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Electron ejection from clean metallic surfaces upon charged particle impact
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In this work we present a theoretical treatment of electron ejection from a clean metallic semi-infinite solid
with an ideal orthorhombic Bravais lattice following the impact of moderately fast charged particles with
respect to the Fermi momentum of the initially bound electron. For an aluminum semi-infinite solid target
multiple differential cross sections have been evaluated using a jellium-type wave function of the undisturbed
surface in the initial state. Image-charge final-state electron-surface interactions have been included as well as
the scattering of the projectile from the multicenter bulk potential. From a kinematic analysis of the process
various ionization mechanisms are inferred and confirmed by the present dynamical model.
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I. INTRODUCTION

The pathways for the simultaneous emission of two el
trons from atomic and molecular systems upon electron
pact @hereafter referred to as the (e,2e) process# have been
investigated thoroughly@1–3#. The complexity of this reac-
tion is already revealed in the simplest case of the lo
energy electron-impact ionization of atomic hydrogen wh
final-state interactions of the escaping particles stron
modify the observed electron spectra@4,5#. Hence a realistic
approximate eigenfunction of the nonseparable three-b
Hamiltonian is needed. Although such experiments us
thin solid films have been conducted@7# shortly after their
atomic counterpart@8,9#, the study of the dynamics of ion
ization of solid surfaces upon charged particle impact is s
in its infancy. In general, a theoretical description of th
process from solid targets has to deal with various aspec
the beam-solid interactions. A charged projectile imping
on a metallic target, which is the subject of this work, lea
to a charge-density fluctuation in the solid. Asymptotical
this causes an image-charge distortion of the incoming
outgoing particles@6#. Furthermore, the motion of vacuum
electrons is periodically distorted by the interaction with t
bulk potential@10,11#. In addition, the electronic beams a
attenuated by the incoherent generation of optical phon
Interactions with acoustic phonons lead to spreading of th
beams@10,12,13#. The excitation of collective modes durin
the collision process poses an additional obstacle for theo
ical treatment, in particular if the ionization event takes pla
in an inner band with simultaneous plasmon generation.
description of the elastic and inelastic multiple-scatter
events from the multicenter solid potential is a further co
plication for theory. The strength of the above-mention
interactions is very much dependent on the interaction t
of the projectile-solid scattering system and hence on
velocity vectors of the incoming and escaping particles.
fact, in a transmission mode (e,2e) scattering from thin
films, all above-listed processes can be neglected for h
energetic~in the keV regime! incoming and outgoing elec
trons under Bethe-ridge kinematics@14–16#. The vacuum
561050-2947/97/56~2!/1403~11!/$10.00
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electrons are then described by undistorted plane waves.
secondary electron is knocked out by a direct encounter w
the projectile, while all other degrees of freedom of the so
remain ‘‘frozen’’ @17–19,15#. Under these circumstances th
measured cross section can be related to the spectral mo
tum density of the initially bound electron@15,16#. This fact
has been employed for the experimental investigation of
band structure of a variety of solid targets~see@15,16,20#
and references therein!. The corresponding theory@21,22#
deals essentially with the band structure of the solid rat
than scattering dynamics. The successful description of
spectral electron-momentum densities underlines the vali
of this one-step impulsive plane-wave approximati
~IPWA! in this case. However, even at higher energies,
IPWA breaks down in the reflection mode since in this ca
at least, a two-step mechanism is required for the ejectio
the electrons. Nevertheless, as shown in Refs.@23,24#, some
information on the target band structure can still be extrac
from these experiments even at moderate electron ener
With decreasing energies of the vacuum electrons the ab
mentioned electron-solid interactions become relevant.

A series of (e,2e) measurements from W~001! and LiF
have been conducted at energies close to the vacuum th
old and in the normal-incidence, back-reflection geome
Surprisingly, the qualitative features of the observed spe
coincide with the predictions of a crude kinematic mod
@25–27#. To explain these experiments sophisticated lo
energy quantum-mechanical calculations have been
formed recently@28#.

The aim of this paper is to investigate the domina
mechanisms for the electron ejection from a metallic surf
at moderate energies~several times the Fermi energy!. The
feasibility of such experiments with sufficient angular a
energy resolutions has been demonstrated@23,24#. The fun-
damental underlying approximation of the present study
the assumption that the degrees of freedom of the proje
can be decoupled from those of the target. This is justifi
since we assumed the momenta of the incoming and ou
ing electron to be considerably larger than the Fermi mom
tum. In order to obtain analytical results that can be sim
1403 © 1997 The American Physical Society
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FIG. 1. Schematic representation of the different ionization mechanisms~a!–~d! as described in the text.
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analyzed, a jellium wave function of the initially bound ele
tron is assumed. Asymptotic image-charge distortion of
vacuum electron is taken into account. In addition to
binary collision of the projectile with the bound electron, t
scattering of the incident particle from the multicenter bu
potential is treated in the kinematic approximation@11,30#. A
screened Coulomb muffin-tin bulk potential is adopted. T
applicability of the theory is limited to the moderate ele
trons’ energies, which allows us to neglect plasmon and p
non excitations, as described above. Within this model f
possible collisional mechanisms for the ejection of elect
pairs are identified~see Fig. 1!. In the first process the pro
jectile is directly transferred into the vacuum after a bina
collision with the electron. The electron recoils off th
‘‘background charged’’ elastically. In the second process
electron is knocked out into the vacuum following a bina
encounter with the projectile, whereas the projectile rec
off the multicenter bulk potential. In the third process t
two electrons recoil off the bulk potential after a direct b
nary scattering. Finally, in the fourth process both electr
are ejected into the vacuum after the projectile recoils off
bulk potential. The theory is formulated for a structurele
projectile of an arbitrary mass and charge. However, the
sumption of negligible phonon excitation due to the proje
tile impact becomes questionable for energetic heavy~with
respect to the ionic core! projectiles. Atomic units are use
throughout.

