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Sending classical information via noisy quantum channels
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This paper extends previous results about the classical information capacity of a noiseless quantum-
mechanical communication channel to situations in which the final signal states are mixed states, that is, to
channels with noise.@S1050-2947~97!02007-6#
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I. INTRODUCTION

Suppose Alice wishes to convey classical information
Bob by using a quantum systemQ as a communication chan
nel. Alice prepares the channel in one of various quant
statesWx with a priori probabilitiespx . Bob makes a mea
surement on the systemQ, and from its result he tries to infe
which state Alice prepared. A theorem stated by Gordon@1#
and Levitin @2#, proved by Kholevo@3#, gives an upper
bound to the amount of information that Bob can obta
about Alice’s signal. IfW5(xpxWx is the density operato
describing the ensemble of Alice’s signals, then the mut
informationH(X:Y) between Alice’s inputX and Bob’s out-
put Y is bounded by

H~X:Y!<H~W!2(
x

pxH~Wx!, ~1!

whereH(W)52TrWlog2W, the von Neumann entropy o
the density operatorW. The upper bound in Eq.~1! is in
general a weak one, in that Bob may not be able to choos
observable that gives him an amount of information near
upper bound@4#.

Recently, Hausladenet al. @5# showed that, if Alice’s sig-
nal statesWx are pure states, then it is possible to approa
the Kholevo boundH(W) for an appropriate choice o
Alice’s code and Bob’s decoding observable. This is done
~i! employing long strings of signals to send many indep
dent messages together,~ii ! ‘‘pruning’’ the set of strings used
as codewords so that the codewords are sufficiently dis
guishable, and~iii ! choosing a suitable decoding observab
that acts on entire strings of signals. For large enoughL,
codewords ofL ‘‘letters’’ may be used to transmit up to
LH(W) bits of information@thusH(W) bits per letter# with
arbitrarily low probability of error.

This naturally suggests a generalization, which was p
sented in@5# as a conjecture. Suppose that Alice emplo
signal statesWx that aremixedstates. Then can Alice an
Bob find a choice of code and decoding observable so
the general Kholevo bound@Eq. ~1!# can be approached a
bitrarily closely? In this paper, we show that the answer
this question is ‘‘yes.’’ That is, we prove the following re
sult.

Theorem. Suppose we have letter statesWx with a priori
probabilitiespx and let
561050-2947/97/56~1!/131~8!/$10.00
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x5H~W!2(
x

pxH~Wx!.

Fix e,d.0. Then for sufficiently largeL, there exist a code
~whose codewords are strings ofL letters! and a decoding
observable such that the information carried per letter is
leastx2d and the probability of errorPE,e.

As in @5#, we employ an average over randomly genera
codes to establish the existence of a satisfactory code.~If the
average probability of error is small for an ensemble
codes, the ensemble must contain specific codes with s
probability of error.! We also use a similar prescription fo
Bob’s decoding observable. The chief refinement in
proof presented here is the enforcement of stronger ‘‘typic
ity’’ conditions on various quantities associated with t
channel.

The mixed statesWx may be thought of as the outputs o
anoisyquantum channel. Thus our main result will enable
to draw conclusions about the classical information capa
of a noisy quantum channel.

Our main result is the same as that given recently in
dependent work by Holevo@6#. Holevo’s proof, like ours,
follows the general strategy of@5#, though there are substan
tial differences of detail.

II. SETTING IT UP

We will assume that we have an alphabet of mixed sta
Wx , each of which has ana priori probability px . The av-
erage density matrix isW5(xpxWx . We wish to show that,
if we use long strings of these letters~suitably pruning the se
of codewords to improve distinguishability! and an appropri-
ate decoding observable, we can send reliably an amoun
information up to

x5H~W!2(
x

pxH~Wx! ~2!

per letter.
We will be considering strings ofL letters. In what fol-

lows we will assume that the indexa refers to a whole string
of letters:a5x1•••xL . Pa5px1•••pxL is thea priori prob-

ability of the sequencea and ra5Wx1
^ •••^WxL

is the
131 © 1997 The American Physical Society
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132 56BENJAMIN SCHUMACHER AND MICHAEL D. WESTMORELAND
state associated with the string. The average state is

~3!

