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Spinless Salpeter equation: Laguerre bounds on energy levels
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The spinless Salpeter equation may be considered either as a standard approximation to the Bethe-Salpeter
formalism, designed for the description of bound states within a relativistic quantum field theory, or as the
most simple, to a certain extent relativistic, generalization of the costumary nonrelativistic Schro¨dinger for-
malism. Because of the presence of the rather difficult-to-handle square-root operator of the relativistic kinetic
energy in the corresponding Hamiltonian, very frequently the corresponding~discrete! spectrum of energy
eigenvalues cannot be determined analytically. Therefore, we show how to calculate, by some clever choices
of basis vectors in the Hilbert space of solutions, for the rather large class of power-law potentials, at least
upper bounds on these energy eigenvalues. For the lowest-lying levels, this may be done even analytically.
@S1050-2947~97!03107-7#

PACS number~s!: 03.65.Pm, 11.10.St, 03.65.Ge, 12.39.Pn
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I. INTRODUCTION: THE SPINLESS SALPETER
EQUATION

One’s attitude to the well-known ‘‘spinless Salpeter equ
tion’’ may be reflected by either of the following two ap
proaches~or points of view!. On the one hand, this spinles
Salpeter equation may be regarded as representing s
standard approximation to the Bethe-Salpeter formalism
the description of bound states within a relativistic quant
field theory. It may be derived from the Bethe-Salpeter eq
tion @1# by two steps:~i! Eliminate—in full accordance with
the spirit of instantaneous interactions—any dependence
timelike variables to obtain in this way the so-called Salpe
equation@2#; ~ii ! Neglect any reference to all the spin degre
of freedom of the involved bound-state constituents and
strict your formalism exclusively to positive-energy sol
tions. On the other hand, this spinless Salpeter equation
be viewed as one of the most straightforward generalizat
of the standard nonrelativistic quantum theory towards
reconciliation with all the requirements imposed by spec
relativity. To be precise, this generalization consists of inc
porating the square-root operator of the relativistic expr
sion for the kinetic energy of the involved particles. For t
particular case of two particles of equal massm and relative
momentump, the kinetic-energy operatorT is given by

T~p![2Ap21m2. ~1!

All the forces operating between the bound-state constitu
are tacitly assumed to be described by an arbitrary st
interaction potentialV. For the special case of two particle
this interaction potential should depend only on the relat
coordinatex of these particles,V5V(x).

In any case, the self-adjoint HamiltonianH governing the
dynamics of any quantum system to be described by
spinless Salpeter equation will be of the form

H5T~p!1V~x!. ~2!
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The two-particle spinless Salpeter equation to be investiga
here is then nothing else but the eigenvalue problem for
HamiltonianH,

Huxk&5Ekuxk&, k50,1,2, . . . ,

for Hilbert-space eigenvectorsuxk& corresponding to energy
eigenvalues

Ek[
^xkuHuxk&

^xkuxk&
.

For the sake of simplicity, we shall focus our attention
the physically most relevant case of central potentials,
potentials which depend only on the modulusuxu of the
configuration-space relative coordinate,

V5V~ uxu!. ~3!

In the above form, the spinless Salpeter equation appea
be a very promising candidate for the~semi!relativistic de-
scription of hadrons as bound states of~constituent! quarks
within the framework of potential models@3–5# or, at least,
the first step in the correct direction@6,7#.

However, the presence of the relativistic kinetic-ener
operator~1! in Eq. ~2! or, to do justice to the spinless Sa
peter equation, the nonlocality of this operatorH, that is,
more precisely, of either the kinetic-energy operatorT in
configuration space or the interaction-potential operatorV in
momentum space, renders it difficult to arrive at rigoro
analytical statements about the corresponding energy s
trum. In view of this, numerous attempts to circumvent the
problems have been proposed. Some very brief accoun
the history of these attempts may be found, for instance
Ref. @8#. These approaches include, among others, the de
opment of elaborate numerical approximation metho
@9–12# as well as the construction of effective Hamiltonia
which, despite their apparently nonrelativistic form, incorp
rate relativistic effects by a sophisticated momentum dep
dence of the involved parameters@13#. A lot of information
139 © 1997 The American Physical Society
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140 56WOLFGANG LUCHA AND FRANZ F. SCHÖBERL
on the solutions of the spinless Salpeter equation may e
be gained by the application of a relativistic virial theore
@14#, most easily derived from a rather general ‘‘master vir
theorem’’ @15#.