II. THEORETICAL FORMULATION

We consider a scattering system consisting of a projec
with chargeZp and massmp being inelastically scattere
from a clean, metallic semi-infinite solid ejecting one ele
e
e

e
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s
e
s
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-

tron into a vacuum level of the solid. The total Hamiltonia
of the projectile-solid system is

H5Hp1He1Wpe , ~1!

whereHe is the Hamiltonian of the semi-infinite solid in th
absence of the projectile,Wpe is the projectile-ejected elec
tron interaction, andHp describes the projectile-crystal inte
action and contains the plasmon and phonon modes and
interaction with the electron. To avoid difficulties associat
with infinite-range potentials that lead to scattering even
an infinitely large impact parameter we assume all infini
range interactions involved in our process to be screened
large but finite distance. This allows us to define asympt
cally unperturbed initial and final channel HamiltoniansHi
and H f , respectively. The initial and final-state bounda
conditions are specified by eigenstatesu i &,u f & of Hi and
H f , i.e.,

~Hi2Ei !u i &50, ~2!

~H f2Ef !u f &50, ~3!

where Ei ,Ef are the corresponding asymptotic eigenen
gies. The transition amplitudeT for the scattering system
initially prepared in the~asymptotic! stateu i &, to go over into
the asymptotic final stateu f & is determined by the prior form

T5^C2uVi u i & ~4!

or the post form

T5^ f uVf uC1&. ~5!
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56 1405ELECTRON EJECTION FROM CLEAN METALLIC . . .
The state vectorsuC1& anduC2& are eigenstates of the tota
HamiltoniansH, given by Eq.~1!, with the asymptotic be-
havior given byu i & and u f &, respectively. The1 (2) sign
refers to to incoming~outgoing! wave boundary conditions
In Eqs.~4! and~5! the perturbationsVi andVf are given by

Vi5H2Hi , ~6!

Vf5H2H f . ~7!

In what follows we confine the treatment to the prior form
theT matrix @Eq. ~4!#. Equivalent considerations apply to th
post form. The eigenstateuC2& of H can be written as

uC2&5V2u f &, ~8!

where the Mo” ller wave operatorV2 is given by

V2511G2Vf . ~9!

In Eq. ~9! G2 is the resolvent~Green operator! of the total
HamiltonianH. Combining Eqs.~9!, ~8!, and~4!, theT ma-
trix element reads

T5Tsin1Tmult, ~10!

where

Tsin:5^ f uVi u i &, ~11!

Tmult:5^ f uVfG
1Vi u i &. ~12!

AssumingVi to be a multiple-center potential, the first ter
of Eq. ~10!, Tsin, describes the transition of the system fro
stateu i & to u f & due to a single scattering from each individu
scattering center. One-center and multicenter multiple s
tering is contained in the matrix elementTmult in Eqs. ~10!
and~12! since the Lippmann-Schwinger equation of the to
Green operator leads to the expansion

Tmult5K fUVfG0
1(

j 50

`

@VG0
1# jU i L , ~13!

whereG0
1 and V are the full free propagator and the tot

potential of the projectile-solid compound. It should be no
here that the labelssin andmult of the amplitudesTsin and
Tmult refer to single and multiple scattering specifically fro
the potentialVi . In this study we choose the asymptot
initial state as a noninteracting projectile-solid state, i.e.,

Hi5He1Kp , ~14!

where Kp is the kinetic-energy operator of the projectil
Thus, according to Eq.~6!, the perturbation in the initia
channel can be written as

Vi5H2Hi5Wpe1Wp
s1Wp

vac . ~15!

The operatorWp
s stands for the projectile-bulk interactio

and its explicit functional form is specified below. The p
tential Wp

vac amounts to the asymptotic interaction of th
projectile with the solid. As mentioned in the Introductio
we deal with a fast projectile with respect to the Fermi v
locity so that projectile-phonon coupling is negligible~the
l
t-

l

d

-

motion of the ionic cores is very slow on the time scale
the projectile-solid interaction time!. For the asymptotic
final-channel Hamiltonian the following choice is approp
ate:

H f5Ke1Kp1Wp
vac1We

vac1Wpe . ~16!

Here the kinetic-energy operator of the secondary electro
referred to byKe , whereasWe

vac amounts to the asymptoti
final-state interaction of this electron with the semi-infin
solid. The choice~16! leads to the final-channel distortio
operator

Vf5Wp
s1We

s , ~17!

whereWe
s denotes the short-range interaction of the seco

ary electron with the surface.

III. STRUCTURE OF THE MULTICENTER
SINGLE-SCATTERING AMPLITUDE

Upon substitution of Eq.~15! into Eq. ~11!, the matrix
elementTsin can be decomposed into

Tsin5Tpe
sin1Tp,s

sin1Tp,v
sin , ~18!

where

Tpe
sin :5^ f uWpeu i &, ~19!

Tp,s
sin :5^ f uWp

su i &, ~20!

Tp,v
sin :5^ f uWp

vacu i &. ~21!

As we are dealing with a metallic semi-infinite solid w
adopt a mean-field, one-particle treatment of the initia
bound electron in the solid, e.g., a jellium model. Neglecti
any corrections due to the finite mass of the solid with
spect tomp , we choose a coordinate system in which thex
andy directions lie in the surface plane, whereas thez axis is
chosen as the normal of the surface pointing into
vacuum. The origin is chosen at the highest occupied e
tronic band at absolute zero temperature, e.g., at the jell
edge. The amplitudes, given by Eqs.~19! and ~20!, provide
~in a perturbative sense! the first-order approximation to th
matrix elementT. The term given by Eq.~21! is less promi-
nent sinceWp

vac is an asymptotic~image charge! perturba-
tion. In fact, includingWp

vac in Hi @Eq. ~14!# instead ofVi

@Eq. ~15!# would lead to only a logarithmic phase modific
tion of the plane-wave motion of the projectile. This mod
fication is insignificant for high-velocity projectiles.

