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Self-trapping and self-focusing of a coherent atomic beam

Weiping Zhang, B. C. Sanders, and Weihan Tan*
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Light-induced dipole-dipole interaction in a coherent atomic-field results in an effective nonlinearity for
atoms. This nonlinearity can induce self-trapping and self-focusing of a coherent atomic beam undergoing
propagation through a traveling-wave laser beam; we show how such a scheme could be realized and evaluate
the critical density required for atomic self-trapping and self-focusing. An analogy to optical self-trapping and
self-focusing is discussed.@S1050-2947~97!07208-9#

PACS number~s!: 03.75.Fi, 42.50.Vk, 32.80.2t,
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I. INTRODUCTION

The study of atoms in and beyond the ultracold regi
has experienced rapid advances recently. For example, B
Einstein condensation in dilute atomic gases has been
ized for Rubidium-87, for Lithium-7, and for Sodium-23@1#.
Further improvements in forming atom condensates br
experiments closer to the possibility of producing coher
atomic beams@2# consisting of large numbers of boson
atoms condensed into a single momentum state. Cohe
atomic beams offer a variety of applications in atom opt
including, but not limited to, atomic solitons@3,4# and
atomic pulse compression@5#.

Here we are concerned with the exploitation of the no
linearity to perform the atomic field analog of the se
trapping and self-focusing of optical beams. This nonline
ity, under appropriate conditions, shares some similarity w
the optical Kerr nonlinearity, which is responsible for th
self-trapping and self-focusing of optical beams@6,7#. Acting
opposite to the transverse beam diffraction, the nonlinea
negates beam expansion by causing the beam to trap or f
into itself, thereby resulting in a decreasing waist size and
increasing density during propagation.

In the ultracold regime, it is best to think of atoms
quantum fields and employ a vector quantum field theory
describe the system. The analogy between matter field
ultracold atoms and the electromagnetic fields of conv
tional optics has extended atom optics to study the quan
statistics of ultracold atoms@8–12#, as well as nonlinear
atom optics@3–5,13#.

Attaining nonlinear atom-optical effects generally nee
two conditions:~1! the existence of a nonlinear medium f
the atomic beam and~2! preparation of the atomic beam wit
a high bosonic degeneracy, thereby ensuring a large no
earity. The nonlinear medium is provided by a light wa
which mediates nonlinear atomic wave interactions@3,5,13#.
High bosonic degeneracy requires a coherent atomic so
analogous to the conventional laser beam. Here we assu
high bosonic degeneracy for the coherent atomic beam in
ultracold regime and study its propagation in a travelin
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wave laser beam. Depicted in Fig. 1 is a scheme where
atomic beam passes through a hole in a mirror which refle
a laser beam. The atomic beam then propagates down
the laser beam which provides significant nonlinear ato
atom coupling. Nonlinear propagation of an atomic wa
packet composed of a finite-size Bose-Einstein condensa
a traveling-wave laser beam has been studied@4#, but here
we extend the work to treat a continuous-wave coher
atomic beam in the longitudinal direction.

The paper is organized as follows. We begin, in Sec.
by reviewing the general formalism of nonlinear atom opt
and deriving the nonlinear hydrodynamic equation for t
propagation of a coherent atomic beam in a laser beam
Sec. III, the nonlinear hydrodynamic equation is solved u
der the appropriate conditions and applied to the case
self-trapping and self-focusing of a coherent atomic beam
a laser beam. The critical density required for the form
self-trapping and self-focusing are evaluated. The differen
of atomic self-trapping and self-focusing from optical se
trapping and self-focusing are discussed. Particularly, the
ture of the focal point for atomic self-focusing is analyze
The conclusions are in Sec. IV.

-
.

