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Absolute cross sections with polarization effects in Ne* „2p53p…1He collisions:
A detailed comparison between theory and experiment
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Quantal calculations are presented for intramultiplet mixing collisions of Ne* (2p53p) with He(1S0) in the
60–1250 meV collision energy range. The coupled equations are solved in a diabatic representation where the
coupling terms are obtained using the model potential calculations of Hennecart and Masnou-Seeuws@J. Phys.
B 18, 657 ~1985!# for the interaction of the Ne* outer electron with the two cores and values fitted on the
spectroscopic data of Dabrowski and Herzberg@Mol. Spectrosc.73, 183 ~1978!# for the core-core interaction.
An extensive comparison with the experimental data of the Eindhoven group is presented for absolute polar-
ized cross sections and anisotropy parameters. Very good agreement is obtained with thermal energy data of
Manderset al. @Phys. Rev. A39, 4467~1989!#, while the systematic 30–40 % discrepancy with superthermal
data of Boomet al. @Phys. Rev. A49, 4660 ~1994!# might be attributed to a calibration problem in the
experiment rather than to an inaccuracy in the long-range potentials.@S1050-2947~97!09207-X#

PACS number~s!: 34.50.2s, 34.20.2b, 31.50.1w
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I. INTRODUCTION

During the last decade, a major achievement in the fi
of atom-atom~molecule! collisions and molecular dynamic
has been made by experimental devices combining mol
lar beams and polarized laser techniques. Vector prope
could then be analyzed for a variety of systems~for refer-
ences, see the review paper@1#!, giving deeper insight into
the physical processes. Important work has been done by
Eindhoven group@2–4#, which has focused on intramultiple
mixing collisions of Ne* (2p53p) atoms with ground-state
He atoms. In their experiment, a beam of metastable Ne
oms was excited with a polarized laser into a combination
Zeeman sublevelsJiM i of a short-lived Ne* (2p53p;2pi)
level, labeled 2pi according to Paschen notation. By varyin
the polarization vector of the exciting light and by measur
the population of the other (2pf ;Jf) fine-structure levels by
fluorescence analysis, it is possible to determine the abso
cross sections2pi ;Ji Mi→2pf ;Jf

for the reaction

Ne* ~2pi ;JiM i !1He~1S0!→Ne* ~2pf ;Jf !1He~1S0!

1DEi f . ~1!

A strong polarization dependence was observed@3,4#, re-
vealing differences by a factor up to 3.5 between some c
sections s2pi ;Ji Mi50→2pf ;Jf

and s2pi ;Ji Mi51→2pf ;Jf
mea-

sured in the 50–150 meV energy range. The unpolari
cross sectionss2pi ;Ji→2pf ;Jf

were also measured. For an in
terpretation of these data, molecular potential curves c
puted by Hennecart and Masnou-Seeuws@5# in the frame-
work of a model potential treatment have been used. S
561050-2947/97/56~2!/1305~16!/$10.00
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calculations provide either a nondiagonal matrix for the el
tronic Hamiltonian, which describes the perturbation of
excited neon atom by a ground-state helium atom at the
ternuclear distanceR ~diabatic picture!, or adiabatic curves
obtained by diagonalization of the electronic Hamiltoni
and adapted to the Hund’s casec coupling scheme.

Excellent agreement was obtained between the meas
absolute cross sections at thermal energies~TE’s! @3,4,6# and
quantal calculations@4# using the diabatic picture and con
sidering a large number of channels coupled by the e
tronic Hamiltonian. In some cases, where rotational coupl
can be neglected, the unpolarized cross secti
s2pi ;Ji→2pf ;Jf

can also be computed with very good acc
racy using simple quantum calculations@5,7,8# considering
two adiabatic states in Hund’s casec representation coupled
by radial coupling. In such cases a semiclassical model,
ing simple probabilities predicted by the Landau-Zen
model @6# or a more accurate exponential model@7#, has
been proved to give a correct interpretation of the obser
results: In such a model, the population is transferred fr
one molecular state to the other in a region of internucl
distances localized near an avoided crossing between
adiabatic potential curves.

