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Bose-Einstein condensation in a trap: The case of a dense condensate
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We consider the Bose-Einstein condensation of atoms in a trap where the density of particles is so high that
the low-density approach of Grogs Math. Phys(N.Y.) 4, 195(1963] and Pitaevski(V. L. Ginsburg and L.
P. Pitaevskii, Zh. Esp. Teor. Fiz34, 1240(1958 [Sov. Phys. JETR, 1858(1958]) will not be applicable.
For this purpose we use the slave boson representation which is valid for hard-core bosons at any density. This
description leads to the same results as the Gross-Pitaevskii approach in the low-density limit, but for higher
densities, it predicts the depletion of the condensate in the regions where the density of the atomic cloud is
high. [S1050-294{@7)07408-9

PACS numbes): 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.40.Db

I. INTRODUCTION another region of the system. The interparticle interactions in
the GP approach are approximated by a hard-core two-body
Atoms in a magnetic trap present an interesting system fopotential with contributions only from the-wave scattering
the analysis of highly degenerate gases. The trap plays tHength. This approximation is quite satisfactory for the ex-
role of a three-dimensional confining potential well and bytremely dilute gases satisfying the conditioa®<1, where
using advanced experimental techniques, such as laser ands a density of particles anal is the scattering length. The
evaporative cooling, it is possible to study the gas over ghysical implication of this condition is that it is highly im-
wide range of parameters, such as temperature or density pfobable for three or more particles to interact with each
particles. One of the most spectacular achievements of suatther simultaneously. Therefore, it is clear that as the density
techniques was the observation of the Bose-EinstBiB) of particles in the condensate increases, the likelihood of the
condensation in gases composed of alkali-metal atidths three-body and higher-order interactions will also increase,
BE condensation, originally studied in terms of the idealmaking it necessary to go beyond the GP approach. Even
(noninteractingg Bose gas, requires a minimal density of though the recent experiments on the BE in magnetic traps
bosonspo=g3(1)/A3, whereh = (2742/mkgT)Y?is the de  were based on dilute systems of bosons wigfi~107, it is
Broglie wave length and;(1)~2.612. On the other hand, foreseeable that experiments can be performed where the
it is known that the density of the condensate in an interactBose gas is dense. This is already indicated by the history of
ing Bose gas at high density is depleted if the total densityhese experiments: the number of particles in the condensate
exceeds a certain value. For instance, the condensate in thas increased by three orders of magnitfile as compared
bulk of “He is only about 10% at zero temperature. On theto the early results. In this context it is interesting to study
surface, however, the condensate can reach almost 100% Hée condensate including higher-order interaction effects, ex-
cause of the reduced total density. This phenomenon wasected in systems at higher density. The purpose of this ar-
observed in numerical simulations of an interacting Bose gaticle is to apply a method, which goes beyond the GP ap-
[2] and in analytic calculations including an attractive inter-proach, to analyze an interacting Bose gas in a trap at
action[3] or in a slave boson approach to a hard-core Bosarbitrary densities.
gas[4]. The effect can be understood as a reduction of long- The rest of the paper consists of two parts: in the first
range correlations, necessary for the formation of a conder{Sec. I) part we discuss the case of a dilute Bose gas using
sate, which is caused by increasing fluctuations due to athe GP approach. This includes a mean-field theory based on
increasing density of interacting particles. There is an apthe nonlinear Schdinger equation and the Thomas-Fermi
proach to the dilute interacting Bose gas due to Ginzburg andpproximation. In the second pai®ec. lll) the Bose gas
Pitaevskii [5] and Gross[6], analogous to the Ginzburg- with hard-core interaction is defined as a functional integral
Landau approach for second-order phase transitions. As im a slave boson representation. From the latter we derive an
the general Ginzburg-Landau approach, the Gross-Pitaevskffective functional integral for the order-parameter field
(GP) approach is an expansion in powers of the order paramwhich describes the BE condensate. The new effective func-
eter field up to fourth order. It works very well close to the tional integral, which also constitutes the main result of this
critical point, however, away from it, where the order param-work, is valid for an arbitrary condensate density, and takes
eter is not small anymore, it may significantly deviate fromaccount of the three-body and higher-order effects in the in-
the correct result. This is not a problem in a homogeneouterparticle interactions, at a finite temperature. We apply this
system with a uniform order parameter, since we can restricpproach to the problem of BE condensation in a trap in Sec.
the theory to a regime where the order parameter is small. IHl A, and study the behavior of the condensate wave func-
an inhomogeneous system, e.g., in a trap, the order parartion as a function of chemical potentiéihich controls the
eter varies in the system. Therefore, it is not sufficient, unlesparticle density by means of a mean-field theory based on
the system is very dilute, to assume that the order paramettiie Thomas-Fermi approximation again. However, like the
is small in some spatial region because it can be large iGP approach, the limitation of the present work is its inabil-
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ity to account for the effects of the atoms outside of theV,=x2+ x5+ 8x5— uo. The coupling constant of the interac-
condensate on the condensate itself. Such an extension wilbn of the 8’Rb atoms isu~813 and the effective chemical
be the subject of a future publication. potential uy— 7~ 16.3.