Consider the statera . This has a complete orthogonal s
of eigenstates, which we will denoteusak& ~wherek ranges
over the dimension of the space!, and a corresponding set o
eigenvaluespkua . As the notation suggests, we may think
the pkua’s as ‘‘conditional probabilities’’ fork given a, and
this motivates us to form the ‘‘joint probability’’ distribution
Pak5Papkua . Of course,r5(akPakusak&^saku. It will be
convenient to refer to the indexk identifying the string
eigenstate as thesyndromeof the codewordra .

When we construct our decoding observable, we will
trying not only to distinguish the stringa, but also~a seem-
ingly harder task! to determine the syndromek as well. An
error will occur if either the codeword or the syndrome
incorrectly identified. For a given codewordra , the various
usak& ’s are orthogonal and hence perfectly distinguisha
from one another, so this will not really be more difficu
than identifying the codeword only.

III. TYPICALITY

Let e,d.0. Then we can find a lengthL large enough to
enforce the following typicality conditions on strings o
lengthL.

~i! There exists a typical subspace@8,9# for the states.
That is, there is a subspaceL spanned by eigenstates ofr
such that, ifP is the projection ontoL, TrrP.12e. Fur-
ther, if we denote byuln& the eigenstate ofr with eigenvalue
ln ,

22L[H~W!1d],ln,22L[H~W!2d] ~4!

for all uln&PL.
One key property of the typical subspace is that

Trr2P,22L[H~W!22d] . ~5!

This property was used by Hausladenet al. @5# to bound the
probability of error, and it will play that role again.

~ii ! There exist a typical set of strings~relative to the
distribution Pa) and a typical set of string-syndrome pai
~relative to the joint distributionPak). Let H(A) be the
Shannon entropy associated with the string distributionPa
and letH(A,K) be the Shannon entropy associated with
joint distribution Pak . Notice thatH(A)5LH(X), where
H(X) is the Shannon entropy of the letter distribution. Als

H~A,K !5H~A!1(
a

PaH~ra!

5LSH~X!1(
x

pxH~Wx! D , ~6!

where thex sum is over the letters. Typicality means th
following.

~a! For a typical stringa,

22L[H~X!1d],Pa,22L[H~X!2d] . ~7!
e

e

e

,

Furthermore, the sum of thePa’s for the typical strings is
greater than 12e.

~b! For a typical string-syndrome pairak,

2 expF2LSH~X!1(
x

pxH~Wx!1d D G,Pak

,2 expF2LSH~X!1(
x

pxH~Wx!2d D G , ~8!

where 2 exp@x# means 2x. Furthermore, the sum ofPak over
the typical string-syndrome pairs is also greater than 12e.

For each stringa, we define a set ofrelatively typical
syndromes as follows:k is relatively typical toa if a is a
typical string andak is a typical string-syndrome pair.~Note
that atypical strings have no relatively typical syndromes.! If
k is relatively typical toa, then

2 expF2LS (
x

pxH~Wx!12d D G,pkua

,2 expF2LS (
x

pxH~Wx!22d D G ~9!

sincepkua5Pak /Pa . We can take advantage of the definitio
of x above to write this as

22L[H~W!2x12d],pkua,22L[H~W!2x22d] . ~10!

We adopt the following notations for sums:(kua means
sum overk for a given value ofa, (kua8 means sum restricted
to relatively typicalk’s only ~note that this sum may have n
terms!, and(ak8 means(a(k/a8 . If we restrict sums to rela-
tively typical syndromes only, we do not lose much weig
in the ensemble. That is, consider the pairsak in which k is
relatively typical. This excludes all atypicala’s ~a set of total
probability less thane) and all atypical pairsak ~also of
probability less thane). It follows that

(
ak

8
Pak5(

a
Pa(

kua

8
pkua.122e. ~11!