However, when new experiments were performed@9# at
superthermal~SE! collision energy (200,E,1250 meV), a
marked disagreement was observed between quantal cal
tions and experiment, the measured cross sections b
smaller than the computed ones by a factor varying from
to 0.4. Moreover, the authors@10# showed that in the quanta
calculations a large part of the cross section was due
contribution from impact parameters much larger than
avoided crossing position, so that a large part of the pop
1305 © 1997 The American Physical Society
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1306 56BAHRIM, KUCAL, AND MASNOU-SEEUWS
tion transfer from one molecular state to another one
occur at long range, far from any avoided crossing. T
result seemed to indicate a failure of the previous semic
sical treatment in the range of superthermal energies, and
authors concluded@9,10# by casting doubt on the validity o
the long-range part of the potentials of Hennecart a
Masnou-Seeuws. This conclusion looks surprising, as the
adequacy of long-range potentials should lead to stron
discrepancies at low energies.

The aim of the present paper is to reconsider the prob
and to give a more exhaustive comparison between coup
channel quantal calculations and experimental results
Sec. II, we shall discuss the potentials that were determ
in Ref. @5#, hereafter referred to as paper I. The problem
the short-range potential was not addressed properly in
quoted work and will be reconsidered here. In Sec. III,
shall describe our quantum treatment. In Sec. IV, we s
present the results of our calculations, compare with exp
ment, and discuss the sensitivity of the calculated cross
tions to the potentials. Section V is the conclusion.

Atomic units will be used except when otherwise state

II. POTENTIALS

In the model potential calculations of paper I, the quan
which is determined accurately is the energy of one elec
in the field of a Ne1 ion and a ground-state helium atom a
distanceR. The model is valid providedR is large enough so
that the clouds of the two cores may be considered as
tinct. The energy of the HeNe* molecule is then obtained b
adding the core-core interaction, which is known at lar
internuclear distances through multipole expansion. So th
is a critical distanceRcritical below which the model is ques
tionable. Indeed, the three-body problem is separated
three two-body problems, with a polarization correction.

~i! The interaction between the outer electron and
open-shell Ne1 core is represented by the parametric mo
of Feneuilleet al. @11#, with first-order perturbation treat
ment of the fine structure and of the nonspherical part of
bielectronic interaction. The energy terms in t
uLSMLMS& representation are given in a parametric@12#
form, and the atomic energy levels in theu2piJiM i&
intermediate-coupling scheme are obtained by diagona
tion of the matrix of spin-orbit coupling; the quantum num
bersL,S,J then correspond, respectively, to the total orbi
and spin angular momentum of the electrons in the 2p53p
configuration, and to their sum, the total electronic angu
momentumJ. Both spin-orbit constants and parameters r
resenting the bielectronic interaction were fitted to the ne
experimental spectrum.

~ii ! The interaction between the outer electron and
ground-state helium atom is represented by a model pote
fitted on low-energy electron-helium scattering data as
scribed by Valironet al. @13#.

~iii ! The core-core interaction is represented by the lo
range multiple expansion which displays aR24 behavior.

~iv! A three-body term deals with the nonadditivity of th
potentials when the polarization electric fields are not col
ear.

This model can be generalized when the overlap of
two core clouds is limited to the long-range exponential p
d
s
s-
he

d
n-
er

m
d-
In
d
f
he
e
ll

ri-
c-

.

y
n

is-

e
re

to

e
l

e

a-

l

r
-
n

e
ial
-

-

-

e
rt

of the wave functions, according to the well-know
asymptotic model@14,15#. This point, indicated in paper I, is
developed further in the present work.

