the absence of
decay (G50), they are given by@2,3#

u1&5sinw sinqu1&1coswu2&1sinw cosqu3&, ~2a!

u0&5cosqu1&2sinqu3&, ~2b!

u2&5cosw sinqu1&2sinwu2&1cosw cosqu3&, ~2c!

where Euler’s anglesq(t) andw(t) are defined as

tanq~ t !5
Vp~ t !

Vs~ t !
, tan2w~ t !5

2V0~ t !

D~ t !
, ~3!

and V0(t)5AVp
2(t)1Vs

2(t). The probability amplitudes
a1(t), a0(t), anda2(t) of the adiabatic states are connect
to the bare~diabatic! amplitudes by the orthogonal rotation

F c1

c2

c3

G5F sinw sinq cosq cosw sinq

cosw 0 2sinw

sinw cosq 2sinq cosw cosq
GF a1

a0

a2

G .

In the adiabatic representation, Eqs.~1! become
i
d

dtF a1

a0

a2

G5F V0cot w2 iG cos2w i q̇ sinw i ẇ1 1
2 iG sin2w

2 i q̇ sinw 0 2 i q̇ cosw

2 i ẇ1 1
2 iG sin2w i q̇ cosw 2V0tanw2 iG sin2w

G F a1

a0

a2

G , ~4!
or-
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where an overdot denotes a time derivative. The adiab
behavior is reached in the limit of large pulse amplitud
and/or large pulse widths, i.e., for large pulse areas.

2. Population transfer in the absence of dissipation

In STIRAP the pulses are applied in thecounterintuitive
order, that is the Stokes pulseVs precedes the pump puls
Vp . Hence, limt→2`@Vp(t)/Vs(t)#50, limt→1`@Vp(t)/
Vs(t)#5`, which implies that qci(2`)50,
qci(1`)5p/2. Hereafter the superscript ‘‘ci ’’ ~‘‘ i ’’ ! de-
notes the counterintuitive~intuitive! pulse sequence. If the
excitation is adiabatic then the population is transferred fr
stateu1& to stateu3& via the adiabatic stateu0& which is equal
to stateu1& at t→2` and to stateu3& at t→1`.

In the intuitive pulse order, the pump pulseVp comes
first, which means thatq i(2`)5p/2, q i(1`)50 . For
D50, the adiabatic states are given by superpositions of b
states at botht→2` and t→1`; this gives rise to oscilla-
tions in the populations. ForDÞ0, the population is trans
ferred from stateu1& to state u3& via the adiabatic state
u2&, which is equal to stateu1& at t→2` and to stateu3& at
tic
s

re

t→1`. Thus, in the absence of dissipation, both pulse
ders produce complete population transfer forDÞ0 in the
adiabatic limit@2#.

It is intuitively clear that the intermediate-state dec
must reduce the transfer efficiency and that this effec
much stronger for the intuitive order. This is so because
the adiabatic regime no population visits the intermedi
state at any time for the counterintuitive order, while th
stateis populated during the transfer for the intuitive ord
@9#. From the adiabatic point of view@Eqs. ~4!#, the differ-
ence between the two orders arises from the fact that
adiabatic stateu0& does not decay, whileu2& does with a rate
G sin2w.

From now on we will assume that we are in thenear-
adiabatic regime, where the transfer efficiency is almo
unity in the absence of dissipation (g50) ~for the intuitive
order we also suppose thatdÞ0). To ensure a large transfe
for g50, we have to assume thata2@d,1 @3#. Given this,
we wish to findhow the transfer efficiency decreases wi
g @10# and for any fixed set of pulse parameters, we wish
determine the valueg1/2 at whichP35 1

2.
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C. Population transfer by the intuitive pulse sequence
in the presence of dissipation

The adiabatic stateu2&, which transfers the populatio
from state u1& to state u3& for DÞ0 for the intuitive se-
quence, decays with a rateG sin2w. As follows from Eqs.
~4!, in the adiabatic limit the final population of stateu3& for
intuitive pulses is

P3
i 'expF22GE

2`

`

sin2w~ t !dtG
5expH 2GE

2`

` F12
D

AD214V0
2~ t !

