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Bose-Einstein condensation in a trap: The case of a dense condensate

Klaus Ziegler and Alok Shukla
Max-Planck-Institut fu¨r Physik Komplexer Systeme, Aubenstelle Stuttgart, Postfach 800665, D-70506 Stuttgart, Germany

~Received 31 December 1996!

We consider the Bose-Einstein condensation of atoms in a trap where the density of particles is so high that
the low-density approach of Gross@J. Math. Phys.~N.Y.! 4, 195~1963!# and Pitaevskii„V. L. Ginsburg and L.
P. Pitaevskii, Zh. E´ ksp. Teor. Fiz.34, 1240~1958! @Sov. Phys. JETP7, 1858~1958!#… will not be applicable.
For this purpose we use the slave boson representation which is valid for hard-core bosons at any density. This
description leads to the same results as the Gross-Pitaevskii approach in the low-density limit, but for higher
densities, it predicts the depletion of the condensate in the regions where the density of the atomic cloud is
high. @S1050-2947~97!07408-8#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.40.Db
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I. INTRODUCTION

Atoms in a magnetic trap present an interesting system
the analysis of highly degenerate gases. The trap plays
role of a three-dimensional confining potential well and
using advanced experimental techniques, such as laser
evaporative cooling, it is possible to study the gas ove
wide range of parameters, such as temperature or densi
particles. One of the most spectacular achievements of s
techniques was the observation of the Bose-Einstein~BE!
condensation in gases composed of alkali-metal atoms@1#.
BE condensation, originally studied in terms of the ide
~noninteracting! Bose gas, requires a minimal density
bosonsr05g3/2(1)/l3, wherel5(2p\2/mkBT)1/2 is the de
Broglie wave length andg3/2(1)'2.612. On the other hand
it is known that the density of the condensate in an intera
ing Bose gas at high density is depleted if the total den
exceeds a certain value. For instance, the condensate i
bulk of 4He is only about 10% at zero temperature. On
surface, however, the condensate can reach almost 100%
cause of the reduced total density. This phenomenon
observed in numerical simulations of an interacting Bose
@2# and in analytic calculations including an attractive inte
action @3# or in a slave boson approach to a hard-core B
gas@4#. The effect can be understood as a reduction of lo
range correlations, necessary for the formation of a cond
sate, which is caused by increasing fluctuations due to
increasing density of interacting particles. There is an
proach to the dilute interacting Bose gas due to Ginzburg
Pitaevskii @5# and Gross@6#, analogous to the Ginzburg
Landau approach for second-order phase transitions. A
the general Ginzburg-Landau approach, the Gross-Pitae
~GP! approach is an expansion in powers of the order par
eter field up to fourth order. It works very well close to th
critical point, however, away from it, where the order para
eter is not small anymore, it may significantly deviate fro
the correct result. This is not a problem in a homogene
system with a uniform order parameter, since we can res
the theory to a regime where the order parameter is smal
an inhomogeneous system, e.g., in a trap, the order pa
eter varies in the system. Therefore, it is not sufficient, unl
the system is very dilute, to assume that the order param
is small in some spatial region because it can be large
561050-2947/97/56~2!/1438~5!/$10.00
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another region of the system. The interparticle interaction
the GP approach are approximated by a hard-core two-b
potential with contributions only from thes-wave scattering
length. This approximation is quite satisfactory for the e
tremely dilute gases satisfying the conditionna3!1, where
n is a density of particles anda is the scattering length. The
physical implication of this condition is that it is highly im
probable for three or more particles to interact with ea
other simultaneously. Therefore, it is clear that as the den
of particles in the condensate increases, the likelihood of
three-body and higher-order interactions will also increa
making it necessary to go beyond the GP approach. E
though the recent experiments on the BE in magnetic tr
were based on dilute systems of bosons withna3'1026, it is
foreseeable that experiments can be performed where
Bose gas is dense. This is already indicated by the histor
these experiments: the number of particles in the conden
has increased by three orders of magnitude@7#, as compared
to the early results. In this context it is interesting to stu
the condensate including higher-order interaction effects,
pected in systems at higher density. The purpose of this
ticle is to apply a method, which goes beyond the GP
proach, to analyze an interacting Bose gas in a trap
arbitrary densities.