We shall consider a reference frame where the inter
clear axisR is the quantization axis. In the formalism o
paper I, the electronic Hamiltonian is written as a sum
effective operators:

Hel~R,r !5Ha~r !1V int~R!1Wcc~R!, ~2!

where Ha(r ) is the atomic Hamiltonian of the neon atom
including fine structure,V int(R) contains both the outer elec
tron interaction with the perturber and the three-body te
described in paper I,Wcc(R) is the Ne1-He interaction, here-
after referred to as the core-core interaction,r is the positions
vector for the 3p electron with respect to the center of ma
of the nuclei, andR is the radial component of the internu
clear vectorR. For the sake of clarity, we note here that t
atomic spin-orbit coupling of Ne* is not modified by the
presence of He. The atomic HamiltonianHa(r ) is diagonal
in the u2piJV& representation, whereV is the absolute value
of the projection ofJ on the internuclear axis, the eigenva
ues being the experimental energies of the various 2pi states.
The potentialV int(R) is a one-electron operator, and it
diagonal in the molecular basisu3plel&, wherel is the pro-
jection of orbital angular momentum (l e51) of the outer
electron on the quantization axis. We have drawn in Fig
the quantities

Vs~R!5^3p,l e51,l50uV int~R!u3p,l e51,l50&, ~3!

Vp~R!5^3p,l e51,l561uV int~R!u3p,l e51,l561&,

FIG. 1. Electrostatic potentials discussed in the present work
outer-electron- (3p-) core interaction,Vs(R) ~solid line! and
Vp(R) ~dotted line! @see Eq.~3! in text#, and for core-core interac
tion,Ws(R) ~dashed line! andWp(R) ~long dashed line! @see Eq.
~5! in text#. For R,3a0 two potentials are presented:Wp1(R)
~thin long dashed line! andWp2(R) ~thick long dashed line! corre-
sponding to two arbitrary choices in the extrapolation of t
UA(R) molecular potential of HeNe1 ion for short internuclear dis-
tances. The core-core potential used in paper I for both symme
is represented by a dash-dotted line~vertical wall and polarization
potential!. The vertical arrows indicate the distances where the
ferenceVs(R)2Vp(R) is equal to the maximum and minimum
values of the fine-structure splitting between two neighboring l
els. The energy range for SE and TE experiments is also indica
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56 1307ABSOLUTE CROSS SECTIONS WITH POLARIZATION . . .
which were computed by Hennecart and Masnou-Seeuw
to R54.5a0 and simply extrapolated in the present paper
the region 2a0,R,4.5a0 , assuming an exponential beha
ior. The matrix elements ofV int(R) in the u2piJV& represen-
tation have been given in Appendix 1 of paper I as a funct
of the quantitiesVs(R) andVp(R). In the given reference
there are two errors forV51 which must be corrected by

^2,1,3,1uV int~R!u2,1,3,1&51
1

15
@8Vs~R!17Vp~R!#,

^2,1,2,1uV int~R!u1,1,1,1&52
1

4)
@Vs~R!2Vp~R!#. ~4!

The core-core interaction described by the effective
erator Wcc(R) has been defined in paper I by two matr
elements in the basis ofuLcScMLMS& states, which may be
written, in the spirit of the asymptotic method@14,15#, as

Ws~R!5^2p5;Lc51ML50uWcc~R!u2p5;Lc51ML50&

52
ad

2R4 1Ws
ex~R!,

Wp~R!5^2p5Lc51ML561uWcc~R!u2p5Lc51ML561&

52
ad

2R4 1Wp
ex~R!, ~5!

wheread is the dipole polarizability of the He ground-sta
atom and was taken equal to 1.384 a.u.@16#; Ws

ex(R) and
Wp

ex(R) represent the exchange interactions between
electronic wave function of the Ne1 ion in the 2p5 configu-
ration and of the ground-state He atom. Equations~5! are
valid provided that the overlap between the two electro
clouds is limited to the asymptotic region, where the wa
functions display an exponential behavior corresponding
the classically forbidden region for the motion of the ele
trons @14,15#. The exponential behavior ofWs

ex(R) and
Wp

ex(R) is a check for the validity of our model.
In paper I, the exponential terms were only estimated

lowing the theoretical work of Efremenkovaet al. @17#. In
the present work, we have chosen to determineWs(R) and
Wp(R) from the adiabatic curvesUX(R) andUA(R) that are
deduced from molecular spectroscopy measurements of D
rowski and Herzberg@18# concerning theX 2S1/2 and
A2

2P1/2 states of the HeNe1 molecular ion. The curves
UX(R) and UA(R) are shown in Ref.@18#: As there are
few bound states in theUA(R) potential, there is some un
certainty in the determination of the short-range partR
,3a0) of the potential. The potential curvesWs(R) and
Wp(R) can easily be computed@19# as solutions of the fol-
lowing second-order equation:

l22@UX~R!1UA~R!#l1UX~R!UA~R!1
C2

2
50 ~6!

