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Electron ejection from clean metallic surfaces upon charged particle impact
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In this work we present a theoretical treatment of electron ejection from a clean metallic semi-infinite solid
with an ideal orthorhombic Bravais lattice following the impact of moderately fast charged particles with
respect to the Fermi momentum of the initially bound electron. For an aluminum semi-infinite solid target
multiple differential cross sections have been evaluated using a jellium-type wave function of the undisturbed
surface in the initial state. Image-charge final-state electron-surface interactions have been included as well as
the scattering of the projectile from the multicenter bulk potential. From a kinematic analysis of the process
various ionization mechanisms are inferred and confirmed by the present dynamical model.
[S1050-294{@7)05408-3

PACS numbd(s): 79.20.Kz

[. INTRODUCTION electrons are then described by undistorted plane waves. The
secondary electron is knocked out by a direct encounter with
The pathways for the simultaneous emission of two electhe projectile, while all other degrees of freedom of the solid
trons from atomic and molecular systems upon electron imfemain “frozen” [17-19,18. Under these circumstances the
pact[hereafter referred to as the,Re) proces$ have been measured cross section can be related to the spectral momen-
investigated thoroughly1—3]. The complexity of this reac- tum density of the initially bound electrdi5,16. This fact
tion is already revealed in the simplest case of the lowhas been employed for the experimental investigation of the
energy electron-impact ionization of atomic hydrogen whereéband structure of a variety of solid targetsee[15,16,2Q
final-state interactions of the escaping particles stronghand references therginThe corresponding theory21,22]
modify the observed electron specfg5|. Hence a realistic deals essentially with the band structure of the solid rather
approximate eigenfunction of the nonseparable three-bodthan scattering dynamics. The successful description of the
Hamiltonian is needed. Although such experiments usingpectral electron-momentum densities underlines the validity
thin solid films have been conductéd] shortly after their of this one-step impulsive plane-wave approximation
atomic counterparf8,9], the study of the dynamics of ion- (IPWA) in this case. However, even at higher energies, the
ization of solid surfaces upon charged particle impact is stillPWA breaks down in the reflection mode since in this case,
in its infancy. In general, a theoretical description of thisat least, a two-step mechanism is required for the ejection of
process from solid targets has to deal with various aspects diie electrons. Nevertheless, as shown in R&3,24], some
the beam-solid interactions. A charged projectile impinginginformation on the target band structure can still be extracted
on a metallic target, which is the subject of this work, leadsfrom these experiments even at moderate electron energies.
to a charge-density fluctuation in the solid. Asymptotically, With decreasing energies of the vacuum electrons the above-
this causes an image-charge distortion of the incoming anthentioned electron-solid interactions become relevant.
outgoing particled6]. Furthermore, the motion of vacuum A series of €,2e) measurements from W01 and LiF
electrons is periodically distorted by the interaction with thehave been conducted at energies close to the vacuum thresh-
bulk potential[10,11]. In addition, the electronic beams are old and in the normal-incidence, back-reflection geometry.
attenuated by the incoherent generation of optical phononSurprisingly, the qualitative features of the observed spectra
Interactions with acoustic phonons lead to spreading of theseoincide with the predictions of a crude kinematic model
beamq10,12,13. The excitation of collective modes during [25—-27. To explain these experiments sophisticated low-
the collision process poses an additional obstacle for theoreénergy quantum-mechanical calculations have been per-
ical treatment, in particular if the ionization event takes placeformed recently[28].
in an inner band with simultaneous plasmon generation. The The aim of this paper is to investigate the dominant
description of the elastic and inelastic multiple-scatteringmechanisms for the electron ejection from a metallic surface
events from the multicenter solid potential is a further com-at moderate energigseveral times the Fermi enejgyrhe
plication for theory. The strength of the above-mentionedfeasibility of such experiments with sufficient angular and
interactions is very much dependent on the interaction timenergy resolutions has been demonstrg#gj24. The fun-
of the projectile-solid scattering system and hence on thelamental underlying approximation of the present study is
velocity vectors of the incoming and escaping particles. Inthe assumption that the degrees of freedom of the projectile
fact, in a transmission modee,@e) scattering from thin can be decoupled from those of the target. This is justified
films, all above-listed processes can be neglected for highince we assumed the momenta of the incoming and outgo-
energetic(in the keV regimée incoming and outgoing elec- ing electron to be considerably larger than the Fermi momen-
trons under Bethe-ridge kinemati¢44—16. The vacuum tum. In order to obtain analytical results that can be simply
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FIG. 1. Schematic representation of the different ionization mechar(@m&) as described in the text.

analyzed, a jellium wave function of the initially bound elec- tron into a vacuum level of the solid. The total Hamiltonian
tron is assumed. Asymptotic image-charge distortion of theof the projectile-solid system is

vacuum electron is taken into account. In addition to the

binary collision of the projectile with the bound electron, the H=Hp+Hc+W,, @
scattering of the incident particle from the multicenter bulk