FIG. 1. Injection of the coherent atomic beam into a laser be
The laser beam is reflected from a mirror with a hole where t
atomic beam passes through. A detector receives fluorescent l
1433 © 1997 The American Physical Society
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II. HYDRODYNAMIC APPROACH
FOR COHERENT ATOMIC BEAM

The quantum field theory of ultracold atoms interacti
with a light wave@3–5,13# permits the ultracold atomic en
semble to be treated as anN-component vector quantum
field, with each component corresponding to one of the
ternal electronic states of the atoms. When the laser fiel
linearly polarized and the near-resonance transition of at
corresponds toJg50→Je51, the atoms can be approx
mated by a two-level system with the two-component fie

c~rW !5c1~rW !u1&1c2~rW !u2&, ~2.1!

where u1& and u2& denote the internal ground state and e
cited state, andc1 andc2 are the corresponding atomic-fie
operators. When the ultracold atomic ensemble interacts
a laser beam, the dynamic evolution of the ensemble ca
described by a nonlinear stochastic Schro¨dinger equation
@13#.

The interaction time of a propagating atomic beam wit
laser beam can be significantly longer than the character
time for the dipole interaction with light, namely, the inver
spontaneous emission rate of the excited state, the inv
atom-field detunings and the inverse Rabi frequencies of
various transitions under consideration. Spontaneous e
sion by excited atoms in the laser beam is the main diss
tive mechanism of the atomic field leading to loss and de
herence of atoms by inelastic scattering of atoms into o
incoherent channels. To avoid the dissipation due to spo
neous emission we choose a laser detuning sufficiently la
to allow adiabatic elimination of the excited state. In th
case, the propagation of the atomic beam in a laser beam
be described by a reduced nonlinear Schro¨dinger equation
for the ground-state atomic quantum field which can tra
port the atomic coherence over a large distance. On the o
hand, for a coherent atomic beam with a high bosonic deg
eracy, a large number of bosonic atoms is expected to c
dense in a single momentum mode.

Under these circumstances, the ground-state atomic q
tum fieldc1 may be replaced by a macroscopic atomic wa
function f @5,13#. Gravitational acceleration of the atoms
ignored; hence, the atoms are assumed to move with con
center-of-mass velocityvg5\K0 /m, for K0 the wave num-
ber of the atomic beam andm the mass of the atom. With
these approximations, the nonlinear Schro¨dinger equation
adopts the general form

i\S ]

]t
1vg

]

]zDf52
\2¹T

2

2m
f1

\uV~1 !~rW !u2

4~d1 ig/2!
f

1E d3rW8Q~rW,rW8!uf~rW8!u2f~rW !,

~2.2!

]V~1 !

]z
52S 1

2
1 id/g Dsuf~rW !u2V~1 !, ~2.3!

whereg is the spontaneous decay rate of the atom and

d5vL2v02kLvg2\kL
2/2m ~2.4!
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is the effective detuning between the atomic field with int
nal transition frequencyv0 and the laser field with frequenc
vL and wave numberkL5vL /c52p/lL . The transverse
Laplacian operator¹T

2[]2/]x21]2/]y2 has been used in
the above expression. Equation~2.3! describes the effect o
photon absorption on the Rabi frequencyV (1)(rW)
52mW •EW (1)/\ with the assumption that the laser beam wid
WL is larger than the atomic beam widthW0. The absorption
cross sections5speakg

2/(4d21g2) with speak53lL
2/2p.

The laser-induced nonlinear term has the definition

Q~rW,rW8![\~QR1 iQI !

'uV~1 !~rW !u2
\gd

4~d21g2/4!2 ~d2 ig/2!

3@2W~rW2rW8!coskL~z2z8!2K~rW2rW8!

3sinkL~z2z8!# f c~rW2rW8!, ~2.5!

where

1
2 K~rW2rW8!2 iW~rW2rW8!

5 3
4 @ i j2sin2u1~123 cos2u!~j2 i !#

e2 i j

j3 ,

~2.6!

with j5kLurW2rW8u and u the angle between the dipole mo
ment and the relative coordinate@9#. In Eq. ~2.5!, the real
part corresponds to the light-induced dipole-dipole inter
tion potential between atoms, and the imaginary part co
sponds to the nonlinear dissipation due to the many-a
spontaneous emission. The function

f c~rW2rW8!5exp~2purW2rW8u2/ldB
2 ! ~2.7!

