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Spinless Salpeter equation: Laguerre bounds on energy levels
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The spinless Salpeter equation may be considered either as a standard approximation to the Bethe-Salpeter
formalism, designed for the description of bound states within a relativistic quantum field theory, or as the
most simple, to a certain extent relativistic, generalization of the costumary nonrelativisticd®gerofor-
malism. Because of the presence of the rather difficult-to-handle square-root operator of the relativistic kinetic
energy in the corresponding Hamiltonian, very frequently the correspor(disgrete spectrum of energy
eigenvalues cannot be determined analytically. Therefore, we show how to calculate, by some clever choices
of basis vectors in the Hilbert space of solutions, for the rather large class of power-law potentials, at least
upper bounds on these energy eigenvalues. For the lowest-lying levels, this may be done even analytically.
[S1050-294®@7)03107-1

PACS numbgs): 03.65.Pm, 11.10.St, 03.65.Ge, 12.39.Pn

I. INTRODUCTION: THE SPINLESS SALPETER The two-particle spinless Salpeter equation to be investigated
EQUATION here is then nothing else but the eigenvalue problem for this
HamiltonianH,
One’s attitude to the well-known “spinless Salpeter equa-

tion” may be reflected by either of the following two ap- Hixw=Edx), k=012...,
proachegor p0|_nts of view. On the one hand, this splnless for Hilbert-space eigenvectots,) corresponding to energy
Salpeter equation may be regarded as representing SOMBfyenvalues
standard approximation to the Bethe-Salpeter formalism for
the description of bound states within a relativistic quantum OadHlx)
field theory. It may be derived from the Bethe-Salpeter equa- E= W
tion [1] by two steps{i) Eliminate—in full accordance with
the spirit of instantaneous interactions—any dependence on For the sake of simplicity, we shall focus our attention to
timelike variables to obtain in this way the so-called Salpetethe physically most relevant case of central potentials, i.e.,
equatior{2]; (ii) Neglect any reference to all the spin degreespotentials which depend only on the modulpg of the
of freedom of the involved bound-state constituents and reconfiguration-space relative coordinate,
strict your formalism exclusively to positive-energy solu- V=V(|x)) 3)
tions. On the other hand, this spinless Salpeter equation may ’
be viewed as one of the most straightforward generalizationf, the above form, the spinless Salpeter equation appears to
of the standard nonrelativistic quantum theory towards théye a very promising candidate for tiigemirelativistic de-
reconciliation with all the requirements imposed by speciakcription of hadrons as bound states(efnstituent quarks
relativity. To be precise, this generalization consists of incorwithin the framework of potential mode[8—5] or, at least,
porating the square-root operator of the relativistic expresthe first step in the correct directids, 7).
sion for the kinetic energy of the involved particles. For the  However, the presence of the relativistic kinetic-energy
particular case of two particles of equal massnd relative  operator(1) in Eq. (2) or, to do justice to the spinless Sal-

momentump, the kinetic-energy operatdr is given by peter equation, the nonlocality of this operatdr that is,
more precisely, of either the kinetic-energy operafoin
T(p)=2p?+n?. (1) configuration space or the interaction-potential operstar

momentum space, renders it difficult to arrive at rigorous
All the forces operating between the bound-state constituentsnalytical statements about the corresponding energy spec-
are tacitly assumed to be described by an arbitrary staticum. In view of this, numerous attempts to circumvent these
interaction potential/. For the special case of two particles, problems have been proposed. Some very brief accounts of
this interaction potential should depend only on the relativethe history of these attempts may be found, for instance, in
coordinatex of these particlesy=V(x). Ref.[8]. These approaches include, among others, the devel-
In any case, the self-adjoint Hamiltoni&hgoverning the opment of elaborate numerical approximation methods
dynamics of any quantum system to be described by thf9—12] as well as the construction of effective Hamiltonians

spinless Salpeter equation will be of the form which, despite their apparently nonrelativistic form, incorpo-
rate relativistic effects by a sophisticated momentum depen-
H=T(p)+V(x). 2 dence of the involved parametdrk3]. A lot of information
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on the solutions of the spinless Salpeter equation may even Now, let us assume that thisdimensional subspadey
be gained by the application of a relativistic virial theoremis spanned by some set dforthonormalizedand therefore
[14], most easily derived from a rather general “master virialbeyond doubt linearly independ¢nbasis vectors|),

theorem”[15]. k=0,1,...,d-1:
The (from the physical point of view perhaps most inter-
esting case of a Coulomb-type static interaction potential, (ly)=26;, 1,j=01,....d-1.

