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Quantal calculations are presented for intramultiplet mixing collisions df(Rig®3p) with He(*S,) in the
60—-1250 meV collision energy range. The coupled equations are solved in a diabatic representation where the
coupling terms are obtained using the model potential calculations of Hennecart and Masnou{SeBhys.
B 18, 657 (1985] for the interaction of the Ne outer electron with the two cores and values fitted on the
spectroscopic data of Dabrowski and Herzbvpl. Spectrosc73, 183(1978] for the core-core interaction.
An extensive comparison with the experimental data of the Eindhoven group is presented for absolute polar-
ized cross sections and anisotropy parameters. Very good agreement is obtained with thermal energy data of
Manderset al.[Phys. Rev. A39, 4467(1989], while the systematic 30—40 % discrepancy with superthermal
data of Boomet al. [Phys. Rev. A49, 4660 (1994] might be attributed to a calibration problem in the
experiment rather than to an inaccuracy in the long-range potef&l850-294®7)09207-X|

PACS numbdps): 34.50-s, 34.20--b, 31.50+w

I. INTRODUCTION calculations provide either a nondiagonal matrix for the elec-
tronic Hamiltonian, which describes the perturbation of an
During the last decade, a major achievement in the fiel@xcited neon atom by a ground-state helium atom at the in-
of atom-atom(moleculg collisions and molecular dynamics ternuclear distanc® (diabatic picturg, or adiabatic curves
has been made by experimental devices combining molec@btained by diagonalization of the electronic Hamiltonian
lar beams and polarized laser techniques. Vector propertic¥d adapted to the Hund's caseoupling scheme.
could then be analyzed for a variety of syste(fe refer- Excellent agreement was obtained between the measured
ences, see the review pagdi), giving deeper insight into absolute cross sections at thermal _energTd?s‘,_s) [3,4,6 and
the physical processes. Important work has been done by ttfglantal calculation$4] using the diabatic picture and con-
Eindhoven groupj2—4], which has focused on intramultiplet Sidering a large number of channels coupled by the elec-
mixing collisions of Né& (2p®3p) atoms with ground-state tronic Hamiltonian. In some cases, wh.ere rotational coup!mg
He atoms. In their experiment, a beam of metastable Ne af@n be neglected, the unpolarized cross sections
oms was excited with a polarized laser into a combination of2p, ;3,—2p, ;3, ¢an also be computed with very good accu-
Zeeman sublevel§;M; of a short-lived N&(2p°3p;2p;) racy using simple quantum calculatiof7,8 considering
level, labeled P; according to Paschen notation. By varying two adiabatic states in Hund’'s caseepresentation coupled
the polarization vector of the exciting light and by measuringby radial coupling. In such cases a semiclassical model, us-
the population of the other (& ;J;) fine-structure levels by ing simple probabilities predicted by the Landau-Zener
fluorescence analysis, it is possible to determine the absoluteodel [6] or a more accurate exponential modél, has

Cross sectionryp, .5, —2p, ;3 for the reaction been proved to give a correct interprgtatiqn of the observed
results: In such a model, the population is transferred from
Ne* (2p; ;M) +He(1Sy) — Ne* (2p; ; J¢) + He(1Sy) one molecular state to the other in a region of internuclear
distances localized near an avoided crossing between two

+AE; . 1) adiabatic potential curves.

However, when new experiments were perforni@tat
Ssupertherma(SE) collision energy (208E<1250 meV), a
Mharked disagreement was observed between quantal calcula-
) ~ tions and experiment, the measured cross sections being
sured in the 50-150 meV energy range. The unpolarizedmajier than the computed ones by a factor varying from 0.9
Cross sections ,p, .y, —.2p, ;5, Were also measured. For an in- o 0.4. Moreover, the authof40] showed that in the quantal
terpretation of these data, molecular potential curves comealculations a large part of the cross section was due to a
puted by Hennecart and Masnou-Seey®kin the frame-  contribution from impact parameters much larger than the
work of a model potential treatment have been used. Suchvoided crossing position, so that a large part of the popula-

A strong polarization dependence was obsel\ad], re-
vealing differences by a factor up to 3.5 between some cro
sections O'Zpi 1M, =0—2p; ;3 and 0'2pi M =1—-2p; ;3 mea-
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tion transfer from one molecular state to another one did
occur at long range, far from any avoided crossing. This
result seemed to indicate a failure of the previous semiclas-
sical treatment in the range of superthermal energies, and the
authors concludef,10] by casting doubt on the validity of ~ — 5000 r
the long-range part of the potentials of Hennecart and §
Masnou-Seeuws. This conclusion looks surprising, as the in- ;
adequacy of long-range potentials should lead to stronger ~. 0r
discrepancies at low energies. ~
The aim of the present paper is to reconsider the problem v
and to give a more exhaustive comparison between coupled- 5000 |
channel quantal calculations and experimental results. In |V . . . .
Sec. I, we shall discuss the potentials that were determined 9 4 6 8 10 12 14
in Ref.[5], hereafter referred to as paper I. The problem of
the short-range potential was not addressed properly in the
quoted Wor_k and will be reconsidered here. In Sec. Ill, we FIG. 1. Electrostatic potentials discussed in the present work for
shall describe our quantum treatr_nent. In Sec. IV,_ we Shau)uter-electron- (B-) core interaction,V,(R) (solid line® and
present the _results of our ce_ll_cglatlons, compare with experiy (R) (dotted ling [see Eq.(3) in texi], and for core-core interac-
ment, and discuss the sensitivity of the calculated cross segpn, 1 (R) (dashed lineand W,(R) (long dashed ling[see Eq.
tions to the potentials. Section V is the conclusion. (5) in text]. For R<3a, two potentials are presentedV_,(R)
Atomic units will be used except when otherwise stated. (thin long dashed lineandW,,(R) (thick long dashed linecorre-
sponding to two arbitrary choices in the extrapolation of the
U A(R) molecular potential of HeNeion for short internuclear dis-
tances. The core-core potential used in paper | for both symmetries
In the model potential calculations of paper I, the quantityis reprgsented by a dash-dottgd .Ii(rwertical vyall and polarization .
which is determined accurately is the energy of one eIectroHOtent'a)' The vertical arrows indicate the dl_stances wher_e .the dif-
in the field of a Né ion and a ground-state helium atom at a f€"€nce Vo(R) ~Vr(R) is equal to the maximum and minimum
distanceR. The model is valid provideR is large enough so values of the fine-structure splitting betwee_n two r!elghbo.rlng lev-
that the clouds of the two cores may be considered as diSe_Is. The energy range for SE and TE experiments is also indicated.

tinct, The energy of the_ HeNemoIecuIe_ IS t_hen obtained by of the wave functions, according to the well-known
adding the core-core interaction, which is known at large

) . : . asymptotic model14,15. This point, indicated in paper |, is
!nternqglear Q|stances through mult[pole expansion. So ther&eveloped further in the present work.

is a critical distancijca below which the model is ques- v "sp a1 consider a reference frame where the internu-
tionable. Indeed, the three-body problem is separated int

; L . ear axisR is the quantization axis. In the formalism of
three two-body problems, with a polarization correction. 9

(i) The interaction between the outer electron and thé:)aper I, the electronic Hamiltonian is written as a sum of

