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Dynamics of Bose-Einstein condensates: Variational solutions of the Gross-Pitaevskii equations
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A variational technique is applied to solve the time-dependent nonlinear @oges equation(Gross-
Pitaevskii equationwith the goal to model the dynamics of dilute ultracold atom clouds in the Bose-Einstein
condensed phase. We derive analytical predictions for the collapse, equilibrium widths, and evolution laws of
the condensate parameters and find them to be in very good agreement with our numerical simulations of the
nonlinear Schrdinger equation. It is found that not only the number of particles, but also both the initial width
of the condensate and the effect of different perturbations to the condensate may play a crucial role in the
collapse dynamics. The results are applicable when the shape of the condensate is sufficiently simple.
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PACS numbd(s): 03.75.Fi

[. INTRODUCTION and found to be in excellent agreement with experiment
[10,19. In recent work we have proposed a variational tech-
It has been more than 70 years since the prediction ofique that allows one to obtain essentially analytical solu-
Bose[1] and Einstein[2] that a system of noninteracting tions of the GPE. In particular, wgl8] have proposed a
bosons would undergo a phase transition to a state havingwariational technique that allows one to describe the dynam-
macroscopic population of the ground state at firjlav) ics of the condensate as a function of a few parameters
temperature. However, it has only been very recently thatwidth of the cloud, center, ef¢.which in turn satisfy very
laser cooling and evaporative cooling technigl&d], com-  simple equations. In this paper we elaborate on these results,
bined with development of novel traps, led to first unambigu-and present some predictions concerning the regime in which
ous observations of Bose-Einstein condensation of a weaklgollapse takes place for negative scattering lengths. These
interacting atomic Bose gas in the laborat@by-§. predictions can be tested with current experimental setups
On the theory side, the dynamics of dilute trapped Bosef7].
Einstein gases has been successfully modeled by mean-field Let us consider a boson gas with a fixed mean number of
theorieg9]. In particular, it has been shown recently by sev-particlesN, moving in a potential well that represents the
eral groups that the Gross-Pitaevskii equaliGiPE), a non-  trap_ If the particle density and temperature of the condensate
linear Schrdinger equation(NLSE) for the macroscopic gre sufficiently small, the dynamics of the Bose-Einstein

wave function of the Bose-Einstein condensed gas, providesyndensed atoms is described by the NLBEGPB [19]
an accurate description of the ground state and of the exci-

tation spectrum of the condensate(at close t9 zero tem-
perature]10—18. Most of the theoretical work to solve the 2

b " ) _ O h
Gross-Pitaevskii equation has focused on the Thomas-Fermi ih—=—=—=V2y+V(r)y+ Uo| ¢,|2¢, (1)
limit, which corresponds to the case where the nonlinear in- at 2m
teraction term in the GPHKthe atomic interaction terjmis
much larger than the bare trap excitation energies, i.e., the . ] ] )
limit of large particle number§11,12. On the other hand, whereU,=4=#2a/m characterizes the interaction and is de-
numerical studies of equilibrium conditions and excitationfined in terms of the ground-state scattering lengttThe
spectra were performed solving the GPE for a wide range ofiormalization forys is N= [||?d®r. The potential can be
parameters from the limit of small to large particle numberstaken as
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1 , , , Il. DERIVATION OF THE EQUATIONS
V(r)= §mv2(7\XX2+ \yy2+A3Z7), 2 FOR THE VARIATIONAL PARAMETERS

A. Statement of the problem

Let us restate the problem of solving E4) as a varia-
nal problem, corresponding to a stationary point of the
action related to the Lagrangian density