The total ensembler5(akPakusak&^saku. If we restrict the
ensemble to string-syndrome pairs in which the syndrom
relatively typical, then we get a subnormalized density o
erator r̃ for which

Trr̃ 5TrS (
ak

Pakusak&^saku D .122e. ~12!

We also note thatr̃ <r under the usual partial ordering o
positive operators.~That is,^cu r̃ uc&<^curuc& for all uc&.!

IV. CODING AND DECODING

Now we discuss our code and our decoding procedu
The code will consist ofN codewords~each a string of
length L), which we will use with equal frequency. Code
words in our code will be indexed by a greek index such
a. Thus the latin charactersa,b, . . . index the whole set o
strings, while the greek charactersa,b, . . . index the code-
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56 133SENDING CLASSICAL INFORMATION VIA NOISY . . .
words in our code. Greek indices thus take onN possible
values.

The decoding procedure will be a variation of the ‘‘pret
good measurement’’ used in@5#. We will attempt to identify
not only the codeword but also the syndrome. Our decod
observable will be a ‘‘positive operator measuremen
~POM!, described by a set of positive operators summing
unity. For each codeword-syndrome pairak we will have a
~possibly subnormalized! vector um̃ak& such that
um̃ak&^m̃aku is an element of our decoding POM. The pro
ability of error is thus

PE512
1

N(
ak

pkuaz^m̃akusak&z2

5
1

N(
a

(
ka

pkua~12z^m̃akusak&z2!

<2S 12
1

N(
ak

pkuaU^m̃akusak&U D . ~13!

We next describe how to specify the decoding observa
If k is not relatively typical toa, we let um̃ak&50. For the
rest, we construct the operator

Y5(
ak

8
Pusak&^sakuP, ~14!

whereP is the projection onto the typical subspaceL for the
a priori ensemble, as described above. We define

um̃ak&5Y21/2usak& ~15!

for k relatively typical toa. ~SinceY is not generally fully
invertible, thisY21/2 is the pseudoinverse ofY1/2, supported
only on the support ofY.! It follows that

(
a,k

um̃ak&^m̃aku5(
ak

8
um̃ak&^m̃aku51 ~16!

on the range space ofY ~which is a subspace ofL). We can
add an element of the POM~labeled ‘‘error’’! on the or-
thogonal space, if necessary, to give overall normalizatio

SinceY ~and thusY21/2) is positive, the inner produc
^m̃akusak& is real and non-negative. We do not need t
modulus signs in our bound for the probability of error. Fu
thermore, our construction of theum̃ak& ’s means that the only
contributions come from those terms in whichk is relatively
typical toa. Thus we can write

PE<2S 12
1

N (
ak

8
pkua^m̃akusak& D . ~17!

As was mentioned in@5#, this definition has some nic
properties connected with a matrix of inner products
usak&. For k relatively typical toa and l relatively typical to
b, we define

Sak,b l5^sakuPusb l&. ~18!
g
’
o

e.

.

e
-

f

The matrixS is a positive square matrix. It turns out that

^m̃akusak&5~AS!ak,ak . ~19!

~This could be used as an implicit definition of th
um̃ak& ’s.! We will employ the same inequality that was us
in @5#: for x>0, Ax> 3

2x2 1
2x

2. This means that

~AS!ak,ak>
3

2
Sak,ak2

1

2 (
b,l

8
Sak,b lSb l ,ak . ~20!

This gives us a bound for the probability of error

~21!

We will deal with the terms labeled # 1 and # 2 separately

V. RANDOM CODES

Now we will average the probability of errorPE over
random codes. These codes are constructed by choosin
N codewords independently according to thea priori string
distributionPa . This will have the effect of turning average
over the codewords in the code into averages over tha
priori string ensemble.

Denote the random code average by^ &c. Consider term
#1 above,

^#1&c5K 3N (
a

(
kua

8
pkua^sakuPusak&L

c

53S (
a

Pa(
kua

8
pkuaTrPusak&^sakuP D

53~TrP r̃ P!. ~22!