. . effective operators:
open-shell Né core is represented by the parametric model P

of Feneuillegt al. [11], with first-order perturb_ation treat- He(R,1)=H,(r)+Viu(R) +W(R), 2)
ment of the fine structure and of the nonspherical part of the
bielectronic interaction. The energy terms in thewhereH,(r) is the atomic Hamiltonian of the neon atom,
ILSM_ M) representation are given in a parameffi@] including fine structureY,(R) contains both the outer elec-
form, and the atomic energy levels in th@p;J;M;) tron interaction with the perturber and the three-body term
intermediate-coupling scheme are obtained by diagonalizadescribed in paper W (R) is the N& -He interaction, here-
tion of the matrix of spin-orbit coupling; the quantum num- after referred to as the core-core interactiois, the positions
bersL,S,J then correspond, respectively, to the total orbitalvector for the $ electron with respect to the center of mass
and spin angular momentum of the electrons in tp€3  of the nuclei, ancR is the radial component of the internu-
configuration, and to their sum, the total electronic angulakclear vectorR. For the sake of clarity, we note here that the
momentumJ. Both spin-orbit constants and parameters rep-atomic spin-orbit coupling of Neis not modified by the
resenting the bielectronic interaction were fitted to the neormpresence of He. The atomic Hamiltoni&h,(r) is diagonal
experimental spectrum. in the|2p;JQ) representation, wher@ is the absolute value
(i) The interaction between the outer electron and thef the projection ofJ on the internuclear axis, the eigenval-
ground-state helium atom is represented by a model potentigles being the experimental energies of the variqusstates.
fitted on low-energy electron-helium scattering data as deThe potentialV;,(R) is a one-electron operator, and it is

10000 |

Rlunits of a ]

II. POTENTIALS

scribed by Valiroret al.[13]. diagonal in the molecular basi8plc\), where\ is the pro-
(iii) The core-core interaction is represented by the longjection of orbital angular momentum =1) of the outer
range multiple expansion which displayska™ behavior. electron on the quantization axis. We have drawn in Fig. 1

(iv) A three-body term deals with the nonadditivity of the the quantities

potentials when the polarization electric fields are not collin-

ear. Vy(R)=(3p,le=1A=0|V;(R)|3p,lc=1A=0), (3)
This model can be generalized when the overlap of the

two core clouds is limited to the long-range exponential part V_(R)=(3p,lc=1A=*1|V;«(R)|3p,lc=1A=*=1),
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which were computed by Hennecart and Masnou-Seeuws Ugqual to the valueC=782 cm ! of the ground-state Ne
to R=4.58, and simply extrapolated in the present paper injon). The energy origin is chosen at the center of gravity of
the region 2,<R<4.53,, assuming an exponential behav- the Ne"(2p®) configuration. The core-core potentials
ior. The matrix elements of;(R) in the|2p;JQ) represen- W,(R) and W_(R) are represented in Fig. 1. Due to the
tation have been given in Appendix 1 of paper | as a fU”Ctiorhncertainty of the 5(R) potential forR<3a,, we present
of the quantitiesV,(R) and Vw(R). In the given reference potentialsiV,;(R) and W_,(R), which correspond to
there are two errors fal=1 which must be corrected by two choices for the short-range partWi(R). The theoret-
1 ical potential curvesUy(R) and U,(R) of Efremenkova
(2,1,3,1V;(R)|2,1,3,3 =+ 15 [8V,(R)+7V.(R)], et al.[17] look more repulsive than those of Dabrowski and
Herzberg[18]: For instance, the well in thel«(R) poten-
1 tial is very shallow and located at 4.3 instead of 245
(21,21Vi(R)|1,1,1,0=— — [V(R)=V.(R)]. (4 Therefore,'we haq to reco'n5|der in the' present paper the
4v3 core-core interaction used in the dynamical calculations of

. . . ) paper |, which was approximated by a repulsive wall located
The core-core interaction described by the effective opy R=4.5a,, and by a polarization potential at larger dis-
erator W.(R) has been defined in paper | by two matrix tances as indicated in Fig. 1.

elgments in the t_)qsis OE . ScM M) states, which may be The exchange potential¥®™(R) and W(R) can be de-
written, in the spirit of the asymptotic meth¢il4,15, as duced fromW,(R) andW._(R), respectively, by subtracting

W,(R)=(2p%L.=1M_ =0|W(R)|2p%L.=1M =0) the polarization ternisee Eq(5)]. We have checked that for
R<Rgiica= 3-529, such curves depart from the expected ex-
ponential behavior, making the model potential calculations
for the He-Né& system questionable.

Two main physical mechanisms can be considered in the
collision problem. The first one, discussed in paper I, may be
W(R)=(2p°Lo=1M =+ 1|W(R)|2p5L,=1M ==+1)  analyzed by comparing the splitting between the two curves
V,(R) and V_(R) to the order of magnitude of the fine-
structure splitting between two neighboring,; Ztates, which
varies between 59 and 1400 chror the transitions consid-
ered here, and to the collision ener@®—1250 meV, that is,
whereay is the dipole polarizability of the He ground-state 483—10 082 cm?). Pseudocrossings in the adiabatic poten-
atom and was taken equal to 1.384 g16]; W;(R) and tial curves occur at distances where those two quantities have
WE(R) represent the exchange interactions between ththe same order of magnitude, as discussed in paper | and in
electronic wave function of the Neion in the 20° configu-  Refs.[7,8]. The second mechanism is due to the rotation of
ration and of the ground-state He atom. Equati@fjsare  the trajectory representing the relative motion of the nuclei
valid provided that the overlap between the two electronicand is mainly determined by the short-range potential, in
clouds is limited to the asymptotic region, where the waveparticular by the position of the repulsive wall. We have
functions display an exponential behavior corresponding tandicated in Fig. 1 both the extreme values for the position of
the classically forbidden region for the motion of the elec-the pseudocrossings described above and the collision energy
trons [14,15. The exponential behavior ofV(R) and range. It is then manifested that calculations in the thermal
WEX(R) is a check for the validity of our model. energy range will not be very sensitive to the description of

In paper I, the exponential terms were only estimated folthe core-core term, while the superthermal collisions will be
lowing the theoretical work of Efremenkowet al. [17]. In  controlled by the short-range potentials.
the present work, we have chosen to determijgR) and In Fig. 2, we compare the core-core potentials(R) and
W,(R) from the adiabatic curvedy(R) andU(R) thatare Wx1(R) used in the present work to the similar potentials
deduced from molecular spectroscopy measurements of DalV-(R) andW(R) proposed by Mandert al.[4] and used
rowski and Herzberg[18] concerning theX 23,, and by the Eindhoven group in several papf#s9,10. The two
A, 2I1,,, states of the HeNe molecular ion. The curves Sets of curves differ in the short-range part; besides, we find
Ux(R) and UA(R) are shown in Ref[18]: As there are @ different behavior in the region betweeagand 6, as
few bound states in thel ,(R) potential, there is some un- [Wo(R)[>|W(R)|, while the two curvesW,(R) and
certainty in the determination of the short-range pakt ( Wx(R) cross. We justify our choice both by agreement with
<3a,) of the potential. The potential curves,(R) and  SPectroscopy data and by physical arguments, the perturba-

W,(R) can easily be computdd 9] as solutions of the fol- tion of a o state being expected to be larger at long range.
lowing second-order equation: We shall therefore analyze the sensitivity of the cross sec-

tions to the choice of the core-core term and to the uncer-

) tainty of the model at short internuclear distances, in particu-
A= [Ux(R)HUAR) N+ Ux(R\UA(R)+ —-=0 (6)  |ar for the exact position of the repulsive wall.

