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I. INTRODUCTION
X=H(W)= 2> p,H(W,).
Suppose Alice wishes to convey classical information to X
Bob by using a quantum systefhas a communication chan-
nel. Alice prepares the channel in one of various quantunfix €,6>0. Then for sufficiently largé., there exist a code
statesw, with a priori probabilitiesp,. Bob makes a mea- (whose codewords are strings bfletters and a decoding
surement on the syste@, and from its result he tries to infer observable such that the information carried per letter is at
which state Alice prepared. A theorem stated by Gorfddn leasty— 6 and the probability of erroPg<e.
and Levitin [2], proved by Kholevo[3], gives an upper As in[5], we employ an average over randomly generated
bound to the amount of information that Bob can obtaincodes to establish the existence of a satisfactory qdidine
about Alice’s signal. IfW=2X,p,W, is the density operator average probability of error is small for an ensemble of
describing the ensemble of Alice’s signals, then the mutuatodes, the ensemble must contain specific codes with small
informationH (X:Y) between Alice’s inpuX and Bob’s out-  probability of error) We also use a similar prescription for
putY is bounded by Bob’s decoding observable. The chief refinement in the
proof presented here is the enforcement of stronger “typical-
ity” conditions on various quantities associated with the
HX:Y)<H(W)— >, p,H(W,), (1)  channel.
X The mixed state$V, may be thought of as the outputs of
anoisyquantum channel. Thus our main result will enable us
where H(W) = —TrWlog,W, the von Neumann entropy of to draw conclusions about the classical information capacity
the density operatow. The upper bound in Eql) is in  of a noisy quantum channel.
general a weak one, in that Bob may not be able to choose an Our main result is the same as that given recently in in-
observable that gives him an amount of information near thelependent work by Holevf6]. Holevo's proof, like ours,
upper bound4]. follows the general strategy ¢5], though there are substan-
Recently, Hausladeet al.[5] showed that, if Alice’s sig- tial differences of detail.
nal statesdV, are pure states, then it is possible to approach
the Kholevo boundH(W) for an appropriate choice of
Alice’s code and Bob’s decoding observable. This is done by IIl. SETTING IT UP

(i) employing long strings of signals to send many indepen- \ye will assume that we have an alphabet of mixed states
dent messages togethér) “pruning” the set of strings use.d _W,, each of which has aa priori probability p,. The av-
as.codewords SO that the code\(vords are sqfﬂuently d'St'nérage density matrix i&/=3,p W, . We wish to show that,
guishable, andm} choo_smg a su_ltable decoding observablejt \ve use long strings of these lettguitably pruning the set
that acts on entire strings of signals. For large enough ¢ -odewords to improve distinguishabilitand an appropri-

codewords ofl “letters” may be used to transmit Up 10 46 decoding observable, we can send reliably an amount of
LH(W) bits of information[thusH (W) bits per lettet with  information up to

arbitrarily low probability of error.
This naturally suggests a generalization, which was pre-
sented in[5] as a conjecture. Suppose that Alice employs
signal statedV, that aremixedstates. Then can Alice and
Bob find a choice of code and decoding observable so that
the general Kholevo bouniEg. (1)] can be approached ar-
bitrarily closely? In this paper, we show that the answer toPer letter. o .
this question is “yes.” That is, we prove the following re- ~ We will be considering strings df letters. In what fol-

x=H<W)—§ PH (W) @)

sult. lows we will assume that the indexrefers to a whole string
Theorem Suppose we have letter stat with a priori ~ Of lettersia=x;- - -x_ . Pa=py - - - Py _is thea priori prob-
probabilitiesp, and let ability of the sequenca and p,=Wy ®---©W is the
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state associated with the string. The average state is Furthermore, the sum of thB,’s for the typical strings is
greater than te.
p=> Pp.=W@ - QW. 3 (b) For a typical string-syndrome pagrk,
¢ L times
Consider the statgp, . This has a complete orthogonal set 2 ex;{ - L( H(X)+ 2 pyH(W,)+ 8| | <Pak
X

of eigenstates, which we will denots,,) (wherek ranges

over the dimension of the spgcand a corresponding set of

eigenvaluepy, . As the notation suggests, we may think of <2 exp{ - L( H(X)+ 2 pxH(W,) — 5” . (8

the pyja's as “conditional probabilities” fork givena, and X

this motivates us to form the “joint probability” distribution \ynere 2 exfx] means 2. Furthermore, the sum %, over