In a position-space representation the transition oper
occurring in Eq. ~19! has the formWpe52Zp /ur p2reu,
wherer p andre are the position vectors of the projectile an
ionized electron, respectively. In the present model,Tpe

sin is
an estimate for the probability of the direct transition of
delocalized electronic bound state into a vacuum state aft
direct projectile-electron encounter. No effect of the perio
structure of the solid is included in Eq.~19!. On the other
hand, the transition amplitudeTp,s

sin @Eq. ~20!# is a measure
for the electron-ejection probability due to an initial scatte
ing of the projectile from the periodic potential of the sol
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1406 56J. BERAKDAR AND M. P. DAS
and a subsequent projectile-electron collision. The latter
counter is included as a final-state projectile-electron in
action, as can be seen from Eq.~16!. Thus it is comprehen-
sible that the transition amplitudeTp,s

sin shows some
resemblance to the low-energy electron diffraction~LEED!
transition amplitude, as indicated below.

A. Evaluation of Tp,s
sin

Suppose that in a scattering experiment the final-chan
asymptotic vector momentakp ,ke are simultaneously spec
fied as well as the incident vector momentumk i of the pro-
jectile. For simplicity we disregard for the moment th
~asymptotic! image-charge~logarithmic phase! distortions of
the projectile and electron motion in the final state. In t
projectile case this is reasonable since we assumed fast
tered particles. Distortions of the electron’s motion in t
final state due to the~asymptotic! image-charge field are con
sidered subsequently. Thus, for the moment, we neglect
potentialWp

vac ,We
vac in Eq. ~16!. For a given final-state en

ergyEf , the two-center HamiltonianH f is exactly separable
in the coordinate systemR2 ^ R1 , whereR25r p2re and
R15r p1re . The asymptotic stateu f & reads

u f &5uK1& ^ ufK2
&, ~22!

whereuK1& describes the plane-wave motion in the coor
nateR1 with the conjugate asymptotic momentumK15kp
1ke and ufK2

& satisfies the Lippmann-Schwinger equati

(Wpe is assumed to be of finite range!

ufK2
&5~11gpe

1 Wpe!uK2&. ~23!

HereuK2& denotes a plane-wave state vector in the electr
projectile coordinateR2 with the corresponding conjugat
momentumK25mp(kp /mp2ke), wheremp5mp /(mp11)
is the electron-projectile reduced mass. In Eq.~23! gpe

1 is the
full propagator of the projectile-electron relative motion
the potentialWpe .

The form of the asymptotic initial-state HamiltonianHi
@Eq. ~14!# implies that u i & can be expressed as the dire
productu i &5uk i& ^ uxk&, whereuk i& describes the free projec
tile motion with incident momentumk i anduxk& is an eigen-
state of the solid HamiltonianHe with initial binding energy
ek . Considering Eq.~23! and changing the representation
r p^ re , Eq. ~20! can therefore be written in the form

Tp,s
sin5^kp ,keuWp

suxk ,k i&1^kp ,keuWpegpe
2 Wp

suxk ,k i&.
~24!

In this work we assume that the projectile-bulk periodic sc
tering potential depends only onr p and its form will be
specified below. Thus the first term in Eq.~24! involves a
direct overlap of the eigenstatesuxk& and uke& of the same
Hamiltonian He with different eigenvalues (ek ,ke

2/2) and
therefore vanishes. Since the full projectile-electron propa
tor gpe

2 5g0
21g0

2Wpegpe
2 enters in the second term of Eq

~24!, the corresponding two-body scattering takes place
infinite number of times. In spirit of thekinematic approxi-
mation employed in LEED studies@11,30,29#, only single
scattering from each of the scattering centers is taken
n-
r-

el
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he
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n-

t

t-
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n

to

account. This amounts to replacinggpe
2 by g0

2 in Eq. ~24!. To
derive an expression forTp,s

sin we reformulate Eq.~24! as

Tp,s
sin5^keuFuxk& re

, ~25!

where upon the introduction of complete sets of plane wa
in the momentum space conjugate touR2& the operatorF is
given by

F5E E d3qd3q8^kpuWpeuq8&^q8ug0
2uq&^quWp

suk i& r p
.

~26!

The term ^q8ug0
2Wp

suk i& r p
describes the scattering of fre

charged particles with momentumk i from the periodic po-
tential of the solidWp

s and their free propagation into a free
particle beam with momentumq8. This corresponds to the
LEED process@29#. Thus Eq.~25! can be interpreted as fol
lows. A beam of free particlesuk i& scatters into a free beam
of particles from the periodic potentialWp

s and propagates
freely to an initially bound electronic distribution of th
solid, described byuxk&. After an inelastic collision with the
projectile this distribution is transferred into a free vacuu
state uke&, whereas the projectile emerges into a free st
ukp&.

To evaluate the expressionF @Eq. ~26!# the Fourier trans-
form of the periodic potentialWp

s is needed. Here we con
sider a solid with an orthorhombic Bravais lattice. The p
tential Wp

s is assumed as a superposition of effective c
potentials of the ions:

Wp
s5(

i

N

Vi
ion , ~27!

whereVi
ion is the ionic core potential at the sitei andN is the

number of ions in the solid. Since we are considering a se
infinite solid, Wp

s is periodic in each layer parallel to thex-
y plane, but not in thez direction. The lattice constants in th
x, y, andz directions aredx , dy , anddz , respectively. The
j th ion in the l th layer has the coordinatesr j ,l5(r i , j ,r',l).
Thus the periodic potentialWp

s at the positionr 8 can be
written as

Wp
s~r i8 ,z8!5(

l
(

j
Vion~r i82r i , j ,z82r',l !. ~28!

SinceWp
s is periodic in thex andy directions we can intro-

duce @11,30# two-dimensional reciprocal vectorsgi
52p(nx /dx ,ny /dy),nx ,nyPZ, and writeWp

s at the position
r 8 as

Wp
s~r i8 ,z8!5(

gi

W̃p
s~gi ,z8!exp~ igi•r i8!. ~29!