In the dynamical treatment presented below, we solve the

N1=W,(R) and\,=W_(R)+C/2], whereC is the spin- coupled equations in the framework of a diabatic representa-
orbit coupling (which is assumed to bR independent and tion in which the HamiltoniarH,(r) is diagonal.

SRy

=~ S tWER), ®

2
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In paper | the dynamical problem was solved using a two-
state adiabatic expansion, computing the radial coupling ma-
trix elements and neglecting the rotational coupling. One
possibility to improve the accuracy of those calculations
would be to include rotational coupling and use a larger
number of adiabatic states in the expansion. We have chosen
in the present work to use a diabatic representation by ex-
panding the total wave function on the eigenstates of the
atomic HamiltonianH4(r) and, therefore, considering the
atom-atom interaction as a coupling term. The advantage of
such representation is to avoid the cumbersome calculation
of the radial and rotational coupling matrix elements. The
: ' ; drawback is that a larger number of coupled channels has to
2 4 ) 6 8 be considered.

R [units of a,] We have expanded the total wave functidrir,R) con-
sidering the basis set defined by the complete operators set
which commute with the total Hamiltonian. We shall note by
the indexy the various molecular channels. In the body-fixed
representation, the expansion on eigenfunctiondIpfP?,

P,, J2, J,, andH,(r) is

10000

-t
-
-
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T

W [cm']

-5000 r

FIG. 2. Comparison between the core-core potenfiglgR)
(solid line) andW 1 (R) (dotted ling proposed in this paper and the
similar potentialsW,(R) (dashed ling and W_(R) (long dashed
line) proposed in Ref[4] and used in several theoretical calcula-
tions by the Eindhoven groupt,6,9,10.

Ill. TREATMENT OF THE COLLISION PROBLEM

N , 1
A.acriguspled ?quatlons. Body-_flxed T(rR)=> > E D = F;T;'\JAS(R)
pace-fixed representations P My 7 2p,:0 Q Y

A full quantum-mechanical treatment of collision-induced X|7PMp;2p,JQ), (8)
fine-structure transitions has already been described in many
papers[20—27, and for the N&(2p°3p)-+He in Ref.[4].
We shall, however, present a coherent description of the forwhere
malism giving complementary information to previous work
and adapted to lower-energy collisions where closed chan-
nels are present. | mPMp;2p.JQ)

In the frame linked to the center of mass of the two col- 7
liding atoms, the total Hamiltonian may be written

1
B \/2— B0,0

2P+1 .
8772 DMP,Q((P101w)|2p7‘JQ>

R g L 2 L2 +N2(0,¢)+H R
(R, -QDJ)——ﬂ RTRR T 2uRT el(r,R), e P11
7) (=) (1= 00,0 \ gz
' 8w
whereR, 6, ¢ are the spherical coordinates for the internu- « DP* 0.0)20.1— 0 } 9
clear distance, u is the reduced mag$120 a.u), andN? Mp (@1 0,0)12p, 48 ©

the square of the angular momentum operator associated

with the rotation of the internuclear axis. During the colli-

sion, this angular momentum is coupled with the total elec- In Eq. (9), we have introduced the electronic states
tronic momentumJ, giving the total momentunP=N+J.  |2p,JQ), which are the eigenfunctions of th&, J,, and
The total wave function? (r,R) is expanded on a basis of Ha(r) operators and the normalized symmetric top functions
functions which are built from eigenvectors of the operatorf V(2P + 1)/8772]Df\’,|*P,Q(<p,6,w), defined following the con-

P?, the projectionP, of P on the quantization axis, and the ventions of Ref[28], which are the eigenfunctions of the
parity operatodl, with the eigenvalue®(P+1), My, and  p2 andP, operators. It can be shown that in this frame the
, respectively. parity of the state isr= = (—1)P"J*tc*le, and it reduces to
We have considered twiframes: a body-fixed frame for (—1)P+J for the 2p°3p configuration of the Ne atom
which the quantization axi®z is directed along the internu- (because..=I,=1). The notations for the parity should
clear axisR and a space-fixed frame with a quantization axisnot be confused with the number which appears in the

O2Z parallel to the initial asymptotic relative velociy The ~ €quations. o .

space-fixed frame is linked to the body-fixed frame through a For the sake of simplicity, in the following we shall use
rotation by Euler anglee,6,w), where the first two angles the notationa for the 2p,,J,Q indexes of a glver;hj:hannel,
are defined by the spherical coordinaté&s 4, ¢) of the in- SO that the radial wave function will be writtdﬁz P(R).
ternuclear distanc®, in the space-fixed frame, while the For an ingoing molecular channe| we have to solve a set
third Euler anglew is arbitrary. of coupled differential equations
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szZPMp(R) , P(P+1)+J(J+1)— 202 configuration. We note that for eachp2) atomic level and
— g ( - R ) for a givenP, the lquantum numbed may take_ 2+1 val-
ues, hereafter writteMN ;. The coupled equations are then
% FWPMP(R) written for an ingoing molecular channg] in each subspace
@ defined by, P, andMp quantum numbers, as

Ng(Ng+1
k2_ B( B ))GIZPMP(R)

:2 2u

(a'|Vind R)+W(R)| ) dZGgPMP(R)
T drRE (

1 , 7PM
—ZM—RzW |IP.J_+P_Ji|a)|F_, "P(R), (10 PMp

=2 2B ViR + W R)B)G, "(R). (13)
ﬁ!

where ki=2,u[E—E(2py)], for different values of parity
m=+(—1)P andP quantum numbersyl, being arbitrary. It is possible to switch from one representation to the
The diabatic electronic coupling term(a'|V;(R)  Other via the unitary transformation
+W{(R)|a) in Eqg. (10), can be easily obtained from for-
muIas(S) and (5). The second coupling term in EQLO) is |7TPMP;,B>:2 W;PQMP|7TPMP;Q>, (14)
the rotational coupling. B '
We have checked the possibility of excluding some of the
23 different molecular channels in the expansion. It is justi-Where

fied in the present range of energies to exclude the remote >
2pq phanngl,_\_/vhich corresponds 8=0: For examplg,_if W;_F’Mp: A/ /—ZNﬁ+l(_1)NB—J—Q
2ps is the initial level, the p; channel opens at collision @ 1-6q,0
energies above 272 meV, and from 0.280 until 1 eV the
h - . . J Ng P
relative variation of the unpolarized or polarized cross sec- X Q ol (15)
tions is less than 1% when this channel is included. Above 1 0 -

eV, the relative variation is less than 2%. In contrast, al- TPMp . . .
though the Dy, level also lies far from the nearest level W€ note thatW, ,"" is a block diagonal matrix which
(2po) (the gap being\Eq 1= 1399.41 cmY), the contribu- has nonvanishing nondiagonal elements only for the set of
tion of the three molecular channels correlated to this dissoMolecular channels which are correlated to the samg;2
ciation limit cannot be neglected and they are included in oufine-structure atomic level. As the matrix elements of
calculations. Therefore, we have solved two sets of 17 anyin(R) and W¢(R) are readily obtained in the body-fixed
18 differential coupled equations set in subspaces defined dgPresentation, Eq13) involves transformation of the diaba-
7m=+(—1)P and7w=—(—1)P parity, respectively. tic coupling matrix elements through E(L4) at eachinte-

Alternatively, in the space-fixed representation we havegration step. Soitis not surprising that the ca_lculatlons in the
expanded the total wave functioh(r,R) on eigenfunctions SPace-fixed representation are time consuming. _
of I, N2, N, J2, J,, andH,(r) operators, wherd, means In order to extract theS matrix, the coupled equations
the projection of) on theOZ quantization axis: (10) and (13 ShOUId be mtegrated up to a d'St"?mRﬁ"aX’ .