The ~from the physical point of view perhaps most inte
esting! case of a Coulomb-type static interaction potent
the so-called relativistic Coulomb problem, has been inv
tigated particularly carefully. For the corresponding lowe
lying energy eigenvalues, both lower@16,17# and upper@17–
20# bounds have been derived and series expansions@21# in
powers of the involved fine structure constant have b
given. Specifically, Herbst@16# showed that the correspond
ing Hamiltonian is bounded from below up to some critic
value of the Coulomb coupling constant and unbound
from below above this value.

Here, we intend to pave the way for the calculation
upper bounds on the energy eigenvalues of the spinless
peter equation with rather arbitrary interaction potentials.
this end, we apply the famous min-max principle—whi
controls any such attempt—in a particular basis of our t
space, characterized by generalized Laguerre polynomia

II. MINIMUM-MAXIMUM PRINCIPLE
AND RAYLEIGH-RITZ VARIATIONAL TECHNIQUE

The derivation of upper bounds on the eigenvalues
some operatorH makes, of course, only sense for those o
eratorsH which are bounded from below. Accordingly, le
us assume from now on that the arbitrary interaction pot
tial ~3! in our semirelativistic Hamiltonian~2! is such that
this necessary prerequisite holds. For example, for the cru
case of a Coulomb-type static interaction potential, the
called relativistic Coulomb problem, the demanded se
boundedness of the spectrum of the HamiltonianH has been
~rigorously! demonstrated by Herbst@16#.

The theoretical basis as well as the primary tool for
derivation of rigorous upper bounds on the eigenvalues
some self-adjoint operator is, beyond doubt, the so-ca
min-max principle@22#. An immediate consequence of th
min-max principle is the Rayleigh-Ritz technique: LetH be a
semibounded self-adjoint operator. LetEk , k50,1,2, . . . ,
denote the eigenvalues ofH, ordered according to
E0<E1<E2<•••. Let Dd be somed-dimensional subspac
of the domain ofH and letÊk , k50,1, . . . ,d21, denote all
d eigenvalues of this operatorH restricted to the spac
Dd , ordered according toÊ0<Ê1<•••<Êd21. Then the
kth eigenvalueEk ~counting multiplicity1! of H satisfies the
inequality

Ek<Êk , k50,1, . . . ,d21.

~For a discussion of the history of inequalities and variatio
methods for eigenvalue problems, see, e.g., Ref.@23#; for
some applications, see, e.g., Ref.@24#.!

1For instance, for a HamiltonianH depending only on the modul
of momentump and coordinatex, respectively, states of given or
bital angular momentum but different projections of the latter w
be degenerate.
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Now, let us assume that thisd-dimensional subspaceDd
is spanned by some set ofd orthonormalized~and therefore
beyond doubt linearly independent! basis vectorsuck&,
k50,1, . . . ,d21:

^c i uc j&5d i j , i , j50,1, . . . ,d21.

Then the set of eigenvaluesÊ may immediately be deter
mined as thed roots of the characteristic equation

det~^c i uHuc j&2Êd i j !50, i , j50,1, . . . ,d21, ~4!

as becomes clear from an expansion of any eigenvecto
the restricted operatorH in terms of the set of basis vector
uck&, k50,1, . . . ,d21, of the subspaceDd .

III. GENERALIZED LAGUERRE BASIS

The crucial step in any investigation of the present type
the suitable choice of a basis in the subspaceDd . For the
case of the semirelativistic Hamiltonian~2!, we find it con-
venient to work in a basis which involves the so-called ge
eralized Laguerre polynomials. The latter are specific
thogonal polynomials, defined by the power series@25#

Lk
~g!~x!5(

r50

k

~21!r S k1g

k2r D xrr !
and normalized according to@25#

E
0

`

dxxgexp~2x!Lk
~g!~x!Lk8

~g!
~x!5

G~g1k11!

k!
dkk8.

Consequently, introducing two variational paramete
namely, onem with the dimension of mass as well as
dimensionless oneb, a generic trial vectoruc& of the sub-
spaceDd , with orbital angular momentuml and its projec-
tion m, will be characterized by the following admittedl
very suggestive ansatz for its coordinate-space represent
ck,l m(x):

ck,l m~x!5Nuxu l 1b21exp~2muxu!Lk
~g!~2muxu!Yl m~Vx!,

~5!

where normalizability restricts the variational parameterm to
positive values,

m.0.