The rest of the paper consists of two parts: in the fi
~Sec. II! part we discuss the case of a dilute Bose gas us
the GP approach. This includes a mean-field theory base
the nonlinear Schro¨dinger equation and the Thomas-Ferm
approximation. In the second part~Sec. III! the Bose gas
with hard-core interaction is defined as a functional integ
in a slave boson representation. From the latter we derive
effective functional integral for the order-parameter fie
which describes the BE condensate. The new effective fu
tional integral, which also constitutes the main result of t
work, is valid for an arbitrary condensate density, and ta
account of the three-body and higher-order effects in the
terparticle interactions, at a finite temperature. We apply
approach to the problem of BE condensation in a trap in S
III A, and study the behavior of the condensate wave fu
tion as a function of chemical potential~which controls the
particle density! by means of a mean-field theory based
the Thomas-Fermi approximation again. However, like
GP approach, the limitation of the present work is its inab
1438 © 1997 The American Physical Society
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ity to account for the effects of the atoms outside of t
condensate on the condensate itself. Such an extension
be the subject of a future publication.

II. DILUTE BOSE GAS

The Bose gas, defined as a grand canonical ensemb
bosons, can be described in second quantization, for
stance, using a functional integral representation@8#. The
fluctuations with respect to time~i.e., quantum fluctuations!
have a gapkBT at nonzero temperatureT due to the Matsu-
bara frequenciesvn5nkBT (n50,1, . . . ). Thecondensation
of bosons is characterized by a spontaneous breaking
U(1) symmetry~the phase degree of freedom of the co
plex boson field!. This implies a Goldstone mode which d
scribes gapless fluctuations in space. Thus the latter fluc
tions are relevant for the condensation, whereas
fluctuations withvnÞ0 can be neglected because of the g
kBT. Thus it is sufficient to consider thev0 component of
the quantum fieldF(x,v0)[Fx , since we are only inter-
ested in static properties of the condensate near the p
transition. This approximation has been used in the disc
sion of the condensation of a Bose gas in translational inv
ant systems@5,6# as well as in a harmonic trap@9–12#.

As an introduction, we present the GP approach o
grand canonical Bose gas. The latter is defined by the p
tion function @8#

Z5E e2SGP)
x

dFxdFx* . ~1!

The bosons in the condensate are described by the com
field F, which is controlled by the GP action of a dilut
hard-core Bose gas@5,6#

SGP5(
x,x8

Fxtx,x8Fx8
* 2(

x
S muFxu22

u

2
uFxu4D . ~2!

Since this model is based on a Bose gas with hard-core
teraction@13#, only three independent parameters enter:
chemical potentialm, the scattering length of the hard-co
interactiona, and the mass of the bosons. The coupling c
stantu is proportional to the scattering length@13#, whereas
the mass enters into the hopping ratet5(xtx,x8,0, which
has the same energy scale asm. Formally, the action~2! is
defined on a lattice with lattice constanta. This is a good
approximation of the hard-core gas with scattering lengta
if one is only interested in length scales large compared
a. This is the case in the experiments because the typical
of the condensate is 531024 cm, whereasa'531027 cm
@10#. Usually the hopping term(x,x8Fxtx,x8Fx8

* is replaced
by the continuum approximationFxt@11(1/6a2)¹2#Fx*
and the sum by a formal integral, for simplicity.

The magnetic trap can be modeled by introducing a c
fining potentialVx , for instance, a harmonic potential. It
convenient to use a dimensionless expression for the ac
in Eq. ~2! as given in Refs.@9,10#. The parameters of a ga
with about 500087Rb atoms, studied in the experiment b
Andersonet al. @1#, has been estimated in Ref.@10#: The
shape of the trap is anisotropic with the potent
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Vx5x1
21x2

218x3
22m0. The coupling constant of the interac

tion of the 87Rb atoms isu'813 and the effective chemica
potentialm02t'16.3.

Mean-field theory

The properties of the condensate~e.g., the density! can be
evaluated using the saddle-point approximation of the ac
SGP. This is equivalent to the approximation which neglec
fluctuations ofFx ~classical field approximation!. The clas-
sical field Fx is a solution of the nonlinear Schro¨dinger
equation

@~t/6a2!¹21t1Vx1uuFxu2#Fx50. ~3!

This nonlinear differential equation is complicated and ge
erally one has to resort to numerical methods to obtain
exact solutions. However, in order to understand its beha
in the high-density limit one can neglect the kinetic-ener
term because, in that case, the nonlinear term of the equa
is dominant. This is known as the Thomas-Fermi approxim
tion. In a translational invariant system~i.e., Vx52m0) the
Thomas-Fermi approximation gives a linear behavior for
condensate density as a function ofm0

rc}uFxu25~1/u!~m02t!Q~m02t!, ~4!