' where all coupling terms vanish and the adiabatic potentials

are constant, so that the radial functioﬁéTPMP(R) or
_ ~ ~mPMp ! 3
\P(r,R)—; % ; ZpE'V'J % R GZpYJN(R) GZPM”(R) can be identified with known analytic solutions
’ of the scattering problem with zero interaction. Because of
X|7PMp;2p,IN), (1) the very slow decrease of the rotational coupling at large
internuclear distances, the,,, value in the calculations us-
ing a body-fixed representation is found much larger than
|7PMp:2p.IN) when the space-fixed representation is used. Therefore, in the
™ P py .
present work, we have solved the coupled-channel equations

N J N P (100 up to a particular distancéR where we have
— _ J+N—Mp max»
EM‘,MEN( 1) VP v S,

where

switched representation using the unitary transformdtigh
and considered the solutions of the coupled equations set
XYn N 0,¢)[2p,IM). (12 (13 in a space-fixed frame. TH®,., value was chosen after
the analysis of the scatterirgmatrix convergence. This as-
The atomic eigenfunction2p,J) (body-fixed framg¢  pect will be discussed later.
can be expressed as a linear combination of the atomic eigen- The change of representation implies that the radial wave

flJJnﬁtiOQS 2p,JM) (space-fixed frame In Eq. (12), functionsGZPMP(R) are expressed as a linear combination
M My M) IS @ 3 symbol. As above, we shall simplify the ¢ the pody-fixed radial solutionSZPMP(R). Therefore, for

notation by callings the 2p,/,J,|;|MchanneI, so that the radial 3 given value ofP, we have several asymptotic functions
wave functions are writterG ;" ""(R) for various space- corresponding to the various, values. This can be readily
fixed channels. It is a simple fact to show that the eigenvaluseen from Eq.(13), where the centrifugal termN,(Ng,

of parity operator, in the space-fixed representationsris + 1)/R? depends upon the particul@ channel, in contrast

=(—1)N*tetle, which reduces to +1)N for the 2p°3p  to Eq.(10), whereP(P+1)/R? is the same fomll « chan-
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nels of a giverP. The radial wave function@”PMP, forany and third kinds, respectively, for closed channels. The scat-

B exit channel, must respect the usual boundary conditionsi€ring S matrix is then defined in the usual way from the
open-open block of the scatterikg matrix:

G VP(R=Rpin) =0, 16
5 "F(R=Ru) (16 K -
™ 7PM = i )
G "P(R=Rinad = I, (KyRmad T K " (Rmay) 1= 1Ko
« NNﬁy(ky’ Rinads (17) wherel is the unitary matrix.

The polarized cross section is obtained from 8wmatrix
aPMp . . after some algebra. It is a simple fact to express the scatter-
Whgre K,B:B’ gre the elements of the s.catt.erlﬁgmatnx, ing amplitudes in the space-fixed representafidf| from
while the functionsly ; andNy, are the Ricatti-Bessel func- the boundary conditions of the total wave function of the
tions regular and irregular at the origiR(;,) for open chan- system in a subspace defined &y P, and Mp quantum
nelskr‘;ao or modified spherical Bessel functions of the first numbers:

f2pi JiM—2p;¢ :Jfo(ki 'kf)

2 Prnax P P+J; P+J; N N’
- 2 2.2 > 2 X NN NNIPE Y (k)Y (k)
kiks P=Pmin Mp=—P N=[P-3j| n/Z|p-3,| Mn=-N M= N’ N
5.8 & N Ji P N J; P 19
“Oaonn TSy My My —Mp/ ML My =M (19

As J can reach the value 3 and s N<P=<J+ N, the minimum value oN being 0,P, is equal to 3. Because of the choice

of a space-fixed frame with the quantization axis along the asymptotic incident relative impkjigipolar angles being
k;=(0,0)], the scattering amplitude formula has a more simple form. A supplementary simplification can be done considering
that the nuclear rotation momentum is perpendicular to the asymptotic relative impkijsiamd in consequence, we have
My=0 andMp=M;. Considering these simplifications in the formyk®) of the scattering diffusion amplitude and inte-
grating the absolute value of it on all diffusion angles we can readily obtain the cross section for transition between
Zeeman sublevels and the polarized cross secti:qgis,JiMﬁzpf .3, necessary to interpret the experiments of the Eindhoven
group are readily obtained as

- Pmax P+J; P+J; P+J¢ N J p
M 2p. )= iN-N" 2N+ 1)(2N"+1)(—1) NN 2P+1( ' )
Tap; I~ 20y 3, |2 PEP N%m N":%M NElEHH V( )( )(—1) ( o M —wm,
N" g P )(5 P )85, 8nr— S )
0 Mi _Mi Jpdi “N'N Jg N7 N J:Ji “N’N J¢ N/ ;N
Pmax
— P
B p:Epmin T2p; 1M~ 2py ;3 ° (20)

Wherecrgpi .3,M,2p 3, Means the partial polarized cross section. Next, the unpolarized cross section for fine-structure transi-
tions is

Pmax (2P+1) P+J; P+J¢

m P
. 3=z TRy 83,3 0nn— S5 gl 21
O’2pi WJi—2ps g k|2 P:EPmin (2\]|+1) N:;*Ji‘ N/:%_Jfl | J; JjON'N 3¢ N "]iN| ( )
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It is worthwhile to note that the unpolarized inelastic section is dominated by the contribution of the partial waves
cross sectiorzrzpi 32y 3y depends only upon the absolute with P> 10, suggesting the assumptibin- P. This approxi-

value of theS-matrix elements, while the polarized cross Mation is valid provided that we can neglect the small varia-
sections(20) contain interference terms. In the formul@®)  tions of the phase of th&-matrix elements when the partial

and (21), P, is equal to 3(see abovg while the value of ~Wave number is varying by a few units. It would be very
Pax IS established through a convergence test. convenient for treatment of the collisions in presence of a

magnetic field.
We have checked this approximation at various collision
_energies, and we discuss here, as an example, the case of
In the present work only open channels have been consigpe 2p5— 2p, transition atE=100 meV collision energy,
ered. We have solved the coupled differential equatid®  \yhere a strong polarization effect was obseryede Ref.
in the body-fixed representation, using a Johnson algorithmi3)) |t e characterize the polarization effect by the ratio
with constant step sizE29,30, which provides a numerical =~ [ r for R...=15a. we obtain
determination of the logarithmic derivative of the radial -"s'~i~ 0 2P7 "2PsiM;=1-2pp max = ~==0
function. Because of the very strong repulsive character o‘?_O'S’ with the assumptioN~P, and p=3.7 when the

the electronic potentials at short distances, we have checked®>s sections are calculated after the frame transformation