potential is treated in the kinematic approximatjan,30. A  whereH, is the Hamiltonian of the semi-infinite solid in the
screened Coulomb muffin-tin bulk potential is adopted. Theabsence of the projectil&y,, is the projectile-ejected elec-
applicability of the theory is limited to the moderate elec- tron interaction, andi , describes the projectile-crystal inter-
trons’ energies, which allows us to neglect plasmon and phoaction and contains the plasmon and phonon modes and their
non excitations, as described above. Within this model fouinteraction with the electron. To avoid difficulties associated
possible collisional mechanisms for the ejection of electrorwith infinite-range potentials that lead to scattering even at
pairs are identifiedsee Fig. L In the first process the pro- an infinitely large impact parameter we assume all infinite-
jectile is directly transferred into the vacuum after a binaryrange interactions involved in our process to be screened at a
collision with the electron. The electron recoils off the large but finite distance. This allows us to define asymptoti-
“background charged” elastically. In the second process theeally unperturbed initial and final channel Hamiltoniads
electron is knocked out into the vacuum following a binaryand H;, respectively. The initial and final-state boundary
encounter with the projectile, whereas the projectile recoilsonditions are specified by eigenstatés,|f) of H; and

off the multicenter bulk potential. In the third process theHy, i.e.,

two electrons recoil off the bulk potential after a direct bi-

nary scattering. Finally, in the fourth process both electrons (Hi—Ejli)=0, (2
are ejected into the vacuum after the projectile recoils off the
bulk potential. The theory is formulated for a structureless (H;—Ep)|f)=0, 3

projectile of an arbitrary mass and charge. However, the as-

sumption of negligible phonon excitation due to the projec-where E; ,E; are the corresponding asymptotic eigenener-
tile impact becomes questionable for energetic he@ith  gies. The transition amplitud& for the scattering system,
respect to the ionic cojeprojectiles. Atomic units are used initially prepared in théasymptotig state]i ), to go over into
throughout. the asymptotic final statef) is determined by the prior form

Il. THEORETICAL FORMULATION T=(V|Vj|i) 4

We consider a scattering system consisting of a projectiler the post form
with chargeZ, and massm, being inelastically scattered
from a clean, metallic semi-infinite solid ejecting one elec- T=(f|V{¥"). (5)
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The state vectorg? *) and| ¥ ™) are eigenstates of the total motion of the ionic cores is very slow on the time scale of
HamiltoniansH, given by Eq.(1), with the asymptotic be- the projectile-solid interaction time For the asymptotic
havior given by|i) and|f), respectively. Thet (—) sign final-channel Hamiltonian the following choice is appropri-
refers to to incomingoutgoing wave boundary conditions. ate:
In Egs.(4) and(5) the perturbation¥; andV; are given by
Hi=Ke+Kp+ W+ We+Wpe. (16)
Vi =H—H i (6)
Here the kinetic-energy operator of the secondary electron is
Vi=H—H;. (7)  referred to byK,, whereasinz?® amounts to the asymptotic

] ) final-state interaction of this electron with the semi-infinite
In what follows we confine the treatment to the prior form of 5qjid. The choice(16) leads to the final-channel distortion
the T matrix[Eq. (4)]. Equivalent considerations apply to the operator

post form. The eigenstat& ~) of H can be written as

Vi=WS+ WS, 1
)=o), ® O "
whereW; denotes the short-range interaction of the second-

where the Mdler wave operatof) ™ is given by ary electron with the surface

O " =1+G V;. (9)
Ill. STRUCTURE OF THE MULTICENTER
In Eq. (9) G~ is the resolventGreen operatgrof the total SINGLE-SCATTERING AMPLITUDE
Hamiltonian?{. Combining Eqs(9), (8), and(4), the T ma- o ) )
trix element reads Upon substitution of Eq(15) into Eq. (11), the matrix
_ elementT*'" can be decomposed into
T:TS'“_{_TmU“, (10 sin sin sin sin
e TN=Tor+Too+ T30, (18)
) where
T =(f|Vi|i), (11 .
. ng::<flwpe|i>v (19
TMUt = (F|V(GHVii). (12) '
Toa:=(flWpli), (20)

AssumingV; to be a multiple-center potential, the first term
of Eq. (10), T3'", describes the transition of the system from TSN = (F]WERY)j) 21)
stateli) to |f) due to a single scattering from each individual P P

scattering center. One-center and multicenter multiple scaing \we are dealing with a metallic semi-infinite solid we
tering is contained in the matrix e_lememnun in Eqs. (10 adopt a mean-field, one-particle treatment of the initially
and(12) since the Lippmann-Schwinger equation of the totaloynq electron in the solid, e.g., a jellium model. Neglecting
Green operator leads to the expansion any corrections due to the finite mass of the solid with re-
> spect tom,, we choose a coordinate system in which xhe
I,

VngE [VGg]j (13 andy directions lie in the surface plane, wherga§zthﬁ(_is is
j=0 chosen as the normal of the surface pointing into the
vacuum. The origin is chosen at the highest occupied elec-
where G, andV are the full free propagator and the total tronic band at absolute zero temperature, e.g., at the jellium
potential of the projectile-solid compound. It should be notededge. The amplitudes, given by Eq$9) and (20), provide
here that the labelsin andmult of the amplitudes*"" and  (in a perturbative seng¢he first-order approximation to the
Tmu't refer to single and multiple scattering specifically from matrix elementr. The term given by Eq21) is less promi-
the potentialV;. In this study we choose the asymptotic nent sinceW;° is an asymptotiimage chargeperturba-
initial state as a noninteracting projectile-solid state, i.e.,  tjon. In fact, incIudingW,”fc in H, [Eq. (14)] instead ofV,
H—H.+K (14) [Eq. (15)] would lead to only a logarithmic phase modifica-
booe e tion of the plane-wave motion of the projectile. This modi-
fication is insignificant for high-velocity projectiles.