GdtJ . ~5!

Certainly, losses inP3
i may also occur due to nonadiabat

transitions from stateu2& to statesu0& andu1&, but the main
loss mechanism in the near-adiabatic regime is the di
dissipation fromu2&. Thus we expect anexponentialdecay
of P3

i againstG. Moreover,P3
i increaseswith D @unlessD is

too large and deteriorates the adiabaticity; then Eq.~5! is
invalid#, which has to be expected asD suppresses the
intermediate-state population. Finally,P3

i decreaseswith a,
which means that improving adiabaticity reduces, rather t
enhances, the transfer.

D. Population transfer by the counterintuitive pulse sequence
in the presence of dissipation

1. Loss mechanisms

It is less obvious how the transfer efficiency decrea
with G for the counterintuitive order. Then the losses in t
transfer efficiency occur in two ways. First, inasmuch as
excitation is never perfectly adiabatic, during the trans
some population visits the intermediate state where it is
posed to dissipation. In the adiabatic picture, this los
mechanism corresponds to nonadiabatic transitions f
stateu0& to statesu2& and u1& with subsequent dissipatio
from these latter states. The difference between the case
G50 andGÞ0 arises from the fact that forG50, some of
the population transferred to statesu2& and u1& returns to
state u0& by the end of the excitation. This derives fro
higher-order adiabatic processes and can be understoo
means of the superadiabatic approach of Berry@11#. For G
Þ0, the population in statesu2& and u1& is exposed to
irreversible dissipation and the probability for such a retu
is much smaller@12#.

The second, more subtle, mechanism of transfer e
ciency loss is thequantum overdamping. It is similar to that
in two-state systems@8# and shows up as effective deco
pling of the three states at largeG. Consequently, at large
G the population remains predominantly in the initial sta
both the transfer to stateu3& and the dissipation losses bein
suppressed.

Both mechanisms — dissipation and overdamping — le
to a loss of transfer efficiency. Thus,P3

ci should decrease
steadily with G. We expect the dissipation to dominate
small to moderateG, while we expect the overdamping t
show up at largeG. We will see that these two mechanism
lead to different dependences ofP3

ci on G. On the other hand
ct
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as a result of the overdamping,P1
ci is expected to increase a

largeG and eventually to tend to unity at very largeG. The
population lossPloss

ci 512P1
ci2P3

ci should increase initially,
reach a maximum at some moderateG, and then decrease a
largeG. Below, we consider several general approximatio
to P3

ci in the limiting cases of weak and strong dissipation

2. Weak dissipation

Whena is large compared withg, the diagonal elements
in the equations fora1 anda2 in Eqs.~4! dominate over the
nondiagonal ones. Then we can carry out adiabatic elim
tion of statesu1& andu2& by settinga15ȧ250 in Eqs.~4!
and eliminatinga1 and a2 from the resulting set of two
algebraic equations. SinceP3

ci(`)5ua0(`)u2, we obtain

P3
ci'expF22GE

2`

` q̇2~ t !

V0
2~ t !1ẇ2~ t !

dtG ~a@Ag21d2,1!,

~6!

assuming that the integral converges. Similarly to Eq.~5! for
the intuitive sequence, Eq.~6! shows anexponentialdepen-
dence ofP3

ci on G, but the damping rate is considerab
smaller. It also exhibits rather different dependences ona
andd. Namely,P3

ci increaseswith a as the adiabaticity im-

proves, whileP3
ci depends~via ẇ) very weaklyon d ~de-

creases!, because in the denominatorV0
2 dominates over

ẇ2 in the near-adiabatic regime.