~Notice that the average over random codes transformed
sum over the codewords(a into N times the average ove
the string ensemble described byPa since each codeword i
chosen independently according toPa .) Now letD5r2 r̃ ,
a positive operator sincer̃ <r. Then

^#1&c53~TrPrP2TrPDP!.3@~12e!2TrD#

.3~123e! ~23!

since TrD,2e.
Next, examine term #2. The double sum overa and b

may be split into two parts: a part in whicha5b and a part
in which aÞb. The advantage in this is that, ifaÞb, the
codewords are chosen independently in a random code:
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134 56BENJAMIN SCHUMACHER AND MICHAEL D. WESTMORELAND
~24!

We consider term #2a:

#2a5
1

N (
a

(
kua

8
(
l ua

8
pkua^sakuPusa l&^sa l uPusak&

<
1

N (
a

8
(
kua

8
(
l ua

pkua^sakuPusa l&^sa l uPusak&

5
1

N (
a

(
kua

8
pkuaK sakUPS (

l ua
usa l&^sa l u DPUsakL

5
1

N (
a

(
kua

8
pkua^sakuPusak& ~25!

since for any a, the usa l& form a complete set. Bu
^sakuPusak&<1, so

#2a<
1

N (
a

(
kua

8
pkua<

1

N (
a

(
ka

pkua51. ~26!

Therefore, of course,̂#2a&c<1.
Now we consider the much more interesting term #2b

#2b5
1

N (
a,bÞa

(
kua

(
l ub

pkuaTrPusak^sakuPusb l&^sb l uP.

~27!

The only terms that appear in this sum are terms in wh
l is typical relative tob. But for such codeword-syndrom
pairs, we have a uniform lower bound onpl ub , which allows
us to say that, for alll andb that appear in our sum,

1,pl ub2
L[H~W!2x12d] . ~28!

Therefore,

#2b<2L[H~W!2x12d]
1

N (
a,b5” a

(
kua

8
(
l ub

8

3pkuapl ubTrPusak&^sakuPusb l&^sb l uP. ~29!

Taking the average of #2b over random codes,

^#2b&c52L[H~W!2x12d]
N~N21!

N

h

3S (
a

Pa(
b

Pb(
kua

8
pkua(

l ub

8
pl ub

3TrPusak&^sakuPusbl&^sbluP D
<N2L[H~W!2x12d]TrP r̃ P r̃ P. ~30!

~Notice again that each term in the sums over the codewo
has been replaced by the appropriate string-ensemble a
age.! We note that ifA, B, andC are positive operators with
B<A, TrBC<TrAC. Thus

TrP r̃ P r̃ P5TrP r̃ P r̃ <TrP r̃ Pr5Trr̃ PrP<TrrPrP

5Trr2P, ~31!

where the last line uses the fact thatr andP commute:

^#2b&c<N2L[H~W!2x12d]Trr2P

,N2L[H~W!2x12d]22L[H~W!22d]5N22L~x24d!.

~32!

Combining these results, we can find an upper bound
the probability of error averaged over all random codes:

^PE&c<22^#1&c1^#2a&c1^#2b&c

,223~123e!111N22L~x24d!59e1N22L~x24d!.

~33!

For L sufficiently large, we can chooseN nearly as big as
2Lx and still have the probability of error small.

If the averageprobability of error is below this bound
then Alice and Bob will be able to find some particular co
for which

PE<9e1N22L~x24d!. ~34!

If L is very large, Alice can use up toN52L(x25d) code-
words and still havePE<10e. In this case, Alice encode
x25d bits per letter. This proves our main theorem.

We have shown the existence of a satisfactory code w
out actually constructing it. Consequently, we do not kn
much about the structure of the code. In particular, we h
not guaranteed in our proof that the letter states occur in
codewords with frequencies that closely match theira priori
probabilitiespx . ~This is something that we might wish t
require since the distributionpx might be chosen to optimize
some resource, such as the energy required per letter! It
turns out, however, that we can satisfy such a requirem
Since we generate the codewords in our ensemble of co
by using thea priori probabilities, the law of large number
implies that the letter frequencies will match thea priori
distribution within any specified tolerance for a set of ‘‘typ
cal codes.’’ The set of typical codes includes almost the
tire weight of the code ensemble and thus many of the p
ticular codes with low probability of error. See@5# for the
details of this argument applied to the pure state case.
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56 135SENDING CLASSICAL INFORMATION VIA NOISY . . .
VI. FIXED-ALPHABET CAPACITY

We have shown that it is possible to send information
any rate up tox bits per letter with arbitrarily low probability
of error. The capacity of a channel is defined as the ma
mum information per letter that may be sent through
channel withPE arbitrarily small. Thusx provides a lower
bound to the capacity of the quantum channel.