@l15Ws(R) and l25Wp(R)1C/2#, whereC is the spin-
orbit coupling ~which is assumed to beR independent and
up
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-
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b-

equal to the valueC5782 cm21 of the ground-state Ne1

ion!. The energy origin is chosen at the center of gravity
the Ne1(2p5) configuration. The core-core potentia
Ws(R) andWp(R) are represented in Fig. 1. Due to th
uncertainty of theUA(R) potential forR,3a0 , we present
two potentialsWp1(R) andWp2(R), which correspond to
two choices for the short-range part ofUA(R). The theoret-
ical potential curvesUX(R) and UA(R) of Efremenkova
et al. @17# look more repulsive than those of Dabrowski a
Herzberg@18#: For instance, the well in theUX(R) poten-
tial is very shallow and located at 4.3 instead of 2.45a0 .
Therefore, we had to reconsider in the present paper
core-core interaction used in the dynamical calculations
paper I, which was approximated by a repulsive wall loca
at R54.5a0 , and by a polarization potential at larger di
tances as indicated in Fig. 1.

The exchange potentialsWs
ex(R) and Wp

ex(R) can be de-
duced fromWs(R) andWp(R), respectively, by subtracting
the polarization term@see Eq.~5!#. We have checked that fo
R,Rcritical53.5a0 , such curves depart from the expected e
ponential behavior, making the model potential calculatio
for the He-Ne* system questionable.

Two main physical mechanisms can be considered in
collision problem. The first one, discussed in paper I, may
analyzed by comparing the splitting between the two cur
Vs(R) and Vp(R) to the order of magnitude of the fine
structure splitting between two neighboring 2pi states, which
varies between 59 and 1400 cm21 for the transitions consid-
ered here, and to the collision energy~60–1250 meV, that is,
483– 10 082 cm21!. Pseudocrossings in the adiabatic pote
tial curves occur at distances where those two quantities h
the same order of magnitude, as discussed in paper I an
Refs.@7,8#. The second mechanism is due to the rotation
the trajectory representing the relative motion of the nuc
and is mainly determined by the short-range potential,
particular by the position of the repulsive wall. We ha
indicated in Fig. 1 both the extreme values for the position
the pseudocrossings described above and the collision en
range. It is then manifested that calculations in the therm
energy range will not be very sensitive to the description
the core-core term, while the superthermal collisions will
controlled by the short-range potentials.

In Fig. 2, we compare the core-core potentialsWs(R) and
Wp1(R) used in the present work to the similar potentia
Ws(R) andWp(R) proposed by Manderset al. @4# and used
by the Eindhoven group in several papers@6,9,10#. The two
sets of curves differ in the short-range part; besides, we
a different behavior in the region between 4a0 and 6a0 as
uWs(R)u.uWp(R)u, while the two curvesWs(R) and
Wp(R) cross. We justify our choice both by agreement w
spectroscopy data and by physical arguments, the pertu
tion of a s state being expected to be larger at long ran
We shall therefore analyze the sensitivity of the cross s
tions to the choice of the core-core term and to the unc
tainty of the model at short internuclear distances, in parti
lar for the exact position of the repulsive wall.

In the dynamical treatment presented below, we solve
coupled equations in the framework of a diabatic represe
tion in which the HamiltonianHa(r ) is diagonal.
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III. TREATMENT OF THE COLLISION PROBLEM

A. Coupled equations: Body-fixed
and space-fixed representations

A full quantum-mechanical treatment of collision-induc
fine-structure transitions has already been described in m
papers@20–27#, and for the Ne*(2p53p)1He in Ref. @4#.
We shall, however, present a coherent description of the
malism giving complementary information to previous wo
and adapted to lower-energy collisions where closed ch
nels are present.