3. Strong dissipation: effective two-state problem, dark
and bright states

For large decay rates, we can eliminate adiabatically
intermediate stateu2& by settingdc2 /dt50 in Eqs.~1!, de-
terminingc2 from the resulting algebraic equation, and su
stituting it in the other two equations@2,3#. Adiabatic elimi-
nation of the intermediate states is a widely us
approximation inN-state systems on (N21)-photon reso-
nance@13#. In this approximation, our three-state system
two-photon resonance is reduced to a two-state system
sisting of statesu1& and u3& and described by the equation

i
d

dtFc1

c3
G'2

1

D2 iGF Vp
2 VpVs

VpVs Vs
2 G Fc1

c3
G

~Ag21d2@a,1!. ~7!

Similar equations appear in the problem of population tra
fer via a continuum@4–6#.

The time-dependent transformation

Fc1

c3
G5F cosq sinq

2sinq cosqGFad

ab
G , ~8!

where q(t) is given by Eq.~3!, casts Eqs.~7! into their
adiabatic representation

i
d

dtFad

ab
G5F 0 2 i q̇

i q̇ D̃2 i G̃
G Fad

ab
G , ~9!
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G̃~ t !5
GV0

2~ t !

G21D2 , D̃~ t !52
DV0

2~ t !

G21D2 .

The amplitudes ab and ad correspond to state
ub&5sinqu1&1cosqu3& andud&5cosqu1&2sinqu3&, referred to
as thebright and dark states, respectively. Notice that the
dark state coincides with the adiabatic stateu0&, Eq. ~2b!.
Equations~9! show that in the adiabatic-elimination approx
mation the three-state system is equivalent to a system
two statesub& and ud&, with coupling i q̇, detuningD̃ and

decay rateG̃ of state ub&. As follows from Eqs.~8!, the
counterintuitive pulse order corresponds to initial conditio
ad(2`)51, ab(2`)50, and the populationP3

ci of state
u3& is equal to the probability of remaining in the dark sta
ud&. In contrast, the intuitive order requires initial conditio
ab(2`)51, ad(2`)50, andP3

i is equal to the probability
of remaining in the~decaying! bright stateub&.

For a2!Ag21d2, the two-state problem~9! is nearly
resonant. Since the area of the couplingq̇ is p/2, the two-
state system is almost inverted which implies that bothP3

ci

andP3
i vanish, as should be the case. Fora2@Ag21d2, the

two statesub& andud& are effectively decoupled and the tra
sition between them is suppressed. Thus, asa increases,
P3

ci approaches unity whileP3
i vanishes. Hence, for th

counterintuitive order, Eqs.~7! and ~9! have the correct
g50 limit and should provide a good approximation ev
for small g, although formally they do not have to. For th
intuitive order, Eqs.~7! do not give the correct limit for smal
g and can only be used for largeg.

Equations~7! show that the populations depend ona, d,
andg only through the ratioa2/(d2 ig). For the counterin-
tuitive order, this should be the case practically for any v
ues ofa, d, andg ~given thata is large, which is assume
throughout the paper!. This suggests that on resonance,
populations depend on the ratioa2/g only and hence, the
width g1/2 of the range of high transfer efficiency for cou
terintuitive pulses must scale asa2,

g1/2'ca2 ~d50!, ~10!

wherec is a coefficient that may depend on the specific pu
shapes and the pulse delay but not ong and a. This qua-
dratic dependence is similar to that ofd1/2 on a for g50 @3#.
For dÞ0, a more complicated dependence is to be expec
However, we will see in Sec. IV thatg1/2 depends only very
slightly on d.

4. Very strong dissipation: the Magnus approximation

For Ag21d2@a2, P3 can be estimated by means of th
Magnus approximation@14#, applied to Eqs.~7!. It gives, for
either pulse orders,

P3'
1

2
expS 2

2gSp

g21d2D FcoshS 2
2gS

g21d2D
2cosS 2

2dS

g21d2D G .
of

s

l-

e

e

d.

whereS5*2`
` Vp(t)Vs(t)dt, Sp,s5*2`

` Vp,s
2 (t)dt. For sim-

plicity, we assume equal areas,Sp5Ss . As S,Sp,s

}a2!Ag21d2, this approximation has the asymptotic b
havior

P3;
S2

g21d2 , ~a2!Ag21d2!. ~11!