N, (n=X,y,z) being constants describing the anisotropies Oftio
the trap[20]. In present experimental situations we have
Ax=Ay=1 and\,=v,/v, which denotes the ratio of the fre-

guency along thez direction v, to the radial frequency i Iy* g\ h? ) )
g £=3 ( at *5)—ﬁlvwl +V(r)|y|
The NLSE is is a nonlinear equation well known in math-
ematical physic§21]. In particular, the three-dimensional 2mah? 4
NLSE is a universal equation, which appears in various + m |, 3

problems in many branches of physics, such as fiber and
integrated optics, when investigating paraxial propagation of
laser beams in nonlinear optical waveguides. In the gast, where the asterisk denotes complex conjugation. That is, one
+1)- and (2+1)-dimensional cases have been studied byhas to findy, such that the action
many authors using different approaches, including varia-
tional technique$22,23, moment theonf24], soliton per-
turbation method$25], and, of course, numerical methods R
[26,27). S= f £d3rdt (4
In three-dimensional problems numerical simulations are
expensive. This is why it is very important to be able to

give analytical information on the solutions, which comple- 5 extreme. However, this problem is as complicated as solv-
ment the numerical studies. In these three-dimensional proling the original NLSE. Therefore, to obtain the evolution of
lems the only analytical tool available up to now to the condensate we will find the extremum of E8). within a
avoid the numerical simulations is the variational techniqueset of trial functions. The selection of the proper form of the
[22,23. This technique is based on Ritz's optimization pro-ia| functions is very important. In our case a natural choice
cedure and has been widely used when studying the NLR 3 Gaussian, since in the linear limit we get the ground-
equations that appear in nonlinear optj@8], but also in  state solution of the linear Schdimger equation in a para-
many other physical problems where nonlinear wave equasglic potential. Another possible choice is a sech function
tions arise[29,30. Although not exact, this technique is a [32], since in the one-dimensional case one gets the exact
good method to study the propagation of distributions havingoliton solution(nonlinear solutiopy but this ansatz fails to
simple shape and in many cases provides not only qualitativeaproduce the linear limit ,and does not take into account the
but quantitative results. The basic idea of the variationakffect of the potential. So we will choose a Gaussian ansatz
method is to take a trial function with a fixed shape but someof the form

free parameters in order to reduce the infinite-dimensional

problem of the partial differential equation to a Newton-like

second-order ordinary differential equation for thearia- o 20 2, I

tional) parameters that characterize the solution. In other 1//(x,y,z,t)=A(t)n=1:[yZ e L7 oI, Hina, (0D,
cases, however, the validity of the variational results is only - (5)
gualitative[31]; i.e., if the shape of the actual solution is

close to the trial function, the results obtained with the varia-

tional method will be in good agreement with the real solu- For a given value ot, the previous function defines a
tions, but in other cases the method can be very rough aGaussian distribution centered aty(yy,z,) and described
even fail. by the parameteré (complex amplitudg w, (width), o,

In this paper we will study the application of the varia- (slopg, and 8, (curvature radius 2. The consideration of
tional technique to Eq(1), which arises in Bose-Einstein the phase term is essential if we want to obtain reliable re-
condensation problems. This paper is organized as followssults, as was shown in related works in nonlinear o8&
in Sec. Il we derive the equations for the evolution of theConcerning what is known about the shape of the condensate
condensate parameters; in Sec. Il we present an analysis wfave function, a Gaussian is probably a very reasonable an-
the spherically symmetric case, and make some precise preatz for the negative scattering length case. In the positive
dictions regarding the collapse conditions for negative scatscattering length case, a better shape could be—at least in the
tering length. In contrast to other analy§i?], we find that  strongly nonlinear limit—similar to the Thomas-Fermi solu-
not only is the number of particles present in the condensatton; however, it is always possible to obtain good fits of
important to predict the collapse, but also the initial condi-these functions by Gaussians.
tions of the cloud. In Sec. IV, we study the nonsymmetric Our goal is to find the equations governing the evolution
case and predict existence of compact stable solutions, evef the previous quantities. So, inserting Eg). into Eq.(3) it
when trapping in one direction is eliminated. Finally, in Sec.is possible to calculate an effective Lagrangian by averaging
V, we summarize our conclusions. the Lagrangian density, =(L) as
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4o 32 _ ) The widths of the condensate satisfy the following equa-
L=</:>=j Ld3r=TWXWyWZ if(A* A—AA*) tions
. h? 2 ah®N
. 2h? 1 1N2p2, = \ﬁ—
e 2 (B”_ & __mVZA )(W +275) Wt m2W§+ T M2Ww,w,’ (103
n=xXYy,zZ
h2w2  h2a? . 2h2 P h2 \/5 a2
- L R FNVPW =+ \[
5m T m +2770(a m amgrz) WyT Ay iy mPw; T IMPW Wi, (10
V2mh?a 72 2 ah®N
4 " 2.2
+——— A% (6) W, + N vPw,= —g+ = TR, (100