The two-dimensionalgi Fourier transformW̃p
s(gi ,z8) is

given by

W̃p
s~gi ,z8!5

1

Auc
E

uc
d2r i8Wp

s~r i8 ,z8!exp~2 igi•r i8!,

~30!
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56 1407ELECTRON EJECTION FROM CLEAN METALLIC . . .
whereAuc5dxdy is the surface of a unit cell in thex-y layer
and the integral in Eq.~30! runs over this unit cell. The
expression̂ quWp

suk i&, which enters Eq.~26!, evaluates to

^quWp
suk i&5~2p!23f(

gi
E d3r pexp~2 iK•r p

1 igi•r p,i!W̃p
s~gi ,zp!

5~2p!21f(
gi

d~2!~gi2K i!E dzpW̃p
s~gi ,zp!

3exp~2 iK zzp!, ~31!

whereK :5q2k i and f 5exp(iq•re). Thus the periodicity of
the potential in the directions parallel to the surface lead
the Bragg conditiongi52K i . Upon substitution of Eqs
~28! and ~30! into Eq. ~31! and considering thatN
5( jexp(2igi•r i , j ), Eq. ~31! can be written in the form

^quWp
suk i&5~2p!23/2f W̃p

s~K !. ~32!

The form factorW̃p
s(K ) derives to

W̃p
s~K !5

N~2p!2

Auc
(
l ,gi

d~2!~gi2K i!e
2 iK zr',lE

2`

`

drz

3E
uc

d2r iV
ion~r i ,zp!exp@2 i ~gi•r i1Kzrz!#,

~33!

where r5r p2r j . Within a model of nonoverlapping
muffin-tin ionic potentialsVion the integration in Eq.~33!
over the unit cell can be extended to the entirex-y plane and
we end up with the final expression

W̃p
s~K !5

N~2p!2

Auc
(

l
e2 iK zr',l(

gi

d~2!~gi2K i!Ṽ
ion~K !.

~34!

In Eq. ~34! Ṽion(K ) is the Fourier transform ofVion. Here
we use for theVion screened Coulomb potential

Vion~r p!5Ze f f /r pexp~2le f fr p!. ~35!

The effective parametersZe f f ,le f f account for the screenin
of the pure ionic field due to the presence of the localiz
positive cores as well as delocalized electrons@30#.

The initially bound electronic distribution is described b
the effective one-body vectoruxk&. An expression foruxk&
can be derived using the local-density functional method
which the ionic cores are considered as a constant pos
‘‘background charge.’’ Finding the many-body eigenstates
He is then reduced to the iterative self-consistent solution
a one-body problem. Within the jellium model, the resulta
effective one-particle potential is replaced by a step poten
V0 at z50. Within the metal volumeV the conduction-band
electrons are treated as free particles bound to the metal
spacez,0 by a potential barrier

V05eF1W, ~36!
to

d

n
ve
f
f
t
al

alf

whereeF is the Fermi energy andW is the work function.
The density of states is given by that of the free-electron
~apart from a factor 2 that accounts for the electronic s
states! r j5V/(4p3). Thus the jellium wave function can b
expressed in terms of reflection and transmission coefficie

^reuxk&5
1

AV
exp~ iki•re,i!3H eikzze1Re2 ikzze, z,0

Te2gze, z.0.
~37!

The reflection and transmission coefficientsR and T are
given by

R5
kz2 ig

kz1 ig
, T5

2kz

kz1 ig
~38!

andg5A2V02kz
2.

As stated above, we consider cases of fast incoming
outgoing projectiles so thatu2Zp /kpu!1, i.e., the distortion
of the projectile’s motion due toWp

vac can be disregarded
The image-charge interaction of an electron with a se
infinite metallic solid goes asymptotically to the classic
limit 21/4z @6#. Thus the eigenfunction ofH f @Eq. ~16!# at a
given asymptotic energyEf is readily deduced as

^re ,r pu f &'f f~re ,r p!

5~2p!23exp@ ikp•r p1 ike•re2 iw~re!#. ~39!

In Eq. ~39! the termw(re)5aln(2ke,zze) is the phase modifi-
cation of the asymptotically free electron motion due to
image charge whereke,z5 ẑ•ke and the Sommerfeld param
etera521/4ke,z indicates the strength of this interaction.
the casea[0 we end up with the final-state being a produ
of two free-particle states. The final state energy is given
Ef5ke

2/21kp
2/2mp .

As shown in Appendix A, the amplitude for the scatterin
of the projectile from the bulkTp,s

sin @Eq. ~25!# can be derived
analytically:

Tp,s
sin5A 8

pV

ZpZe f fN

Auc
e22pa/3G~11 ia !exp~ ia ln2ke,z!

3(
l ,gi

d~2!~ki2Qi1gi2ke,i!~L01L11L2!, ~40!

where the functionsLj , j 50,1,2, are given by Eqs.~A21!–
~A24!. For the calculations of Eq.~40! the ionic-site poten-
tials, given by Eq.~35!, and the wave function~37! for the
initially bound electron have been employed. We note h
that in the course of the derivation of Eq.~40! a distinction
had to be made between the transmission and reflec
mode ~with respect to the momentum of ejected electro!.
Equation~40! is valid for reflection mode. The expression
Tp,s

sin under transmission conditions is easily derived follo
ing the procedure outlined in Appendix A~in this case and
for higher incident energies we have to assume that the e
tron is ejected from jellium states of the surface opposite
projectile source as shown in Ref.@15#!. In Eq. ~40! the
distortions of the motion of the ionized electron due
image-charge effects have been taken into account. For i
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1408 56J. BERAKDAR AND M. P. DAS
lating target or fast outgoing electrons these distortions
be switched off by the replacementa[0. The periodicity in
the x-y plane leads to the Lau-type condition expressed
the two-dimensionald function in Eq.~40!.