Hence, at very largeg, the transfer efficiency vanishes in
Lorentzianpower law, rather than exponentially.

III. ANALYTIC MODEL

A. The model

The model is introduced by means of the functions

V1~ t !5V0~ t !cos@ps~ t !/2#, ~12a!

V2~ t !5V0~ t !sin@ps~ t !/2#, ~12b!

where

V0~ t !5
a

T
f S t

TD ,

s~ t !5
1

TE2`

t

f 2S t8

T Ddt85E
2`

t/T

f 2~x!dx. ~13!

The parametera is dimensionless and is proportional to th
pulse area. It plays the role of the adiabaticity parameter,
the largera, the stronger the adiabaticity. The parameterT
has the dimension of time and determines the time and
quency scales. Botha andT will be assumed positive with-
out loss of generality. We also suppose thatf (x) is anarbi-
trary smooth pulse-shaped function which vanishes
infinity, f (6`)50, and is normalized to unity
*2`

` f 2(x)dx51. Then, as time runs from2` to 1`, s(t)
changes from 0 to 1. We emphasize that Eqs.~12! define a
classof models rather than a single model; the members
this class can be obtained by choosing different functio
f (x) with the properties specified above. The final popu
tions for all models of this class are the same and depend
a only; their time evolutions, however, depend on the s
cific model becauses(t) is different. As an example, le
f (x)51/A2 sechx; then

V1~ t !5
a

TA2
sechS t

TD cosFp4 S tanh
t

T
11D G , ~14a!

V2~ t !5
a

TA2
sechS t

TD sinFp4 S tanh
t

T
11D G . ~14b!

The pulseV1(t) precedes the pulseV2(t) and their maxima
are separated by a fixed pulse delay of about 0.772 T.
pulse areas are both approximately equal to 1.338a. We
point out that model~12! is not the same as the analyt
models used in Refs.@2,3#.

By applying eitherV1 on the pump transition andV2 on
the Stokes transition or vice versa, we can realize both p
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56 1467POPULATION TRANSFER VIA A DECAYING STATE
orders. Namely, forVp5V2 andVs5V1 we have the coun-
terintuitive order, while forVp5V1 and Vs5V2 we have
the intuitive order.

Model ~12! allows exact analytic solution of Eqs.~7! @al-
though this solution is approximate for Eqs.~1! since Eqs.
~7! are an approximation to Eqs.~1!#. The derivation is
straightforward and we do not present it explicitly here. It
obtained by changing the independent variable in Eqs.~7!
from t to s. Then we go to the adiabatic representation~9!
where the Hamiltonian becomes constant and the equa
are easily solved.

B. On-resonance solution

On resonance (D50), the population evolutions of th
dark and bright states forcounterintuitivepulses (Vp5V2,
Vs5V1) are given by

Pd
ci~ t !5uad~ t !u2, ~15!

Pb
ci~ t !5uab~ t !u2, ~16!

while those of statesu1& and u3& read

P1
ci~ t !5@ad~ t !cosq~ t !1ab~ t !sinq~ t !#2, ~17!

P3
ci~ t !5@2ad~ t !sinq~ t !1ab~ t !cosq~ t !#2, ~18!

with

ad~ t !5e2jq~ t !H cosh@q~ t !Aj221#

1
j

Aj221
sinh@q~ t !Aj221#J ,

ab~ t !5e2jq~ t !
sinh@q~ t !Aj221#

Aj221
,

where q(t)5ps(t)/2, and j5a2/pg. In the above equa
tions, the relationsAj2215 iA12j2, sinh(ix)5i sinx and
cosh(ix)5cosx have to be used forj,1. The time evolutions
of the populations for the specific pulses~14! are plotted in
Fig. 2 for a510 andg510, along with the pulse shapes.
very good agreement between the exact numerical res
and our analytic approximations~15!–~18! is observed.