The dots denote derivatives with respectttoAt this  which we will analyze in more detail later. The rest of the
point, we have reduced the infinite-dimensional problem ofparameters can be obtained from the widths and center coor-
solving Eq.(1), or equivalently finding the stationary point dinates using the equations
of the action corresponding to the Lagrangian dendjyto

a finite dimensional problem, i.e., solving the Lagrange mw,,
equations Bn= = 5720 w,’ (113
df dL aL ms
J Iy I 7o
dt( &q) 7 0. (7) a”:_?_zﬂnno, (11b)
j i
Here, we have used the notation with #=x,y,z. This means that, once we know the center of
the condensate and widths, we can calculate the evolution of
o ={Wy, Wy ,W;,A,A* X0,Y0.20, O, @y , @7, By, By . B2} the rest of the parameters and then completely characterize

the evolution of a Gaussian-like atom cloud.

The derivation of the evolution equations for the param- It is convenient to introduce new variables and constants
eters is a straightforward although tedious task. The diffiaccording to 7=vt,w,=ae,(7=Xy,z), and P
culty increases with the number of parameters and this iss y2/7Na/a, wherea,= \%/(mv) is the size of the ground
why choosing a good small set of parameters is importantstate for a harmonic potential of frequeneyup to a factor
Detailed examples of these calculations can be found elsg/2). Note thatP basically gives the strength of the atom-

where[23,28. atom interactions related to the bare harmonic potential. The
case when this parameter is very large corresponds to the
B. Evolution equations for the variational parameters Thomas-Fermi limit. Then, the equations for the re-

scaled widths are
Let us now discuss the evolution equations for the varia-

tional parameters. First, conservation of the number of par- d2 1 p
i +2\2 + 12
ticles leads to g2Vt Nux= U—g U—m (123
T3 AL 2w, (D) w, (H)w,(t) = const i
1 P
— 302 2 — 2, =
=7 A(0) Wy (0)wy(0)w,(0) a2V TN (12
=N, ® ,
d ) 1 P
Furthermore, the equations for the motion of the center of W”ZH‘ZUZ §+ UZUXUy' (129

the condensate are
Equations(129—(12¢ give us a simple picture of the
7o+ )\37]/2 70=0, (9  evolution of the width of the condensate because they corre-
spond to the motion of a particle with coordinates

with 7=x,y,z. This equation corresponds to a harmonic os-(vx,vy,v7) in the classical, three-dimensional potential
cillation of the condensate center with the bare frequencies
\,v. It is interesting and intuitively clear that this motion
does not depend on the number of partics Thus, the
motion of the center of gravity of the cloud will not be af-

1 1
V(vy,vy,v,)= E()\fv)z(-i- )\51}54— x§v§)+2—02+ 2,2
X y

fected by the nonlinear effects and depends only on external n 1 n P
. : - ; : o - . (13
potentials. This fact is interesting since it implies that the 2v5 VXUV,

condensate in the mean responds like a classical particle to

external effects. On the other hand this is a consequence 8ffollows from (126) (120 that the dispersive term, which
the generalized Ehrenfest theorem for the NLS, not a particus proportional tov 3(p=x,y,2), tends to spread the wave-
lar result of our approximate approach. packet. On the other hand, there is one attractive term which
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is the linear one and is caused by the trap. Finally, we have
the last term which comes from the nonlinear interaction
between the particles. Depending on the sign of the scatter-
ing lengtha, which is the same as that Bf, this term can be
either repulsive (positive scattering lengihor attractive
(negative scattering length

Since the center of mass motion is very simple, to under-
stand the condensate dynamics we have to concentrate in the
study of Egs.(12a—(12¢). These are a set of three coupled
nonlinear ordinary differential equations. Although the com- 10f
plexity relative to the original problerfl) has been greatly
reduced, it is still a complex problem and nonintegrable, 0 = . ‘
since the only conserved quantity is the Hamiltonian. In fact, 0 1 2 3 4 5
numerical simulations of Eq12) show chaotic oscillations v
in various cases. It is doubtful, however, that the Gaussian
ansatz will be a good solution in those cases, and one would FIG- 1. PotentialV(v) for P=1 (solid), P=5 (dashed
expect that different spatiotemporal complex phenomena ag> =50 (dotted.
pear.