In the frame linked to the center of mass of the two c
liding atoms, the total Hamiltonian may be written

H~R,u,w,r !52
1

2m S ]2

]R2 1
2

R

]

]RD1
N2~u,w!

2mR2 1Hel~r ,R!,

~7!

whereR, u, w are the spherical coordinates for the intern
clear distanceR, m is the reduced mass~6120 a.u.!, andN2

the square of the angular momentum operator associ
with the rotation of the internuclear axis. During the col
sion, this angular momentum is coupled with the total el
tronic momentumJ, giving the total momentumP5N1J.
The total wave functionC(r ,R) is expanded on a basis o
functions which are built from eigenvectors of the opera
P2, the projectionPz of P on the quantization axis, and th
parity operatorP, with the eigenvaluesP(P11), M p , and
p, respectively.

We have considered two frames: a body-fixed frame

which the quantization axisOzW is directed along the internu
clear axisR and a space-fixed frame with a quantization a

OZW parallel to the initial asymptotic relative velocityg. The
space-fixed frame is linked to the body-fixed frame throug
rotation by Euler angles~w,u,v!, where the first two angles
are defined by the spherical coordinates (R,u,w) of the in-
ternuclear distanceR, in the space-fixed frame, while th
third Euler anglev is arbitrary.

FIG. 2. Comparison between the core-core potentialsWs(R)
~solid line! andWp1(R) ~dotted line! proposed in this paper and th
similar potentialsWs(R) ~dashed line! and Wp(R) ~long dashed
line! proposed in Ref.@4# and used in several theoretical calcul
tions by the Eindhoven group@4,6,9,10#.
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In paper I the dynamical problem was solved using a tw
state adiabatic expansion, computing the radial coupling
trix elements and neglecting the rotational coupling. O
possibility to improve the accuracy of those calculatio
would be to include rotational coupling and use a larg
number of adiabatic states in the expansion. We have cho
in the present work to use a diabatic representation by
panding the total wave function on the eigenstates of
atomic HamiltonianHa(r ) and, therefore, considering th
atom-atom interaction as a coupling term. The advantag
such representation is to avoid the cumbersome calcula
of the radial and rotational coupling matrix elements. T
drawback is that a larger number of coupled channels ha
be considered.

We have expanded the total wave functionC(r ,R) con-
sidering the basis set defined by the complete operators
which commute with the total Hamiltonian. We shall note
the indexg the various molecular channels. In the body-fix
representation, the expansion on eigenfunctions ofP, P2,
Pz , J2, Jz , andHa(r ) is

C~r ,R!5(
P

(
M p

(
p

(
2pg ;J

(
V

1

R
F2pgJV

pPMP~R!

3upPMP ;2pgJV&, ~8!

where

upPMP ;2pgJV&

5A 1

22dV,0
FA2P11

8p2 DM P ,V
P* ~w,u,v!u2pgJV&

6~21!P1J1Lc1 l e~12dV,0!A2P11

8p2

3DM P ,2V
P* ~w,u,v!u2pgJ2V&G . ~9!

In Eq. ~9!, we have introduced the electronic stat
u2pgJV&, which are the eigenfunctions of theJ2, Jz , and
Ha(r ) operators and the normalized symmetric top functio
@A(2P11)/8p2#DM P ,V

p* (w,u,v), defined following the con-

ventions of Ref.@28#, which are the eigenfunctions of th
P2 and Pz operators. It can be shown that in this frame t
parity of the state isp56(21)P1J1Lc1 l e, and it reduces to
6(21)P1J for the 2p53p configuration of the Ne* atom
~becauseLc5 l e51!. The notationp for the parity should
not be confused with the numberp which appears in the
equations.