Pak=PaPya- Of course,p=3,Pak/Sak)(Sal It will be o typical string-syndrome pairs is also greater thanel

convenient to refer to the indek identifying the string For each stringa, we define a set ofelatively typical

eigenstate as theyndromeof the codewordp, . . syndromes as followsk is relatively typical toa if a is a
When we construct our decoding observable, we will betypical string ancak is a typical string-syndrome paifiNote

trying not only to distinguish the string, but also(a seem-  h4t atypical strings have no relatively typical syndromés.
ingly harder taskto determine the syndromeas well. An | s relatively typical toa, then

error will occur if either the codeword or the syndrome is

incorrectly identified. For a given codewopq , the various

|sai)’s are orthogonal and hence perfectly distinguishable 2exp{—L Ex: pxH(Wy) +26
from one another, so this will not really be more difficult

than identifying the codeword only.

}<pk|a

€)

<2 ex;{—L(E pXH(WX)—Zb‘)

Il. TYPICALITY
sincepya= Pax/Pa. We can take advantage of the definition

Let €,6>0. Then we can find a length large enough to of x above to write this as

enforce the following typicality conditions on strings of

lengthL. Z_L[H(W)_X+25]<pk‘a<2_L[H(W)_X_25]_ (10)
(i) There exists a typical subspaf®,9] for the states.
That is, there is a subspace spanned by eigenstates pf We adopt the following notations for sums;, means

such that, iflI is the projection onto\, TrpII>1—e. Fur-  sum overk for a given value of, X, means sum restricted
ther, if we denote by ,) the eigenstate gf with eigenvalue  to relatively typicalk’s only (note that this sum may have no
An,s termg, andX}, meansz .2, ,. If we restrict sums to rela-
tively typical syndromes only, we do not lose much weight
in the ensemble. That is, consider the paiksin which k is
relatively typical. This excludes all atypicals (a set of total
probability less thare) and all atypical pairak (also of
probability less thare). It follows that

2—L[H(W)+5]<)\n<2—L[H(W)—5]

for all [\,) e A.
One key property of the typical subspace is that

Trp2Il< 2 LHW) =24 (5) ) )
This property was used by Hausladetnal. [5] to bound the ; Pat Za Pa%;l a1~ 2. 1y
probability of error, and it will play that role again. )

(i) There exist a typical set of stringselative to the The total ensemble =3, PaySak)(Sal. If we restrict the
distribution P,) and a typical set of string-syndrome pairs ense_mble to _strlng—syndrome pairs in Wh|ch_ the syndr_ome is
(relative to the joint distributionP,,). Let H(A) be the relat|vgly typical, then we get a subnormalized density op-
Shannon entropy associated with the string distribufign ~ eratorp for which
and letH(A,K) be the Shannon entropy associated with the
joint distribution P, Notice thatH(A)=LH(X), where Trngr(E Paklsak><sakl)>l—26- (12)
H(X) is the Shannon entropy of the letter distribution. Also, ak

We also note thap<p under the usual partial ordering of

H(A'K)ZH(A)+§ PaH(pa) positive operators(That is, (| p| )< (u|p|y) for all |).)