50

40

V(v)

B. Positive scattering length
Ill. ANALYSIS OF THE SPHERICALLY SYMMETRIC

CASE WhenP>0 Eg.(17) can be rewritten in polynomial form

as
A. Discussion
Let us first concentrate on the homogeneous case, when
the trapping potential is spherically symmetric
(Ax=Ay=A,=1). In addition, we will assume that all the
widths are equalradial symmetry case(v,=v,=v,=v),
and that initially the condensate is “at restd €0).
Equations(128—(12¢) reduce to

v3=vo+P. (19

This is a fifth-order algebraic polynomial problem that has
only one positive real root. This solution corresponds to a
stable equilibrium point. The potential has a simple shape as
can be seen in Fig. 1 where it is plotted for different values
of P. It is clear that the only possible motions are periodic
(anharmonig oscillations around the bottom of the “poten-

) ) ) ) tial well” V(v). The frequencies obtained by numerically
This equation can be formally integrated using energy CONfinding the roots of Eq(19) and using Eq(18) agree well

d%v 1 P

d_7'2+v:ﬁ+F. (14

servation, since

1d0212 1 P
E=—-—| +=v +—+$,

2\dr] 2 202 (19

so that

dv’

(16)

E—Ev'z—ll(Zv’z)— P/(3v"%)

However, this formal solution gives little insight into what is

happening. The analysis of the equilibrium pointsof Eq.
(14), which satisfy

1 P
vo=—73+ 7, 17)
Up Vo

is much more illuminating.
One can easily solve Eq17) numerically, and find the
oscillation frequencies

v,=2vy1-2P’, (183
vpc=2v[1—P'/2+ \[P'2[4—2P"]*2, (18b)

where we have defineB’ =P/(4v3).

with numerical simulations of the NLSE33].

Equation(19) can be easily analyzed in several regimes.
For example, when the interactions are strét¥g1, one can
neglect the terny, and obtairv o= PY®. This corresponds to
the Thomas-Fermi regime analyzed by other authjadg.
After linearizing Eq.(14) around the equilibrium position,
we find that the oscillation frequencies afe, /5, where the
first one is doubly degenerate.

C. Negative scattering length

In this case, which corresponds to an attractive nonlinear-
ity, the picture is quite different. Now Eq17) can have
either no or two positive real solutions. The limiting case
(only one solution exis}sis given by the equations

1 |P|
Vo="3 T 7, (20
Uop Vo
3 + ailil =1 (21
vo vy

which implies that the critical value d® is given by
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FIG. 2. Potential V(v) for (a8 P=0.15; (b) P=0.3; (¢) t
P=0.5350;(d) P=1. (b)

4
|PC|= 5—51120.5350. (22)

In this case we have one metastable equilibrium point.
WhenP<P_, there are no equilibrium points, and all initial
data collapse in finite time. In this case the condition is simi-
lar to that obtained previouslj12]. Finally, whenP>P,
there are two equilibrium points, one of theo(), which is
unstable and the other oneg), which is stable. Examples
of how the potential looks in these cases are plotted in Fig. 2.