II. DILUTE BOSE GAS Mean-field theory

The Bose gas, defined as a grand canonical ensemble of The properties of the condensaeeg., the densifycan be
bosons, can be described in second quantization, for ir€valuated using the saddle-point approximation of the action
stance, using a functional integral representafish The Scp- This is equivalent to the approximation which neglects
fluctuations with respect to timg.e., quantum fluctuations ~ fluctuations of®, (classical field approximationThe clas-
have a gagksT at nonzero temperatufe due to the Matsu- sical f|eld ®, is a solution of the nonlinear Schiimger
bara frequencie®,=nkgT (n=0,1,...). Thecondensation €quation
of bosons is characterized by a spontaneous breaking of a 22 2
U(1) symmetry(the phase degree of freedom of the com- [(7/6%)VE+ 7+ Vit [ x| ] Py =0. @)

plex boson fielsl This implies a Goldstone mode which de- This nonlinear differential equation is complicated and gen-
scribes gapless fluctuations in space. Thus the latter fluctugyally one has to resort to numerical methods to obtain its
tions are relevant for the condensation, whereas th@yact solutions. However, in order to understand its behavior
fluctuations withw,#0 can be neglected because of the gapn the high-density limit one can neglect the kinetic-energy
kgT. Thus it is sufficient to consider the, component of  term because, in that case, the nonlinear term of the equation
the quantum fieldD(x,wo)=®P,, since we are only inter- s dominant. This is known as the Thomas-Fermi approxima-
ested in static properties of the condensate near the phaggn. In a translational invariant systefie., V,= — u,) the

transition. This approximation has been used in the discusrhomas-Fermi approximation gives a linear behavior for the
sion of the condensation of a Bose gas in translational invaricondensate density as a functionof

ant systemg$5,6] as well as in a harmonic trgd®-12|.

As an introduction, we present the GP approach of a pe |y 2= (1) (po— 7)O (o— 7), 4
grand canonical Bose gas. The latter is defined by the parti- ) o )
tion function[8] where0 is the Heaviside step function. The condensate den-

sity increases ad infinitum upon increasing This behavior
is in disagreement with the depletion of the condensate ex-
ZZJ e Ser[ [ do,do} . (1) pected at higher total densities. It also contradicts the fact
X that the hard-core potential limits the density of the Bose gas.
The reason behind this behavior is that in the GP approach
hard-core condition is implemented by a two-bodly
tion potential. However, in the high-density limit when a
large number of particles are close to each other, this poten-
tial does not provide a strong enough repulsion needed for
u|® |2_E|q, |4)_ ) the strict imposition of the hard-core condition. In other
o2t word, corrections due to three-body and higher-order effects
will become equally important. This reflects that the GP ap-
Since this model is based on a Bose gas with hard-core irProach is realistic only for a dilute Bose system: The linear
teraction[13], only three independent parameters enter: théehavior is correct near the critical point, wheédg/2~0 but
chemical potentiaj, the scattering length of the hard-core the slope of the density of the condensate is less than linear
interactiona, and the mass of the bosons. The coupling conas one goes away from the critical point. And finally it de-
stantu is proportional to the scattering length3], whereas creases, indicating the depletion of the condensate at higher
the mass enters into the hopping rate =,t, ,» <0, which total densities. By the same argument one can also obtain the
has the same energy scale @asFormally, the actior(2) is  inhomogeneous condensate density for the case of a high-
defined on a lattice with lattice constaat This is a good density Bose gas composed of alkali-metal atoms in a trap
approximation of the hard-core gas with scattering lerayth confined by a potentia¥, [9]
if one is only interested in length scales large compared to