=L| H(X)+ >, peH(Wy) |, (6) IV. CODING AND DECODING
X

Now we discuss our code and our decoding procedure.
where thex sum is over the letters. Typicality means the The code will consist ofN codewords(each a string of

following. length L), which we will use with equal frequency. Code-
() For a typical stringa, words in our code will be indexed by a greek index such as
a. Thus the latin characteesb, . .. index the whole set of

2 HHX) 0 < p_ <2~ LIHO)=d] (7)  strings, while the greek charactersg, . .. index the code-
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words in our code. Greek indices thus take rpossible  The matrixS is a positive square matrix. It turns out that
values.

The decoding procedure will be a variation of the “pretty (P ol Sad = (VS) a k- (19)
good measurement” used [B]. We will attempt to identify
not only the codeword but also the syndrome. Our decodingThis could be used as an implicit definition of the
observable will be a “positive operator measurement”|;; y's) We will employ the same inequality that was used

(POM), described by a set of positive operators summing tqy, [5]: for x=0, VX= 3x— 2. This means that
unity. For each codeword-syndrome paik we will have a ' oo

(possibly  subnormalized vector |ﬁak) such that 3 1/

|,L~qu§)<ﬁak| is an element of our decoding POM. The prob- (\/g)ak,akBE Sak,ak™ 5 % Sak piSpak-  (20)
ability of error is thus

1 This gives us a bound for the probability of error
PE:l_NEk pk‘a|<lu’ak|sak>|2 3 4

Pp<2- NZZPHQ (sak | TT] sak)

o kla

l —_~
:Nz 2 pk|a(1_ |<Iu'a/klsak>|2)

a ka #1
1 1 ! !
sz( 1— NEK Pula| (Fakl Satd ) . (13) Ty % Hza%;pma (Sak || sp1) (spr | 1T | sok)
We next describe how to specify the decoding observable. # 2
If k is not relatively typical toa, we Ietlﬁak)=0. For the (D)
rest, we construct the operator We will deal with the terms labete# 1 and # 2 separately.
Y=2 H[su){sulTL, (14) V. RANDOM CODES
ak

Now we will average the probability of errdPz over
wherell is the projection onto the typical subspatdor the ~ random codes. These codes are constructed by choosing the

a priori ensemble, as described above. We define N codewords independently according to tgriori string
distributionP, . This will have the effect of turning averages
[a) =Y Y5, (15)  over the codewords in the code into averages overahe
priori string ensemble.
for k relatively typical toa. (SinceY is not generally fully Denote the random code average (by,. Consider term

invertible, thisY ~'2is the pseudoinverse a&f?, supported #1 above,

only on the support o¥.) It follows that
3 !
<#1>C:<N 2 ; pka<sak|H|Sak>>
C

2 [Fad(Fal = 2 [FadFad =1 (16)
on the range space af (which is a subspace df). We can :3( 2 Pa; pk|aTrH|Sak><Sak|H)
add an element of the POMabeled “error”) on the or- a kla

thogonal space, if necessary, to give overall normalization.

SinceY (and thusY ~*?) is positive, the inner product =3(TrIIpIl). (22
(L oklSak) is real and non-negative. We do not need the
modulus signs in our bound for the probability of error. Fur-(Notice that the average over random codes transformed the
thermore, our construction of thg ,,)'s means that the only sum over the codewords,, into N times the average over
contributions come from those terms in whikfis relatively  the string ensemble described By since each codeword is
typical to . Thus we can write chosen independently accordingRg.) Now letA=p—7,

a positive operator sincg<p. Then

1 ~
Pe<2 1_N2k Pl HaklSak) |- (17) (#1)=3(TrlIpII—TrIIATI)>3[(1—€)—TrA]

>3(1-3¢) (23
As was mentioned if5], this definition has some nice

properties connected with a matrix of inner products ofsince TA<2e.

|s.i). Fork relatively typical toa andl relatively typical to Next, examine term #2. The double sum overand 3
B, we define may be split into two parts: a part in whieh= 8 and a part

in which a# B. The advantage in this is that, if# 8, the
Sk, p1=(Sakl|Sp1)- (18  codewords are chosen independently in a random code:



134 BENJAMIN SCHUMACHER AND MICHAEL D. WESTMORELAND 56

#2= = S35 b (s | T ) Gt | 5 x

o kla o

é Pag Pb% pk|a% Pib

# 2a
1 ' XTrH|Sak><Sak|H|5bl><sbl|n)
5 2 2D Phla (Sak [T sa) (st | T [ sak)
it ke 15 <N2LHW -+ 2T p TR (30)
# 2b

(Notice again that each term in the sums over the codewords

(24) has been replaced by the appropriate string-ensemble aver-
age) We note that ifA, B, andC are positive operators with

We consider term #&: B<A, TrBC<TrAC. Thus

' 1 > P TR VR THIpHpI =TI pp<Tr pIlp=TrplplI<Trpllpll
a=— «{Sa Sa){Sulllls,
N < %:1 % Pkl Sakd 1118a1){ Sar |11 Sak =Trp?Il, (31)

where the last line uses the fact thaandII commute:

1 ’ '
= N 2 ; 2 pk|a<sak|H|sa|><SaI|H|Sak>
a kKa lja

B e 511 3 Isutsul

_ i S ’ (Sl T[S (25) Combining these results, we can find an upper bound for
N % Pijat Sak ak the probability of error averaged over all random codes:

(#2b) < N2-HW =x+ 231 p2]]
Sak> < N2LIHW) —x+28] 9 —L[H(W)—=24] — N2 —L(x—46)

(32

since for any a, the [s,) form a complete set. But (p.) <2-—(#1) +(#2a).+(#2b),
<Sak|H|Sak>sln SO
<2-3(1-3e)+1+N2 tx 49 =9+ N2 Lx~49),

(33

1 ' 1
#2asy > ; Pra< > 2 Pe=1l. (26 N _
a Ka a ke For L sufficiently large, we can chood¢ nearly as big as

2% and still have the probability of error small.

If the averageprobability of error is below this bound,
then Alice and Bob will be able to find some particular code
for which

1
#2b= a’;&a % % Pija TTL|Sak(Sakl L] ) (S |1 Pe<9e+N27-(x=49), (34)

(27)
If L is very large, Alice can use up td=2"X"59 code-
The only terms that appear in this sum are terms in whiclwords and still havePe=<10e. In this case, Alice encodes
| is typical relative toB. But for such codeword-syndrome y—56 bits per letter. This proves our main theorem.

Therefore, of coursd#2a).<1.
Now we consider the much more interesting term #2b:

pairs, we have a uniform lower bound ppz, which allows We have shown the existence of a satisfactory code with-
us to say that, for all and g8 that appear in our sum, out actually constructing it. Consequently, we do not know
much about the structure of the code. In particular, we have

1<p||,82L[H(W)_X+25]- (29) not guaranteed in our proof that the letter states occur in the

codewords with frequencies that closely match tlagpriori
probabilitiesp, . (This is something that we might wish to
require since the distributiop, might be chosen to optimize
L some resource, such as the energy required per )etter.
1 S turns out, however, that we can satisfy such a requirement.
N < % ; Since we generate the codewords in our ensemble of codes
a,BFa B . .. s
by using thea priori probabilities, the law of large numbers
X P aPi g TS ) (Sakl TL[Sg)(SmIIL. (29  implies that the letter frequencies will match taepriori
distribution within any specified tolerance for a set of “typi-

Therefore,

#2b< 2L[H(W)*X+25]

Taking the average of #2over random codes, cal codes.” The set of typical codes includes almost the en-
tire weight of the code ensemble and thus many of the par-
(#Zb)c=2L[H(W)’X+25] N(N—1) ticular codes with low probability of error. Sg&] for the

