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Dynamics of Bose-Einstein condensates: Variational solutions of the Gross-Pitaevskii equations
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A variational technique is applied to solve the time-dependent nonlinear Schro¨dinger equation~Gross-
Pitaevskii equation! with the goal to model the dynamics of dilute ultracold atom clouds in the Bose-Einstein
condensed phase. We derive analytical predictions for the collapse, equilibrium widths, and evolution laws of
the condensate parameters and find them to be in very good agreement with our numerical simulations of the
nonlinear Schro¨dinger equation. It is found that not only the number of particles, but also both the initial width
of the condensate and the effect of different perturbations to the condensate may play a crucial role in the
collapse dynamics. The results are applicable when the shape of the condensate is sufficiently simple.
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I. INTRODUCTION

It has been more than 70 years since the prediction
Bose @1# and Einstein@2# that a system of noninteractin
bosons would undergo a phase transition to a state havi
macroscopic population of the ground state at finite~low!
temperature. However, it has only been very recently t
laser cooling and evaporative cooling techniques@3,4#, com-
bined with development of novel traps, led to first unambig
ous observations of Bose-Einstein condensation of a we
interacting atomic Bose gas in the laboratory@5–8#.

On the theory side, the dynamics of dilute trapped Bo
Einstein gases has been successfully modeled by mean
theories@9#. In particular, it has been shown recently by se
eral groups that the Gross-Pitaevskii equation~GPE!, a non-
linear Schro¨dinger equation~NLSE! for the macroscopic
wave function of the Bose-Einstein condensed gas, prov
an accurate description of the ground state and of the e
tation spectrum of the condensate at~or close to! zero tem-
perature@10–18#. Most of the theoretical work to solve th
Gross-Pitaevskii equation has focused on the Thomas-F
limit, which corresponds to the case where the nonlinear
teraction term in the GPE~the atomic interaction term! is
much larger than the bare trap excitation energies, i.e.,
limit of large particle numbers@11,12#. On the other hand
numerical studies of equilibrium conditions and excitati
spectra were performed solving the GPE for a wide rang
parameters from the limit of small to large particle numb
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and found to be in excellent agreement with experim
@10,15#. In recent work we have proposed a variational tec
nique that allows one to obtain essentially analytical so
tions of the GPE. In particular, we@18# have proposed a
variational technique that allows one to describe the dyna
ics of the condensate as a function of a few parame
~width of the cloud, center, etc.!, which in turn satisfy very
simple equations. In this paper we elaborate on these res
and present some predictions concerning the regime in w
collapse takes place for negative scattering lengths. Th
predictions can be tested with current experimental set
@7#.

Let us consider a boson gas with a fixed mean numbe
particlesN, moving in a potential well that represents th
trap. If the particle density and temperature of the conden
are sufficiently small, the dynamics of the Bose-Einste
condensed atoms is described by the NLSE~or GPE! @19#

i\
]c

]t
52

\2

2m
¹2c1V~r !c1U0ucu2c, ~1!

whereU054p\2a/m characterizes the interaction and is d
fined in terms of the ground-state scattering lengtha. The
normalization forc is N5* ucu2d3rW. The potential can be
taken as
1424 © 1997 The American Physical Society
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V~rW !5
1

2
mn2~lx

2x21ly
2y21lz

2z2!, ~2!

lh(h5x,y,z) being constants describing the anisotropies
the trap @20#. In present experimental situations we ha
lx5ly51 andlz5nz /n, which denotes the ratio of the fre
quency along thez direction nz to the radial frequency
n r[n.

The NLSE is is a nonlinear equation well known in mat
ematical physics@21#. In particular, the three-dimensiona
NLSE is a universal equation, which appears in vario
problems in many branches of physics, such as fiber
integrated optics, when investigating paraxial propagation
laser beams in nonlinear optical waveguides. In the pas~1
11!- and ~211!-dimensional cases have been studied
many authors using different approaches, including va
tional techniques@22,23#, moment theory@24#, soliton per-
turbation methods@25#, and, of course, numerical method
@26,27#.