appearing in Eq.~2.5! is the result of the Doppler effect du
to the random thermal motion of atoms in the atomic bea
Previously we used the pseudopotential approximation@14#

by setting the functionf c(rW2rW8)51 which corresponds to
the zero-temperature limit of the atomic ensemble@4#. The
thermal de Broglie wavelengthldB5A(2p\2/mkBT) gives
the coherent length of the atomic beam. Hence the func
f c(rW2rW8) determines the degree of the coherent overlapp
of the individual atomic wave packet in the atomic beam
the coherence of the atomic beam. For a high temperat
the thermal de Broglie wavelength or the coherent length
short andf c(rW2rW8)→0 rapidly with increasing interatomic
distance. As a result, the dipole-dipole interaction does
effectively contribute a nonlinearity to an incoherent atom
beam. Therefore, for a thermal atomic beam, the nonlin
Schrödinger equation reduces to the single-atom Schro¨dinger
equation. The dipole-dipole interaction only produces effe
on higher-order collisions which can be described by
methods of density operators. In terms of the above analy
to observe coherent nonlinear effects from light-induc
dipole-dipole interaction, one must employ a cohere
atomic beam with a high bosonic degeneracy in a cohe
length.
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On the other hand, in addition to there being a comp
nonlinear potentialQ(rW,rW8), the nonlinear Schro¨dinger equa-
tion ~2.2! also includes a complex linear potential caused
single-atom spontaneous emission. The imaginary part of
linear potential describes the loss of atoms in the laser b
leading to the decoherence of the atomic waves. To solve
nonlinear Schro¨dinger equation~2.2! in the large detuning
limit, we employ the hydrodynamic approach of separat
the phase and amplitude of the coherent atomic beam

f~rW !5Ar~rW !eiQ~rW !, ~2.8!

where r(rW) is the atomic density andQ the phase of the
atomic beam. Here we assume that the atomic beam is
pared with a predetermined phase. The stationary solu
for the equation of propagation of the coherent atomic be
within the laser beam, obtained by replacing]/]t by zero,
yields

vg

]r

]z
1¹T~rvW T!52

Ig

4d21g2 r~rW !12x Ir
2~rW !, ~2.9!

\vg

]Q

]z
52

1

2
m~vW T!22

\dI

4d21g2 2\xRr~rW !

1
\2

2m

1

Ar
¹T

2Ar, ~2.10!

]I

]z
52sr~rW !I , ~2.11!

with laser intensity I 5uV (1)u2 and transverse velocity

vW T5\¹TQ/m, and the nonlinear coefficients are given by

xR1 ix I5
dIg

4~d21g2/4!2 ~2d1 ig/2!lL
3Vd , ~2.12!

Vd5U 1

~2p!3E d3j@2W~jW !cosjz2K~jW !sinjz#

3expS 2
pj2

~kLldB!2D U. ~2.13!

In the derivation of Eqs.~2.9! and ~2.10!, we have as-
sumed that the density of the atomic beam varies slowly o
the coherence length. Numerical solutions of the integ
~2.13! demonstrate convergence to a factor quantifying
strength of coherent atomic dipole-dipole interaction ove
coherence length. Equations~2.9!–~2.13! determine the dy-
namics of transportation of coherent atomic flow along
traveling-wave laser beam. Coherent atomic flow is no
conserved quantity in Eq.~2.9! due to the loss caused b
inelastic photon scattering during spontaneous emiss
This leads to decoherence of the atomic beam. The e
dynamics of the propagation of the coherent atomic beam
studied in Sec. III by solving Eqs.~2.9!–~2.11!.
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III. ATOMIC SELF-TRAPPING AND SELF-FOCUSING

The nonlinear equations for atomic flow~2.10!–~2.11! are
difficult to solve exactly, in general, but can, however,
solved analytically in the paraxial regime, where the atom
wave-front distortion, due to the nonlinear phase change
small. If the initial incident atomic beam has cylindrical sp
tial symmetry with a Gaussian distribution

r~r ,0!5r0e2r 2/W0
2
, ~3.1!

with r0 the peak density andW0 the transverse width, we
can make the paraxial transformation@15#

Q5
r 2

2
a~z!1b~z!

r~r ,z!5r0

Y~z!

f 2~z!
expS 2

r 2

W0
2f 2~z! D , ~3.2!

with initial conditions

a~0!5b~0!50, f ~0!5Y~0!51. ~3.3!