B. Discussion of the single-scattering amplitudeTpe
sin

The amplitudeTpe
sin , as given by Eq.~19!, describes the

ionization process as a direct binary encounter of the pro
tile with the initially bound electron. As shown in Append
B, its functional form is derived to

Tpe
sin52 iZp~2pV!21/2d~2!~ki2Qi2ke,i!

G~11 ia !

Q2
e22pa/3

3exp@ ia ln~2ke,z!#@~Qz1ke,z2kz!
2 ia21

1R~Qz1ke,z1kz!
2 ia212T~Qz1ke,z2 ig!2 ia21#.

~41!

The free motion of the bound electron in thex-y planes
results in the two-dimensionald function in Eq.~41!. As in
the case of ionization of atomic and molecular systems,
cross section decreases rapidly~proportionally to 1/Q4) with
increasing momentum transfer. This is a direct conseque
of the assumption that the perturbation leading to the e
tron ejection possesses the Coulombnic functional fo
~A1!.

IV. MULTIPLY DIFFERENTIAL CROSS SECTIONS

The multiply differential cross section for the simult
neous detection of the escaping particles with mome
ke ,kp following charged-particle impact is@31#

s~k i ,k!5~2p!4
1

v i
E( uTu2d~Ef2Ei !d

~3!

3~Pf2Pi !d
3ked

3kpd3kcore , ~42!

wherev i5uk i u/mp , Pf ,Pi are the total linear momenta in th
final and initial channels, andkcore is the momentum ab
sorbed by the solid. Thus thed functions in Eq.~42! indicate
the total momentum and the energy-conservation laws
Eq. ~42! the symbol*( signifies summation or integratio
over all nonresolved final- and initial-state quantum nu
bers. Assuming a ‘‘frozen-core’’ approximation, due
which all degrees of freedom of the system except for th
of the projectile and the active electron remain unchan
during the ionization process, the total linear momentum
the initial state reduces toPi5k i1k. The total linear mo-
mentum in the final channel isPf5kp1ke1kcore . In addi-
tion, we deduceEi5ki

2/2mp2Ek2W and Ef5kp
2/2mp

1ke
2/2. Within these approximations Eq.~42! simplifies to

s~k i ,k!5~2p!4
1

v i
uTu2d~Ef2Ei !d

3ked
3kp . ~43!

Usually @7,16,23,25,26#, the coincidence rate is measured
a function of the energiesEe ,Ep and the solid angles
Ve ,Vp of the emitted electron and scattered projectile,
spectively. In this case Eq.~43! reads
n

y

c-

e

ce
c-

ta

In

-

e
d
n

s

-

ds~k i ,k!

d2VedEed
2VpdEp

5~2p!4
kpke

v i
uTu2~Ef2Ei !. ~44!

Integration over the conduction band

Equation~44! yields, for given values ofk i ,ke ,kp , the
ionization probability of an initial solid state defined byk. At
present, coincident experiments do not resolve these st
Thus an integration overk is necessary:

ds~k i !

d2VedEed
2VpdEp

5E d3kr~k!F~k,T!

3
ds~k i ,k!

d2VedEed
2VpdEp

, ~45!

wherer(k) is the density of states at the temperatureT and
F(k,T) is the Fermi distribution. In the jellium mode
@r(k)5r j5V/4p3# and atT50, Eq. ~45! simplifies to

ds~k i !

d2VedEed
2VpdEp

5r jE
k<kF

d3k
ds~k i ,k!

d2VedEed
2VpdEp

.

~46!

For the scattering amplitudes, given by Eqs.~19! and ~25!,
the integration over the conduction band can be carried
analytically.

V. NUMERICAL RESULTS AND IONIZATION
MECHANISMS

The procedure developed above is applicable to scatte
events in the transmission and reflection mode. The exp
formulas~40! and~41! for the scattering amplitudes are val
for the case of the reflection mode. In order to apply t
method to a particular target the parameters for
projectile-bulk scattering potential~35! have to be specified
as well as the number of atomsN in the semi-infinite solid.
The effective parametersle f f and Ze f f , which account for
the screening of the projectile-ion interactions due to loc
ized and delocalized electronic states, can be determ
from the Thomas-Fermi model@32,30#

le f f5A3kF

p
. ~47!

In this work we present numerical calculations for an alum
num surface. In this case we obtainle f f50.886, which is
consistent with the assumption of nonoverlapping muffin-
ionic potentials that has been made in Eqs.~27! and~33!. For
Ze f f we assume full screening by localized electrons, wh
leads toZe f f51. The proportionality of the second-orde
scattering amplitude~40! to the number of scattering cente
N implies a divergent cross section for an infinite surfa
This same problem is encountered in the scattering of th
mic neutrons from crystals, in LEED processes@11#, as well
as in the treatment of transfer processes of electronic st
of a surface into the spectrum of an ionic beam scatte
from this surface@30#. The origin of this difficulty is the
neglect of crystal-damping effects on propagating bea
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e.g., in Eq.~26! the incoming plane waveuk i& is elastically
scattered intouq& under the coherent action ofN cores per
plane. In LEED reactions this problem is circumvented
estimating the number of cores in the solid illuminated
the incoming beam and relating them toN @11#. In our case
we adopt a similar procedure by relatingN to the number of
ionic coresNcores in a cylinder of radiusl̄ and heightl̄ ,
where l̄ refers to the mean free path of the impinging ele
tron beam. This is reasonable since, as remarked above
divergentN dependence of Eq.~40! is traced back to the
projectile-bulk elastic scattering. We remark here that fo
specific experimental geometry the scattering amplitude~40!
does not depend on the parametersN andZe f f in a dynami-
cal way, i.e., these parameters affect only the magnitud
this amplitude. Nevertheless, in cases where the amplitu
~40! and ~19! are of the same order, the interference patt
of these amplitudes can sensitively depend on the pro
NZe f f .