In three-dimensional problems numerical simulations
expensive. This is why it is very important to be able
give analytical information on the solutions, which comp
ment the numerical studies. In these three-dimensional p
lems the only analytical tool available up to now
avoid the numerical simulations is the variational techniq
@22,23#. This technique is based on Ritz’s optimization pr
cedure and has been widely used when studying the N
equations that appear in nonlinear optics@28#, but also in
many other physical problems where nonlinear wave eq
tions arise@29,30#. Although not exact, this technique is
good method to study the propagation of distributions hav
simple shape and in many cases provides not only qualita
but quantitative results. The basic idea of the variatio
method is to take a trial function with a fixed shape but so
free parameters in order to reduce the infinite-dimensio
problem of the partial differential equation to a Newton-li
second-order ordinary differential equation for the~varia-
tional! parameters that characterize the solution. In ot
cases, however, the validity of the variational results is o
qualitative @31#; i.e., if the shape of the actual solution
close to the trial function, the results obtained with the var
tional method will be in good agreement with the real so
tions, but in other cases the method can be very rough
even fail.

In this paper we will study the application of the vari
tional technique to Eq.~1!, which arises in Bose-Einstei
condensation problems. This paper is organized as follo
in Sec. II we derive the equations for the evolution of t
condensate parameters; in Sec. III we present an analys
the spherically symmetric case, and make some precise
dictions regarding the collapse conditions for negative s
tering length. In contrast to other analysis@12#, we find that
not only is the number of particles present in the conden
important to predict the collapse, but also the initial con
tions of the cloud. In Sec. IV, we study the nonsymmet
case and predict existence of compact stable solutions,
when trapping in one direction is eliminated. Finally, in Se
V, we summarize our conclusions.
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II. DERIVATION OF THE EQUATIONS
FOR THE VARIATIONAL PARAMETERS

A. Statement of the problem

Let us restate the problem of solving Eq.~1! as a varia-
tional problem, corresponding to a stationary point of t
action related to the Lagrangian densityL:

L5
i

2
\S c

]c*

]t
2c*

]c

]t D2
\2

2m
u¹cu21V~r !ucu2

1
2pa\2

m
ucu4, ~3!

where the asterisk denotes complex conjugation. That is,
has to findc, such that the action

S5E Ld3rWdt ~4!

is extreme. However, this problem is as complicated as s
ing the original NLSE. Therefore, to obtain the evolution
the condensate we will find the extremum of Eq.~3! within a
set of trial functions. The selection of the proper form of t
trial functions is very important. In our case a natural cho
is a Gaussian, since in the linear limit we get the groun
state solution of the linear Schro¨dinger equation in a para
bolic potential. Another possible choice is a sech funct
@32#, since in the one-dimensional case one gets the e
soliton solution~nonlinear solution!, but this ansatz fails to
reproduce the linear limit ,and does not take into account
effect of the potential. So we will choose a Gaussian ans
of the form

c~x,y,z,t !5A~ t ! )
h5x,y,z

e2[h2h0~ t !] 2/2wh
2

1 ihah~ t !1 ih2bh~ t !.

~5!

For a given value oft, the previous function defines
Gaussian distribution centered at (x0 ,y0 ,z0) and described
by the parametersA ~complex amplitude!, wh ~width!, ah
~slope!, andbh ~curvature radius! 21/2. The consideration of
the phase term is essential if we want to obtain reliable
sults, as was shown in related works in nonlinear optics@32#.
Concerning what is known about the shape of the conden
wave function, a Gaussian is probably a very reasonable
satz for the negative scattering length case. In the posi
scattering length case, a better shape could be—at least i
strongly nonlinear limit—similar to the Thomas-Fermi sol
tion; however, it is always possible to obtain good fits
these functions by Gaussians.

Our goal is to find the equations governing the evoluti
of the previous quantities. So, inserting Eq.~5! into Eq.~3! it
is possible to calculate an effective Lagrangian by averag
the Lagrangian density,L5^L& as
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L5^L&5E
2`

1`

Ld3rW5
p3/2

2
wxwywzH i\~A* Ȧ2AȦ* !

1uAu2 (
h5x,y,z

F S ḃh2
2\2

m
bh

22
1

2
mn2lh

2 D ~wh
212h0

2!

2
\2wh

2

2m
1

\2ah
2

m
12h0S ȧh2

2\2

m
ahbhD G

1
A2p\2a

m
uAu4J . ~6!