In a position-space representation the transition operator
occurring in Eq.(19) has the formWye=—2Z,/|rp,—r|,
wherer, andr are the position vectors of the projectile and

Vi=H—H;=Wpet+ W+ W52, (15  ionized electron, respectively. In the present modgl; is

an estimate for the probability of the direct transition of a
The operator\N,SJ stands for the projectile-bulk interaction delocalized electronic bound state into a vacuum state after a
and its explicit functional form is specified below. The po- direct projectile-electron encounter. No effect of the periodic
tential W,© amounts to the asymptotic interaction of the structure of the solid is included in E¢L9). On the other
projectile with the solid. As mentioned in the Introduction, hand, the transition amplitud‘é;','s1 [Eq. (20)] is a measure
we deal with a fast projectile with respect to the Fermi ve-for the electron-ejection probability due to an initial scatter-
locity so that projectile-phonon coupling is negligiblthe  ing of the projectile from the periodic potential of the solid

Tmult: < f

where K, is the kinetic-energy operator of the projectile.
Thus, according to Eq(6), the perturbation in the initial
channel can be written as
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and a subsequent projectile-electron collision. The latter enaccount. This amounts to replacigg, by g, in Eq.(24). To
counter is included as a final-state projectile-electron interderive an expression fors’" we reformulate Eq(24) as

action, as can be seen from Ed6). Thus it is comprehen- _ Ps
sible that the transition amplitudel}'s shows some T a=(kelFIxir,s (25)
resemblance to the low-energy electron diffractiEED)
transition amplitude, as indicated below. where upon the introduction of complete sets of plane waves
in the momentum space conjugate|R._) the operatoF is
A. Evaluation of T3 given by

Suppose that in a scattering experiment the final-channel N -
asymptotic vector momenta, k. are simultaneously speci- F=f f d ad®q’ (kp|Wpela')(a’[go [a){alWylki): .
fied as well as the incident vector momentlgmof the pro- (26)
jectile. For simplicity we disregard for the moment the
(asymptoti¢ image-chargélogarithmic phasedistortions of  The term{q’|g, W§,|ki>rp describes the scattering of free
the prOjeCtile and electron motion in the final state. In thecharged partic|es with momentum from the periodic po-
projectile case this is reasonable since we assumed fast scgdntial of the solidWs and their free propagation into a free-
tered particles. Distortions of the electron’s motion in theparticle beam with momenturg’. This corresponds to the
final state due to théasymptoti¢ image-charge field are con- | Egp procesg29]. Thus Eq.(25) can be interpreted as fol-
sidered sub:cequearltl_y. Thus, for the moment, we neglect thg\ys. A beam of free particlelk;) scatters into a free beam
potential W™, W™ in Eq. (16). For a given final-state en- ot particles from the periodic potential/s and propagates
ergyE;, the two-center HamiltoniaHl; is exactly separable  freely to an initially bound electronic distribution of the
in the coordinate systeR_®R., whereR_=r,—re and  gojid, described byy,). After an inelastic collision with the

R, =rp+re. The asymptotic statef) reads projectile this distribution is transferred into a free vacuum
state k), whereas the projectile emerges into a free state
=K )®|dk ), (22) ¢
H=IK.)elgy ) o

To evaluate the expressi®h[Eq. (26)] the Fourier trans-
form of the periodic potentialV? is needed. Here we con-
sider a solid with an orthorhombic Bravais lattice. The po-
tential W,SJ is assumed as a superposition of effective core
potentials of the ions:

where|K ) describes the plane-wave motion in the coordi-
nateR, with the conjugate asymptotic momentun =k,
+ke and| ¢y ) satisfies the Lippmann-Schwinger equation

(W, is assumed to be of finite range

[ bk )=(1+ggeWpe) [K ). (23) N

we=2 vior, 27)
Here|K _) denotes a plane-wave state vector in the electron- '
projectile coordinateR _ with the corresponding conjugate
momentumK _ = u,(k,/my—KkKe), where u,=m,/(my+1)

is the electron-projectile reduced mass. In &8) g;e is the
full propagator of the projectile-electron relative motion in
the potentialW,.

The form of the asymptotic initial-state Hamiltoniddh
[Eqg. (14)] implies that|i) can be expressed as the direct
product|i)=k;)®|x), where|k;) describes the free projec-
tile motion with incident momenturk; and| x,) is an eigen-
state of the solid HamiltoniaH . with initial binding energy _
€. Considering Eq(23) and changing the representation to Wf,(rﬁ 2= E VO (ri =12 =), (28)
rp®re, Eq.(20) can therefore be written in the form b

whereV!°" is the ionic core potential at the sit@ndN is the
number of ions in the solid. Since we are considering a semi-
infinite solid,Vv,S) is periodic in each layer parallel to the

y plane, but not in the direction. The lattice constants in the
X, y, andz directions ared,, d,, andd,, respectively. The
jthion in thelth layer has the coordinates,=(r;,r, ).
Thus the periodic potentian, at the positionr’ can be
written as

Sincve) is periodic in thex andy directions we can intro-
duce [11,30 two-dimensional reciprocal vectorsg
=2m(n,/dy,ny/dy),n,,nyeZ, and WriteVV,sJ at the position
In this work we assume that the projectile-bulk periodic scat!’ as

tering potential depends only orn, and its form will be

specified below. Thus the first term in E@4) involves a WE(r 2= Wi(g). 2" )expligy (). (29)
direct overlap of the eigenstatgg,) and |ke) of the same g