The population of stateu3& at t→` for counterintuitive
pulses (Vp5V2, Vs5V1) is

P3
ci5e2pjFcoshS 1

2
pAj221D

1
j

Aj221
sinhS 1

2
pAj221D G 2

, ~19!

while for the intuitive pulse order (Vp5V1, Vs5V2) it is
ns

lts

P3
i 5e2pjFcoshS 1

2
pAj221D

2
j

Aj221
sinhS 1

2
pAj221D G 2

. ~20!

The population of stateu1& is the same for both pulse order

P1
ci5P1

i 5e2pjF sinhS 1

2
pAj221D

Aj221
G 2

, ~21!

which is a consequence of the symmetry of the problem@2#.
Equations~19!–~21! depend ona and g only through the
ratio j5a2/pg, since they are derived from Eqs.~7!.

In the limit j@1, i.e., for a2@pg, we obtain from Eq.
~19! that

P3
ci;e2p/2j5e2p2g/2a2

, ~a2@pg!. ~22!

This is exactly the result predicted by the approximation~6!
for model ~12!, i.e., we find an exponential dependence
P3

ci on g for small g.
For j!1, i.e., fora2!pg, we have

FIG. 2. ~a! The pulse shapes~14!. ~b! The population evolutions
of the dark and bright statesud& andub& and those of statesu1& and
u3& for the pulses~14!, applied in the counterintuitive order, with
a510 and g510. The exact values, obtained by the numeri
integration of Eqs.~1!, are plotted by solid curves, while the dash
curves show the analytic formulas~15!–~18!.
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1468 56N. V. VITANOV AND S. STENHOLM
P1
ci5P1

i ;12pj1O~j2!,

P3
ci;j2@12pj/21O~j2!#,

P3
i ;j2@123pj/21O~j2!#.

Thus, in the limit of largeg, we come across the effect o
quantum overdamping asP1

ci5P1
i→1. We also see that the

P3;(a2/pg)2, in agreement with the Magnus approxim
tion ~11! @sinceS5a2/p for model ~12!#.

In Fig. 3, we have plotted the populations~21! and~19! of
states u1& and u3& and the population lossPloss

ci

512P1
ci2P3

ci for the counterintuitive sequence against t
decay rateg for a510. Our analytic results almost coincid
with the exact values~not shown!. The ultimate decrease o
the population loss at largeg is a result of quantum over
damping. The overall behavior ofP1

ci , P3
ci and Ploss

ci is in
complete agreement with the general conclusions of S
II D 1. Finally, Eq. ~22! gives the value (2/p2)ln2'0.1405
for the coefficientc in Eq. ~10!, which reproduces fairly well
the numerically obtained value 0.1591.

C. Nonzero detuning

For DÞ0, the final-state population forcounterintuitive
pulses (Vp5V2, Vs5V1) is

P3
ci5

e2pj

4~m21n2!
$epm@~m1j!21~n1h!2#1e2pm@~m2j!2

1~n2h!2#12~m21n22j22h2!cospn

24~mh2nj!sinpn%, ~23!

where

FIG. 3. The populations of the initial stateP1
ci , the final state

P3
ci , and the population lossPloss

ci against the intermediate-sta
decay rate for the pulses~12!, applied in the counterintuitive order
for a510 andd50.
c.

j5
ga2

p~g21d2!
, h5

da2

p~g21d2!
,

m5A1

2
@A~j22h221!214j2h21j22h221#,

n5A1

2
@A~j22h221!214j2h22~j22h221!#.

For the intuitive pulse order (Vp5V1, Vs5V2), the final-
state population is given by

P3
i 5

e2pj

4~m21n2!
$epm@~m2j!21~n2h!2#1e2pm@~m1j!2

1~n1h!2#12~m21n22j22h2!cospn

14~mh2nj!sinpn%. ~24!