The dots denote derivatives with respect tot. At this
point, we have reduced the infinite-dimensional problem
solving Eq.~1!, or equivalently finding the stationary poin
of the action corresponding to the Lagrangian density~3!, to
a finite dimensional problem, i.e., solving the Lagran
equations

d

dtS ]L

]q̇ j
D 2

]L

]qj
50. ~7!

Here, we have used the notation

qj[$wx ,wy ,wz ,A,A* ,x0 ,y0 ,z0 ,ax ,ay ,az ,bx ,by ,bz%.

The derivation of the evolution equations for the para
eters is a straightforward although tedious task. The d
culty increases with the number of parameters and thi
why choosing a good small set of parameters is import
Detailed examples of these calculations can be found e
where@23,28#.

B. Evolution equations for the variational parameters

Let us now discuss the evolution equations for the va
tional parameters. First, conservation of the number of p
ticles leads to

p3/2uA~ t !u2wx~ t !wy~ t !wz~ t !5const

5p3/2uA~0!u2wx~0!wy~0!wz~0!

5N, ~8!

Furthermore, the equations for the motion of the cente
the condensate are

ḧ01lh
2n2h050, ~9!

with h5x,y,z. This equation corresponds to a harmonic o
cillation of the condensate center with the bare frequen
lhn. It is interesting and intuitively clear that this motio
does not depend on the number of particlesN. Thus, the
motion of the center of gravity of the cloud will not be a
fected by the nonlinear effects and depends only on exte
potentials. This fact is interesting since it implies that t
condensate in the mean responds like a classical partic
external effects. On the other hand this is a consequenc
the generalized Ehrenfest theorem for the NLS, not a part
lar result of our approximate approach.
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The widths of the condensate satisfy the following equ
tions

ẅx1lx
2n2wx5

\2

m2wx
3 1A2

p

a\2N

m2wx
2wywz

, ~10a!

ẅy1ly
2n2wy5

\2

m2wy
3 1A2

p

a\2N

m2wy
2wxwz

, ~10b!

ẅz1lz
2n2wz5

\2

m2wz
3 1A2

p

a\2N

m2wz
2wywx

, ~10c!

which we will analyze in more detail later. The rest of th
parameters can be obtained from the widths and center c
dinates using the equations

bh52
mwḣ

2\2wh
, ~11a!

ah52
mḣ0

\2 22bhh0 , ~11b!

with h5x,y,z. This means that, once we know the center
the condensate and widths, we can calculate the evolutio
the rest of the parameters and then completely characte
the evolution of a Gaussian-like atom cloud.

It is convenient to introduce new variables and consta
according to t5nt,vh5a0vh(h5x,y,z), and P
5A2/pNa/a0 wherea05A\/(mn) is the size of the ground
state for a harmonic potential of frequencyn ~up to a factor
A2). Note thatP basically gives the strength of the atom
atom interactions related to the bare harmonic potential.
case when this parameter is very large corresponds to
Thomas-Fermi limit. Then, the equations for the r
scaled widths are

d2

dt2 vx1lx
2vx5

1

vx
3 1

P

vx
2vyvz

, ~12a!

d2

dt2 vy1ly
2vy5

1

vy
3 1

P

vy
2vxvz

, ~12b!

d2

dt2 vz1lz
2vz5

1

vz
3 1

P

vz
2vxvy

. ~12c!

Equations~12a!–~12c! give us a simple picture of the
evolution of the width of the condensate because they co
spond to the motion of a particle with coordinat
(vx ,vy ,vz) in the classical, three-dimensional potential

V~vx ,vy ,vz!5
1

2
~lx

2vx
21ly

2vy
21lz

2vz
2!1

1

2vx
2 1

1

2vy
2

1
1

2vz
2 1

P

vxvyvz
. ~13!

It follows from ~12a!–~12c! that the dispersive term, which
is proportional tovh

23(h5x,y,z), tends to spread the wave
packet. On the other hand, there is one attractive term wh
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is the linear one and is caused by the trap. Finally, we h
the last term which comes from the nonlinear interact
between the particles. Depending on the sign of the sca
ing lengtha, which is the same as that ofP, this term can be
either repulsive~positive scattering length! or attractive
~negative scattering length!.