the so-called relativistic Coulomb problem, has been inves-

tigated particularly carefully. For the corresponding lowest-Then the set of eigenvalué% may immediately be deter-

lying energy eigenvalues, both lowfe6,17 and uppef17—  mineq as the roots of the characteristic equation
20] bounds have been derived and series expan$iijsn

powers of the involved fine structure constant have been
given. Specifically, Herbdtl6] showed that the correspond-
ing Hamiltonian is bounded from below up to some critical
value of the Coulomb coupling constant and unbounde
from below above this value.

Here, we intend to pave the way for the calculation ofWk)' k=01,..
upper bounds on the energy eigenvalues of the spinless Sal-
peter equation with rather arbitrary interaction potentials. To Ill. GENERALIZED LAGUERRE BASIS
this end, we apply the famous min-max principle—which Th il step | . tiqati fth it .
controls any such attempt—in a particular basis of our trial € crucial step in any investigation ot thé present type 1S

: : .. the suitable choice of a basis in the subspBge For the
space, characterized by generalized Laguerre polynomials. . . o o~
P Y9 9 oy case of the semirelativistic HamiltonidR), we find it con-

venient to work in a basis which involves the so-called gen-
Il. MINIMUM-MAXIMUM PRINCIPLE eralized Laguerre polynomials. The latter are specific or-
AND RAYLEIGH-RITZ VARIATIONAL TECHNIQUE thogonal polynomials, defined by the power sefi25]

de((¢i|H|¢;))—E8;)=0, i,j=01,...,d-1, (4

§s becomes clear from an expansion of any eigenvector of
the restricted operatdtl in terms of the set of basis vectors
.,d—1, of the subspacB.

The derivation of upper bounds on the eigenvalues of k
some operatoH makes, of course, only sense for those op- Lf])(x)= 2 (_1)r(
eratorsH which are bounded from below. Accordingly, let r=0
us assume from now on that the arbitrary interaction poten-
tial (3) in our semirelativistic Hamiltoniarf2) is such that and normalized according {@5]
this necessary prerequisite holds. For example, for the crucial
case of a Coulomb-type static interaction potential, the so- o = i I'(y+k+1)
called relativistic Coulomb problem, the demanded semi- J'O dxx?exp(—x)L” (X)L (X)= =7 Skw'-
boundedness of the spectrum of the Hamiltortiahas been
(rigorously demonstrated by Herbgt6]. . . -

gThe th)é)oretical basis asywell as the primary tool for theConsequentIy, |_ntroducm_g tw_o variational parameters,
derivation of rigorous upper bounds on the eigenvalues opfamely, oneu with the dimension of mass as well as a

some self-adjoint operator is, beyond doubt, the so-calle&“meggonle_sﬁ onbﬁ, Ia gen?nc trial VeC‘r;W gf the S.Ub'
min-max principle[22]. An immediate consequence of this SPac€d. with orbital angular momentum and its projec-

min-max principle is the Rayleigh-Ritz technique: ltétbe a tion m, wil be characteriz.ed by the following admittedly'
semibounded self-adjoint operator. LB, k=0,1,2 ..., very suggestive ansatz for its coordinate-space representation

denote the eigenvalues of, ordered according to e m(X):
Eq<E;<E,=<.... Let D4 be somad-dimensional subspace _

of the domain oH and letE,, k=0,1, ... d—1, denote all i m(X) =NIX| 77 rexp(— X)L 20X Y m( ),
d eigenvalues of this operatdd restricted to the space ®)

Dy, ordered according tdo<E;=<---<Eq_;. Then the  \ynere normalizability restricts the variational parameteo
kth eigenvalueE, (counting multiplicity) of H satisfies the positive values,

inequality

K+ y\x"
k—r 1!

wn>0.