Hamiltonian H, with different eigenvalues ¢ ,k/2) and —

therefore vanishes. Since the full projectile-electron propagalhe two-dimensionalg; Fourier transformWg(g,z') is
tor gpe=09o + 9o Wpelpe €nters in the second term of Eq. 9IVen by

(24), the corresponding two-body scattering takes place an

infin_ite number of _times. In spiri_t of thkinematic approxi- \TV;SJ(QH 2= if erH’V\/,ﬁ(rﬁ ,z’)exp(—igu-rﬁ),
mation employed in LEED studie$11,30,29, only single Aucluc

scattering from each of the scattering centers is taken into (30

Tzi,rs]:<kpvke|W;|Xk ,ki>+<kp ake|Wpeg,;eW;|Xk ki)
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whereA,,.=d,d, is the surface of a unit cell in they layer ~ where e is the Fermi energy anw is the work function.
and the integral in Eq(30) runs over this unit cell. The The density of states is given by that of the free-electron gas
expression(q|Wp|k;), which enters Eq(26), evaluates to (apart from a factor 2 that accounts for the electronic spin
states p; =V/(47%). Thus the jellium wave function can be
. expressed in terms of reflection and transmission coefficients
(a[WS|kiy=(2m) 3> f d3r jexp(—iK 1, P ' ! 18! !
9

elke+ Re 7%, z<0

+igrpWi(g) 2p) (relxg= feXp('k” )X Te % z>0.
=(2m) %D §?(g—-K )f dz,W3(g;,z,) 7
i 9 9" pYpt Dl 2 The reflection and transmission coefficief®sand T are
X expl—iK Z,), (37 9venby
whereK:=qg—k; andf=exp(q-r.). Thus the periodicity of = K~ iy = 2k, (38)

the potential in the directions parallel to the surface leads to k+iy’ k+iy
the Bragg conditiong=—K;. Upon substitution of Egs. B
(28) and (30) into Eq. (3) and considering thatN ~ &ndy=v2Vo—k.

=3,exp(~igj-y,)), Eq. (31) can be written in the form As stated above, we consider cases of fast incoming and

outgoing projectiles so that-Z,/k,|<1, i.e., the distortion

(q|VVS|ki>=(21-r)*3’2f\7\IS(K). (32) of the projectile’s motion due tdW‘F’,aC can be disregarded.
P P The image-charge interaction of an electron with a semi-
The form factor\"/Vf,(K) derives to infinite metallic solid goes asymptotically to the classical

limit —1/4z [6]. Thus the eigenfunction df; [Eq.(16)] at a
given asymptotic energl¢; is readily deduced as

<re'rp|f>%¢f(rearp)
=(2m) Pexiky rp+ike re—ip(re)]. (39

_ N(27)2 | o
Wo(K)=—% % 5(2)(9\\_K\\>e_'Kzr”f de:
uc , ” —0o0

XJ d2p V' (py . zp)exd —i(gy- py+Kapo)1,
In Eq. (39) the terme(re) =aln(2ky,zs) is the phase modifi-
(33 cation of the asymptotically free electron motion due to its

where p=r,—r;. Within a model of nonoverlapping image charge Wher,be,z:ike and the Sommerfeld param-
muffin-tin ionic potent|alsv'°“ the integration in Eq(33) etera= —1/4k, , indicates the strength of this interaction. In

over the unit cell can be extended to the entirg plane and ~ the cas&@=0 we end up with the final-state being a product
we end up with the final expression of two free-particle states. The final state energy is given by

Er=Kk3/2+ka/2m,, .
— N(2)? ~ As shown in Appendix A, the amplitude for the scattering
Wi(K)= A E e KoL 'E 8 (g—KpPVe(K). of the projectile from the bulR3'2 [Eq. (25)] can be derived
ue (34) analytically:

In Eqg. (34) V°'(K) is the Fourier transform 9\‘/‘0”. Here T;igz N /iﬂe‘z”""”‘l‘(lnLia)exmaanke,z)
we use for thev'°" screened Coulomb potential ' ™V Ayc

Vion(rp)zzeff/rpexq_)\effrp)' (35 X% 6(2)(k“—QH+gH—ke"|)(£0+£1+£2), (40
9

The effective paramete®, s, Ao+ account for the screening
of the pure ionic field due to the presence of the localizedvhere the function<;,j=0,1,2, are given by EqsA21)-
positive cores as well as delocalized electrf3). (A24). For the calculations of Eq40) the ionic-site poten-
The initially bound electronic distribution is described by tials, given by Eq(35), and the wave functioi37) for the
the effective one-body vectdy,). An expression fof x,) initially bound electron have been employed. We note here
can be derived using the local-density functional method irthat in the course of the derivation of E@0) a distinction
which the ionic cores are considered as a constant positiead to be made between the transmission and reflection
“background charge.” Finding the many-body eigenstates ofnode (with respect to the momentum of ejected electron
H. is then reduced to the iterative self-consistent solution OEquaUO”(40) is valid for reflection mode. The expression of
a one-body problem. Within the jellium model, the resultantTp s under transmission conditions is easily derived follow-
effective one-particle potential is replaced by a step potentiahg the procedure outlined in Appendix @ this case and
V, atz=0. Within the metal volum&/ the conduction-band for higher incident energies we have to assume that the elec-
electrons are treated as free particles bound to the metal hdfon is ejected from jellium states of the surface opposite the
spacez<0 by a potential barrier projectile source as shown in Rdfl5]). In Eq. (40) the
distortions of the motion of the ionized electron due to
Vo=€egtW, (36) image-charge effects have been taken into account. For insu-
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lating target or fast outgoing electrons these distortions can do(k; k) KoKe

be switched off by the replacemeat=0. The periodicity in 5 . =(2m)* 22|T|IAE—E). (49
the x-y plane leads to the Lau-type condition expressed by d°0dEd°QdE, Ui

the two-dimensionab function in Eq.(40).