Since the center of mass motion is very simple, to und
stand the condensate dynamics we have to concentrate i
study of Eqs.~12a!–~12c!. These are a set of three couple
nonlinear ordinary differential equations. Although the co
plexity relative to the original problem~1! has been greatly
reduced, it is still a complex problem and nonintegrab
since the only conserved quantity is the Hamiltonian. In fa
numerical simulations of Eq.~12! show chaotic oscillations
in various cases. It is doubtful, however, that the Gauss
ansatz will be a good solution in those cases, and one w
expect that different spatiotemporal complex phenomena
pear.

III. ANALYSIS OF THE SPHERICALLY SYMMETRIC
CASE

A. Discussion

Let us first concentrate on the homogeneous case, w
the trapping potential is spherically symmetr
(lx5ly5lz[1). In addition, we will assume that all th
widths are equal~radial symmetry case! (vx5vy5vz5v),
and that initially the condensate is ‘‘at rest’’ (v̇50).

Equations~12a!–~12c! reduce to

d2v
dt2 1v5

1

v3 1
P

v4 . ~14!

This equation can be formally integrated using energy c
servation, since

E5
1

2S dv
dt D 2

1
1

2
v21

1

2v2 1
P

3v3 , ~15!

so that

t5E
v0

v dv8

A2FE2
1

2
v8221/~2v82!2P/~3v83!G

. ~16!

However, this formal solution gives little insight into what
happening. The analysis of the equilibrium pointsv0 of Eq.
~14!, which satisfy

v05
1

v0
3 1

P

v0
4 , ~17!

is much more illuminating.
One can easily solve Eq.~17! numerically, and find the

oscillation frequencies

na52nA122P8, ~18a!

nb,c52n@12P8/26AP82/422P8#1/2, ~18b!

where we have definedP85P/(4v0
5).
e
n
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B. Positive scattering length

WhenP.0 Eq.~17! can be rewritten in polynomial form
as

v0
55v01P. ~19!

This is a fifth-order algebraic polynomial problem that h
only one positive real root. This solution corresponds to
stable equilibrium point. The potential has a simple shape
can be seen in Fig. 1 where it is plotted for different valu
of P. It is clear that the only possible motions are period
~anharmonic! oscillations around the bottom of the ‘‘poten
tial well’’ V(v). The frequencies obtained by numerical
finding the roots of Eq.~19! and using Eq.~18! agree well
with numerical simulations of the NLSE@33#.

Equation~19! can be easily analyzed in several regime
For example, when the interactions are strongP@1, one can
neglect the termv0 and obtainv05P1/5. This corresponds to
the Thomas-Fermi regime analyzed by other authors@11#.
After linearizing Eq.~14! around the equilibrium position
we find that the oscillation frequencies areA2,A5, where the
first one is doubly degenerate.

C. Negative scattering length

In this case, which corresponds to an attractive nonline
ity, the picture is quite different. Now Eq.~17! can have
either no or two positive real solutions. The limiting ca
~only one solution exists! is given by the equations

v05
1

v0
3 2

uPu
v0

4 , ~20!

2
3

v0
4 1

4uPu
v0

5 51, ~21!

which implies that the critical value ofP is given by

FIG. 1. Potential V(v) for P51 ~solid!, P55 ~dashed!,
P550 ~dotted!.
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uPcu5
4

55/450.5350. ~22!

In this case we have one metastable equilibrium po
WhenP,Pc , there are no equilibrium points, and all initia
data collapse in finite time. In this case the condition is sim
lar to that obtained previously@12#. Finally, when P.Pc
there are two equilibrium points, one of them (v01), which is
unstable and the other one (v02), which is stable. Example
of how the potential looks in these cases are plotted in Fig
Since v̇50 all the initial energy of the effective particle i
potential energy. This means that collapse can be avo
only whenP.Pc and the initial width is larger thanv01 but
smaller than a second thresholdv03 such that
V(v03)5V(v01). In the region of widths given by
v03.v.v01 the behavior again should be periodic moti
around the equilibrium point. This implies that not only co
lapse is avoided by satisfying the critical condition, but a
that the initial condition is important. It is then possible
find the region in thev0-P plane that leads to collapse b
havior. To do so, we have to solve Eq.~17! to find the un-
stable equilibrium v01 and the point v03 satisfying
V(v01)5V(v03). The collapsing solutions are those starti
with v,v01 or v.v03. This can be done numerically, an

FIG. 3. Conditions for collapse as a function of the initial wid
v0 andP values.