that the starting point of the integration could &, using 'ghe_ correct value oi for (_aach channel.. This latter
=2ay. The integration step size was chosen so that for eac\ﬁalue is in good agreement \.N'th the expenmental re;ult
logarithmic derivative function, at least ten valuesotvere p=3.5. Howeyer,_the unpqlarlzed cro§$165ectlon ob_talned
e , in the approximatiorN~P, is 3.68<107 16 cm?, like in
computed for half of an oscillation. The maximum value Of“exact” calculations and’ the valu®R... —15a ' is then
the asymptotic wave number was estimated by considerin ufficient ' max™ =0
the difference between the collision energy and the splittin In Fi : 3 we have reoresented the phase of a relevant
between the ingoing channel and the lowest possible exirtn trix gl m’ s P f r?ti n of th :
channel, which in our case is theg channel. This leadsto atrix eleme Ji=IN=1;0¢=1N"=1 as a function ot the par-
a typical step size varying from 0.83 at a collision energy tial waveN, for various choices dRp.,. We can see that for
E=0.1 meV to 0.014, at E=1eV. As we shall discuss calculations using the approximatiow~P [see Fig. )]
below, the integration up t®.=20a, was found to be the phase is not converging even when the integration is
sufficient, so that the typical number of integration steps wa®erformed up to very largRm, values. In contrast, for exact
varying from 600 aE =100 meV until 1300 aE=1eV. At  Ccalculations the convergence of tBematrix element phase
this distance, we have changed representation by an appri§- already obtained foRy,=20a, [see Fig. 8)]. The
priate transformation derived from E€L4). physical explanation of this effect relies upon the large value
At Ry, in the space-fixed representation, the differentof the classical scattering angle: Because of the large value
radial equations become completely uncoupled and we ha¥ itS derivative, the phase is a rapidly varying function of
evaluated the scatterirg matrix and deduced th® matrix N. When higher collision energies are considered, this effect
through formula18). The convergence of the integration can décreases and the approximatibir-P starts to be valid

then be checked from the stability of tisematrix elements ) )
relative to the choice OR gy As a conclusion, we may say that the polarized cross sec-

In the body-fixed representation, the coupled equation§ons are highly sensitive to the accuracy of the procedure of
(10) involve a diabatic electronic coupling term, which van- Phase extraction. This conclusion is important for further
ishes aR~ 15a,, and a rotational coupling one, which leads Work considering collisions in the presence of a magnetic
to population transfer between the various Zeeman sublevefi€ld.
of a given 2, manifold and vanishes slowly. Our analysis
has shown that, in order to compute the unpolarized cross IV. RESULTS AND DISCUSSION
sectionazpi 3—2pp g it is sufficient to perform the numeri-

B. Numerical treatment and convergence of the calculations

In the present paragraph, we shall first discuss how the
cal integration up to a distand®= Rya~1585. In contrast,  present calculations compare with the experimental data and
because of the very slow variation of the rotational couplingyith the previous calculations. Then we shall discuss the
term, in order to obtain accurate results for the polarizationsensitivity of our calculations to the choice of the potentials.

Cross sectionsra, 3.m, —2p, 3, We should perform integra-

tion of the coupled equatior40) up to a larger internuclear A calculated cross sections: Comparison with experiment

distance(for example, aE=100 meV, R,»x must be up to . .
1|00030)( xamp max MU up We have calculated the unpolarized cross sections

The frame transformatiofiL4) allows us to switch to the 9 2p;:J3—2p;:J; and the polarized cross sections

space-fixed representation, where the rotational couplingzp,:3,m,—2p,:3, for all the transitions in which the initial
vanishes. However, as was discussed in the previous sectiogtates are @, to 2p,q, for collision energies varying from 60
the radial function for a partial wave corresponds to vari- to 1250 meV, in the range where experimental results are
ous partial wavedl, from |P—J| to P+J, each one having available (see Manderset al. [3,4,3] and Boom et al.

to be compared with a Ricatti-Bessel function of different[9,10]).

order N, therefore having a different phase. One could be The experimental apparatus used by Mandsral. and
tempted to neglect this difference of phase because of thiey Boomet al. was carefully designed for measurements of
small value of the quantum numbek<3 compared to absolute cross sections. Two atomic beafasmetastable

P: In the collision energy range considered here, the croseeon beam and a ground-state helium beand a polarized
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FIG. 4. Polarized cross sectioa§,)5;Jih,h:oﬂpll;Jf as a function
of the collision energyE: asterisks, present calculations; up tri-
angles, TE experimental result,6]; squares, SE experimental re-
sults [9]; down triangle, non-energy-resolved experimental result
[10]; crosses, previous TE quantal calculatipf$]; and diamonds,
SE quantal calculatiorf4.0]. The error bars represent the statistical
1 error only, for SE experimental data; in the case when an error bar
is less than the size of the square, we have chosen it to be equal
with this size. The lines are drawn only as a guide to the eye.

Phase [rad]

hereafter noted RC, and the single-burst time-of-flight
method, hereafter referred to as SB.
50 100 150 The excellent performance of both sources allowed the
P experimentalists in Eindhoven to measure @ghsoluteunpo-
FIG. 3. (a) Phase of thesmatrix elementSy _yn-1 . ~1p-1 larized and polarized cross sections for the various intramul-
in space-fixed representation, for thep:2-2p, transition, at UPI€t transitions in the neon #3p configuration, with a
E=100 meV, as a function of the partial wave numbér the  VEry good accuracy. An important discussion concerns the
results were obtained by numerical integration of the coupledSources of error. In Ref9], Tables V and VI, the authors
channel equation$l0) up to Ry,=153,, 20a,, and 5@, and have published absolute cross sections, with a few percent
after the switch of representation. The two last lines cannot bétatistical errors indicated by error bars. The other experi-
differentiated.(b) Same as(a), when the integration of coupled mental data are published without those statistical errors.
equations(10) is performed up toR,.,—=15a, (solid line), 20a, = Moreover, systematic errors are also discussed, which de-
(dotted ling, 30a, (dot-dashed ling and 5@, (dashed ling as- pend upon the geometry of the experiméinicident flux
sumingN~ P in the frame transformation. and upon the calibration of the detection procedure. In the

TE experiments, the systematic error is estimated to be 14%

laser beam cross at right :_:mgles.SOnce a metastable nepA () in SE experiments, as the source is located at larger
atom Is excited by the laser into{@p“3p;2p;J;} short-lived  gistance, the authors indicate the possibility of a 22% sys-
Ne* state, it may undergo an inelastic collision with a he-ematic errof10]. We shall therefore discuss the comparison
lium atom. The populations of the initialR); and final  petween our calculations and the experiment by considering
2p;Js levels were determined by photodetection of the fluooth apsolute cross sections and relative quantities such as
rescence light of the @ —1s; and 2p;— 15y transitions, re-  he ratio of two cross sections.

spectively. Two sets of experiments have been performed. |; js hardly possible to present all calculated cross sec-
The main difference between them is the nature and energyons, and so we shall limit ourselves to a few exam-

of the primary neon metastable beam source. ples: We will focus our attention on a few transitions for
In the first set of experimenis,4,6,31, hereafter referred \yhich experimental results are available.

to as TE experiments, the primary beam originated in a e jllustrate in the Figs. 4—8, the comparison between

discharge-excited supersonic expansion or a thermal metgyy calculations and the TE or SE experimental results or

stable source. The TE collision energies varied from 60 Grevious quantal calculations of the Eindhoven group

150 meV. In the second si4,10], hereafter referred to as SE [4,6,9,10. We show the energy variation of our computed

experiments, a hollow cathode arc was used as a source afgbss sections in the 60—1250 meV energy range for several
located at larger distance from the scattering center. The colpansitions:

lision energies available with this source varied from 170 to

1250 meV (superthermal collision energy rangdwo dif-  2ps;Ji=1M;—2p;;J;

ferent detection methods were used in the SE experiments

[9]: the pseudorandom correlation time-of-flight method, (with M;=0,1 and f=4,6,7,9,
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FIG. 5. Same as Fig. 4 for the variation of the polarized cross ) ] )
sectionsoay, 5m,—2p,:3, @S @ function of the collision enerdy, FIG. 6. _P_°|a”29d Cross sectionsy,; 3v, 2p,;3, @S @ function
with (@ M,=0 and(b) M;=1. of the collision energyE. (a) corresponds tdVl;=0; (b) corre-
sponds toM;=1. Same conventions as for Fig. 4, square symbols
being for the single-bursfSB) type of SE experiments and circle
symbols for the pseudorandom correlati®C) type of SE experi-
ments, according to Ref9].

and
2p7;3i=1M;—2pg;Jd;  (with M;=0,1).