Here,Yl m(V) are the spherical harmonics for angular m
mentum l and projectionm depending on the solid angl
V; they are orthonormalized according to

E dVYl m* ~V!Yl 8m8~V!5d l l 8dmm8. ~6!

The proper orthonormalization of the ansatz~5! fixes the
parameterg necessarily to the valueg52l 12b and deter-
mines the normalization constantN:
l
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56 141SPINLESS SALPETER EQUATION: LAGUERRE . . .
ck,l m~x!5A ~2m!2l 12b11k!

G~2l 12b1k11!
uxu l 1b21

3exp~2muxu!Lk
~2l 12b!~2muxu!Yl m~Vx!

satisfies the normalization condition

E d3xck,l m* ~x…ck8,l 8m8~x…5dkk8d l l 8dmm8.

Rather obviously, normalizability constrains the variation
parameterb too, namely, to a range characterized
2b.21, i.e., to the range

b.2
1

2
.
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Clearly, any particular choice for the value of the variation
parameterb will yield ~nonoptimized! upper bounds on the
energy eigenvalues. Below, we shall find that—for the c
of radial excitations, at least—we may evaluate these up
bounds analytically for 2b integer, i.e., for 2b50,1,2,. . . .
A numerical analysis forb5 1

2,1,2 indicates thatb51 is a
reasonable choice, which we shall use occasionally in or
to illustrate our general findings. For this choice ofb, our
Laguerre basis functions reduce to the well-known nonre
tivistic Coulomb functions. The Fourier transformc̃k,l m(p)
of the above trial function involves the hypergeometric ser
F, defined with the help of the gamma functionG by @25#

F~u,v;w;z!5
G~w!

G~u!G~v ! (n50

`
G~u1n!G~v1n!

G~w1n!

zn

n!
;

it reads
c̃k,l m~p!5A ~2m!2l 12b11k!

G~2l 12b1k11!

~2 i ! l upu l

2l 11/2G~ l 13/2!(r50

k
~21!r

r ! S k12l 12b

k2r DG~2l 1b1r12!~2m!r

~p21m2!~2l 1b1r12!/2

3FS 2l 1b1r12

2
,2

b1r

2
;l 1

3

2
;

p2

p21m2DYl m~Vp!
of
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and satisfies the normalization condition

E d3pc̃k,l m* ~p…c̃k8,l 8m8~p…5dkk8d l l 8dmm8.

In principle, it is straightforward to calculate the expec
tion values

Hi j[^c i uHuc j&

of the Hamiltonian~2!, necessary for applying the min-ma
principle. Due to the orthonormalization~6! of the spherical
harmonicsYl m(V), however, only matrix elements take
between states of identical orbital angular momentuml and
its projectionm will be nonvanishing.

IV. POWER-LAW POTENTIALS

When speculating about the possible shape of a physic
meaningful ~or phenomenologically acceptable! interaction
potential, the very first idea which unavoidably comes
one’s mind as a reasonable candidate is an interaction po
tial of the power-law form, the power being only constrain
by requiring that the Hamiltonian is bounded from below

V~ uxu!5(
n

anuxubn, ~7!

with sets of arbitrary real constantsan andbn , the latter only
subject to the constraint
-

lly

n-

bn>21 if an,0.

For the Coulomb problem, defined bybn[bC521 and
an[2k,0, according to the above-mentioned analysis
Herbst@16#, the coupling parameterk has to be bounded by

uanu[k,
4

p
.

This bound, as arising from the requirement of opera
boundedness, applies to the whole spectrum of the Ha
tonian under consideration. In general, the bounds on
coupling constant will differ for different levels of excita
tion: the one for the ground state is the most stringent o
the bounds for arbitrary values of the orbital angular mom
tum l have been derived both in Ref.@26# and, more rigor-
ously, in Ref.@9#. By close inspection of our ansatz~5! it
should become clear that we are able to handle even po
tials of the type ‘‘power-times-exponential,’’ that is, pote
tials of the form

V~ uxu!5(
n

anuxubnexp~cnuxu!, bn>21 if an,0.

It is a rather simple task to write down the matrix el
ments for the power-law potential~7!:
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142 56WOLFGANG LUCHA AND FRANZ F. SCHÖBERL
Vi j[^c i uV~ uxu!uc j&5(
n

anE d3xc i ,l m* ~x!uxubnc j ,l m~x!

5A i ! j !

G~2l 12b1 i11!G~2l 12b1 j11!