Here, ), (Q) are the spherical harmonics for angular mo-

(For a discussion of the history of inequalities and variationaf“?”tum/ and projectionm depending on the solid angle
methods for eigenvalue problems, see, e.g., Rag]; for () they are orthonormalized according to
some applications, see, e.g., Ref4].)

J' dﬂwm(ﬂ)y//m/(ﬂ):6///5mm/. (6)

For instance, for a Hamiltoniad depending only on the moduli
of momentump and coordinate, respectively, states of given or- The proper orthonormalization of the ansg® fixes the
bital angular momentum but different projections of the latter will parametery necessarily to the valug=2/+23 and deter-
be degenerate. mines the normalization constant
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(2)2 721K Clearly, any particular choice for the value of the variational
m(¥)=\T x|/ A1 parameterd will yield (nonoptimized upper bounds on the

(2/+2B+k+1) . !

energy eigenvalues. Below, we shall find that—for the case

Xexp( — m|X )L 2P (2u|X)) Y, m(Qy) of radial excitations, at least—we may evaluate these upper
bounds analytically for B integer, i.e., for 8=0,1,2,. ...
A numerical analysis foB=3,1,2 indicates thag=1 is a
reasonable choice, which we shall use occasionally in order
to illustrate our general findings. For this choice @f our
Laguerre basis functions reduce to the well-known nonrela-

tivistic Coulomb functions. The Fourier transfor?m(,/m(p)

of the above trial function involves the hypergeometric series
Rather obviously, normalizability constrains the variationalF, defined with the help of the gamma functibnby [25]
parameter 8 too, namely, to a range characterized by

2B8>-1, i.e., to the range I'(w)
Fluvswiz)= 1

satisfies the normalization condition

f B /) r 1 (X)= S 811 Sy -

o

2 C(u+nmT(v+n) 2"
Frwl(w)&, T(w+n) n!

>1
B 5

it reads

_ _\/ (2u)% F2BF k) (—=1)|p|” K (—1)’/k+2/+2,8 F2/7+B+r+2)(2u)"
lpk/m(p) F(2/+2ﬂ+k+1) 2/ +l/2r(//+3/2)r=0 rl \ K—r (pZ_’_MZ)(Z, +B+r+2)2

2/+p+r+2 p+r 3 p
( 2 T 2 /+ 2 p + y/m(Qp)
|
and satisfies the normalization condition b,=-1 if a,<0.
f d3pE§’/m(p)Ek,,/,m,(p)=5kk,5//,5mm,. For the Coulomb problem, defined dy,=bc.=-1 and

a,=— k<0, according to the above-mentioned analysis of
Herbst[16], the coupling parameter has to be bounded by
In principle, it is straightforward to calculate the expecta-
tion values

4
|an|EK<;.

Hle<¢i|H|¢j>

of the Hamiltonian(2), necessary for applying the min-max
principle. Due to the orthonormalizatid) of the spherical This bound, as arising from the requirement of operator
harmonics),(2), however, only matrix elements taken boundedness, applies to the whole spectrum of the Hamil-
between states of identical orbital angular momentGmnd  tonian under consideration. In general, the bounds on the
its projectionm will be nonvanishing. coupling constant will differ for different levels of excita-
tion: the one for the ground state is the most stringent one;
the bounds for arbitrary values of the orbital angular momen-
tum / have been derived both in R¢R26] and, more rigor-
When speculating about the possible shape of a physicallgusly, in Ref.[9]. By close inspection of our ansa(®) it
meaningful (or phenomenologically acceptaplteraction should become clear that we are able to handle even poten-
potential, the very first idea which unavoidably comes totials of the type “power-times-exponential,” that is, poten-
one’s mind as a reasonable candidate is an interaction potetials of the form
tial of the power-law form, the power being only constrained
by requiring that the Hamiltonian is bounded from below,