Substituting Eq.~3.2! into Eqs. ~2.9!–~2.11!, we have the
five coupled differential equations

1

f

] f

]z
5

\

mvg
a~z!2

x Ir0Y~z!

vgf 2~z!
,

]a

]z
52

\

mvg
a2~z!1S 2xRr0Y~z!

vgW0
2 1

1

LqW0
2D f 24,

]b

]z
52

Id

~4d21g2!vg
2S xRr0

vg
Y~z!1

1

Lq
D f 22,

]I

]z
52sr0

Y~z!I ~z!

f 2~z!
,

]Y

]z
52

g

~4d21g2!vg
I ~z!Y~z!, ~3.4!

where Lq5mvgW0
2/\ is the quantum diffraction length

Equations~3.4! have analytical solutions if the loss of atom
due to incoherent spontaneous emission and decreasing
intensity, due to photon absorption, are negligible over
scale of several quantum diffraction lengths. Consequen
the spontaneous decayg and absorption cross sections sat-
isfy the conditions

g

~4d21g2!vg
Lq!1, sr0Lq!1 ~3.5!

and Eqs.~3.4! reduce to

]2f

]z2 52S 1

Ld
2 2

1

Lq
2D f 23 ~3.6!

with an effective dipole-dipole interaction length

Ld5
4d21g2

2dAI
S mvg

2/2

\g D 1/2 W0

Ar0lL
3Vd

. ~3.7!
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The solution to Eq.~3.6!, given the initial conditions
~3.3!, is

f 2512S 1

Ld
2 2

1

Lq
2D z2. ~3.8!

Equation~3.8! determines the dependence of the radius
the atomic beam on the propagation distancez. Evidently
when the quantum diffraction effect dominates over the n
linear effect, i.e., 1/Lq

2.1/Ld
2 , the beam radius increases wi

the propagation distancez. As a result the atomic beam d
verges in the transverse direction due to quantum diffusi

To obtain atomic self-trapping and self-focusing, the no
linear term should play a dominant role in the propagation
the atomic beam. This leads to a requirement for a crit
density of the incident atomic beam for the self-focusin
The critical density can be determined by the condition

Ld5Lq , ~3.9!

for which the nonlinear effect exactly cancels the quant
diffraction effect thereby causing the atomic beam to pro
gate with a constant radius. This case corresponds to
trapping of the atomic beam. From condition~3.9! the criti-
cal density is

rc5
~d21g2/4!2

d2I

Er

Eg

1

~pW0!2lLVd
, ~3.10!

whereEr5\2kL
2/2m is the single-photon recoil energy, an

Eg5\g is the energy associated with the single-atom sp
taneous emission decay rate. For the critical densityrc ,
atomic self-focusing is achieved for

r0.rc . ~3.11!

Given condition~3.11!, the density of the atomic beam o
the beam axis,r(0,z)5r0 / f (z)2 will increase. After a
propagation distancez5zf , satisfyingf (zf)→0, the density
along the beam axisr(0,z)→`. The corresponding poin
zf on the z axis is a focus andzf gives the self-focusing
length, which has the expression

zf5Ld~12rc /r0!21/2. ~3.12!

FIG. 2. The spatial distribution of atomic density for se
trapping as a function of the scaled propagation distancez/Lq with
respect to the quantum diffusion length, and the scaled transv
spread of the atomic beamx/W0 with respect to the initial width of
the injected atomic beam.
f

-

.
-
f
l

.

-
lf-

-

In terms of Eq.~3.10!, the critical density for atomic self-
focusing is proportional to the single-photon recoil energ
Physically, the photon recoil results in diffusion of mome
tum for the atomic beam; hence, the recoil acts opposite
the self-focusing process. Evidently, the heavier atoms
quire a lower critical density for self-focusing than light
atoms do, as photon recoil becomes less significant
heavier atoms. Hydrogen atoms require the highest crit
density. In addition, the critical density for self-focusing d
pends on laser detuning, laser intensity, and the incid
beam widthW0. From Eq. ~3.10!, we see that for a large
detuning, a high critical density is required to achieve t
large nonlinearity required for self-focusing. An increasi
laser intensity can increase the atomic nonlinearity wh
leads to a lower critical density being required. Quantu
diffraction depends on the widthW0 of the incident beam.
For a wide atomic beam, quantum diffraction will be sma
and hence, a wide beam can exhibit self-focusing with a l
critical density.