3(
n

an
~2m!bn(r50

i

(
s50

j
~21!r1s

r !s! S i12l 12b

i2r D
3S j12l 12b

j2s DG~2l 12b1bn1r1s11!.

For instance, considering merely radial excitations by lett
l 50 and choosing, just for the sake of definiteness, for
variational parameterb the valueb51, the explicit form of
the potential matrixV[(Vi j ) is

V5
1

6(n
an

~2m!bn
G~31bn!S 3 2A3bn •••

2A3bn 31bn1bn
2

•••

A A �

D .
V. ANALYTICALLY EVALUATABLE SPECIAL CASES

It should really be no great surprise that the evaluation
the matrix elements of the kinetic-energy operatorT,

Ti j[^c i uT~p!uc j&5E d3pc̃ i ,l m* ~p!T~p!c̃ j ,l m~p!,

is somewhat more delicate than the previous calculation
the matrix elements of the power-law potentialsV. Conse-

TABLE I. Energy eigenvalues of the spinless Salpeter equa
with harmonic-oscillator potentialV(uxu)5vuxu2, for the parameter
valuesm5m51 GeV,v50.5 GeV3, b51, and a sized3d of the
energy matrix (Hi j ). Numbers in italics~for small matrix sizes!
indicate analytically obtained results. All eigenvalues are given
units of GeV.

State 131 232 25325 Schro¨dinger

1S 4.2162 3.9276 3.8249 3.8249
2S 8.1085 5.7911 5.7911
3S 7.4829 7.4823
4S 9.0215 9.0075

TABLE II. Energy eigenvalues of the spinless Salpeter equa
with Coulomb potentialV(uxu)52k/uxu, for the parameter value
@7# m5m51 GeV,b51, k50.456, and the sized3d of the en-
ergy matrix (Hi j ). Numbers in italics~for small matrix sizes! indi-
cate analytically obtained results. All eigenvalues are given in u
of GeV.

State 131 232 25325

1S 2.2602 2.0539 1.9450
2S 3.0702 1.9868
3S 2.0015
4S 2.0238
g
e

f

of

quently, let us focus our attention to those situations wh
allow for a fully analytic evaluation of the above kinetic
energy matrix elements.

A. Orbital excitations

On the one hand, we may restrict our formalism to t
casei5 j50, but allow, nevertheless, for still arbitrary va
ues of the orbital angular momentuml ~which means con-
sidering arbitrary orbital excitations!, and setb51. Then the
matrix elementsVi j of the power-law potential~7! reduce to

V005
1

G~2l 13!(n
an

~2m!bn
G~2l 1bn13!,

whereas for the matrix elementsTi j of the kinetic energy~1!
we obtain

T005
4l 12@G~ l 12!#2

ApG~2l 17/2!
mFS 2

1

2
,l 12;2l 1

7

2
;12

m2

m2D .
~8!

At this point, our primary aim must be to get rid of th
hypergeometric seriesF in the above intermediate result.

In the ultrarelativistic limit, realized in the case of vanis
ing massm of the involved particles, that is, form50, the
hypergeometric seriesF in Eq. ~8! may be simplified with
the help of the relation@25#

F~u,v;w;1!5
G~w!G~w2u2v !

G~w2u!G~w2v !

for

n

n

n

ts

TABLE III. Energy eigenvalues of the spinless Salpeter eq
tion with linear potentialV(uxu)5auxu, for the parameter values@7#
m5m51 GeV, b51, a50.211 GeV2, and the sized3d of the
energy matrix (Hi j ). Numbers in italics~for small matrix sizes!
indicate analytically obtained results. All eigenvalues are given
units of GeV.

State 131 232 20320

1S 3.0327 2.8034 2.7992
2S 4.0767 3.3629
3S 3.8079
4S 4.1905

TABLE IV. Energy eigenvalues of the spinless Salpeter eq
tion with funnel potentialV(uxu)52k/uxu1auxu, for the parameter
values@7# m5m51 GeV, b51, k50.456,a50.211 GeV2, and
the sized3d of the energy matrix (Hi j ). Numbers in italics~for
small matrix sizes! indicate analytically obtained results. All eigen
values are given in units of GeV.

State 131 232 20320

1S 2.5767 2.5182 2.5162
2S 3.4499 3.1570
3S 3.6337
4S 4.0348
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wÞ0,21,22, . . . , R~w2u2v !.0,

in order to yield for the kinetic-energy matrix elementT00,
Eq. ~8!, the much more innocent expression

T005
2@G~ l 12!#2

G~ l 13/2!G~ l 15/2!
m.