The analysis of Figs. 4—8 shows a very good agreemerfiration systematic error in the SE experiments much larger
between our calculations and the TE experiments. Thishan the 22% factor given by the authdsse Ref[10]). One
agreement was already found at a few energy values bgossible check of such a hypothesis could be the presence of
Manderset al.[6], and we confirm their conclusion concern- a discontinuity between the two sets of the experiment. Such
ing the accuracy of the potential curves. a discontinuity is not manifested clearly in most

In contrast, forE>170 meV a large discrepangyp to a  cases: Within the statistical error bars, it is possible to
factor of 2 exists between our calculations and SE experi-make a continuous link between TE and SE experimental
mental results. The small differences between our results aneésults. However, for the [&— 2p- transition, which is a
the few computed values published by Boetral.[10] can  test transitiorf2,3,4,31, a discontinuity of a factor of 2 does
be attributed to the difference in the choice of the core-corexist[see Figs. @) and Gb)], which favors our hypothesis.
interaction, shown above in Fig. 2. The present calculation$t should be noted that this is the only case where the cross
confirm the earlier conclusion of the Eindhoven group con-section is not abruptly rising in the region where the two sets
cerning the problem in the comparison between theory andf experiments overlap. In the other cases, the continuous
SE experiments. As already mentioned in the Introductionlink could also be explained by a small difference in the
the authors have attributed this discrepancy to errors in thenergy definition within two sets of experiments.
long-range potential. However, it is clearly manifested in the In Figs. 4—8, an oscillatory behavior in the energy varia-
Figs. 4—-8 that the experimental and theoretical polarizedion of the calculated polarized cross sections, more obvious
cross sections exhibit a very similar energy variation. Wein SE range, is manifested. Unfortunately, because of the
therefore propose to consider also the possibility of a calilimited number of experimental points, this interference ef-
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FIG. 7. Same as Fig. 4 for the variation of the polarized cross | g same as Fig. 4 for the variation of the polarized cross-
Sectionsoap, .3,m, - 2py:9; @S & function of the collision energy, with sectionsop 3w, —.2p,:3, @S a function of the collision energ,

(@ M;=0 and(b) M;=1. with (@ M;=0 and(b) M;=1.

fect, discussed in more detail in R¢B2], cannot be con- the photon frame. When a linearly polarized laser light is
firmed by experiment. The resonant structure of the energysed and in the cases where the initial levels [ ;J;
variation of the cross section was already shown in severar 1,M;), Eq. (22) becomes
recent papergsee, for example, Ref§7,8,23).

A more direct check of the experiments is the so—calledﬂ(zi?;Ji:pzpf;Jf(B)
“ B dependence” of the cross sections, because the absolute
polarized cross sectionsyy, .;.m —2p, ;5, Were determined by 1
varying the 8 angle between the direction of electric field -2 (o2p, ;Ji=1YMi=OHJf+02pi;‘]i=1vMi=lH‘]f)
vector E of the linearly polarized laser lightthe optical
guantization axis in the photon frameaand the relative
asymptotic velocityg. In general, the observed absolute
cross section is found to be an incoherent sum over the Zee-
man initial M; sublevels: Xcog2p). (23

The polarized cross sections in the space-fixed reference
, frame are obtained for particular values@fingle(see Ref.
J
U(zlgz)i);Jﬁzpf;Jf(,B):; gmig [dn;iMi(,B)]ZUzpi Mi—2p3p [4]):

22)
( b5 3 1-2p, 10 B=0)=02p 3 =1m,=0—2p, 13, (24)

+ 5 (O2p15=1M=0-3, 7 T2p; 13 =1M;=13)

™

where dfr‘]_M_(B) are the reduced Wigner rotation functions )
L O2p3=1-2p;:3(| B= 5| = T2pg=1mi=1-2p; 19 (29

andgmi is the relative population of Zeeman sublevels in
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FIG. 11. Comparison between the SE experimental reilis

FIG. 9. Comparison between TE and SE experimental and theand our theoretical calculations of the energy dependence of the
oretical results of ther(zilzji:lﬁzpeuf:l cross section as a function anisotropy paramete$" [defined in Eq(26) in text], for the tran-
of the 8 angle between the electric field vec®rof the laser beam  sitions 25— 2pg (solid ling) and 20s— 2p; (dashed ling For ex-
and the asymptotic relative velocity. The experimental values periments, only the statistical error bdralculated with Eq(27):
were measured at collision energiEs=100 meV (thick dashed see textare indicated.
line) and 450 meV(thick solid line. The calculations were per-
formed at collision energies of 100 melhin dashed ling 350
meV (dotted ling, 450 meV (thin solid ling, and 525 meMlong

with an uncertainty in the determination of the collision en-
ergy (experiments referred to as “non-energy-resolved” in
dashed ling We indicate on the figure the limit angl@ =0 and Ref. [1(_)]). The error bar in the collision energy corresponds
B,= /2 [see Eqs(24) and (25), respectively, in test for which approximately to the range between the two energies for

polarized cross sections in space-fixed representation can be ehich we have done the calculatiofiat E=350 and 525
tracted. meV, respectively Taking into account the systematic error

bar, it is evident that in the TE range the agreement between

In Figs. 9 and 10, we show a comparison between experit-heory and experiment is very good and that in the SE range

mental and theoretical results for the variation of the cros@Ur theoretical curve reproduces well the shape of the experi-

sections as a function g8 angle in two casesarbitrarily mental curve. The same agreement is obtained for all the
chosed: the transitions Ps—2pg and 2p,—2ps. In the  transitions for which experimental results are available.

case of the SE range, the experimental data were measured "€ discussion about absolute cross sections in the SE
range seem to indicate a possible calibration problem in the

experiments of Boonet al. [9,10]. If our hypothesis is cor-
' ' " ' ' ; rect, it would be reasonable to look for parameters which
depend upon cross-section ratios, because they do not de-
pend upon calibration. So are the anisotropy parameters de-
fined in Refs.[9,10], which provide information about the
importance of the polarization effect for each of the analyzed
transitions. For the cases presented ab@wleere the initial
states have an electronic momentdys 1), the polarization
effect can be measured by the anisotropy paraniéféide-

fined as
IT _ pan_ T2p; 13 =1M;=0-2p;3; T 2p; 13 =1M;=1-2p; 33,
=p= )
1 O2p,;3;=1-2p; ;3¢

(E) -6 2
o 2p7;./l.~>2p5;.lf[10 Cm]

(26)