N details of this argument applied to the pure state case.
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VI. FIXED-ALPHABET CAPACITY

s(H(wl)—XE POX)H(W, ) |+

We have shown that it is possible to send information at
any rate up toy bits per letter with arbitrarily low probability
of error. The capacity of a channel is defined as the maxi-
mum information per letter that may be sent through the
channel withPg arbitrarily small. Thusy provides a lower
bound to the capacity of the quantum channel. where we have used the subadditivity of the entré{{y).
Classical information theory together with Kholevo’s We might write this as
theorem also allows us to ugeto establish ampper bound WL
for the capacity of the channel. Supposeepresents Alice’s D S CRRRL (I (38)

input and'Y represents Bob S decoding measurement OUtWhereX(L) represents the Kholevo bound for the ensemble of
come. Then the Fano inequality] states that

+

H(Wy) - 2 p(xL)H<vvxL)), (37)

codewords of length. and x4, ... ,x. represent Kholevo
bounds for the individual letter ensembles.
—Pglog;Pe—(1—Pg)logy(1— Pg) + Pelogy(Ny— 1) We define thefixed-alphabet capacity £to be
=H(X]Y), (35 Cr=supyxX. (39)

where p(x) is the probability distribution over the letter
states inl' and y is the single-letter Kholevo bound. This
quantity represents the maximum information rate per letter
that Alice can send to Bob with arbitrarily low probability of
error.
This claim follows directly from our results so far. Sup-
pose Alice uses codewords of lengthTheny()'<LC; by
H(X]Y)=H(X)—H(X:Y). (36) the above argument, if Alice attempts to send more than
LCr bits using these codewords then the probability of error
In the channel, Alice uses some signal staggswith will not be ar_b_it_rarily small._Converser, we can choose the
probabilitiesP, . Kholevo's theorem places an upper bound!€tter probabilities so thag is as close as required ©r,
on the mutual informatio (X:Y): and we haye previously shown that a sunablg choice of code
and decoding observable can convey upytbits per letter
with arbitrarily low Pz. Thus the capacityfCy cannot be
exceeded, but can be approached arbitrarily closely.

whereP¢ is the probability of error antlly is the number of
possible values oX. H(X|Y) is the conditional Shannon
entropy ofX givenY, that is, the entropy of the conditional
distribution p(x|y), averaged over the various values yof
[13]. It is related to the mutual informatiod (X:Y) by

H(x:v>sH<p)—§ PaH(pa).
VIl. NOISY CHANNELS

(Note that if the channel used by Alice and Bob consists of The mixed statesV, used in our alphabet are the states
L letters used independently, then the Kholevo bound is jusivailable to Bob for decoding. They may in fact not be the
L x, wherey is the Kholevo bound for a single lettgtf the  original states of the chann@& chosen by Alice. In the in-
Alice’s input X has an entropyH(X) that exceeds terval between Alice’s encoding and Bob’s decoding, the
H(p) —Z4PaH(pa), thenH(X|Y)>0 and it will not be pos- systemQ may have undergone unitary internal evolution
sible to make the probability of errd? arbitrarily small. (which Bob can correct by a suitable choice of “rotated”
Suppose we fix an alphabBt={W,} of letter statesV,  decoding observableand interaction with the external envi-
and require that Alice use codewordsthat are length- ~ ronment(which Bob cannot in general correct
strings of these letter states=x; - - - X, . Then the probabil- The most general description of the evolution of a quan-
ity distribution P, yields marginal probability distributions tum systemQ interacting with an environment is provided
p(xy),...,p(x) and average density operators by a trace-preserving completely positive linear map on the
Wy, ... W, for theL different letters. It follows that set of density operators @ [11]. Such a map is described
by a superoperatdf:

H(p) =X PaH(p) pop=Hep), “o

wherep is the initial state of the system anpd is the final
state. The superoperatér acts linearly, so that a convex
=H(p)= 2 Pa(H(W, )+ +H(W,)) combination of input states yields a convex combination of
é output states. This description clearly includes unitary evo-
lution of Q as a special case, but it also can account for
=H(p)— ( 2 p(xl)H(le)Jr e interaction with the environment.
X1 A noisy quantum channel is defined by a superoperator
& that describes the evolution of each letter as it is transmit-
+ 2 p(x ) H(W, )) ted from Alice to Bob. We assume that the channel is memo-
X t ryless, i.e., that the evolution of each letter is independent.
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This_means, among other th_ings, that a product state of sev- — P log,Pg— (1— Pg)logy(1— Pg)+ Pelog,(d?—1)
eral input letters will evolve into a product state output.