The resulting upper boundsH00 can be optimized by mini-
mizing H00 with respect to the variational parameterm. For
instance, for a linear potentialV(uxu)5auxu, this minimiza-
tion procedure thus yields

min
m.0

H0052G~ l 12!A ~2l 13!a

G~ l 13/2!G~ l 15/2!
.

In the limit of large orbital angular momental , that is, for
l →`, this minimal upper bound turns out not to be in co
flict with the experimentally well-established linearity o
‘‘Regge trajectories,’’

TABLE V. Energy eigenvalues for the 1P states of the spinl
Salpeter equation with harmonic-oscillator potent
V(uxu)5vuxu2, Coulomb potentialV(uxu)52k/uxu, linear potential
V(uxu)5auxu, and funnel potentialV(uxu)52k/uxu1auxu, respec-
tively, for the parameter values@7# m5m51 GeV,b51, v50.5
GeV3, k50.456,a50.211 GeV2, and the sized3d of the energy
matrix (Hi j ). Numbers in italics~for small matrix sizes! indicate
analytically obtained results. All eigenvalues are given in units
GeV.

Potential 131 20320 Schro¨dinger

Harmonic oscillator 6.5094 4.9015 4.9015
Coulomb 2.5314 1.9875
Linear 3.2869 3.1414
Funnel 3.0589 2.9816
-

lim
l →`

~min
m.0

H00!
258al ,

which is in striking accordance with all previous finding
@27,28#.

Fixing the variational parameterm to the particular value
m5m allows us to take advantage of the fact that

F~u,v;w;0!51,

whence the kinetic-energy matrix elementT00, Eq. ~8!, re-
duces to

T005
4l 12@G~ l 12!#2

ApG~2l 17/2!
m.

B. Radial excitations

On the other hand, considering only states of vanish
orbital angular momentuml , i.e., only states withl 50,
confines our investigation to the analysis of radial exci
tions. In this case, we may use the relation@25#

FS u,12u;
3

2
;sin2zD5

sin@~2u21!z#

~2u21!sinz

in order to recast the hypergeometric seriesF in the
momentum-space representationc̃k,00(upu) of our trial states
into the form

FS b1r12

2
,2

b1r

2
;
3

2
;

p2

p21m2D
5

Ap21m2

~b1r11!upu
sinF ~b1r11!arctan

upu
m G .

Simplifying the momentum-space trial functionc̃k,00(upu) in
this way,

s
l

f

ver, for
c̃k,00~ upu!5A k!

mG~2b1k11!

2b

pupu(r50

k
~22!r

r ! S k12b

k2r DG~b1r11!S 11
p2

m2D 2~b1r11!/2

sinF ~b1r11!arctan
upu
m G ,

the matrix elementsTi j of the kinetic energy~1! immediately become

Ti j5A i ! j !

G~2b1 i11!G~2b1 j11!

4b11

p
m(
r50

i

(
s50

j
~22!r1s

r !s! S i12b

i2r D S j12b

j2s DG~b1r11!G~b1s11!I rs ,

whereI rs denotes the only remaining integration,

I rs[E
0

`

dyAy21
m2

m2

cos@~r2s!arctany#2cos@~2b1r1s12!arctany#

~11y2!~2b1r1s12!/2 .

This integration may, of course, always be performed by some standard numerical integration procedure. Howe
m5m, the integralI rs simplifies to

I rs5E
0

`

dy
cos@~r2s!arctany#2cos@~2b1r1s12!arctany#

~11y2!~2b1r1s11!/2 ,
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which, for 2b integer and, because of the previous norm
izability constraint 2b.21, non-negative, i.e., for the value
2b50,1,2, . . . , may beevaluated with the help of the expan
sion

cos~Narctany!5
1

~11y2!N/2(n50

N S N
n
D cosS np

2 D yn
for N50,1,2,. . . ,

with the result

I rs5
1

2FGS 2b1r1s1ur2su11

2 D G21

(
n50

ur2su S ur2su

n D
3GS n11

2 DGS 2b1r1s1ur2su2n

2 D cosS np

2 D
2
1

2FGS 2b1r1s1
3

2D G
21

(
n50

2b1r1s12 S 2b1r1s12

n D
3GS n11

2 DGS 2b1r1s112
n

2D cosS np

2 D .
The caseb50, however, requires special care for the fo
lowing reason. Forb50, the integralI 00 and therefore also
the kinetic-energy matrix elementT00 become singular, as
may be read off from the explicit expression for the integ
I rs above. This singularity may be cancelled by the contrib
tion of a Coulomb-type termkuxu21 in the power-law poten-
tial ~7! if the involved coupling constantk takes some par
ticular, ‘‘critical’’ value. This cancellation can then be mad
manifest by observing that@20#

lim
b→0

E
0

`

dy
12cos@~212b!arctany#

~11y2!1/21b

52 lim
b→0

E
0

`

dy
y2

~11y2!3/21b .