Sincev =0 all the initial energy of the effective particle is

potential energy. This means that collapse can be avoided 5 10 15 20
only whenP>P. andthe initial width is larger thawy; but t ‘
smaller than a second thresholdy; such that
V(vgs) =V(vgy. In the region of widths given by (c)
vo3>v>v0; the behavior again should be periodic motion
around the equilibrium point. This implies that not only col-
lapse is avoided by satisfying the critical condition, but also
that the initial condition is important. It is then possible to
find the region in they-P plane that leads to collapse be-
havior. To do so, we have to solve Ed.7) to find the un-
stable equilibrium vy, and the point vy satisfying
V(vo1) =V(vgg). The collapsing solutions are those starting
with v<vg; or v>vg3. This can be done numerically, and
5
4 5 10 15 20
3 Unstable t
/U FIG. 4. Evolution of the condensate width in the radially sym-
2 metric and negative scattering length case. The dashed curve corre-
sponds to the numerical solution of Ed) and the continuous one
1 _ _____ to the numerical solution of Eq14). (a) P=0.141,v,=1.032,(b)
: : T P=0.071,v4=1.30,(c) P=0.002,v,=0.802.
0 the result is shown in Fig. 3. The meaning of the figure is
0 0.1 02 03 04 05 that if the initial state falls into the shaded region then col-

FIG. 3. Conditions for collapse as a function of the initial width

vo and P values.

P

lapse is avoided. This prediction could be easily checked
experimentally by exciting the condensate, once it is in equi-
librium, in such a way that the total energy becomes larger
than that atV(vgy). In that case, although E@22) will be
satisfied, collapse will occur.
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FIG. 5. Evolution of the condensate width in the radially sym-  FIG. 6. Evolution of the condensate width in the radially sym-
metric and negative scattering length case. The dashed curve cormmetric and negative scattering length cases. The dashed curve cor-
sponds to the numerical solution of Ed) and the continuous one responds to the numerical solution of EG) and the continuous
to the numerical solution of Eq.(14). Parameter values: one to the numerical solution of Edl4). Parameter values:
P=0.071,v,=1.30. P=0.6>P,, vy=1.30.

D. Numerical simulations The dynamics implied by Eqs233 and (23b is much

To validate the predictions of the variational method wericher than that contained in E¢L4) because of the higher
have performed numerical simulations of EQ) using a  dimensionality of the problem. The equilibrium points are
highly efficient linearly implicit finite difference conserva- now defined by the equations
tive numerical schemi27]. In Fig. 4a we see the solution

for P=0.14p,=1.032, which corresponds to the stable UOzUé:UOz+ P, (243
equilibrium point of Eq.(14). The wave packet performs
some small oscillations around this point, but essentially Nvd, =1+ Pug,/vl. (24b)

moves very near to the equilibrium point. When the initial

width is increased we see larger amplitude oscillations thafhe frequencies of the oscillation around this equilibrium
are very well represented by the approximate solutions COMyositions are given by

ing from Eg. (14) [Figs. 4b), 4(c)]. The same good agree-
ment in the dynamics is found for negative scattering length, _ T on

as can be seen in Fig. 5. Also when the initial width is small va=2vN1=2P4,, (253
enough so that there is collapse, the qualitative behavior is 1

the samdi.e., exact and variational results predict collgpse Vpe=2v|5(1+A\2— P, (25b)
but the precise form of the collapsing width is somewhat ’ 2 '
different (Fig. 6). This happens because the self-similar col- L
lapsing profile is clearly non-Gaussian. Additionally we see Y 7 2
from Fig. 6 that collapse happens with finite widthe nu- lLZ\/(l N2+ P2g) =8P ™
merical solution of Eq(1) blows up while its width is still (250
finite, which is a well-known fact in mathematical physics

[21,34]. B. Positive scattering length

The equilibrium widths, which always correspond to
stable equilibrium points, are given by Eq24) and can be
A. Discussion easily found using numerical techniques. With this solution,
one can derive the frequencies of oscillation around the equi-
Aiprium using Eqgs.(25). The corresponding results, together
ith comparison with experiments, can be found in Ref.

IV. NONSYMMETRIC CASES

When two of the trap frequencies are equal€A,=1
#\,), as is the case in present experimental systems, a
assuming that the oscillations of the condensate keep th

symmetry, we get the following evolution equations for the . S ' :
condensate widths In the Thomas-Fermi limiP>1 one can find analytical

solutions for all these equations. In particular, we find

d%y 1 P
stv="—g+-—3—, (233 vo=(PN\)Y%,  vo,=[P/N;]™, (26)
d v v,
v 2, L, P (23b) e
UV,— =3 5 5.
drt T v va= 20, (273
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FIG. 7. Pa @s a function ofz, for the case of negative scat-

tering length and cylindrical symmetry. 0 5
[% L--7s52
14 -
vpo=—=[4+3\2*\16+9N\2—16\2]Y2  (27b 7 10
These results are in full agreement with those of Stringari 0
[11]. 0 02 04 06 038
C. Negative scattering length |P|

In Fig. 7 we have plotted the maximufR| as a function
of A, such that stable equilibrium points exist. Poi=0 we
have

FIG. 8.v, (a) andv (b) as a function ofP| for several values of
\, that are indicated on the figure, for the case of negative scatter-
ing length and cylindrical symmetry.