As we discussed in Sec. II D 3, Eqs.~7! do not produce the
correct final-state population for the intuitive order f
Ag21d2!a2; thus, Eqs.~20! and~ 24! do not give the cor-
rect results either. The relevant approximation in this cas
Eq. ~5! which gives for model~14!

P3
i 'S 11

2a2

d2 D 2g

, ~a2@Ag21d2,1!. ~25!

The initial-state population is the same for both pulse
ders,

P1
i 5P1

ci5
e2pj

2~m21n2!
~coshpm2cospn!. ~26!

In Fig. 4, the populations~23!–~26! are plotted against the
intermediate-state detuningd for a510 andg51 and com-
pared to the exact numerical values. As expected, the fi
state populationP3

i for the intuitive order is approximated

FIG. 4. The populations of the statesu1& andu3& for the intuitive
and counterintuitive pulse orders plotted against the intermedi
state detuning for model~12! with a510 and g51. The exact
values, obtained by numerical integration of Eqs.~1!, are plotted by
solid curves, while the short-line dashed curves show the ana
formulas ~23!, ~24!, and ~26!. The long-line dashed curve is th
approximation~25! for P3

i .
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well by Eq. ~25! for small d and by Eq.~24! for larged. It
increases initially asd reduces the intermediate-state pop
lation and hence, the population loss. At larged, P3 is nearly
the same for both pulse orders and decreases withd due to
the deteriorating adiabaticity. This behavior is similar to th
in the absence of dissipation@3#.

IV. GAUSSIAN PULSES

The experimentally most interesting pulse shape is Ga
ian. We consider two Gaussian pulses of the same wid
and strengths but separated by a time delay of 2t,

Vp~ t !5
a

T
expF2S t2t

T D 2G , Vs~ t !5
a

T
expF2S t1t

T D 2G ,
~27!

wherea andT are positive parameters whilet can be posi-
tive ~counterintuitive pulse order! or negative~intuitive or-
der!. The parametera is dimensionless whileT andt have
the dimension of time.

A. Intuitive pulse order

In Fig. 5, the final-state populationP3
i is plotted as a

function of g[GT for several combinations ofa and
d[DT, chosen to ensure near-adiabatic regime and alm
complete transfer atg50. The time delay ist520.5 T. The
simple analytic approximation~5! is seen to be very accurat
and the exponential dependence ong is clearly demon-
strated. As Eq.~5! predicted,P3

i decreases with the puls
area, while it increases with the detuning~unless the detun
ing is very large and violates the adiabaticity!. We have also
calculated the exactP3

i for a5d530 ~not shown! and we
have found that it practically coincides with the curve f
a5d510, in agreement with Eq.~5!, which suggests that in
the near-adiabatic regimeP3

i depend ona andd only via the
ratio a/d.

FIG. 5. The final-state population as a function of t
intermediate-state decay rate for the Gaussian model~27! with
t520.5 T ~intuitive pulse order!, for several values ofa and d
~shown nearby each curve!. The full curves show the exact result
obtained by numerical integration of Eqs.~1!, while the dashed
curves derive from our analytic approximation~5!.
-

t

s-
hs

st

B. Counterintuitive pulse order

The analytic approximation~6!, shown to give the correc
behavior for model~12! and a good approximation to th
coefficient c in Eq. ~10!, does not apply to Gaussians b
cause then, as one can easily check, the integral in Eq.~6! is
divergent. It is possible to modify this approximation by ta
ing finite integration limits. This requires careful determin
tion of the time interval where the ‘‘essential’’ changes in t
population dynamics take place. However, this approac
very sensitive to the choice of these limits and hence, a
biguous.