Alice’s basic problem is to use input stat@g so that the =H(X)—x. (45
output statesw,=&(w,) can be distinguished by Bob. If
Alice has a fixed alphabefw,} of input states, then the
maximum achievable information rate per letter is still given

by our fixed-alphabet capaci®r, wherel is the alphabet attempts to send information at a ratéx) in excess oy,

of outputstates. o S
Now suppose that Alice is allowed to choose her inputthen the probability of error cannot_be made a_rbltranly small.
We now turn to a demonstration that this rate can be

states in order to maximize the information conveyed to Bob hieved. Ali ishes to ch t of input Stat
over the noisy quantum channel, subject to the constraintth(?C ieved. VICE WIShES 1o CNoose a Set of Input StaNes

Note that this is a relation between the minimum prob-
ability of error and a quantityH(X) — x] that does not de-
pend on the particular decision scheme. We see that if Alice

Alice must transmit codewords that are represented by pro together with input probabilitiep,) so thaty is_ maximized
uct states of the letters. Thamostreduces to the fixed- [oF the output stated, . We next show that Alice can do no

alphabet problem, where the fixed alphabebow includes better_ than _choo_se the input staVe)st_o be pure. L_et a set of
all of the possible output states of the channel. The maxi{PSSibly mixed input statesv, be given along with theia

mum over probability distributions is now a maximum over Priori probabilities and let
all input ensembles of states chosen by Alice.

We say that this probleralmostreduces to the fixed al- W=, p,W, =, pE(W,) (46)
phabet problem in that the argument tlyas an upper bound X X
of the capacity must be modified in this case. Recall fromb
Sec. VI that we applied the classical Fano inequality to show
that if Alice attempts to send information at a rate exceeding
X, then the probability of error cannot be made arbitrarily x=H(W)— X pH(EWy). (47)
small. If we attempt to use the same argument in the present X

case, then the Fano inequality does not help us for at leagtnstruct a new set of pure state inputs by resolving each

two reasons. First, the number of possible input stitess  mixed state input into a convex combination of pure states:
unbounded. Second, we do not have a characterization of

e the average output state. Then

H(X]Y) that allows us to compare it witNy . Thus we will Wy = Ny i { - (48
modify the Fano inequality to understand the behavior of the
probability of error in the present case. We will use the statéys) with probability pyx=p,Axk- By
We first note that the probability of “getting it right” linearity,
1 - Woe=EW,) =2 Mol (i), (49)
1=Pe=2) Pual (Kol Sud|? (41) “

so that the average output state is dtil] as before. By the

o ) - convexity of the von Neumann entropy,
is linear in the elements of the POM. Thus the probability of

error Pg is a convex function on the elements of the POM.

We may modify the proof of a result of Davié§heorem 3 H(WX)>ZK NaacH (EC a0 (P ) - (50
of [14]) to show that the convex functid®e is minimized by

a POM having no more thad? elements, where is the |t follows that

dimension of the support of the POM. Thus the probability

of error is minimized by a decision scheme in which at most ,

d? of the inputs are identified by the decision scheme. Let us X' =HW) = %} PracH (i (¥l )

denote the output of such a schemeMyy,,. Fano’s inequal-

ity gives us that BH(W)—E D H(EW,))=x. (51)

2
~ PelogPe—(1=Pe)logy(1—Pe) +Pelogy(d™~1) In other words, for any ensemble of mixed input states, we
=H(X[Ymin)- (420  can find an ensemble of pure input states whose output states
have ay at least as great. The optimal inputs for the noisy
quantum channel are pure states.