B. Discussion of the single-scattering amplitudd 5 Integration over the conduction band

The amplitudeT ', as given by Eq(19), describes the
ionization process as a direct binary encounter of the proje
tile with the initially bound electron. As shown in Appendix
B, its functional form is derived to

Equation(44) yields, for given values ok; k. ,k,, the
Cj_onization probability of an initial solid state defined kyAt
present, coincident experiments do not resolve these states.
Thus an integration ovek is necessary:

, do(k;)
in_ _j - Fd+ia) ., : :fd3k K)F(k,T
The'= ~iZp(2mV) R = ke — 5 — e Q020 dE, poRten
X expfialn(2ke ) I[(Qut ke, —kp) 7 o doki k) s
) ) 2 2 !
FR(QuH Kozt ko) 1T =T(Qrt ke~ i) 1, PAEA0,E

(41)  wherep(k) is the density of states at the temperatlirand
F(k,T) is the Fermi distribution. In the jellium model

The free motion of the bound electron in thlxey planes [p(k):pj:V/4ﬂ'3] and atT=0, Eq.(45) simplifies to
results in the two-dimensiondl function in Eq.(41). As in

the case of ionization of atomic and molecular systems, the da(k;) . da(k; k)

cross section decreases rapifyoportionally to 10%) with 2 > =pj f > > )
increasing momentum transfer. This is a direct consequence d*QdEd"Q,dE, kske d70dEd°Q,dE, 46
of the assumption that the perturbation leading to the elec- (46)

tron ejection possesses the Coulombnic functional forngg, ihe scattering amplitudes, given by E¢E9) and (25)

(A1). the integration over the conduction band can be carried out
analytically.

IV. MULTIPLY DIFFERENTIAL CROSS SECTIONS

The multiply differential cross section for the simulta- V. NUMERICAL RESULTS AND IONIZATION

neous detection of the escaping particles with momenta MECHANISMS
ke, Kk following charged-particle impact i831] The procedure developed above is applicable to scattering
1 events in the transmission and reflection mode. The explicit
L K)= 4 2 —Es® formulas(40) and(41) for the scattering amplitudes are valid
otki k)=(2m) vii ITI*o(E—E) for the case of the reflection mode. In order to apply this

3 131 43 method to a particular target the parameters for the

X(Pr=Py)d ked kpd Keore. (42) projectile-bulk scattering potenti&B5) have to be specified

. ) as well as the number of atonhsin the semi-infinite solid.

wherev; =|ki|/m,, Pr,P; are the total linear momenta in the Tpe effective parameters.s; and Z.¢;, which account for
final and initial channels, anllc,e is the momentum ab- e sereening of the projectile-ion interactions due to local-

sorbed by the solid. Thus thefunctions in Eq(42) indicate  j;eq and delocalized electronic states, can be determined
the total momentum and the energy-conservation laws. Igom the Thomas-Fermi mod€B2,30

Eq. (42 the symbolX signifies summation or integration

over all nonresolved final- and initial-state quantum num- \/3\kF
bers. Assuming a “frozen-core” approximation, due to Neft= \/ —
which all degrees of freedom of the system except for those

of the projectile and the active electron remain unchangeg, yis \ork we present numerical calculations for an alumi-
during Fhe ionization process, the total linear momentum iNum surface. In this case we obtai (= 0.886, which is
the |n|t|all state _reduces tB;=ki+k. The total linear MO~ consistent with the assumption of nonoverlapping muffin-tin
mentum in the final chaznnel B =kp+KetKeore- Inzadd|- ionic potentials that has been made in E&3) and(33). For
tl0n2, we deduceE;j=kj/2m,—E—W and E;=kp/2m, 7 e assume full screening by localized electrons, which
+ke/2. Within these approximations E¢#2) simplifies to  |eads toz,=1. The proportionality of the second-order
1 scattering amplitudé40) to the number of scattering centers
_ 4712 _ 3, 43 N implies a divergent cross section for an infinite surface.
o(ki,k)=(2m) v; [T~ Endkedkp. (43 This same problem is encountered in the scattering of ther-
mic neutrons from crystals, in LEED proces$#$], as well
Usually[7,16,23,25,2§ the coincidence rate is measured asas in the treatment of transfer processes of electronic states
a function of the energie€,,E, and the solid angles of a surface into the spectrum of an ionic beam scattered
Q¢,Q, of the emitted electron and scattered projectile, refrom this surface[30]. The origin of this difficulty is the
spectively. In this case E¢43) reads neglect of crystal-damping effects on propagating beams,

(47)
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e.g., in Eq.(26) the incoming plane wavkk;) is elastically — quite sizable. The classical model predicts-&unction dis-
scattered intdq) under the coherent action of cores per tribution at the position marked by the arrow in FigaR
plane. In LEED reactions this problem is circumvented byThe broadness of the pefkig. 2] predicted by the model
estimating the number of cores in the solid illuminated bypresented in the previous sections is related to the electronic
the incoming beam and relating themNo[11]. In our case initial momentum distribution.