Classical information theory together with Kholevo
theorem also allows us to usex to establish anupper bound
for the capacity of the channel. SupposeX represents Alice’s
input andY represents Bob’s decoding measurement o
come. Then the Fano inequality@7# states that

2PElog2PE2~12PE!log2~12PE!1PElog2~NX21!

>H~XuY!, ~35!

wherePE is the probability of error andNX is the number of
possible values ofX. H(XuY) is the conditional Shannon
entropy ofX givenY, that is, the entropy of the conditiona
distribution p(xuy), averaged over the various values ofy
@13#. It is related to the mutual informationH(X:Y) by

H~XuY!5H~X!2H~X:Y!. ~36!

In the channel, Alice uses some signal statesra with
probabilitiesPa . Kholevo’s theorem places an upper bou
on the mutual informationH(X:Y):

H~X:Y!<H~r!2(
a

PaH~ra!.

~Note that if the channel used by Alice and Bob consists
L letters used independently, then the Kholevo bound is
Lx, wherex is the Kholevo bound for a single letter.! If the
Alice’s input X has an entropyH(X) that exceeds
H(r)2(aPaH(ra), thenH(XuY).0 and it will not be pos-
sible to make the probability of errorPE arbitrarily small.

Suppose we fix an alphabetG5$Wx% of letter statesWx
and require that Alice use codewordsa that are length-L
strings of these letter states:a5x1•••xL . Then the probabil-
ity distribution Pa yields marginal probability distributions
p(x1), . . . ,p(xL) and average density operato
W1 , . . . ,WL for theL different letters. It follows that

H~r!2(
a

PaH~ra!

5H~r!2(
a

Pa„H~Wx1
!1•••1H~WxL

!…

5H~r!2S (
x1

p~x1!H~Wx1
!1•••

1(
xL

p~xL!H~WxL
! D
t

i-
e

t-

f
st

<SH~W1!2(
x1

p~x1!H~Wx1
! D 1•••

1SH~WL!2(
xL

p~xL!H~WxL
! D , ~37!

where we have used the subadditivity of the entropyH(r).
We might write this as

x~L !<x11•••1xL , ~38!

wherex (L) represents the Kholevo bound for the ensemble
codewords of lengthL and x1 , . . . ,xL represent Kholevo
bounds for the individual letter ensembles.

We define thefixed-alphabet capacity CG to be

CG5supp~x!x, ~39!

where p(x) is the probability distribution over the lette
states inG and x is the single-letter Kholevo bound. Thi
quantity represents the maximum information rate per le
that Alice can send to Bob with arbitrarily low probability o
error.

This claim follows directly from our results so far. Sup
pose Alice uses codewords of lengthL. Thenx (L)<LCG ; by
the above argument, if Alice attempts to send more th
LCG bits using these codewords then the probability of er
will not be arbitrarily small. Conversely, we can choose t
letter probabilities so thatx is as close as required toCG ,
and we have previously shown that a suitable choice of c
and decoding observable can convey up tox bits per letter
with arbitrarily low PE . Thus the capacityCG cannot be
exceeded, but can be approached arbitrarily closely.

VII. NOISY CHANNELS

The mixed statesWx used in our alphabet are the stat
available to Bob for decoding. They may in fact not be t
original states of the channelQ chosen by Alice. In the in-
terval between Alice’s encoding and Bob’s decoding, t
systemQ may have undergone unitary internal evolutio
~which Bob can correct by a suitable choice of ‘‘rotated
decoding observable! and interaction with the external env
ronment~which Bob cannot in general correct!.