We have estimatedP3
ci analytically using another ap

proach presented below. It is similar to that in Ref.@3# and is
based on Eqs.~7!. We cannot find analytically the exact so
lution of Eqs.~7! for model~27!, but we can approximate i
by using some of the known two-state solutions. The m
relevant to our problem is the model

Ṽp~ t !5
1

T
f S t

T
DAAx2~ t !111x~ t !, ~28a!

Ṽs~ t !5
1

T
f S t

T
DAAx2~ t !112x~ t !, ~28b!

x~ t !5k tan
pz~ t !

2z
, z~ t !5

1

TE0

t

f 2S t8

T Ddt8,

where f (t) is a symmetric pulse-shaped function a
z[z(`). As time runs from2` to `, z changes from2z to
z. By means of the transformation

c1,3~ t !5b1,3~ t !expH i

2~D2 iG!
E

0

t

@Ṽp
2~ t8!1Ṽs

2~ t8!#dt8J ,

Eqs.~7! take the form

i
d

dtFb1

b3
G'F2D̃e f f Ṽe f f

Ṽe f f D̃e f f
G Fb1

b3
G ,

where

Ṽe f f~ t !52
Ṽp~ t !Ṽs~ t !

D2 iG
52

f 2~ t/T!

T2~D2 iG!
, ~29a!

D̃e f f~ t !5
Ṽp

2~ t !2Ṽs
2~ t !

2~D2 iG!
5

k f 2~ t/T!

T2~D2 iG!
tan

pz~ t !

2z
.

~29b!

The same quantities for the Gaussian model~27! are

Ve f f~ t !52
a2

T2~D2 iG!
e22~ t21t2!/T2

, ~30a!

De f f~ t !5
a2

T2~D2 iG!
e22~ t21t2!/T2

sinh
4tt

T2 . ~30b!

Model ~29! is a generalization@for complex parameters an
f 2(t)}sech(t/T0)# of the Allen-Eberly model@15#, VAE(t)
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}sech(t/T0), DAE(t)}tanh(t/T0), which is a particular case
of the Demkov-Kunike model@16# and can be solved ana
lytically.

Model ~28! resembles model~27! in the sense tha

Ṽp(t) and Ṽs(t) are pulse shaped, have equal areas,

Ṽs(t) precedesṼp(t). Their shapes, however, are n
Gaussian. In order to compensate this difference as muc
possible, we have determined the free parameters in su
way that the maxima~at t50) and the pulse areas o

Ve f f(t) and Ṽe f f(t) as well as the slopes ofDe f f(t) and
D̃e f f(t) at the crossing (t50) are the same. This leads to

z5a2Ap/8e22~t/T!2
, k5

t

T
A8/p, f 2~0!5a2e22~t/T!2

.

Equations~7! with model ~28! can be solved in a simila
fashion as in Refs.@16,17#; the solution is

P3
ci'U G2S B1

1

2D
G~B1AB22A2!G~B2AB22A2!

3e22B ln~2B/A!12AB22A2ln[B/A1A~B/A!221]U 2

, ~31!

where

A5
2z

p
5

1

A2p

a2e22~t/T!2

g1 id
, B5Ak5

2

p

t

T

a2e22~t/T!2

g1 id
.

This solution is exact for model~28! but it is approximate for
the Gaussian pulses~27!. Equation~31! is plotted in Fig. 6,
along with the exact numerical solution for the Gauss
pulses~27!, for several values of the pulse delayt in the case
when a520 andd50. The analytic approximation~31! is
very accurate throughout except for some discrepancy
t50.25 T. Note the huge difference in the decay rate sc
in Fig. 5, where the pulse order is intuitive, and Fig. 6.