we adopt a similar procedure by relatidgto the number of The classical mechanism displayed in Figb)lcorre-
ionic coresN,qres iN a cylinder of radiush and height, sponds to the quantum-mechanical picture where the delocal-

wherex refers to the mean free path of the impinging elec-1zed electronic state is directly transferred into a vacuum
tron beam. This is reasonable since, as remarked above, tfEAt€ following an inelastic collision with the projectile. As
divergentN dependence of Eq40) is traced back to the in a LEED process, the scattered projectile is then refracted
projectile-bulk elastic scattering. We remark here that for 40 the bulk potentia(35). This process is described by the
specific experimental geometry the scattering amplitagp ~ 2mPlitude(40). In contrast, the single-scattering amplitude
does not depend on the parametrandZ,;; in a dynami- (41) does not contain any projectile scattering from the bulk.

cal way, i.e., these parameters affect only the magnitude dpur simplified classical model yields for the mechanism dis-
BT itugddayed in Fig. 1b) a §-function structure in the angular dis-
(40) and (19) are of the same order, the interference patterrfiPution - of the —emerging particles  atf,=m— 6,

of these amplitudes can sensitively depend on the product 27Ctarke/Ky, =6 —arctark, /ke,¢e—¢$,=0. The occur-
NZqi. rence of this peak is nicely confirmed by the full quantum-

mechanical moddlFig. 2(b)] with the initial momentum dis-
tribution of the secondary electron being reflected in the
shape of the peak in Fig.(l)). Due to the much larger mo-
For electron-impact ionization of an aluminum surface wementum transfer, the cross section depicted in Fil) &
calculated the cross secti@f6) by performing a numerical markedly smaller than that of Fig(&.
summation oveg; andl. As stated above, the present theory  In the classical case sketched in Fi¢c)both the electron
is applicable at moderate energies of the incoming and ou@nd the projectile are reflected from the bulk potential after a
going particles (only the classical 1/4 image-charge binary(isolated encounter. Quantum mechanically, this pro-
electron-surface interaction is taken into accoudlassi- cess is facilitated by the scattering amplitud®) only. The
cally, the electron emission in the reflection mode is prohib<classical kinematic conditions, under which this reaction
ited in a one-step mechanism as described by ®§). shows up in the angular distribution, are given oy
Hence, forke ,k,>kg, where classical arguments are appli- =arctarke/ky+7—6, 6O.=arctak/ke=7+6, Pe—dp=
cable, the contribution to the cross section of EP) is * 7r. A comparison of the quantum model with those predic-
negligibly small compared to that of the second-order amplitions is shown in Fig. &). Since the electron, whose angular
tude (40). distribution is shown in Fig. @), is much faster than the
The possible collisional ionization mechanisms describeatases of Figs. @) and 2b), the peak a®¥,~50.5° is much
within this model are schematically depicted in Figéa)x  sharper. This is due to the fact that the initial momentum
1(d). In all cases it is assumed that the velocity of the im-distribution of the secondary electron is almost negligible
pinging and emitted particles are large with respect to thevith respect tok, i.e., during the interaction time the ini-
initial momentum distribution of the electronic solid state. In tially bound electron appears to be stationary from the view-
order to get some insight into the influence of these mechgpoint of the fast scattered electron.
nisms on the spectra of the electrons we analyze Figg-1 The last classical kinematics discussed here is that of Fig.
1(d) within a simple classical model in which we assume thel(d), where the projectile is mirror reflected from the bulk.
target electron to be stationary and the bulk potential to acBubsequently, the electron and the projectile are directly
as a structureless reflection mirror in tkey plane(due to  transferred into vacuum levels following an isolated binary
the Lau condition parallel to the surfac&Subsequently we scattering. Within the model discussed in the previous sec-
look at the prediction of this simplified picture in light of the tions, this process is described by the scattering amplitude
full guantum-mechanical calculations. Classically, the casé€40). From the simple classical picture it is anticipated that
shown in Fig. 1a) means that the projectile is directly scat- the cross section reveals &-function structure até,
tered into the vacuum after an inelastic binary encounter with=arctark, /k.+7— 6, 6,=arctak./k,—7+6, ¢.=0,¢,
the delocalized electron and escape with momentym  =. This is confirmed by the quantum modg#lig. 2(c)];
This electron is then elastically reflected from the bulk andhowever, the peaks are quite shallow and clearly shifted from
emerges into the vacuum with momentlky. Within the  the classically predicted position. This is a consequence of
full quantum-mechanical model, the latter interaction is fa-the high momentum transfer to the crystal and the relatively
cilitated by the initial-state binding. Within the classical low velocity of the escaping particles as compared to the
model assumed above, this mechanism leads to a peak struéermi velocity. The same process depicted in Fig) has
ture in the angular distribution of the continuum particles atbeen proposed previously in Ref25-27 to describe the
0,= 6, —arctark, /Ks,0.= m— 6 —arctark, /k,p.— =0, as observed spectra of two electrons simultaneously emitted
can be deduced from simple kinematic consideration of Figfollowing electron impact upon a clean tungsten surface. We
1(a). The appearance of the peak at the classically predictexepeated the calculations shown in Fig. 2 for a tungsten sur-
position is endorsed by the full quantum calculations as demface. Structures similar to those in Fig.(@ven more pro-
onstrated in Fig. @). Since the projectile suffers relatively nounced have been observed. The application of the present
small momentum loss, the magnitude of the cross section is1odel to the experiments presented in RE2&—27), how-