whereQ is the Heaviside step function. The condensate d
sity increases ad infinitum upon increasingm0. This behavior
is in disagreement with the depletion of the condensate
pected at higher total densities. It also contradicts the
that the hard-core potential limits the density of the Bose g
The reason behind this behavior is that in the GP appro
the hard-core condition is implemented by a two-bodyd
function potential. However, in the high-density limit when
large number of particles are close to each other, this po
tial does not provide a strong enough repulsion needed
the strict imposition of the hard-core condition. In oth
word, corrections due to three-body and higher-order effe
will become equally important. This reflects that the GP a
proach is realistic only for a dilute Bose system: The line
behavior is correct near the critical point, whereuFu2;0 but
the slope of the density of the condensate is less than lin
as one goes away from the critical point. And finally it d
creases, indicating the depletion of the condensate at hi
total densities. By the same argument one can also obtain
inhomogeneous condensate density for the case of a h
density Bose gas composed of alkali-metal atoms in a
confined by a potentialVx @9#

rx}uFxu252~1/u!~Vx1t!Q~2Vx2t!. ~5!

One may try to correct the high-density behavior of t
GP approach by including terms such asuFxu6,uFxu8, . . . in
the GP action@Eq. ~2!# to account for the three-body an
higher-order interactions terms. But our feeling is that o
will need to go to very high orders in this expansion
obtain the correct limiting behavior. However, in this wo
we propose an alternative approach which restores the
rect high-density behavior of an inhomogeneous Bose ga
imposing a strict hard-core condition by adopting a sla
boson representation. This approach is an extension
similar approach formulated earlier by one of us@4#, for the
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1440 56KLAUS ZIEGLER AND ALOK SHUKLA
case of a homogeneous Bose gas. In the following section
will develop and apply the aforementioned slave bos
based approach to study the hard-core Bose gas in a
monic trap.

III. SLAVE BOSON APPROACH

The slave boson representation was originally develo
for fermion systems~e.g., the Hubbard model! @14#. The ad-
vantage of using a slave boson representation in the cas
strongly interacting electrons is that one can account
many effects of strong correlations at the mean-field leve
this representation@14#. For the Bose gas, in contrast to th
Hubbard model of the fermion gas, the dilute limit describ
already interesting physics, such as BE condensation.
dilute limit of a Bose gas can be described quite adequa
by traditional approaches, such as the GP approach, w
takes into account only the two-particle interactions. Ho
ever, it is intuitively obvious that as the density of particl
in the BE condensate increases, the nature of interpar
interactions will become more and more complex, and o
will need to take even three-body and higher effects i
account. It was demonstrated by one of us that the s
boson representation allows one to describe the dynamic
a Bose gas at arbitrary densities@4#, which is what we review
next. For the case of bosons, the slave boson represent
is even easier to formulate because there are only two s
per site in a hard-core system: a site is either empty~repre-
sented by a complex fieldex) or occupied by a single boso
~represented by a complex fieldbx). A hopping process of a
boson appears as an exchange of an empty site with a s
occupied site. Following the standard arguments@14#, this
picture can be translated into a slave boson actionSsb of the
form

(
x F(

x8
bx* extx,x8bx8ex8

* 1Vxbx* bx1 ilx~ex* ex1bx* bx21!G .

~6!

Here again we have neglected fluctuations with respec
time because they have a gapkBT at a nonzero temperatur
T, as discussed in Sec. II. The fieldlx enforces the constrain
ex* ex1bx* bx51 which guarantees that a site is either em
or singly occupied. This becomes clear if we consider
partition function where we integrate over all fields

Z5E e2Ssb)
x

dlxdbxdbx* dexdex* . ~7!

Thel field creates a Diracd function for the constraint. The
slave boson fieldsex andbx can be combined to a collectiv
field bx* ex→Fx . Then the constraint fieldl and the slave
boson fields can be integrated out which finally leads to
action for the collective fieldF. This was demonstrated i
detail in Ref.@4#. Here we only present the results: The ne
partition function reads

Z5E e2Sb2S1)
x

dFxdFx* , ~8!

with the hopping~‘‘kinetic’’ ! term
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Sb5(
x,x8

Fx~12t !x,x8
21 Fx8

*

'(
x

~12t!21uFxu21
t

6a2~12t!2 Fx~¹2F* !x ,

~9!

and the potential term

S152(
x

lnS e2Vx/221/4E dwxe
2wx

2

3
sinh~A~wx2Vx/2!21uFxu2!

A~wx2Vx/2!21uFxu2
D . ~10!