For the sake of simplicity, in the following we shall us
the notationa for the 2pg ,J,V indexes of a given channe
so that the radial wave function will be writtenFa

pFM P(R).
For an ingoing molecular channela, we have to solve a se
of coupled differential equations
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56 1309ABSOLUTE CROSS SECTIONS WITH POLARIZATION . . .
d2Fa
pPMP~R!

dR2 1S kg
22

P~P11!1J~J11!22V2

R2 D
3Fa

pPMP~R!

5(
a8

2mF ^a8uV int~R!1Wcc~R!ua&

2
1

2mR2 ^a8uP1J21P2J1ua&GFa8

pPMP~R!, ~10!

where kg
252m@E2E(2pg)#, for different values of parity

p56(21)P and P quantum numbers,M P being arbitrary.
The diabatic electronic coupling term^a8uV int(R)
1Wcc(R)ua& in Eq. ~10!, can be easily obtained from for
mulas~3! and ~5!. The second coupling term in Eq.~10! is
the rotational coupling.

We have checked the possibility of excluding some of
23 different molecular channels in the expansion. It is ju
fied in the present range of energies to exclude the rem
2p1 channel, which corresponds toJ50: For example, if
2p5 is the initial level, the 2p1 channel opens at collision
energies above 272 meV, and from 0.280 until 1 eV
relative variation of the unpolarized or polarized cross s
tions is less than 1% when this channel is included. Abov
eV, the relative variation is less than 2%. In contrast,
though the 2p10 level also lies far from the nearest lev
(2p9) ~the gap beingDE9,1051399.41 cm21!, the contribu-
tion of the three molecular channels correlated to this dis
ciation limit cannot be neglected and they are included in
calculations. Therefore, we have solved two sets of 17
18 differential coupled equations set in subspaces define
p51(21)P andp52(21)P parity, respectively.

Alternatively, in the space-fixed representation we ha
expanded the total wave functionC(r ,R) on eigenfunctions
of P, N2, NZ , J2, JZ , andHa(r ) operators, whereJZ means
the projection ofJ on theOZW quantization axis:

C~r ,R!5(
P

(
M p

(
p

(
2pg;J

(
N

1

R
G2pgJN

pPMP~R!

3upPMP ;2pgJN&, ~11!

where

upPMP ;2pgJN&

5(
M

(
MN

~21!2J1N2M PA2P11S J
M

N
MN

P
2M P

D
3YMN

N ~u,w!u2pgJM&. ~12!

The atomic eigenfunctionsu2pgJV& ~body-fixed frame!
can be expressed as a linear combination of the atomic ei
functions u2pgJM& ~space-fixed frame!. In Eq. ~12!,
(M

J
MN

N
2M P

P ) is a 3j symbol. As above, we shall simplify th

notation by callingb the 2pg ,J,N channel, so that the radia
wave functions are writtenGb

pPMP(R) for various space-
fixed channels. It is a simple fact to show that the eigenva
of parity operator, in the space-fixed representation, isp
5(21)N1Lc1 l e, which reduces to (21)N for the 2p53p
e
i-
te

e
-
1

l-

o-
r
d
by

e

n-

e

configuration. We note that for each 2pgJ atomic level and
for a givenP, the quantum numberN may take 2J11 val-
ues, hereafter writtenNb . The coupled equations are the
written for an ingoing molecular channelb, in each subspace
defined byp, P, andM P quantum numbers, as

d2Gb
pPMP~R!

dR2 1S kg
22

Nb~Nb11!

R2 DGb
pPMP~R!

5(
b8

2m^b8uV int~R!1Wcc~R!ub&Gb8

pPMP~R!. ~13!

It is possible to switch from one representation to t
other via the unitary transformation

upPMP ;b&5(
b

Wb;a
pPMPupPMP ;a&, ~14!

where

Wb;a
pPMP5A 2

12dV,0
A2Nb11~21!Nb2J2V

3S J
V

Nb

0
P

2V D . ~15!

We note thatWb;a
pPMP is a block diagonal matrix which

has nonvanishing nondiagonal elements only for the se
molecular channels which are correlated to the same 2piJi
fine-structure atomic level. As the matrix elements
V int(R) and Wcc(R) are readily obtained in the body-fixe
representation, Eq.~13! involves transformation of the diaba
tic coupling matrix elements through Eq.~14! at each inte-
gration step. So it is not surprising that the calculations in
space-fixed representation are time consuming.