FIG. 2. Potential V(v) for ~a! P50.15; ~b! P50.3; ~c!
P50.5350;~d! P51.
t.

i-

2.

ed

o

the result is shown in Fig. 3. The meaning of the figure
that if the initial state falls into the shaded region then c
lapse is avoided. This prediction could be easily check
experimentally by exciting the condensate, once it is in eq
librium, in such a way that the total energy becomes lar
than that atV(v01). In that case, although Eq.~22! will be
satisfied, collapse will occur.

FIG. 4. Evolution of the condensate width in the radially sym
metric and negative scattering length case. The dashed curve c
sponds to the numerical solution of Eq.~1! and the continuous one
to the numerical solution of Eq.~14!. ~a! P50.141,v051.032,~b!
P50.071,v051.30, ~c! P50.002,v050.802.
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D. Numerical simulations

To validate the predictions of the variational method
have performed numerical simulations of Eq.~1! using a
highly efficient linearly implicit finite difference conserva
tive numerical scheme@27#. In Fig. 4~a! we see the solution
for P50.14,v051.032, which corresponds to the stab
equilibrium point of Eq.~14!. The wave packet perform
some small oscillations around this point, but essentia
moves very near to the equilibrium point. When the init
width is increased we see larger amplitude oscillations
are very well represented by the approximate solutions c
ing from Eq. ~14! @Figs. 4~b!, 4~c!#. The same good agree
ment in the dynamics is found for negative scattering leng
as can be seen in Fig. 5. Also when the initial width is sm
enough so that there is collapse, the qualitative behavio
the same~i.e., exact and variational results predict collaps!,
but the precise form of the collapsing width is somewh
different ~Fig. 6!. This happens because the self-similar c
lapsing profile is clearly non-Gaussian. Additionally we s
from Fig. 6 that collapse happens with finite width@the nu-
merical solution of Eq.~1! blows up while its width is still
finite, which is a well-known fact in mathematical physi
@21,34##.

IV. NONSYMMETRIC CASES

A. Discussion

When two of the trap frequencies are equal (lx5ly51
Þlz), as is the case in present experimental systems,
assuming that the oscillations of the condensate keep
symmetry, we get the following evolution equations for t
condensate widths

d2v
dt2 1v5

1

v3 1
P

v3vz
, ~23a!

d2vz

dt2 1lz
2vz5

1

vz
3 1

P

vz
2v2 . ~23b!

FIG. 5. Evolution of the condensate width in the radially sy
metric and negative scattering length case. The dashed curve c
sponds to the numerical solution of Eq.~1! and the continuous one
to the numerical solution of Eq.~14!. Parameter values
P50.071,v051.30.
y
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,
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The dynamics implied by Eqs.~23a! and ~23b! is much
richer than that contained in Eq.~14! because of the highe
dimensionality of the problem. The equilibrium points a
now defined by the equations

v0zv0
45v0z1P, ~24a!

lz
2v0z

4 511Pv0z /v0
2 . ~24b!

The frequencies of the oscillation around this equilibriu
positions are given by

na52nA122P4,1, ~25a!

nb,c52nF1

2
~11lz

22P2,3! ~25b!

6
1

2
A~12lz

21P2,3!
228P3,2]

1/2.

~25c!

B. Positive scattering length

The equilibrium widths, which always correspond
stable equilibrium points, are given by Eqs.~24! and can be
easily found using numerical techniques. With this solutio
one can derive the frequencies of oscillation around the e
librium using Eqs.~25!. The corresponding results, togeth
with comparison with experiments, can be found in R
@18#.

In the Thomas-Fermi limitP@1 one can find analytica
solutions for all these equations. In particular, we find

v05~Plz!
1/5, v0z5@P/lz

4#1/5, ~26!

and

na5A2n, ~27a!

rre-
FIG. 6. Evolution of the condensate width in the radially sym

metric and negative scattering length cases. The dashed curve
responds to the numerical solution of Eq.~1! and the continuous
one to the numerical solution of Eq.~14!. Parameter values
P50.6.Pc , v051.30.
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nb,c5
n

A2
@413lz

26A1619lz
4216lz

2#1/2. ~27b!