IPmas = /i=0_6204, (28)  corresponds to an stable equilibrium point and the other one
33 to a unstable equilibrium point. What are the implications of

this fact? Since we have a stablgpoint (with a correspond-

whereas fon,>1 it behaves asP ., =1/\A,. This means ing vy,) we find that it is possible to eliminate one of the trap
that for a given scattering length, one can have more parfrequencies and then we could still have a compact object.
ticles in the condensate before a collapse takes place if it ihis is possible due to the attractive self-interaction of the
cigar shapedX,<1), rather than coin shaped £~1). This  Bose-Einstein gas, which in this case compensates the dis-
is due to the fact that the cigar-shaped condensate is closer persion provided by the kinetic energy. In fact, there is a
a one-dimensional distribution, for which collapse does nokimple physical interpretation of this fact that implies that in
exist, whereas the coin-shaped one is closer to a twothe free direction the solution is effectively one dimensional
dimensional condensate, where collapse is possible. In Fig. 8nd then behaves like a soliton of the one-dimensional
we have plotted the equilibrium widths as a function|Bf ~ NLSE.
for several values ok, . Since the solution behaves in a solitonlike manner this

A remarkable feature of this analysis is that even if oneopens the door to control its motion by choosing the param-
releases the trap along taedirection (\,), a stable solution eters(e.g., the initial width to be the one corresponding to
exists. This stable object is analogous to the well-knowrthis “compact” solution and then applying an external po-
one-dimensional soliton, which appears in the optical fibetential in thez direction. By the Ehrenfest theorem, the cen-
context. Let us analyze this solution in more detail. In thister of mass of the solution will respond to that potential as a

case, taking\,=0, Eq.(24) becomes particle. This may be useful to guide the motion of the con-
densate.
P2 29 We emphasize that fdP> —0.6204 there is a stable so-
T (293 | tion. However, if the initial conditions (0) andv,(0) are

not appropriatéi.e., lie outside the stability regioncollapse
IP|v,0=02, (29 Wil occur. In Fig. 9 we have plotted the stability regions for
different values ofP in thev-v, plane.
which gives the following polynomial equation:
6 2 1o V. CONCLUSIONS
veg=vg—|P|% (30 .
By means of a variational model, analytical expressions
This equation can have either no or two positive real sofor the existence, stability, and evolution of BEC atom
lutions. In the latter case it is easy to check that one of thenelouds have been calculated.
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for the evolution of the width by comparison with numerical
simulations of the NLSGP) in the radial symmetry case.
Also some results concerning collapse have been found. The
most interesting prediction in this sense is that the initial
width of the condensate plays an important role in the col-
lapse dynamics, i.e., if the number of particles is below the
collapse limit but the initial width is small enough collapse
will take place. Finally, we have predicted the existence of
stable trapped solutions, with finite width in the case in
which the trap is relaxed along one direction.
The formalism has been successfully applied to the expla-
0 nation of several experimental resul8]. We believe that
0.6 0.8 1 1.2 the analytical techniques presented in this paper are a useful
V tool in the analysis of Bose-Einstein condensate dynamics,
provide a guide to predict and analyze a whole variety of
FIG. 9. Stability region foin,=0 and for different values d®  €xperimental situations, including the effect of core-core in-
ranging from—0.1 to P4+ 0.01. teractions, and can be extended to describe interaction with
radiation, losses effects, condensate expansion, etc.

The variational method provides a very simple physical
picture of the behavior of the condensate: the center of the ACKNOWLEDGMENTS
cloud and its width evolve like particles governed by classi-
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