IV. POWER-LAW POTENTIALS

V(IX)=> an|x|Prexpcy|X]), b,=—1 if a,<O.
V(X =25 aglx, (7) "

with sets of arbitrary real constardg andb,,, the latter only It is a rather simple task to write down the matrix ele-
subject to the constraint ments for the power-law potentiél):
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TABLE I. Energy eigenvalues of the spinless Salpeter equation TABLE IIl. Energy eigenvalues of the spinless Salpeter equa-
with harmonic-oscillator potentiaf(|x|) = w|x|?, for the parameter tion with linear potentiaM(|x|) =a|x|, for the parameter valugg]
valuesu=m=1 GeV,w=0.5 Ge\?, =1, and a sizelxd ofthe =~ u=m=1 GeV, 8=1, a=0.211 GeV, and the sizalxd of the
energy matrix f;;). Numbers in italics(for small matrix sizes  energy matrix H;;). Numbers in italics(for small matrix sizeps
indicate analytically obtained results. All eigenvalues are given inindicate analytically obtained results. All eigenvalues are given in

units of GeV. units of GeV.
State X1 2X2 25x 25 Schralinger State X1 2X2 20X 20
1S 4.2162 3.9276  3.8249 3.8249 1S 3.0327 2.8034 2.7992
2S 8.1085 5.7911 5.7911 2S 4.0767 3.3629
3s 7.4829 7.4823 3s 3.8079
4S 9.0215 9.0075 4S 4.1905

quently, let us focus our attention to those situations which
allow for a fully analytic evaluation of the above kinetic-
energy matrix elements.

Vi =il V(XD | g;) = ; an | &y, (0|X]°0g (%)

ilj!
- \/F(2/+ 2B+i+ 1T (2/+2B+j+1) A. Orbital excitations
i ts/ On the one hand, we may restrict our formalism to the
x> an (-1 /'+2/+ 2B casei =j=0, but allow, nevertheless, for still arbitrary val-
~ 2u)PEH & ris! \ i—r ues of the orbital angular momentwh (which means con-
i+2/+28 sidering arbitrary orbital excitatiopnsand se{3=1. Then the
5¢ ) T(2/+2B+b +r+s+1). matrix elements/;; of the power-law potentia7) reduce to
1 a,
Vo= , I'2/+b,+3),
For instance, considering merely radial excitations by letting 07T (2/+ 3); (2u)Pn ( n*3)

/=0 and choosing, just for the sake of definiteness, for the _ o
variational parameteg the valueB=1, the explicit form of ~ whereas for the matrix elemenly of the kinetic energy1)

the potential matriy/=(V;;) is we obtain
_ 4T (/+2)]? 1 7 m?
1 a 3 \/§bn OOIMﬂF —E,/‘+2;2/+§;1——2 .
V=3 N T(3+by)| —\3b, 3+bytby Vol (2/+712) .
65 (2u)™ . , ®
At this point, our primary aim must be to get rid of the
V. ANALYTICALLY EVALUATABLE SPECIAL CASES hypergeometric series in the above intermediate result.

In the ultrarelativistic limit, realized in the case of vanish-
It should really be no great surprise that the evaluation ofng massm of the involved particles, that is, fan=0, the

the matrix elements of the kinetic-energy operaor hypergeometric serieB in Eq. (8) may be simplified with
the help of the relatiofi25]

T =%l T(p)|¢y) = f Epd (P TP m(P), F(w)'(w—u—vo)

FUvwW )= =T w—0)

is somewhat more delicate than the previous calculation of
the matrix elements of the power-law potentigls Conse- for

TABLE Il. Energy eigenvalues of the spinless Salpeter equation TABLE IV. Energy eigenvalues of the spinless Salpeter equa-
with Coulomb potentiaV(|x|) = — «/|x|, for the parameter values tion with funnel potentiaV(|x|) = — «/|x| +a|x|, for the parameter
[7] u=m=1 GeV, B=1, k=0.456, and the sizdXxd of the en-  values[7] u=m=1 GeV, B=1, k=0.456,a=0.211 GeV?, and
ergy matrix H;;). Numbers in italicfor small matrix sizegindi- the sizedx d of the energy matrix ii;;). Numbers in italics(for
cate analytically obtained results. All eigenvalues are given in unitsmall matrix sizesindicate analytically obtained results. All eigen-

of GeV. values are given in units of GeV.
State X1 2Xx2 25% 25 State X1 2X2 20X 20
1s 2.2602 2.0539 1.9450 1S 2.5767 2.5182 2.5162
2S 3.0702 1.9868 2S 3.4499 3.1570
3s 2.0015 3S 3.6337

4S 2.0238 4S 4.0348
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TABLE V. Energy eigenvalues for the 1P states of the spinless
potential