The most general description of the evolution of a qua
tum systemQ interacting with an environment is provide
by a trace-preserving completely positive linear map on
set of density operators ofQ @11#. Such a map is describe
by a superoperatorE:

r→r85E~r!, ~40!

wherer is the initial state of the system andr8 is the final
state. The superoperatorE acts linearly, so that a conve
combination of input states yields a convex combination
output states. This description clearly includes unitary e
lution of Q as a special case, but it also can account
interaction with the environment.

A noisy quantum channel is defined by a superopera
E that describes the evolution of each letter as it is transm
ted from Alice to Bob. We assume that the channel is mem
ryless, i.e., that the evolution of each letter is independe
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136 56BENJAMIN SCHUMACHER AND MICHAEL D. WESTMORELAND
This means, among other things, that a product state of
eral input letters will evolve into a product state output.

Alice’s basic problem is to use input stateswx so that the
output statesWx5E(wx) can be distinguished by Bob. I
Alice has a fixed alphabet$wx% of input states, then the
maximum achievable information rate per letter is still giv
by our fixed-alphabet capacityCG , whereG is the alphabet
of outputstates.

Now suppose that Alice is allowed to choose her inp
states in order to maximize the information conveyed to B
over the noisy quantum channel, subject to the constraint
Alice must transmit codewords that are represented by p
uct states of the letters. Thisalmost reduces to the fixed
alphabet problem, where the fixed alphabetG now includes
all of the possible output states of the channel. The ma
mum over probability distributions is now a maximum ov
all input ensembles of states chosen by Alice.

We say that this problemalmostreduces to the fixed al
phabet problem in that the argument thatx is an upper bound
of the capacity must be modified in this case. Recall fr
Sec. VI that we applied the classical Fano inequality to sh
that if Alice attempts to send information at a rate exceed
x, then the probability of error cannot be made arbitrar
small. If we attempt to use the same argument in the pre
case, then the Fano inequality does not help us for at l
two reasons. First, the number of possible input statesNX is
unbounded. Second, we do not have a characterizatio
H(XuY) that allows us to compare it withNX . Thus we will
modify the Fano inequality to understand the behavior of
probability of error in the present case.

We first note that the probability of ‘‘getting it right’’

12PE5
1

N(
ak

pkuaz^m̃akusak&z2 ~41!

is linear in the elements of the POM. Thus the probability
error PE is a convex function on the elements of the PO
We may modify the proof of a result of Davies~Theorem 3
of @14#! to show that the convex functionPE is minimized by
a POM having no more thand2 elements, whered is the
dimension of the support of the POM. Thus the probabi
of error is minimized by a decision scheme in which at m
d2 of the inputs are identified by the decision scheme. Le
denote the output of such a scheme byYmin . Fano’s inequal-
ity gives us that

2PElog2PE2~12PE!log2~12PE!1PElog2~d
221!

>H~XuYmin!. ~42!

Note that

H~XuYmin!5H~X!2H~X:Yminmin! ~43!

>H~X!2x, ~44!

so that we conclude
v-

t
b
at
d-

i-

w
g

nt
st

of

e

f
.

t
s

2PElog2PE2~12PE!log2~12PE!1PElog2~d
221!

>H~X!2x. ~45!

Note that this is a relation between the minimum pro
ability of error and a quantity@H(X)2x# that does not de-
pend on the particular decision scheme. We see that if A
attempts to send information at a rateH(X) in excess ofx,
then the probability of error cannot be made arbitrarily sm

We now turn to a demonstration that this rate can
achieved. Alice wishes to choose a set of input stateswx
~together with input probabilitiespx) so thatx is maximized
for the output statesWx . We next show that Alice can do n
better than choose the input stateswx to be pure. Let a set o
~possibly mixed! input stateswx be given along with theira
priori probabilities and let

W5(
x

pxWx5(
x

pxE~wx! ~46!

be the average output state. Then

x5H~W!2(
x

pxH„E~wx!…. ~47!

Construct a new set of pure state inputs by resolving e
mixed state input into a convex combination of pure stat

wx5lxkucxk&^cxku. ~48!