Ionization mechanisms

For electron-impact ionization of an aluminum surface
calculated the cross section~46! by performing a numerica
summation overgi andl . As stated above, the present theo
is applicable at moderate energies of the incoming and
going particles ~only the classical 1/4z image-charge
electron-surface interaction is taken into account!. Classi-
cally, the electron emission in the reflection mode is proh
ited in a one-step mechanism as described by Eq.~19!.
Hence, forke ,kp@kF , where classical arguments are app
cable, the contribution to the cross section of Eq.~19! is
negligibly small compared to that of the second-order am
tude ~40!.

The possible collisional ionization mechanisms describ
within this model are schematically depicted in Figs. 1~a!–
1~d!. In all cases it is assumed that the velocity of the i
pinging and emitted particles are large with respect to
initial momentum distribution of the electronic solid state.
order to get some insight into the influence of these mec
nisms on the spectra of the electrons we analyze Figs. 1~a!–
1~d! within a simple classical model in which we assume
target electron to be stationary and the bulk potential to
as a structureless reflection mirror in thex-y plane ~due to
the Lau condition parallel to the surface!. Subsequently we
look at the prediction of this simplified picture in light of th
full quantum-mechanical calculations. Classically, the c
shown in Fig. 1~a! means that the projectile is directly sca
tered into the vacuum after an inelastic binary encounter w
the delocalized electron and escape with momentumkp .
This electron is then elastically reflected from the bulk a
emerges into the vacuum with momentumke . Within the
full quantum-mechanical model, the latter interaction is
cilitated by the initial-state binding. Within the classic
model assumed above, this mechanism leads to a peak s
ture in the angular distribution of the continuum particles
up5u i2arctankp /ke,ue5p2ui2arctankp /ke,fe2fp50, as
can be deduced from simple kinematic consideration of F
1~a!. The appearance of the peak at the classically predi
position is endorsed by the full quantum calculations as d
onstrated in Fig. 2~a!. Since the projectile suffers relativel
small momentum loss, the magnitude of the cross sectio
y
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quite sizable. The classical model predicts ad-function dis-
tribution at the position marked by the arrow in Fig. 2~a!.
The broadness of the peak@Fig. 2~a!# predicted by the mode
presented in the previous sections is related to the electr
initial momentum distribution.

The classical mechanism displayed in Fig. 1~b! corre-
sponds to the quantum-mechanical picture where the delo
ized electronic state is directly transferred into a vacu
state following an inelastic collision with the projectile. A
in a LEED process, the scattered projectile is then refrac
from the bulk potential~35!. This process is described by th
amplitude~40!. In contrast, the single-scattering amplitud
~41! does not contain any projectile scattering from the bu
Our simplified classical model yields for the mechanism d
played in Fig. 1~b! a d-function structure in the angular dis
tribution of the emerging particles atup5p2u i
2arctanke/kp ,ue5ui2arctankp /ke,fe2fp50. The occur-
rence of this peak is nicely confirmed by the full quantu
mechanical model@Fig. 2~b!# with the initial momentum dis-
tribution of the secondary electron being reflected in
shape of the peak in Fig. 2~b!. Due to the much larger mo
mentum transfer, the cross section depicted in Fig. 2~b! is
markedly smaller than that of Fig. 2~a!.

In the classical case sketched in Fig. 1~c! both the electron
and the projectile are reflected from the bulk potential afte
binary ~isolated! encounter. Quantum mechanically, this pr
cess is facilitated by the scattering amplitude~40! only. The
classical kinematic conditions, under which this reacti
shows up in the angular distribution, are given byup
5arctanke/kp1p2ui , ue5arctankp /ke2p1ui , fe2fp5
6p. A comparison of the quantum model with those pred
tions is shown in Fig. 2~c!. Since the electron, whose angul
distribution is shown in Fig. 2~c!, is much faster than the
cases of Figs. 2~a! and 2~b!, the peak atup'50.5° is much
sharper. This is due to the fact that the initial momentu
distribution of the secondary electron is almost negligib
with respect tokp , i.e., during the interaction time the ini
tially bound electron appears to be stationary from the vie
point of the fast scattered electron.

The last classical kinematics discussed here is that of
1~d!, where the projectile is mirror reflected from the bul
Subsequently, the electron and the projectile are dire
transferred into vacuum levels following an isolated bina
scattering. Within the model discussed in the previous s
tions, this process is described by the scattering amplit
~40!. From the simple classical picture it is anticipated th
the cross section reveals ad-function structure atue
5arctankp /ke1p2ui , up5arctanke/kp2p1ui , fe50,fp
5p. This is confirmed by the quantum model@Fig. 2~c!#;
however, the peaks are quite shallow and clearly shifted fr
the classically predicted position. This is a consequence
the high momentum transfer to the crystal and the relativ
low velocity of the escaping particles as compared to
Fermi velocity. The same process depicted in Fig. 1~c! has
been proposed previously in Refs.@25–27# to describe the
observed spectra of two electrons simultaneously emi
following electron impact upon a clean tungsten surface.
repeated the calculations shown in Fig. 2 for a tungsten
face. Structures similar to those in Fig. 2~even more pro-
nounced! have been observed. The application of the pres
model to the experiments presented in Refs.@25–27#, how-
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FIG. 2. Angular distributions of electrons ejected from a semi-infinite aluminum solid upon electron impact. In cases~a!–~c! the impact
energy is chosen asEi5518 eV with respect to the vacuum threshold. The ejected electron escapes with an energyEe560 eV, whereas the
scattered one emerges with an energyEp5453 eV. The vectorsk i , ke , andkp are chosen to lie in the same (x,z) plane.~a! The scattering
geometry isu i5100°,up580°, andw i5wp5we50°. The cross section is scanned as function ofue . ~b! Same as in~a!, but up560°. ~c!
Same as in~a!, but u i5150°, ue540°, w i5wp50°, andwe5180°.~d! We chooseEi5418 eV,Ep5302 eV, andEe5110 eV. In addition,
u i5178°, up529°, w i5we50°, and wp5180°. The solid curves correspond to an antisymmetrized product of the final-state
function ~39! with image-charge distortions of the escaping particles being neglected, whereas these distortions are taken into acco
calculations shown by the dotted curves. In all figures the arrows indicate the positions of the peaks as predicted by the kinema
processes depicted in Figs. 1~a!–1~d! ~see the text for details!.
c
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c
ng
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on

due
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ver,
All

at-
ever, is questionable since these experiments have been
ducted at quite low energies, whereas the present mode
the kinematic arguments are valid only at momenta of
vacuum particles that are much larger than the Fermi m
mentum. At higher energies, the influence of this mechan
on the cross section is clearly seen in Fig. 2~c!.