Salpeter equation with harmonic-oscillator
V(]x|) = »|x|?, Coulomb potentiaV(|x|)= — «/|x|, linear potential
V(|x|)=alx|, and funnel potentiaV(|x|)= — «/|x| +a|x|, respec-
tively, for the parameter valudg] u=m=1 GeV, =1, ©=0.5
GeV?, k=0.456,a=0.211 GeV, and the sizelx d of the energy
matrix (H;;). Numbers in italics(for small matrix sizesindicate

143

lim (minH p)2=8a/,

/—o u>0

which is in striking accordance with all previous findings
[27,28.

Fixing the variational parametex to the particular value
px=m allows us to take advantage of the fact that

analytically obtained results. All eigenvalues are given in units of

GeV.
Potential x1 20x 20 Schralinger
Harmonic oscillator 6.5094 4.9015 4.9015
Coulomb 2.5314 1.9875
Linear 3.2869 3.1414
Funnel 3.0589 2.9816
w#0—-1-2,..., Rw—u—wv)>0,

in order to yield for the kinetic-energy matrix elemeryy,
Eq. (8), the much more innocent expression

2T (/+2)P
Too= T(/+32T(/+52)*

The resulting upper boundd, can be optimized by mini-
mizing Hqg with respect to the variational parameger For

instance, for a linear potentiad(|x|)=al|x|, this minimiza-

tion procedure thus yields

P \/ (2/+3)a
minH go=21I'(/+2) (7 +31T(/+5/2)

u>0

In the limit of large orbital angular moment4, that is, for

/' —, this minimal upper bound turns out not to be in con-

F(u,o;w;0)=1,

whence the kinetic-energy matrix elemély,, Eq. (8), re-
duces to

40/ +2)]?
Val (2/+712)

00—

B. Radial excitations

On the other hand, considering only states of vanishing
orbital angular momentuny’, i.e., only states withv’=0,
confines our investigation to the analysis of radial excita-
tions. In this case, we may use the relatj@b]

3 sim(2u—1)z]
F(U,l—U,E,SIHZZ)—m
in order to recast the hypergeometric seriésin the

momentum-space representatﬁgoo(lpb of our trial states
into the form

F(,B+r+2 B+r 3  p?
2 ' 2 2 p2+,u
P2+ p? |p|
=—————sin (B+r+1)arctan—|.
(Brr+fpor (AT Darctan

flict with the experimentally well-established linearity of Simplifying the momentum-space trial functi&yoo(lpb in

“Regge trajectories,”

_ K B K (_2)r/k+2,8
l/fk,oo(|p|):mrr|p|r20 | k—r

I'(g+r+1)

this way,

—(B+r+1)/2 |p|
1+ —2) sir{(,8+r+1)arctan— ,
M j

the matrix element3;; of the kinetic energy1) immediately become

\/ i 48+1
Ti=NTEarirOr2ari+) = “&

i i (

0

wherel s denotes the only remaining integration,

2)r+5
rlsl

i+28
i—r

jt+2

- p rg+r+H)r(g+s+1)l,s,

o ) m? cog (r —s)arctary] — Cos{(23+r+s+2)arctary]
rs= JO dy yo+ F

This integration may, of course, always be performed by some standard numerical integration procedure. However, for

pm=m, the integrall . simplifies to

(1+y?)2BFT+572)72

’cos{(r —s)arctary]—cog (2B8+r+s+2)arctary]

Irs:f dy
0

(1+y2)(2,8+r+s+1)/2 ’
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which, for 28 integer and, because of the previous normal-diagonalized numerically without the necessity of applying
izability constraint 8>—1, non-negative, i.e., for the values time-consuming integration procedures.