We will use the stateucxk& with probabilitypxk5pxlxk . By
linearity,

Wx5E~wx!5(
k

lxkE~ ucxk&^cxku!, ~49!

so that the average output state is stillW, as before. By the
convexity of the von Neumann entropy,

H~Wx!>(
k

lxkH„E~ ucxk&^cxku!…. ~50!

It follows that

x85H~W!2(
xk

pxkH„E~ ucxk&^cxku!…

>H~W!2(
x

pxH„E~wx!…5x. ~51!

In other words, for any ensemble of mixed input states,
can find an ensemble of pure input states whose output s
have ax at least as great. The optimal inputs for the no
quantum channel are pure states.

To sum up, if Alice is required to use product states
represent her codewords, then the capacityC(1) of the noisy
quantum channel is

C~1!5maxx, ~52!

wherex is the Kholevo bound for the output states of t
channel and the maximum is taken over all ensembles
pure state inputs. Alice can reliably transmit information
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Bob at any rate belowC(1). We will refer to C(1) as the
product state capacity. The superscript (1) reminds us
Alice is required to use the multiple available copies of t
channelone at a time, coding her messages into produ
states.

The product state capacityC(1) is a function only of the
superoperatorE describing the dynamical evolution of
single channel. To emphasize this, we will calculateC(1) in
the simple case of a one-quantum-bit~one-qubit! depolariz-
ing channel. A two-level system, or qubit, is sent through
channel. With probabilityP, the state of the qubit is lef
intact; with probability 12P, the state is completely ran
domized, so that the output state of the qubit is a comple
mixed density operator. For any pure state inp
wx5ucx&^cxu, the output state is

Wx5E~wx!5Pucx&^cxu1
12P

2
I , ~53!

whereI is the identity operator. Any such state has eigenv
ues 1

2(11P) and 1
2(12P) and thus an entropy

H~Wx!52
11P

2
log2

11P

2
2
12P

2
log2

12P

2

512
1

2
@~11P!log2~11P!1~12P!log2~12P!#.

~54!

To calculate the capacity, we maximize the outputx over all
ensembles of pure state inputs. But the entropy of each
put state will be the same, so we only need to maximize
entropy of the average output stateW. This is easily seen to
be 1, so that

C~1!5
1

2
@~11P!log2~11P!1~12P!log2~12P!#.

~55!

If P50, then the product state capacity is~reassuringly!
zero; but for anyP.0, the product state capacityC(1).0,
with C(1)51 bit for P51.

However, Alice can do more than we have so far allow
her to do. It might conceivably be to her advantage to
entangledstates to represent her codewords. The out
states will in general be entangled states.~This will present
no additional difficulties for Bob; even to distinguish produ
states, we have allowed Bob to use a collective decod
observable for strings ofL letters.!
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In this case, it is no longer true that the Kholevo bou
x (L) for the output codewords satisfies

x~L !<x11•••1xL , ~56!

where thexk denote the Kholevo bounds for the individu
letters. That is,x is not necessarily subadditive for system
that may be entangled.

Suppose that Alice is permitted to prepare entang
states ofL copies of the channel. Then we can treat the
L copies as a single ‘‘extended’’ channel, which Alice c
prepare in any state. Our main theorem applied to this
tended channel means that for anyx (L) of the output states
Alice can reliably send up tox (L)/L bits of information per
letter to Bob. Thus we define

C~L !5
1

L
maxx~L !, ~57!

where the maximum is taken over all input ensembles,
cluding entangled states, for theL elementary channels.~By
our previous arguments, it suffices to consider only e
sembles of pure input states.! C(L) is the capacity if Alice is
allowed to use the channels in entangled blocks of len
L. Since product states are allowed, it is clear th
C(L)>C(1). The asymptotic capacity will be

C5 lim
L→`

C~L !. ~58!

This will be the ultimate information capacity of the nois
quantum channel.~Similar considerations are discussed
@10#.!

Like C(1), C will be a function only of the dynamica
superoperatorE. No examples are known whereC.C(1)

~though the example in@12# is suggestive!. Thus it is not
known whether or notC5C(1).
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