In Figs. 11 and 12, we display some examples of the
energy variation, in the SE range, of tR§" parameter com-
FIG. 10. Comparison between TE and SE experimental and theguted from our theoretical cross-sections values together
oretical results of the(ﬂuizlézpsule cross section as a function with a few experimental results. We have chosen the transi-
of the angles between the electric field vect& of the laser beam  tions 2p5—2pg, 2ps5—2p7, 2p7—2p4, and ZJ;—2ps.
and the asymptotic relative velocity The experimental value was For the experimental points, the statistical error bar is con-
measured at collision energi&s= 140 meV(thick dashed lineand sidered and evaluated with the formula
500 meV (thick solid ling. The calculations were performed at
collision energies of 140 me\thin dashed ling 350 meV/(dotted
line), 500 meV/(thin solid lin®, and 525 meMlong dashed ling _ o0 %0
For the signification of3,; and 8, angles, see Fig.gg. oP= o? o0t o? 001, 27




1316

3.5 H T T T T T

L

0 250 500 750 1000
E [meV]

-1.5
1250

FIG. 12. Same as Fig. 11, but for the transitions;2 2p,
(solid line) and 2;— 2p5 (dashed ling

where

00= 02p,;3,=1M,;=0-2p; ;Jp’

01= 02p,;3,=1M,=1-2p; ;Jp’

and
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o=(0p+201)/3;

oy and o, are the statistical error bars of the absolute
polarized cross sections given in Ref8,10]. Our calcula-
tions are now in excellent agreement with the experimental
results for all transitions in both energy ranges. Considering
the behavior of the curves, we may note that the character of
the polarization effect is reversed in the case pf-22pg

and p;,—2p, transitions, as compared togpg—2p; and
2p;—2ps transitions. We find that with increasing collision
energy the polarization effect tends to zero in all cases.

For transitions where the initial levels argp;;J;
=2,M;) and|2p; ;J;=3,M;), it was proved by experimental
evidence that the experimental anisotropy parameters corre-
spond to the theoretical parametét§"= P3"— Q3" and I15"
=P§"-2.7Q5"+ 1.8R%", respectively(see Ref[10]), where

j"is easily deduced from Eq26), while the Q]" and R3"
anisotropy parameters are given[0]. We find that in the
case when the initial level i2p; ;J;=2,M;), the anisotropy
parameter is given by the formula

H an  O2p.:J;=2M;=0-2p;;J;~ 92p; ;3;=2M;=2-2p; ;¢
= ’

2 A0op, :3.=2-2p; 13,
(28)

and for an initial level 2p;;J;=3,M;) it is

an _2-15(72pi ,Jj=3M,;=0-2p; ;Jf+3'390'2pi 0i=3M;=1-2p;;J; 1‘3572Pi 1Jj=3M;=2-2p; 3Jf+0'1102Pi 1Jj=3M;=3-2p¢ ;J;

3 02p, ,3,=3-2p; ;3

(29

We have calculated the anisotropy parameters through thmental results are available and also both types of detection

formulas(28) and(29) using our polarized cross-section re- methodqRC and SB. The histogram drawn with a solid line
sults. In Tables | and Il we compare them to the experimentaincludes only statistical errors, while the dotted histogram
parameters and the theoretical values calculated by Boomorresponds to the rati& moved up with the systematic
et al. [10], for several transitions with initial level®p; ;J; error bar of 22%. If only statistical error is considered, we
=2,M,) and|2p; ;J;=3,M;), respectively. In most cases, we find that themeanvalue of K is about 0.63 for the set of
reproduce nicely the experimental results. With few excepitransitions considered. With the systematic error included,
tions, we are also in good agreement with the previous calthis value became approximately 0.78. In the ideal case, the
culations, the small differences being attributed to the differratio K must be equal to 1. We can see on the histogram that
ent choice in the description of the core-core interaction. even if we take into account all the error bars, the rétics
Finally, we summarize the comparison between our calless than 1.
culations and the results of absolute polarized cross section Therefore, all comparisons considering either absolute
obtained in SE experimen{®] by considering themean cross sections or relative parameters derived from them lead
value of the ratio between the measured absolute cross segs to the conclusion that the hypothesis of a calibration prob-

tions:

expt
UZp- ;JiMi—2p¢;J
_ i foof
K= P O (30
2p; 1 9iM;—2p¢ 1 J;

lem in the SE experiments should be considered seriously.

B. Discussion of the sensitivity of the dynamical calculations
to the potentials

The discrepancy between the quantal calculations and the

TheK parameter is presented in Fig. 13, as an histogram, foexperimental results has been attributed by Boetral.
all transitions for which we have performed calculations. We[9,10] to deficiencies in the long-range part of the model
have considered all collision energies for which SE experipotential curves given in paper I. Indeed, when the collision
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TABLE I. Comparison between the experimental anisotropy parameter and the equivalent theoretical one
115", which is computed through formul@8) for the case);=2, as shown in Ref.10]. The experimental
and previous theoretical results are taken from in [RE.

mg"
E HgQPt E
Transitions [meV] Ref.[10] [meV] Ref.[10] Our work
2p,—2ps 430 -0.31 430 —0.080
525 -0.07 —0.064
—2p; 430 —0.10 430 —0.016
525 —-0.02 —0.036
—2ps 430 0.37 430 0.263
525 0.27 0.284
—2pg 430 0.07 430 —0.028
525 -0.04 —0.048
2ps— 2P, 450 0.13 450 0.119
525 0.13 0.089
—2ps 450 -0.17 450 -0.137
525 —-0.18 —0.163
—2p7 450 -0.04 450 —0.058
525 —-0.08 —0.092
—2pg 450 0.23 450 0.249
525 0.16 0.249
—2pg 450 0.19 450 0.067
525 0.04 0.066
2pg—2p, 490 0.34 490 0.412
525 0.41 0.428
—2ps 490 —0.06 490 —0.065
525 —-0.09 -0.079
—2pPs 490 0.14 490 0.378
525 0.31 0.359
—2p7 500 0.05 500 0.066
525 0.07 0.046
—2pPg 500 -0.13 500 —0.085
525 —0.08 —-0.074
—2P10 500 -0.15 500 -0.217
525 -0.12 —0.223

energy increases, they found an enhancement of the contri- In order to check the sensitivity of the results to the value
bution of large impact parameters in the cross sections. Sigf the long-range potentials, we have modified thg(R)
nificant contributions came from distances larger than theotential in the regionR>9.75,, beyond all existing
positionR;; of any avoided crossing between two adiabaticavoided crossings. In this region the core-core interaction is
molecular curves andj [9,10. We have observed a similar described by the polarization term, and thé.(R) potential
effect in our calculations, and this is particularly obvious inis negligible, so that the only quantity which is questionable
transitions for which a single avoided crossing exists. As ds the 77, (R) potential. It can be fitted by an exponential
relevant example, we focus on th@2-2pg transition, for ~ function a exp(—BR), with «=8.759x10° cm ! and g
which the energy splitting is small94.38 meVY and thereis =0.813 a.u. We have modified th&’ (R) potential by
only one avoided crossing between the adiabatic potentialkeeping the continuity of the derivative &=9.75, and
curves forQ0=1, at R,s=7.4a, (see Fig. 15 We display changing the asymptotic behavior considering two extreme
in Fig. 14 the partial polarized cross section cases witha=2.3x10° cm %, B=1.614 a.u. anda=3.0
0-2Pp7;JiMi—>2p6;Jf for Mj=1, drawn as a function of the im- x10* cm™, 8=0.493 a.u. The corresponding variation of
pact paramete= /P(P+ 1)/2xE. Itis clear that in the SE the cross section is less than 10% in all cases except the
range, the cross section becomes dominated by the contribdps— 2p, transition, where it is at most 20%. In the latter
tion of large impact parameterb ¥ R;s). The same effectis case the avoided crossing is located at the largest internu-
observed for the cross sectidvl;=0. This phenomenon, clear distancéRs,=8.6a,. Moreover, we have verified that
however, is not true for all transitions, and a more detailedhe TE cross sections are more sensitive to the long-range
discussion, in connection with a semiclassical model, will bepotentials than the cross section in the SE range: At 1200
presented in a forthcoming paper. meV, the cross sections are modified by less than 5%, except
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TABLE Il. Same as Table | for an initial statk=3. The theoretical anisotropy parameter is computed
from formula(29).