23=0,1,2 ..., may beevaluated with the help of the expan-  In order to be able to estimate and appreciate the quality
sion of all the upper bounds obtained in this way, we apply the
above results to four prototype potentials, namely, to the
EN: N 5<n77) harmonic-oscillator potential
cog Narctary) = cog — |y"
V=1 2 )Y V()= wlx?  ©>0,
for N=0,1,2,.. ., the Coulomb potential
; K 4
with the result V(|X|):_M’ O<K<;,
I 1 [2B+r+st|r—s|+1 ~tsh =g he i ol
rsT5 2 = n the linear potentia
V(|x))=alx|, a>0,
n+1\ [2B+r+s+|r—s|—n n
> 2 Co08 5~ and the funnel potential
—12B+TFSH2 5p ot K 4
_EI‘ 2ﬂ+r+s+_ B V(|X|)=_m+alx|, 0<K<;, a.>0,
2 2 n=0 n
for typical values[7] of the involved coupling parameters
n+1 n nm :
xXT _)r 2B+r+s+1— _) C05<_ ) w, k, anda. The upper bounds on the energy eigenvalues of
2 2 2 the lowest-lying radial excitation§lS, 2S, 3S, and 4S in

usual spectroscopic notatiprfor the harmonic-oscillator,
Coulomb, linear, and funnel potentials are shown in Tables |
through 1V, respectively; the upper bounds on the respective
energy eigenvalues of just the first orbital excitatigP
again in usual spectroscopic notafidor the above poten-
tials are listed in Table V.

For the case of the harmonic-oscillator potential, the cor-
responding Hamiltoniak in its momentum-space represen-
tation is equivalent to a nonrelativistic Hamiltonian with
some effective interaction potential, which clearly is reminis-
cent of that troublesome square-root operathr this form,

The caseB=0, however, requires special care for the fol-
lowing reason. FopB =0, the integral oo and therefore also
the kinetic-energy matrix elemefity, become singular, as
may be read off from the explicit expression for the integral
I,s above. This singularity may be cancelled by the contribu
tion of a Coulomb-type ternx|x| ~ in the power-law poten-
tial (7) if the involved coupling constant takes some par-
ticular, “critical” value. This cancellation can then be made
manifest by observing thd0]

» 1-—cog(2+2p)arctary]
Jo

lim > T2 B it is then rather easily accessible to numerical procedures for
B—0 (1+y%) solving a nonrelativistic Schadinger equatiof30]. For com-
. 5 parison we quote in Tables | and V the eigenvalues obtained
=2 "mJ' dy y2 S along these lines. We find a very encouraging rapid conver-
poodo T(L+y?)FEP gence of the upper bounds.
Explicitly, for =1, the kinetic-energy matriX =(T;;) is VI. SUMMARY
given by By the application of the well-known min-max principle,
3 which represents the theoretical foundation of any computa-
1 = - tion of upper bounds on the eigenvalues of self-adjoint op-
7 erators, to trial spaces spanned by sets of basis states which
128 enable us to handle the square-root operator of the relativistic
T=1s;m veo 1t kinetic energyT in a satisfactory manner, we demonstrated
9 how to derive(even analytically for lowest-lying stateap-

2For a brief account of these relationships, see, e.g.,[RefFor

In any case, our approach yields analytic expressions fog numerical study of the relativistic harmonic-oscillator problem in
the matrix elementsi;; of our semirelativistic Hamiltonian momentum space, see, e.g., HeB].
H with an interaction potential out of the rather large class 3Needless to say, in the case of the Coulomb potential, the devia-
given by the power-law forng7). In principle, thed (rea)  tion of our upper bounds, computed for some given matrix size
roots of the characteristic equati¢d) may be determined dxd, from the exact energy eigenvalues will increase as the cou-
algebraically up to and including the cade 4, entailing, of  pling constantx approaches its critical value. Comparing our ap-
course, analytic expressions of rather rapidly increasing comproach with the best set of corresponding upper bounds known so
plexity. For larger values of the dimensiah of our trial  far [31], we find that, for instance, up te=1.1 this deviation is
spaceDy, the resulting energy matrixH;;) may be easily less than 0.8% for a 2625 matrix.
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per bounds on the energy levels of the spinless Salpetestitueny quarks, the obtained lowest-order approximation to

equation with somelinear combination of power-law po- the upper bound on, e.g., the ground-state energy is merely
tentials. Interestingly, in the case of the funnel potential,some 2% above the corresponding value. Of course, all the
which is the prototype of almost all of the “realistic,” that bounds derived here may be improved numerically by a

is, phenomenologically acceptable, interquark potentialsninimization with respect to the variational parameters in-

used for the description of hadrons as bound statdsmf-  troduced.
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