lonization mechanisms
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FIG. 2. Angular distributions of electrons ejected from a semi-infinite aluminum solid upon electron impact. lfatag@she impact
energy is chosen d;=518 eV with respect to the vacuum threshold. The ejected electron escapes with aneeireéyeV, whereas the
scattered one emerges with an enelgy-453 eV. The vectork;, k., andk, are chosen to lie in the same,) plane.(a) The scattering
geometry isf;=100°,0,=80°, andg;=¢,=@.=0°. The cross section is scanned as functio®af (b) Same as ira), but ,=60°. (c)
Same as irfa), but §;=150°, 6.=40°, ¢;=¢,=0°, ande.=180°.(d) We chooseéE; =418 eV,E,=302 eV, ancE.=110 eV. In addition,
0;=178°, 0,=29°, ¢;j=¢,=0°, and ¢,=180°. The solid curves correspond to an antisymmetrized product of the final-state wave
function (39) with image-charge distortions of the escaping particles being neglected, whereas these distortions are taken into account in the
calculations shown by the dotted curves. In all figures the arrows indicate the positions of the peaks as predicted by the kinematics of the
processes depicted in Figgalk-1(d) (see the text for details

ever, is questionable since these experiments have been cdB3] using an Al surface show that the dominant contribution
ducted at quite low energies, whereas the present model arid the (€,2e) cross section as reported in REZ3] is due to
the kinematic arguments are valid only at momenta of théhe mechanism depicted in Fig(al
vacuum particles that are much larger than the Fermi mo- As evident from Figs. @)—2(d), the final-state image-
mentum. At higher energies, the influence of this mechanisncharge interaction enhances the coincidence rate. This is due
on the cross section is clearly seen in Fi(r)2 to the fact that a scattering from the ionic core is essential in
Generally, the processes sketched in Figs) &and Xb)  the reflection geometry. This scattering can occur, however,
are most likely to dominate in the grazing incidence direc-via a final-state image-charge interaction with the solid. All
tion. This conclusion relies upon the fact that, in grazingcalculations shown in Figs.(@-2(d) have been performed
incidence, the traveling distance of the projectile beforeusing a coherent sum of the transition amplitud8 and
reaching the bulk is much larger than in the case of normaf41). The sum overg,| is rapidly convergent. In fact, it
incidence geometry. In fact, further numerical investigationgurned out that by far the significant contribution to the scat-
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tering amplitudes is provided by scattering from the first andwhere
in some cases, from the secohthyers.

—2(2m) " ¥2Z,N

- P i (2)(q—
VI. CONCLUSION F= A lim lz o7(g—Ky)
uc 711’772—‘0+ 9
In this work a theoretical description of the scattering of _ -
fast(with respect to the Fermi velocitgharge particles from « exp(—iK,r )V'"(K) (AB)
a clean metallic semi-infinite solid has been presented. For (|Q—K|?+ ﬂi)[K%—(KﬂLki)z—i 7]

semi-infinite aluminum solid, calculations of the multiple
differential cross section have been performed using a jel;
lium initial-state wave function of the surface. A final- state
electron-surface image-charge interaction has been includ
in its asymptotic form. LEED scattering of the incident elec-
tron from the periodic bulk potential has also been included.

In Eg. (A5) the momentum transfer vect@:=k,—k; has
en defined. Using E¢39) for the final state, the functlon
Ei?e K), which occurs in Eq(A4), is readily deduced to

From a kinematic analysis four different ionization mecha- |(K):(2W)—3/2f d3reexd —i(Q+ke—K)-re

nisms have been deduced and confirmed by the full dynami-

cal model. +io(re)lxk(re). (AB)
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APPENDIX A: ANALYTICAL EVALUATION OF T;{g the logarithmic phase in the integr@6) can be rewritten as

To derive an expression for the scattering amplit(2t
we perform in this appendix the integrals involved in Egs. exp(l(p)— lim
(25) and(26). The initially undisturbed electronic solid state F( )
is described by the wave function given by E&7). To
avoid difficulties arising from the infinite range of Coulomb \here o= —ia+ 5, [we recall thata= — 1/(4k, ,)] and &
interactions we introduce the cutoff potential '

detexp( —Ertel (A8)

=2k, 1z Thus the integral(K) evaluates to
_Zpexq_ 771|re_rp|)

W= lim — : (A1) 17
p0" [re—rpl I(K)— lim ' T )f dtt* 1y (A1), (A9)
Thus expressiofi26) can be written as
where
F=-Z, lim (2w)*3f dgexfi(q—Kp) el Wpe
71,m2—0" ALt 277 ki—A ! R
Xe(A D) =i NV @k~ U Ak A Tk,
1 ~
X (kp= 0, 71)—5————Wp(q—kj). (A2) T
A =iy

Upon substituting the form factdV3(q—k;) [Eq. (34)] into o _ _
Eq. (A2) we obtain The vectorA is given by A:=Q—K+Kkg—i&. Using the

screened Coulomb potentials, given by E85), for the

—2(2m) " ¥Z,N muffin-tin ion potentialsv'®", Eq. (A4) reduces to
Fe—f fd3 §P(g—Ky)
A
ue 71 772%0* 9 ‘ ~NZyZess
_ - Too= lim : J dtte 1 11(t,l,g),
exp(—iK,r )V'(K) ' ot AT (@) Jo L.g
Xexn](q k > 5 71,7273 ALl
|k —q*+ 7)) (K2 =q?~in,) (A11)
(A3)  where
Changing variables frong to K the expression(25) for .
Ts.n simplifies to l(t,l,g):= f_ dK,Y(K,.t1,9) (A12)