Note that To sum up, if Alice is required to use product states to
represent her codewords, then the capa€ity) of the noisy
H(X|Y min) = H(X) = H(X: Y igmin) (43~ guantum channel is
CV=maxy, (52)
=H(X)— x, (44)

where y is the Kholevo bound for the output states of the
channel and the maximum is taken over all ensembles of
so that we conclude pure state inputs. Alice can reliably transmit information to



56 SENDING CLASSICAL INFORMATION VIA NOISY ... 137

Bob at any rate belonC®. We will refer to C() as the In this case, it is no longer true that the Kholevo bound
product state capacity. The superscript (1) reminds us tha¢(") for the output codewords satisfies

Alice is required to use the multiple available copies of the

channelone at a time coding her messages into product X P<xi+-+x, (56)
states.

The product state capaci®® is a function only of the where they, denote the Kholevo bounds for the individual
superoperator€ describing the dynamical evolution of a |etters. That isy is not necessarily subadditive for systems
single channel. To emphasize this, we will calcul&!®) in  that may be entangled.
the simple case of a one-quantum-f@he-qubi} depolariz- Suppose that Alice is permitted to prepare entangled
ing channel. A two-level system, or qubit, is sent through thestates ofL copies of the channel. Then we can treat these
channel. With probabilityP, the state of the qubit is left L copies as a single “extended” channel, which Alice can
intact, with probability 1P, the state is completely ran- prepare in any state. Our main theorem applied to this ex-
domized, so that the output state of the qubit is a completelyended channel means that for a;@SF) of the output states,
mixed density operator. For any pure state inputAlice can reliably send up tq")/L bits of information per

Wy =) (], the output state is letter to Bob. Thus we define
Wi=EW,) = Pl (Ul + —5—1, (53 C“—E%ma)q('-), (57)
wherel is the identity operator. Any such state has eigenval- ) _ ) _
uesi(1+P) andi(1—P) and thus an entropy where the maximum is taken over all input ensembles, in-
cluding entangled states, for theelementary channel$By
1+ PI 1+P 1—PI 1-P our previous arguments, it suffices to consider only en-
H(Wy) == ——ogy—————10g;— sembles of pure input state€") is the capacity if Alice is

allowed to use the channels in entangled blocks of length
L. Since product states are allowed, it is clear that

1
=1- 511+ P)logy(1+P)+(1-P)logy(1=P)]. cW=c®, The asymptotic capacity will be

(54) C=limcL). (58)

To calculate the capacity, we maximize the outpudver all Lo

ensembles of pure state inputs. But the entropy of each out- ] ) ) ) ]
put state will be the same, so we only need to maximize thd Nis will be the ultimate information capacity of the noisy
entropy of the average output staté This is easily seen to guantum channel(Similar considerations are discussed in

be 1, so that 10]'_) . . .
Like C), C will be a function only of the dynamical

superoperato€. No examples are known whe@>C®)
(though the example if12] is suggestive Thus it is not
(55  known whether or no€=C.

c<1>:%[(1+ P)logy(1+P)+(1—P)logy(1—P)].

If P=0, then the product state capacity (ieassuringly
zero; but for anyP>0, the product state capaci6‘)>0,
with CW=1 bit for P=1.

However, Alice can do more than we have so far allowed The authors wish to thank L. Levitin, R. Jozsa, and W.
her to do. It might conceivably be to her advantage to us&Vootters for many helpful discussions and suggestions about
entangledstates to represent her codewords. The outputhis and related work. The authors also wish to thank the
states will in general be entangled stat@his will present Institute for Scientific Interchange in Turin, Italy for the op-
no additional difficulties for Bob; even to distinguish product portunities afforded by a workshop on quantum computation.
states, we have allowed Bob to use a collective decodingyl.D.W. was supported by the Robert C. Good Foundation at
observable for strings df letters) Denison University.
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