an
2 e, 2 s

Transitions [meV] Ref.[10] [meV] Ref.[10] Our work
2po— 2P, 450 0.150 450 0.212
525 0.16 0.165
—2ps 450 0.153 450 0.201
525 0.24 0.257
—2pg 450 0.100 450 0.136
525 0.12 0.101
—2p7 450 0.116 450 0.122
525 0.13 0.116

—2pg 450 0.009 450 —-0.015

525 -0.01 —-0.029
—2p1o 450 0.065 450 0.093
525 0.067 0.066

for the 2ps—2p, transition, where the modification reaches structure splitting i24 meV so that in the SE range when
18%. If the discrepancy between the calculations and the Sthe energy becomes larger than 1 eV, a representation using
experimental data was due to to a defect in the long-rangelund’s casee curves should be more adapted, as discussed
behavior of the potentials, we would also get discrepancyn Ref.[15]. A look at Fig. 15 where the typical collision
with the TE experimental data, which is not the case. energy is compared to the splitting between various curves
It should be noted that the interpretation of the collisionshows that it is not realistic to isolate two adiabatic curves
mechanism by avoided crossings between two adiabatic p@nd that the diabatic representation discussed at the begin-
tentials in the Hund’s casecoupling scheme is certainly not ning of the paper is better adapted.
valid at high collision energies, when the fine-structure split- As the determination of the short-range potential is also
ting becomes much smaller than the collision energy. In theuestionable, we also have checked how our results would
case discussed above gR2-2pg transition, the fine- be modified in the extreme case of a hard wall ate.5The
latter value was chosen according to our discussion for the
validity of model potential calculationgsee Sec. )l The

| cross sections were modified by less than 4%, except for a
1k T [ RC method] 1 few cases where, due to the presence of an avoided crossing
| in the regionR<3.5ay, a variation of 15% is reached. We
09 | | therefore cannot attribute the discrepancy with the SE ex-
08 [ : HEm
« L | 0.8 ' o £ < 150 meV
[ ! — ] o—-—- E =650 meV
07 - ' —_ M= 44 —-—+ E= 1250 meV
0.6 | E?, |
=
0.5 -
N 1
0 altlolileliloliiols &
04 54 58 59 74 75 176 2
Transitions = 1
A ~
o}
FIG. 13. K value[defined in Eq.30)] considering both detec-
tion methods used in SE experimeiy [single-burst(SB) and

pseudorandom correlatiofRC) time-of-flight method$ and the Yo 5 10 i 15
present calculations, fall transitions in which the initial state has
J;=1 and all collision energies for which experimental results are
available. The dotted histogram corresponds to the case where for
SE experiments the systematic erfof 22%: see in Ref[10]) was FIG. 14. Variation of the partial polarized cross section
considered. The transitions are indicated by the index of initial and”2p, .3, —2p:3, @ @ function of the impact parameterat three
final atomic states andf, asi-f. The values of quantum number collision energies: E=150 meV (triangles, 650 meV (circles,

M; are also indicated. Except forp2— 2p, transition, for which  and 1250 meMasteriskg, for the test transition g;— 2pg, with
the only M;=0 case is shown, for all the others, bdth values  M;=1. The position of the avoided crossinB4=7.4a,) for the
were considered. relevant adiabatic potentials fét=1 is shown.

b [units of a;)
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cal solution of the equations, we have shown that one must
be careful to extract the scatterit®@matrix by considering
asymptotic wave functions which correspond to eigenvalues
P of the total angular momentum; it is not justified to use the
approximationN~ P, whereN is the eigenvalue of the an-
gular momentum associated with the relative motion of the
nuclei and differs fromP only by a few units. This sensitiv-
ity is due to the rapid variation of the phase as a function of
P, connected to large values of classical scattering angle. In
the treatment of collisions in the presence of a magnetic
field, necessary to interpret existing experiments at thermal
energies[33], it will therefore not be possible to simplify
equations using the convenient approximathon P.
: e In the thermal collision energy range (60 me¥
2 3 4 5 6 7 8 9 1011 12 <150 meV), the cross sections are in good agreement with
R [units of a ] the absolute data of Mandees al. [4,6]. They are not very
sensitive to the position of the repulsive wall in the core-core
term, so that our present model for the short-range potentials
FIG. 15. Hund's case adiabatic potential curves with=1.  should be checked further by computing differential cross
The order of magnitude of a collision energy typlcal of the SEsectionS' However, they depend upon the representation of
experiments is indicated. such term in the range 35<R<5.6a,, justifying the need
for ab initio calculations when more accurate investigations
perimental data to our choice of the core-core term. Anothe@re considered.
check for the importance of the core-core term is provided by At superthermal collision energies (170 me¥
the comparison between our calculations and the previous 1250 meV), we have shown that for all transitions inves-
quantal calculations of Ref§6] and[10]. tigated, the energy variation of the computed polarized cross
Finally, our tests show that the correct description of thesections yields curves which have the same behavior as the
potentials in the region 38 <R<5.6a,, Where the core- €xperimental data of Booret al. [9]. Analyzing the relative
core interaction is not yet dominated by the polarization ternflata, we have found good agreement between our theoretical
(see Sec. ) does play an important role and could modify results and the measurements of Rg#s10] for the anisot-
the cross-section values up to 60%, justifying our effort toropy parameters. However, we confirm the 30-40 % discrep-
determine 77°,(R) and 77"(R) potentials with accuracy. ancy b_etween theory anq'e'xperlmental absolute values. We
Our present choice will be checked further in forthcominghave discussed the sensitivity of the results to the long-range
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150

V, [10°em™]

145

calculations of the differential cross section. part of the potentials and to the description of the core-core
term, showing that this could not explain the discrepancy.
V. CONCLUSION We therefore suggest that a calibration systematic error in

the experimental data should seriously be considered.

We have performed quantal calculations for the absolute The oscillations in the cross sections, as a function of
polarized cross sections and anisotropy parameters in thsllision energy, due to interference effects, will be dis-
case of the intramultiplet transitions for NEp°3p) cussed in a forthcoming paper. We shall also present a semi-
+He(*Sy) collisions. The 36 coupled equations have beerclassical model to interpret the increasing contribution of
written in a diabatic representation, in which the interactionlarge impact parameters for some transitions at superthermal
between the two atoms is determined from model potentiagnergies, due to a new collision mechanism with long-range
calculations of Hennecart and Masnou-Seed®s com-  fine-structure decoupling. One important development of the
bined with short-range core-core potentials fitted on spectropresent work will be the interpretation of collision experi-
scopic data for the HeNemolecular ion. From the numeri- ments in the presence of a magnetic field.
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