Sb1S1 is a generalization of the GP action to systems w
arbitrary density. It agrees with Eq.~2! in the dilute regime
after expandingS1 in powers ofuFxu2 up to second order
S15a1uFxu21a2uFxu41o(uFu5) can be compared with the
potential of the dimensionless GP energy. For instance,
find for Vx50 the coefficientsa1521/6 anda251/180. In
general, both coefficients of the expansion depend onVx .
That means the composite fieldF of the slave boson ap
proach must be rescaled by (813/2a2)1/4 in order to get the
equivalent of the fieldF of the GP approach. Furthermor
there is a renormalized chemical potential (12t)2121/6 in-
stead oft in Eq. ~2!. t can be fixed by comparing the slav
boson result and the GP result in the vicinity of a vanish
condensate. We found with the above-mentioned parame
t'25.5. Going beyond the dilute regime the effective p
tential of the slave boson representation deviates sig
cantly from the GP potential: it grows only linearly for larg
uFxu in contrast to theuFxu4 behavior of the GP case. There
fore, the ‘‘confinement’’ of the condensate is much weak
and allows a destruction of the latter by fluctuations. T
strong potential in the GP case makes the condensate
robust against fluctuations with sufficiently largeuFxu.

An interesting quantity for the characterization of the co
densate is the momentum distribution of condensate at
@9#. For the case of a inhomogeneous condensate, the
densate wave function obviously is not an eigenfunction
the momentum. However, we do expect the momentum
tribution to be sharply peaked around zero momentum
its shape to be determined both by the trap parameters
the interparticle interactions@1#. In the continuum limit that
we are considering here, the momentum distribution can
evaluated from the fieldF as @9#

^FkF2k* &5(
x,x8

eik~x2x8!^FxFx8
* &, ~11!

where the average is taken with respect to the effective
tion ^•••&5Z21*•••e2Sb2S1)xdFxdFx* . In order to calcu-
late this quantity we use a saddle-point approximation for
functional integral described in Sec. III A.

A. Mean-field theory

The total density and the density of the condensate in
trap can be calculated again from the saddle-point appr
mation. For the present case we feel that it is sufficient
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cause thermal fluctuations will not be important at the sm
temperatures at which the BE condensation occurs in th
systems. However, if one needed to account for thermal fl
tuations, one could do so by studying the deviations aro
the saddle point in the functional integral of Eq.~8! @8#. That
means we have to look for a solutionFx which minimizes
Sb1S1. This problem is analogous to the minimization
the GP energy, discussed above. Instead of the nonli
Schrödinger equation~3!, we have a generalization of thi
equation for the slave boson approach

@~t/6a2!¹21~12t!#Fx1~12t!2
]S1

]Fx*
50. ~12!

This nonlinear differential equation is even more comp
cated than the nonlinear Schro¨dinger equation. Therefore, w
again apply the Thomas-Fermi approximation

Fx1~12t!
]S1

]Fx*
50. ~13!

]S1 /]Fx* contains higher-order terms~three-body interac-
tions, etc.! which are important for the dense regime. Ho
ever, inclusion of the kinetic-energy term will only be ne
essary if more complicated structures~e.g., vortex states
@10#! are considered. Since the accuracy of the Thom
Fermi approximation increases with increasing density, i
particularly suitable for our case where we are intereste
the high-density regime.

The total density of bosons can be evaluated fr
] lnZ/]m0. This quantity is measured with respect to a latt
Bose gas with lattice spacinga. The maximal density is
n51, where we have one boson per site~i.e., one boson in a
volume elementa3). In the trap the maximum is at the cent
and it decreases monotonically withuxu ~cf. Fig. 1!. Solutions
for an isotropic trap are presented for different values
m0. In reality, of course, the number of bosonsN is mea-
sured andm0 must be determined self-consistently forN
while solving Eq.~12!. However, in this case, we have use

FIG. 1. Total density of bosons in a harmonic trap as a funct
of the distanceuxu from the center of the trap for the chemic
potentialm0520.6,0,0.6,1.6,2.6. The total density at a given d
tanceuxu increases as the chemical potential increases. This re
assumes the equilibrium of the grand canonical ensemble of bos
a condition which may be violated in the experiment.
ll
se
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d
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m0 as a parameter which controls the numberN, and hence,
the density of atoms in the trap, and assigned it differ
values so as to solve Eq.~13! for different values of the
particle density. Solutions of Eq.~13! for the density of the
condensate are given in Fig. 2. The maximum of the cond
sate appears always at positions in the trap where the
density is 0.5. This reflects the duality of bosons and hole
the hard-core Bose gas on the lattice. If the total densit
less than 0.5 everywhere in the trap, the density of the c
densate decays monotonically withuxu. This result demon-
strates that the condensate is depleted at the center of the
if the total density of bosons is larger than 0.5. Consequen
it is difficult to create an extended condensate in a poten
where the bosons are concentrated at the center with
density. However, known experiments on a Bose gases
far away from such high densities.