These results are in full agreement with those of String
@11#.

C. Negative scattering length

In Fig. 7 we have plotted the maximumuPu as a function
of lz such that stable equilibrium points exist. Forlz50 we
have

uPmaxu5A 2

3A3
50.6204, ~28!

whereas forlz@1 it behaves asuPmaxu.1/Alz. This means
that for a given scattering length, one can have more p
ticles in the condensate before a collapse takes place if
cigar shaped (lz!1), rather than coin shaped (lz@1). This
is due to the fact that the cigar-shaped condensate is clos
a one-dimensional distribution, for which collapse does
exist, whereas the coin-shaped one is closer to a t
dimensional condensate, where collapse is possible. In F
we have plotted the equilibrium widths as a function ofuPu
for several values oflz .

A remarkable feature of this analysis is that even if o
releases the trap along thez direction (lz), a stable solution
exists. This stable object is analogous to the well-kno
one-dimensional soliton, which appears in the optical fi
context. Let us analyze this solution in more detail. In t
case, takinglz50, Eq. ~24! becomes

v05
uPu
v0

3 2
1

v0
3v0z

, ~29a!

uPuvz05v0
2 , ~29b!

which gives the following polynomial equation:

v0
65v0

22uPu2. ~30!

This equation can have either no or two positive real
lutions. In the latter case it is easy to check that one of th

FIG. 7. Pmax as a function oflz for the case of negative sca
tering length and cylindrical symmetry.
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corresponds to an stable equilibrium point and the other
to a unstable equilibrium point. What are the implications
this fact? Since we have a stablev0 point ~with a correspond-
ing v0z) we find that it is possible to eliminate one of the tra
frequencies and then we could still have a compact obj
This is possible due to the attractive self-interaction of
Bose-Einstein gas, which in this case compensates the
persion provided by the kinetic energy. In fact, there is
simple physical interpretation of this fact that implies that
the free direction the solution is effectively one dimension
and then behaves like a soliton of the one-dimensio
NLSE.

Since the solution behaves in a solitonlike manner t
opens the door to control its motion by choosing the para
eters~e.g., the initial width! to be the one corresponding t
this ‘‘compact’’ solution and then applying an external p
tential in thez direction. By the Ehrenfest theorem, the ce
ter of mass of the solution will respond to that potential a
particle. This may be useful to guide the motion of the co
densate.

We emphasize that forP.20.6204 there is a stable so
lution. However, if the initial conditionsv(0) andvz(0) are
not appropriate~i.e., lie outside the stability region!, collapse
will occur. In Fig. 9 we have plotted the stability regions f
different values ofP in the v-vz plane.

V. CONCLUSIONS

By means of a variational model, analytical expressio
for the existence, stability, and evolution of BEC ato
clouds have been calculated.

FIG. 8. vz ~a! andv ~b! as a function ofuPu for several values of
lz that are indicated on the figure, for the case of negative sca
ing length and cylindrical symmetry.
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The variational method provides a very simple physi
picture of the behavior of the condensate: the center of
cloud and its width evolve like particles governed by clas
cal potentials, the initial slope and curvature playing resp
tively the role of initial speeds of the particles. The evoluti
equations for the width, which are ordinary differential equ
tions, can be obtained and solved numerically, avoid
complicated numerical simulations of the full 311 problem.
We have checked that this approach provides faithful res

FIG. 9. Stability region forlz50 and for different values ofP
ranging from20.1 to Pmax10.01.
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for the evolution of the width by comparison with numeric
simulations of the NLS~GP! in the radial symmetry case
Also some results concerning collapse have been found.
most interesting prediction in this sense is that the ini
width of the condensate plays an important role in the c
lapse dynamics, i.e., if the number of particles is below
collapse limit but the initial width is small enough collaps
will take place. Finally, we have predicted the existence
stable trapped solutions, with finite width in the case
which the trap is relaxed along one direction.

The formalism has been successfully applied to the ex
nation of several experimental results@18#. We believe that
the analytical techniques presented in this paper are a us
tool in the analysis of Bose-Einstein condensate dynam
provide a guide to predict and analyze a whole variety
experimental situations, including the effect of core-core
teractions, and can be extended to describe interaction
radiation, losses effects, condensate expansion, etc.
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