The bosons in the condensate are described by the compl
field ®, which is controlled by the GP action of a dilute func
hard-core Bose gd%,6]

Sep= E q)xtx,x’q):r - 2
XX’ X

2_ _ V. —
a. This is the case in the experiments because the typical size Px | By *= = (L) (Vi DO (= V= 7). )

H — 4 ~ —7 . . .
of the condensate is>610 " cm, whereasa~*5_><10 cm One may try to correct the high-density behavior of the
[10]. Usually the hopping termy »» ®,t, P, is replaced  Gp approach by including terms such|ds|®,|®,/8, . . . in
by the continuum approximatiomb, {1+ (1/6a%)V?]d} the GP actionEqg. (2)] to account for the three-body and
and the sum by a formal integral, for simplicity. higher-order interactions terms. But our feeling is that one

The magnetic trap can be modeled by introducing a conwill need to go to very high orders in this expansion to
fining potentialV,, for instance, a harmonic potential. It is obtain the correct limiting behavior. However, in this work
convenient to use a dimensionless expression for the actiome propose an alternative approach which restores the cor-
in Eq. (2) as given in Refs[9,10]. The parameters of a gas rect high-density behavior of an inhomogeneous Bose gas by
with about 50008’Rb atoms, studied in the experiment by imposing a strict hard-core condition by adopting a slave
Andersonet al. [1], has been estimated in RdflO]: The boson representation. This approach is an extension of a
shape of the trap is anisotropic with the potentialsimilar approach formulated earlier by one of[d$, for the
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case of a homogeneous Bose gas. In the following section we P
will develop and apply the aforementioned slave boson Sb=2 Dy (1-1), 5 Pl
based approach to study the hard-core Bose gas in a har- XX

monic trap. T
~2 (1= 1) Dy g O(V20¥),
X 6a“(1—17)
ll. SLAVE BOSON APPROACH

€)
The slave boson representation was originally develope@nd the potential term

for fermion systemse.g., the Hubbard mode]14]. The ad-
vantage of using a slave boson representation in the case of . Vo 2—1/4 02

, . . S;=—2, Inl e Vx depe
strongly interacting electrons is that one can account for X
many effects of strong correlations at the mean-field level of
this representatiofl4]. For the Bose gas, in contrast to the sinh( \/(<pX—VX/2)2+|<I>X|2)) 10
Hubbard model of the fermion gas, the dilute limit describes

9 \/((Px_vx/2)2+|q)x|2

already interesting physics, such as BE condensation. The

dilute limit of a Bose gas can be described quite adequatel$b+ S, is a generalization of the GP action to systems with

by traditional approaches, such as the GP approach, whicihitrary density. It agrees with E¢) in the dilute regime
takes into account only the two-particle interactions. HOW-gftar expandings, in powers of|®,|2 up to second order:
ever, it is intuitively obvious that as the density of particlesslzal|¢x|2+a2|¢x|4+o(|¢|5) ca; be compared with the

in the BE condensate increases, the nature of interparticlgoienial of the dimensionless GP energy. For instance, we
interactions will become more and more complex, and oNgq for \V.=0 the coefficients, = — 1/6 anda,= 1/180. In
< .