Explicitly, for b51, the kinetic-energy matrixT[(Ti j ) is
given by

T5
128

15p
mS 1

A3
7

•••

A3
7

11

9
•••

A A �

D .

In any case, our approach yields analytic expressions
the matrix elementsHi j of our semirelativistic Hamiltonian
H with an interaction potential out of the rather large cla
given by the power-law form~7!. In principle, thed ~real!
roots of the characteristic equation~4! may be determined
algebraically up to and including the cased54, entailing, of
course, analytic expressions of rather rapidly increasing c
plexity. For larger values of the dimensiond of our trial
spaceDd , the resulting energy matrix (Hi j ) may be easily
l-

l
-

or

s

-

diagonalized numerically without the necessity of applyi
time-consuming integration procedures.

In order to be able to estimate and appreciate the qua
of all the upper bounds obtained in this way, we apply t
above results to four prototype potentials, namely, to
harmonic-oscillator potential

V~ uxu!5vuxu2, v.0,

the Coulomb potential

V~ uxu!52
k

uxu
, 0,k,

4

p
,

the linear potential

V~ uxu!5auxu, a.0,

and the funnel potential

V~ uxu!52
k

uxu
1auxu, 0,k,

4

p
, a.0,

for typical values@7# of the involved coupling parameter
v, k, anda. The upper bounds on the energy eigenvalues
the lowest-lying radial excitations~1S, 2S, 3S, and 4S in
usual spectroscopic notation! for the harmonic-oscillator,
Coulomb, linear, and funnel potentials are shown in Table
through IV, respectively; the upper bounds on the respec
energy eigenvalues of just the first orbital excitation~1P
again in usual spectroscopic notation! for the above poten-
tials are listed in Table V.

For the case of the harmonic-oscillator potential, the c
responding HamiltonianH in its momentum-space represe
tation is equivalent to a nonrelativistic Hamiltonian wi
some effective interaction potential, which clearly is remin
cent of that troublesome square-root operator.2 In this form,
it is then rather easily accessible to numerical procedures
solving a nonrelativistic Schro¨dinger equation@30#. For com-
parison we quote in Tables I and V the eigenvalues obtai
along these lines. We find a very encouraging rapid conv
gence of the upper bounds.3

VI. SUMMARY

By the application of the well-known min-max principle
which represents the theoretical foundation of any compu
tion of upper bounds on the eigenvalues of self-adjoint
erators, to trial spaces spanned by sets of basis states w
enable us to handle the square-root operator of the relativ
kinetic energyT in a satisfactory manner, we demonstrat
how to derive~even analytically for lowest-lying states! up-

2For a brief account of these relationships, see, e.g., Ref.@9#. For
a numerical study of the relativistic harmonic-oscillator problem
momentum space, see, e.g., Ref.@29#.
3Needless to say, in the case of the Coulomb potential, the de

tion of our upper bounds, computed for some given matrix s
d3d, from the exact energy eigenvalues will increase as the c
pling constantk approaches its critical value. Comparing our a
proach with the best set of corresponding upper bounds know
far @31#, we find that, for instance, up tok.1.1 this deviation is
less than 0.8% for a 25325 matrix.
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per bounds on the energy levels of the spinless Salp
equation with some~linear combination of! power-law po-
tentials. Interestingly, in the case of the funnel potent
which is the prototype of almost all of the ‘‘realistic,’’ tha
is, phenomenologically acceptable, interquark potent
used for the description of hadrons as bound states of~con-
t i
9

ev

-
ro
.

.

.

er

l,

ls

stituent! quarks, the obtained lowest-order approximation
the upper bound on, e.g., the ground-state energy is me
some 2% above the corresponding value. Of course, all
bounds derived here may be improved numerically by
minimization with respect to the variational parameters
troduced.
l
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