We now turn to the derivation of the valueg1/2, at which
P3

ci5 1
2. We have obtained it numerically by solving Eqs.~1!

for various fixeda. Then, by plottingg1/2 againsta we have
checked that the dependence~10! holds very well at large
a, from where we have determined the coefficientc. This
coefficient depends on the pulse delay, which can also
concluded from Fig. 6, where the rate of damping ofP3

ci with
g is seen to depend ont. On the other hand, the dependen
of c on t/T can be determined approximately from Eq.~31!
when for any fixedt/T, we solve the equationP3

ci5 1
2 for

A. It is possible to obtain a simple approximate express
By applying the Stirling’s asymptotic expansion@18#

lnG~z!; 1
2 ln~2p!1~z2 1

2 !lnz2z1
1

12z

1O~ uzu23!, ~ uargzu,p,uzu@1!

to the gamma functions in Eq.~31!, we obtain
d

as
a

n

or
s

e

.

P3
ci;expF2

4~t/T!21p/4

3~t/T!
e2~t/T!2 g

a2 1O~ uAu23!G ,
~ uAu@1!. ~32!

From here we find that

c~t/T!'
3~t/T!ln2

4~t/T!21p/4
e22~t/T!2

. ~33!

Insofar as the detuningd does not appear in the leading ter
of Eq. ~32!, the coefficientc(t/T) does not depend on it in
the lowest order. This is consistent with our conclusions
Sec. II D 2 thatP3

ci depends ond very weakly for largea;
we have also checked this numerically. Formula~33! sug-
gests thatc(t/T) rises from zero att50 to its maximum
value of about 0.455 att'0.302 T and then decreases in
near-Gaussian fashion witht. In Fig. 7, Eq.~33! is compared
to the exact numerical values~calculated ford50). The
agreement observed in the overall behavior ofc(t/T), the
maximum position, and the maximum value, is very goo
particularly in view of the fact that Eq.~33! has been derived
by using several successive approximations: replacing E
~1! with Eqs.~7! by adiabatic elimination of the intermediat
stateu2&; matching the Gaussian model~27! to the analytic

FIG. 6. The final-state population as a function of t
intermediate-state decay rate for Gaussian pulses~27! in the coun-
terintuitive order witha520 andd50 for several pulse delayst.
The full curves show the exact results, obtained by numerical in
gration of Eqs.~1!, while the dashed curves derive from our an
lytic approximation~31!.
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56 1471POPULATION TRANSFER VIA A DECAYING STATE
model ~28!; replacing theg functions in Eq.~31! by their
Stirling asymptotics. The decrease ofc(t/T) at smallt/T is
because of the larger pulse area needed to avoid the po
tion loss, which gets stronger when the pulses overlap
much. The decrease ofc(t/T) at larget/T is due to the
larger pulse area needed to ensure sufficient adiabaticity

FIG. 7. The coefficientc(t/T) in Eq. ~10! plotted as a function
of the pulse delay for Gaussian pulses~27! in the counterintuitive
order. The dots show the exact numerical values, while the s
curve is our analytic approximation~33!.
s
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V. CONCLUSIONS

We have examined the effect of the irreversible dissi
tion from the intermediate stateu2& on the efficiency of
population transfer by delayed pulses in three-state syste
We have shown that this effect is much more pronounced
the intuitive pulse sequence because then the intermed
state is significantly populated during the transfer. For int
tive pulses, the transfer efficiency decreases exponent
with the decay rateG, the dominant loss mechanism bein
the direct dissipation from stateu2&. For the counterintuitive
pulse sequence, the losses occur by two mechanisms.
first, which dominates at small and medium decay rates
the dissipation of the population which visits stateu2& due to
imperfect adiabaticity. The second is the quantum overda
ing, which dominates for largeG and shows up as effectiv
decoupling of the three-state system from the external fie
These two mechanisms lead to different damping of
transfer efficiency withG: exponential at smallG and poly-
nomial at largeG. Several general approximations to th
final-state population have been derived. Moreover,
range of decay rates, over which the transfer efficiency
mains high, has been found to be proportional to the squa
pulse area. We have checked our general conclusions wit
analytically solvable model in Sec. III and for Gaussi
pulses in Sec. IV. In the case of Gaussians, we have der
analytic approximations for the final-state population and
the width of the region of high transfer efficiency.
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