will need to take even three-body and higher effects int eneral, both coefficients of the expansion depend/gn

account. It was demonstrated by one of us that the slav: {at means the composite fielHl of the slave boson ap-

boson representation allows one to describe the dynamics % oach must be rescaled by (81842 in order to get the
a Bose gas at arbitrary densitie, which is what we review .equivalent of the fieldb of the GP approach. Furthermore,
next. For the case of bosons, the slave boson representatit}, . is a renormalized chemical potentiaH(2) ~1— 1/6 in-

is even easier to formulate because there are only two state$.od ofr in Eq. (2). = can be fixed by comparing the slave
per site in a hard-core system: a site is either entppre- boson result and the GP result in the vicinity of a vanishing

sented by a complex fielel) or occupied b_y a single boson condensate. We found with the above-mentioned parameters
(represented by a complex fiefig). A hopping process ofa —5.5. Going beyond the dilute regime the effective po-

boson appears as an exchange of an empty site with a sin ¥ntial of the slave boson representation deviates signifi-

opcupied sitbe. Follo:/vin% j[he sta?dardb argume[rjts],ftr;]is cantly from the GP potential: it grows only linearly for large
picture can be translated into a slave boson acBgrof the |®,| in contrast to theéd,|* behavior of the GP case. There-

form fore, the “confinement” of the condensate is much weaker
and allows a destruction of the latter by fluctuations. The
> 1> bt ety x Dx €]+ V,0E by +ik (€] e+ bib,—1)|. strong potential in the GP case makes the condensate very
X robust against fluctuations with sufficiently large,|.
(6) An interesting quantity for the characterization of the con-

densate is the momentum distribution of condensate atoms

Here again we have neglected fluctuations with respect t 1. For the case of a inhomogeneous condensate, the con-

E'rme tzjgcause :jhgygaV(allaT%h@;r ;llt a ?onzer?htempertatgr(ta densate wave function obviously is not an eigenfunction of
, as discussed in Sec. Il. The field enforces the constrain the momentum. However, we do expect the momentum dis-

e\ e+ by b,=1 which guarantees that a site is either emptyyii, ion to be sharply peaked around zero momentum and
or singly occupied. This becomes clear if we consider thgs shape to be determined both by the trap parameters and
partition function where we integrate over all fields the interparticle interactiong]. In the continuum limit that
we are considering here, the momentum distribution can be
Z:f e So[ [ dr,db,db*dede’ . (7)  evaluated from the field as[9]
X

The \ field creates a Diraé function for the constraint. The (D@ ) =2 NP, @), (19
slave boson fields, andb, can be combined to a collective Xx!

field by ec—®,. Then the constraint field and the slave \here the average is taken with respect to the effective ac-
boson fields can be integrated out which finally leads to th?ion(- . ->=Z*1f- . -e*Sb*51HXd®de>§ _In order to calcu-

actio.n'for the collective fieldP. This was demonstrated in |5te this quantity we use a saddle-point approximation for the
detail in Ref.[4]. Here we only present the results: The newsnctional integral described in Sec. IIl A,
partition function reads

A. Mean-field theory

_ -S,—S *
Z_j e 11;[ dP,dy ®) The total density and the density of the condensate in the

trap can be calculated again from the saddle-point approxi-
with the hopping(“kinetic” ) term mation. For the present case we feel that it is sufficient be-
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FIG. 1. Total density of bosons in a harmonic trap as a function

of the distancex| from the center of the trap for the chemical .
potential o= —0.6,0,0.6,1.6,2.6. The total density at a given dis- volume, for theuy values of Fig. 1. The surface of the condensate

tance|x| increases as the chemical potential increases. This resuff oWs with increasing, and the condensate for the lowest density

assumes the equilibrium of the grand canonical ensemble of boson‘él,ready has the parabolic shape found in the GP approach.
a condition which may be violated in the experiment.

FIG. 2. Density of the condensate in the trap, normalized by the

Mo as a parameter which controls the numberand hence,

cause thermal fluctuations will not be important at the smalfhe density of atoms in the trap, and assigned it different
temperatures at which the BE condensation occurs in thes@lues so as to solve E@13) for different values of the

systems. However, if one needed to account for thermal flugParticle density. Solutions of E¢13) for the density of the

tuations, one could do so by studying the deviations aroung§ondensate are given in Fig. 2. The maximum of the conden-
the saddle point in the functional integral of £8) [8]. That  Saté appears always at positions in the trap where the total
means we have to look for a solutigh, which minimizes ~ density is 0.5. This reflects the duality of bosons and holes in
S,+S;. This problem is analogous to the minimization of the hard-core Bose gas on the lattice. If the tqtal density is
the GP energy, discussed above. Instead of the nonlinedSs than 0.5 everywhere in the trap, the density of the con-