The above conclusions are obtained by assuming the
ditions ~3.5!. Of particular interest is the focal point for th
self-focusing atomic beam. At the focal point, the theo
becomes singular with the density increasing without bou
The singularity is caused by neglecting the loss of atoms
to spontaneous emission and photon absorption of at

rse

FIG. 3. The spatial distribution of atomic density for se
focusing as a function of the scaled propagation distancez/Lq with
respect to the quantum diffusion length, and the scaled transv
spread of the atomic beamx/W0 with respect to the initial width of
the injected atomic beam~a! as a surface plot and~b! as a contour
plot version of~a!.
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56 1437SELF-TRAPPING AND SELF-FOCUSING OF A . . .
which become very important whenf (z)→0 as shown by
Eqs. ~3.4!. Hence the exact description of self-focusing d
namics, particularly that near the focal point, requires
complete solution of Eqs.~3.4! including the loss of atoms
and photon absorption. To further observe the dynamics
the atomic density evolution in the propagation of the be
with self-trapping and self-focusing, we solve the dens
distribution numerically for the atomic beam in terms of t
coupled nonlinear hydrodynamic equations~3.4!. Figure 2
shows that the self-trapping can be obtained over a len
scale greater than three quantum diffraction lengthsLq . In
the numerical simulation, a large laser detuningd5100g and
a low peak laser intensityI 05g/250 for an atomic beam with
width W055mm is chosen to reduce the loss of atoms due
incoherent spontaneous emission. The self-trapping
achieved for an appropriate densityr0lL

3Vd51. The numeri-
cal calculation shows that the parameterVd varies approxi-
mately between 0 and 100 depending on the thermal de
glie wavelengthldB . The self-focusing occurs at a highe
density and requires a higher laser intensity to increase
atomic nonlinearity. We simulate the self-focusing by usi
the same parameters for the self-trapping except the l
intensity chosenI 05g/5 and the atomic density satisfyin
r0lL

3Vd52. The result is shown in Fig. 3.
We find that the density singularity in the approxima

analytical solution is removed in the exact numerical sim
lation. This is because in the realistic self-focusing dyna
ics, the photon absorption will sharply increase at the fo
point due to the sharp rise in the atomic density. In terms
Eqs.~3.4!, the strong photon absorption near the focal po
results in the decrease of the laser intensity in the regime
a result, the light-induced dipole-dipole interaction whi
leads to atomic self-focusing will decrease with decreas
laser intensity. The dynamic processes last until s
n

.
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focusing stops. Then the quantum diffraction process will
important and atomic defocusing occurs as shown in the c
tour plot 3~b!.

IV. CONCLUSION

Light-induced dipole-dipole interactions yields an atom
wave nonlinearity which can lead to self-trapping and se
focusing of an atomic beam propagating along the axis o
traveling-wave laser beam. This effect is analogous to
self-trapping and self-focusing of light beams due to the
tical Kerr effect.

Certain criteria must be met for this self-trapping and se
focusing phenomenon to occur. The atomic beam mus
coherent and have a high bosonic degeneracy in a si
momentum mode. Moreover, the atomic beam must
above the critical density which itself depends on the atom
mass.

In contrast to optical self-trapping and self-focusin
atomic self-trapping and self-focusing exhibits more comp
cated focal dynamics due to incoherent loss channels ari
from the inelastic photon scattering during spontane
emission and density-dependent photon absorption. The
ter results in a self-modified decrease of the nonlinearity
sponse for self-focusing. Both analytically and numerica
we study the dependence of atomic self-trapping and s
focusing on laser and atomic parameters. The experime
observation of the atomic self-trapping and atomic se
focusing requires a coherent source for atoms such as
‘‘atom laser.’’
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