The correlation function of the order-parameter fie
Fx5uFxueiwx can be approximated by neglecting the flu
tuations ofuFxu as

^FxFx8
* &'F̄xF̄x8

* ^eiwx2 iwx8&, ~14!

where F̄x is a solution of Eq.~13!. @The global phase of

F̄x , of course, is not determined by Eqs.~12! or ~13! due to
symmetry.# The phase coherence of the fluctuating pha
wx may be larger than the size of the condensate becaus
the off-diagonal long-range order in a three-dimensio
Bose gas@15#. Therefore, the momentum distribution, d
fined by Eq.~11! and the continuum limit can be approx
mated by@9#

f ~k!5U E d3xeikxF̄xU2

. ~15!

The momentum distribution of the condensate atoms
tained using Eq.~15!, based on the solution of Eq.~13! is
plotted in Fig. 3 for several values of the chemical poten
m0. Upon inspecting Fig. 3, one immediately observes t
the momentum distribution becomes even sharper due

n

-
ult
ns,

FIG. 2. Density of the condensate in the trap, normalized by
volume, for them0 values of Fig. 1. The surface of the condensa
grows with increasingm0, and the condensate for the lowest dens
already has the parabolic shape found in the GP approach.
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1442 56KLAUS ZIEGLER AND ALOK SHUKLA
depletion. This is a consequence of the spreading of the
densate due to depletion, which supports small momenta

IV. CONCLUSIONS

In conclusion, we have studied the condensation o
three-dimensional high-density Bose gas in a harmonic t

FIG. 3. Momentum distribution of condensate particles in
trap for them0 values of Fig. 1. The sharpness of the distributi
increases with increasingm0.
an

.

hy
n-

a
p.

We demonstrated the unphysical nature of the solutions
one obtains if one applies the traditional approach of Gr
and Pitaevskii to study such a system. We identified that
reason behind this behavior was that the GP action igno
the three-body and the higher-order interactions which
come important at high densities. In this work we propos
an alternative approach based on the slave boson repres
tion, which accounts for these complex interactions at h
densities by satisfying the hard-core condition strictly. O
approach leads to solutions which are well behaved at h
densities and predicts depletion of the condensate in the
gions of high densities~mainly the center of the trap! which
one would expect on intuitive grounds. We also study
momentum distribution of the atoms in the trap and obse
a narrowing of the momentum distribution in the hig
density limit. This approach is expected to be of little app
cation for the low-density condensates which are prese
being created in experiments, but we hope that it can
tested in the future when experimentalists may be able
realize a dense Bose gas in a trap. We also plan to apply
approach to study the structure of vortices in a high-den
inhomogeneous Bose gas, results of which will be presen
in a future publication.

ACKNOWLEDGMENTS

We would like to thank Professor L. P. Pitaevskii for
stimulating discussion.
s

y

@1# M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wiem
and E. A. Cornell, Science269, 198 ~1995!; C. C. Bradley, C.
A. Sacket, J. J. Tollett, and R. G. Hulet, Phys. Rev. Lett.75,
1687~1995!; K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J
van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle,ibid.
75, 3969~1995!.

@2# D. S. Lewart, V. R. Pandharipande, and S. C. Pieper, P
Rev. B37, 4950~1988!.

@3# A. Griffin and S. Stringari, cond-mat/9511100.
@4# K. Ziegler, Europhys. Lett.23, 463 ~1993!.
@5# V. L. Ginzburg and L. P. Pitaevskii, Zh. E´ ksp. Teor. Fiz.34,

1240 ~1958! @Sov. Phys. JETP 7, 858~1958!#.
@6# E. P. Gross, J. Math. Phys.~N.Y.! 4, 195 ~1963!.
,

s.

@7# M.-O. Meweset al., Phys. Rev. Lett.77, 416 ~1996!.
@8# J. W. Negele and H. Orland,Quantum Many-Particle System

~Addison-Wesley, New York, 1988!.
@9# G. Baym and C. Pethick, Phys. Rev. Lett.76, 6 ~1996!.

@10# F. Dalfovo and S. Stringari, Phys. Rev. A53, 2477~1996!.
@11# S. Stringari, Phys. Rev. Lett.76, 1405~1996!.
@12# A. L. Fetter, Phys. Rev. A53, 4245~1996!.
@13# K. Huang,Statistical Mechanics~Wiley, New York, 1963!.
@14# S. E. Barnes, J. Phys. F6, 1375~1976!; G. Kotliar and A. E.

Ruckenstein, Phys. Rev. Lett.57, 1362~1986!; P. Wölfle and
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