Schralinger equation(3), we have a generalization of this densate decays monotonically witk|. This result demon-
equation for the slave boson approach strates that the condensate is depleted at the center of the trap

if the total density of bosons is larger than 0.5. Consequently,

o2 , 05 it is difficult to create an extended condensate in a potential
[(7/6a°)V 4+ (1—7)]Py+(1—17) ﬁ_o- (12} \where the bosons are concentrated at the center with high
X density. However, known experiments on a Bose gases are

This nonlinear differential equation is even more compli-far away from such high densities. _
cated than the nonlinear Schlinger equation. Therefore, we ~ The correlation function of the order-parameter field
again apply the Thomas-Fermi approximation ®,=|d,|e'¥x can be approximated by neglecting the fluc-
tuations of|®,| as
S,

CI)X+(1—T)@

=0. (13 <<I>X<I>:,)%<ITX<IT;‘,<ei exiexty, (14)

% . . . _
S, /9®5 contains higher-order term@hree-body interac- where @, is a solution of Eq.(13). [The global phase of

tions, etc) which are important for the dense regime. How- — . .
ever, inclusion of the kinetic-energy term will only be nec- Px Of course, is not determined by Eq42) or (13) due to

essary if more complicated structurés.g., vortex states Symmetry] The phase coherence of the fluctuating phase

[10]) are considered. Since the accuracy of the Thomas¥x May be larger than the size of the condensate because of

Fermi approximation increases with increasing density, it ighe off-diagonal long-range order in a three-dimensional

particularly suitable for our case where we are interested iff0S€ 9as(15]. Therefore, the momentum distribution, de-

the high-density regime. fined by Eg.(11) and the continuum limit can be approxi-

The total density of bosons can be evaluated frommated by[9]

dInZlduy. This quantity is measured with respect to a lattice

Bose gas with lattice spacing. The maximal density is f(k):U d3x P,
; ; X

n=1, where we have one boson per gite., one boson in a

volume elemen&®). In the trap the maximum is at the center

and it decreases monotonically witq (cf. Fig. 1). Solutions The momentum distribution of the condensate atoms ob-

for an isotropic trap are presented for different values oftained using Eq(15), based on the solution of E¢L3) is

mo- In reality, of course, the number of bosoNsis mea-  plotted in Fig. 3 for several values of the chemical potential

sured andu, must be determined self-consistently flr . Upon inspecting Fig. 3, one immediately observes that

while solving Eq.(12). However, in this case, we have used the momentum distribution becomes even sharper due to

2
. (15
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0014 . . . . , . . . . We demonstrated the unphysical nature of the solutions that
"‘mng = one obtains if one applies the traditional approach of Gross
ootz | mute and Pitaevskii to study such a system. We identified that the

reason behind this behavior was that the GP action ignores
the three-body and the higher-order interactions which be-
come important at high densities. In this work we proposed
an alternative approach based on the slave boson representa-
tion, which accounts for these complex interactions at high
densities by satisfying the hard-core condition strictly. Our
approach leads to solutions which are well behaved at high
densities and predicts depletion of the condensate in the re-
gions of high densitieémainly the center of the trapvhich
one would expect on intuitive grounds. We also study the
. momentum distribution of the atoms in the trap and observe
SR a narrowing of the momentum distribution in the high-
density limit. This approach is expected to be of little appli-
FIG. 3. Momentum distribution of condensate particles in thecaFIon for the IQW'dens'_ty condensates which are _presently
trap for thep values of Fig. 1. The sharpness of the distribution P€INg created in experiments, but we hope that it can be
increases with increasing,. tested in the future when experimentalists may be able to
realize a dense Bose gas in a trap. We also plan to apply this

depletion. This is a consequence of the spreading of the CO,_@uaproach to study the structure of vortices in a high-density

densate due to depletion, which supports small momenta. "homogeneous Bose gas, results of which will be presented
in a future publication.
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