Tzfgzjd3K]—'(K)l(K), (AD) g
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Lo=exp(—izor, B 2i1Q— g1 K2 — ki j+g|?
(A21)

Y(K,t1,g) =exp(—iK,r, ) xe(AK=g)[|Q—gl?
+(Q— K%+ 7] K2 — |k +g? — (ki +20)%] o + 25+ N3] %
— (ki o+ Kp)2=im] g+ KE+AZ ]t

(A13)

In the caseK? > |k; | +gj|? we obtain for.;

-1
_ = . 2 o \21-1
An expression for the integr&h12) is obtained by convert- L1=—-exn izyr L DB Q= g l*+(Qz~20)°]

ing K, to a complex variable and considering the improper

contour integral X[KZ =k + g2 Y gt + 5+ o] 7t (A22)

, whereas ifK? <|k; ||+9H|2 the following relation is valid:
||(t,|,gH)= lim é dKZY(KZ,t,|,gH). (A14) '
p— [JGP

—i
. . Ly=—-exp—izir, )Bil|Q—gl*+(Q,—z)*1 ™t
sincer, <0 (r, o=—d,/2) we choose the domaiG as 2 1Bl H H' 2

the upper half of the complex plane, i.65={K,|Im(K,)

>0,|K,|<p}. The functionY(K,) is meromorphic irG, i.e.,

it possesses only isolated singularities and thus can be evalu-

ated via calculus of residues. The polesYdK,) in G de- . )

pend on the sign df, , and hence on the geometry in which Finally, the expression fot; reads

the experiment is performed. In a transmission experiment _

Ke - is negative, whereds, ,>0 in reflection geometry. Here _ — I exl—izor, Bl g2

we perform the calculations in reflection geometry; similar =275 f2 1,2 21,2l IR~

s . e g) T Aets

considerations apply to transmission mode. The poles of

Y(K,) in G are determined to be +(Q,—2)%1 K2 — ki j+9|>— (ki ,+22)2] %
(A24)

20=Q,+i[|Q—g|*+ #5]"2

X[=K2+ [k + g2 YA gt + 25+ N5l
(A23)

(A15)

The functionsB; ,j=0,1,2 have been defined as
—ki (K2 = [k +g [P =in]"? if KZ>[k; +g?

2= : _ B;:=(bj—k,) " 1+ R(bj+k,) A I=T(bj—iy) T,
! _ki,z+[K2—_|ki,H+gH|2_|7]2]1/2 if K2—<|ki,\|+gH|21 ! y z ! z ! (A25)
(A16)
whereb; :=Q,—zj+Ke ;-

Z,=i(gf + N3¢ M2 (A17)

APPENDIX B: EVALUATION OF THE

Thus the integralA14) can be expressed as SINGLE-SCATTERING AMPLITUDE T

2 In this appendix we carry out the integrals involved in Eq.
(t,1,g)=2mi > Res Y(K, t,l .g))- (A18)  (19). Making use of Egs(Al), (39), and(37), Eq.(19) reads
v=0 v

Inserting Eq(A18) into Eq.(A4), the remaining integral
can be carried out analytically by using the integral represen-

tation of theg function[34]
ft“*1(1+ﬂt)*”dt=ﬁ*”8(u,v—m,
0

larg8| <7, Re(v)>Re(u)>0. (A19)

Furthermore, using the relatioB(x,y)=I"(x)I'(y)/T"(x
+vy) , we end up with the expression

. 8 Z,Z.N
Toin_ /| P e-27maB[(1+ja)exp(ialn2k, ,)
p.s 7V Ay . qu

x% 8D (k= Q)+ gj—Key) (Lot L1+ Ly),
9|

(A20)

where

Toe=—2Zy(2m) %2 lim jdrpdreexp{—i[Q-rp+ke-re

707"

exp(— 771| le™ rpl)
|re_rp|

—o(re)l} Xk(Te). (B1)

Upon replacing the logarithmic phase in E&1) by its in-
tegral representation, given by E@\8), and performing the
integral over the projectile coordinates, EB1) simplifies to

—4 1 =

Toe=——" lim —————— 2fdtt“*lJ(t),
21, o T (@[QP+ 71 )0

(B2

where
J(t)= (277)‘3’2f dreexd —i1(Q+ke—i18) relx(re)

=X (A1) (B3)
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In Eq. (B3) we introduced the complex vectdr: =Q+k,  The functions); are given by
—i&. Analogously to Eq(A10), the Fourier transfornd(t)
evaluates to

. -1
(= —i2k
Jizbflf dtt“1(1+ _e'zt) . i=1,23,
=i\ ors(k /T)( . ! ) ’ "
= -~ - — — —=. B6
Vv A, -k, Ak, A,—iy (B6)

(B4)

where b;=Q,+Kke,—K,,b,=Q,+k.,+k,, and b3=Q,

+ke ,—i7y. Making use of Eq(A19) and after some elemen-
?ary algebra we end up with the final expression

Now inserting Eq.(B4) into Eqg. (B2), the remaining one-
dimensional integral can be algebraically transformed to th
B-function integral representation, given by E§19):

Tow=—iZ,(2aV) Y252 (k- Ay .
> p( i ) ( H ”) Tzlen:—|Zp(27TV)71/25(2)(kH—/T”)'F(1—J’_2|a)e727Ta/3
1 Q
I|m 2 2 (\]1+R\]2_TJ3) . _ _
ngm—0* T (@LQ7F 1] x exialn(2ke ) ][b; @ 1+ Rb, @ 1-Tb, a1,
(B5) (B7)
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