Generally, the processes sketched in Figs. 1~a! and 1~b!
are most likely to dominate in the grazing incidence dire
tion. This conclusion relies upon the fact that, in grazi
incidence, the traveling distance of the projectile befo
reaching the bulk is much larger than in the case of nor
incidence geometry. In fact, further numerical investigatio
on-
nd
e
-

m

-

e
al
s

@33# using an Al surface show that the dominant contributi
to the (e,2e) cross section as reported in Ref.@23# is due to
the mechanism depicted in Fig. 1~a!.

As evident from Figs. 2~a!–2~d!, the final-state image-
charge interaction enhances the coincidence rate. This is
to the fact that a scattering from the ionic core is essentia
the reflection geometry. This scattering can occur, howe
via a final-state image-charge interaction with the solid.
calculations shown in Figs. 2~a!–2~d! have been performed
using a coherent sum of the transition amplitudes~40! and
~41!. The sum overgi ,l is rapidly convergent. In fact, it
turned out that by far the significant contribution to the sc
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tering amplitudes is provided by scattering from the first a
in some cases, from the secondl layers.

VI. CONCLUSION

In this work a theoretical description of the scattering
fast~with respect to the Fermi velocity! charge particles from
a clean metallic semi-infinite solid has been presented.
semi-infinite aluminum solid, calculations of the multip
differential cross section have been performed using a
lium initial-state wave function of the surface. A final-sta
electron-surface image-charge interaction has been inclu
in its asymptotic form. LEED scattering of the incident ele
tron from the periodic bulk potential has also been includ
From a kinematic analysis four different ionization mech
nisms have been deduced and confirmed by the full dyna
cal model.
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APPENDIX A: ANALYTICAL EVALUATION OF Tp,s
sin

To derive an expression for the scattering amplitude~25!
we perform in this appendix the integrals involved in Eq
~25! and~26!. The initially undisturbed electronic solid sta
is described by the wave function given by Eq.~37!. To
avoid difficulties arising from the infinite range of Coulom
interactions we introduce the cutoff potential

Wpe5 lim
h1→01

2Zpexp~2h1ure2r pu!
ure2r pu

. ~A1!

Thus expression~26! can be written as

F52Zp lim
h1 ,h2→01

~2p!23E d3qexp@ i ~q2kp!•re#W̃pe

3~kp2q,h1!
1

K2
2 2q22 ih2

W̃p
s~q2k i !. ~A2!

Upon substituting the form factorW̃p
s(q2k i) @Eq. ~34!# into

Eq. ~A2! we obtain

F5
22~2p!23/2ZpN

Auc
lim

h1 ,h2→01
(
l ,gi

E d3qd~2!~gi2K i!

3exp@ i ~q2kp!•re#
exp~2 iK zr',l !Ṽ

ion~K !

~ ukp2qu21h1
2!~K2

2 2q22 ih2!
.

~A3!

Changing variables fromq to K the expression~25! for
Tp,s

sin simplifies to

Tp,s
sin5E d3KF~K !I ~K !, ~A4!
,

f

or

l-

ed
-
.

-
i-

s

.

where

F:5
22~2p!23/2ZpN

Auc
lim

h1 ,h2→01
(
l ,gi

d~2!~gi2K i!

3
exp~2 iK zr',l !Ṽ

ion~K !

~ uQ2K u21h1
2!@K2

2 2~K1k i !
22 ih2#

. ~A5!

In Eq. ~A5! the momentum transfer vectorQ:5kp2k i has
been defined. Using Eq.~39! for the final state, the function
I (K ), which occurs in Eq.~A4!, is readily deduced to

I ~K !5~2p!23/2E d3reexp@2 i ~Q1ke2K !•re

1 iw~re!#xk~re!. ~A6!

Using the integral representation

z2a5
1

G~a!
E

0

`

dtexp~2zt!ta21, Re~a!.0, Re~z!.0,

~A7!

the logarithmic phase in the integral~A6! can be rewritten as

exp~ iw!5 lim
h3→01

1

G~a!
E

0

`

dtexp~2j•re!t
a21, ~A8!

wherea52 ia1h3 @we recall thata521/(4ke,z)# and j:
52ke,zt ẑ. Thus the integralI (K ) evaluates to

I ~K !5 lim
h3→01

1

G~a!
E

0

`

dtta21x̃ k~L,t !, ~A9!

where

x̃ k~L,t !5 iA2p

V
d~2!~ki2Li!S 1

Lz2kz
1

R

Lz1kz

2
T

Lz2 ig D . ~A10!

The vectorL is given by L:5Q2K1ke2 i j. Using the
screened Coulomb potentials, given by Eq.~35!, for the
muffin-tin ion potentialsVion, Eq. ~A4! reduces to

Tp,s
sin5 lim

h1 ,h2 ,h3→01

2NZpZe f f

p2AucG~a!
E

0

`

dtta21(
l ,gi

II ~ t,l ,gi!,

~A11!

where

II ~ t,l ,gi!:5E
2`

`

dKzY~Kz ,t,l ,gi! ~A12!

and
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Y~Kz ,t,l ,gi!5exp~2 iK zr',l ! x̃ k~L,K i5gi!@ uQi2giu2

1~Qz2Kz!
21h1

2#21@K2
2 2uk i ,i1giu2

2~ki ,z1Kz!
22 ih2#21@gi

21Kz
21le f f

2 #21.

~A13!

An expression for the integral~A12! is obtained by convert-
ing Kz to a complex variable and considering the improp
contour integral

II ~ t,l ,gi!5 lim
r→`

R
]Gr

dKzY~Kz ,t,l ,gi!. ~A14!

since r',l,0 (r',052dz/2) we choose the domainG as
the upper half of the complex plane, i.e.,G5$KzuIm(Kz)
.0,uKzu,r%. The functionY(Kz) is meromorphic inG, i.e.,
it possesses only isolated singularities and thus can be e
ated via calculus of residues. The poles ofY(Kz) in G de-
pend on the sign ofke,z and hence on the geometry in whic
the experiment is performed. In a transmission experim
ke,z is negative, whereaske,z.0 in reflection geometry. Here
we perform the calculations in reflection geometry; simi
considerations apply to transmission mode. The poles
Y(Kz) in G are determined to be

z05Qz1 i @ uQi2giu21h1
2#1/2, ~A15!

z15H 2ki ,z2@K2
2 2uk i ,i1giu22 ih2#1/2 if K2

2 .uk i ,i1giu2

2ki ,z1@K2
2 2uk i ,i1giu22ih2#1/2 if K2

2 ,uk i ,i1giu2,

~A16!

z25 i ~gi
21le f f

2 !1/2. ~A17!

Thus the integral~A14! can be expressed as

II ~ t,l ,gi!52p i (
n50

2

Reszn
Y~Kz ,t,l ,gi!. ~A18!

Inserting Eq.~A18! into Eq.~A4!, the remainingt integral
can be carried out analytically by using the integral repres
tation of theb function @34#

E
0

`

tm21~11bt !2ndt5b2mB~m,n2m!,

uargbu,p, Re~n!.Re~m!.0. ~A19!

Furthermore, using the relationB(x,y)5G(x)G(y)/G(x
1y) , we end up with the expression

Tp,s
sin5A 8

pV

ZpZe f fN

Auc
e22pa/3G~11 ia !exp~ ia ln2ke,z!

3(
l ,gi

d~2!~ki2Qi1gi2ke,i!~L01L11L2!,

~A20!

where
r

lu-

nt

r
of

n-

L05exp~2 iz0r',l !B0@2i uQi2giu#21@K2
2 2uk i ,i1giu2

2~ki ,z1z0!2#21@gi
21z0

21le f f
2 #21. ~A21!

In the caseK2
2 .uk i ,i1giu2 we obtain forL1

L15
21

2
exp~2 iz1r',l !B1@ uQi2giu21~Qz2z1!2#21

3@K2
2 2uk i ,i1giu2#21/2@gi

21z1
21le f f

2 #21, ~A22!

whereas ifK2
2 ,uk i ,i1giu2 the following relation is valid:

L15
2 i

2
exp~2 iz1r',l !B1@ uQi2giu21~Qz2z1!2#21

3@2K2
2 1uk i ,i1giu2#21/2@gi

21z1
21le f f

2 #21.

~A23!

Finally, the expression forL2 reads

L25
2 i

2Agi
21le f f

2
exp~2 iz2r',l !B2@ uQi2giu2

1~Qz2z2!2#21@K2
2 2uk i ,i1giu22~ki ,z1z2!2#21.

~A24!

The functionsBj , j 50,1,2 have been defined as

Bj :5~bj2kz!
2 ia211R~bj1kz!

2 ia212T~bj2 ig!2 ia21,
~A25!

wherebj :5Qz2zj1ke,z .

APPENDIX B: EVALUATION OF THE
SINGLE-SCATTERING AMPLITUDE Tpe

sin

In this appendix we carry out the integrals involved in E
~19!. Making use of Eqs.~A1!, ~39!, and~37!, Eq. ~19! reads

Tpe
sin52Zp~2p!29/2 lim

h1→01

E dr pdreexp$2 i @Q•r p1ke•re

2w~re!#%
exp~2h1ure2r pu!

ure2r pu
xk~re!. ~B1!

Upon replacing the logarithmic phase in Eq.~B1! by its in-
tegral representation, given by Eq.~A8!, and performing the
integral over the projectile coordinates, Eq.~B1! simplifies to

Tpe
sin5

2Zp

2p2
lim

h3 ,h1→01

1

G~a!@Q21h1
2#
E

0

`

dtta21J~ t !,

~B2!

where

J~ t !5~2p!23/2E dreexp@2 i ~Q1ke2 i j!•re#xk~re!

5 x̃ k~L̄,t !. ~B3!
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In Eq. ~B3! we introduced the complex vectorL̄:5Q1ke
2 i j. Analogously to Eq.~A10!, the Fourier transformJ(t)
evaluates to

J~ t !5 iA2p

V
d~2!~ki2L̄i!S 1

L̄z2kz

1
R

L̄z1kz

2
T

L̄z2 ig
D .

~B4!

Now inserting Eq.~B4! into Eq. ~B2!, the remaining one-
dimensional integral can be algebraically transformed to
b-function integral representation, given by Eq.~A19!:

Tpe
sin52 iZp~2pV!21/2d~2!~ki2L̄i!

3 lim
h3 ,h1→01

1

G~a!@Q21h1
2#

~J11RJ22TJ3!.

~B5!
. D

X

B

i,

s.

i.

s.
e

The functionsJi are given by

Ji5 b̄ i
21E

0

`

dtta21S 11
2 i2ke,z

b̄ i

t D 21

, i 51,2,3,

~B6!

where b̄15Qz1ke,z2kz , b̄25Qz1ke,z1kz , and b̄35Qz
1ke,z2 ig. Making use of Eq.~A19! and after some elemen
tary algebra we end up with the final expression

Tpe
sin52 iZp~2pV!21/2d~2!~ki2L̄i!

G~11 ia !

Q2
e22pa/3

3exp@ ia ln~2ke,z!#@ b̄1
2 ia211R b̄2

2 ia212T b̄3
2 ia21#.

~B7!
w,

t-
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