In order to extract theS matrix, the coupled equation
~10! and ~13! should be integrated up to a distanceRmax,
where all coupling terms vanish and the adiabatic potent
are constant, so that the radial functionsFa

pPMP(R) or

Gb
pPMP(R) can be identified with known analytic solution

of the scattering problem with zero interaction. Because
the very slow decrease of the rotational coupling at la
internuclear distances, theRmax value in the calculations us
ing a body-fixed representation is found much larger th
when the space-fixed representation is used. Therefore, in
present work, we have solved the coupled-channel equat
~10! up to a particular distanceRmax, where we have
switched representation using the unitary transformation~14!
and considered the solutions of the coupled equations
~13! in a space-fixed frame. TheRmax value was chosen afte
the analysis of the scatteringS-matrix convergence. This as
pect will be discussed later.

The change of representation implies that the radial w
functionsGb

pPMP(R) are expressed as a linear combinati

of the body-fixed radial solutionsFa
pPMP(R). Therefore, for

a given value ofP, we have several asymptotic function
corresponding to the variousNb values. This can be readily
seen from Eq.~13!, where the centrifugal termNb(Nb
11)/R2 depends upon the particularb channel, in contrast
to Eq. ~10!, whereP(P11)/R2 is the same forall a chan-
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nels of a givenP. The radial wave functionsGb
pPMP, for any

b exit channel, must respect the usual boundary conditio

Gb
pPMP~R[Rmin!50, ~16!

Gb
pPMP~R[Rmax!5JNb

~kgRmax!1K
b;b8

pPMP~Rmax!

3NNb8
~kg8Rmax!, ~17!

whereK
b;b8

pPMP are the elements of the scatteringK matrix,
while the functionsJNb

andNNb
are the Ricatti-Bessel func

tions regular and irregular at the origin (Rmin) for open chan-
nelskg

2>0 or modified spherical Bessel functions of the fi
s:

t

and third kinds, respectively, for closed channels. The s
tering S matrix is then defined in the usual way from th
open-open block of the scatteringK matrix:

S5
I1 iKoo

I2 iKoo
, ~18!

whereI is the unitary matrix.
The polarized cross section is obtained from theS matrix

after some algebra. It is a simple fact to express the sca
ing amplitudes in the space-fixed representation@15# from
the boundary conditions of the total wave function of t
system in a subspace defined byp, P, and M P quantum
numbers:
e

idering
e
-

een
ven

transi-
f 2pi ;Ji Mi→2pf ;Jf M f
~k i ,k f !

5
2p i

Akikf
(

P5Pmin

Pmax

(
M P52P

P

(
N5uP2Ji u

P1Ji

(
N85uP2Jf u

P1Jf

(
MN52N

N

(
MN8 52N8

N8

i N2N8~21!2~N1N8!~2P11!YMN

N ~ k̂i !YM
N8

N
~ k̂f !

3~dJjJi
dN8N2SJf N8;JiN

P
!S N

MN

Ji

M i

P
2M P

D S N8
MN8

Jf

M f

P
2M P

D . ~19!

As J can reach the value 3 and asJ2N<P<J1N, the minimum value ofN being 0,Pmin is equal to 3. Because of the choic
of a space-fixed frame with the quantization axis along the asymptotic incident relative impulsionk i @its polar angles being
k̂i5(0,0)#, the scattering amplitude formula has a more simple form. A supplementary simplification can be done cons
that the nuclear rotation momentum is perpendicular to the asymptotic relative impulsionk i , and in consequence, we hav
MN50 andM P5Mi . Considering these simplifications in the formula~19! of the scattering diffusion amplitude and inte
grating the absolute value of it on all diffusion anglesk f , we can readily obtain the cross section for transition betw
Zeeman sublevels and the polarized cross sectionss2pi ;Ji Mi→2pf ;Jf

necessary to interpret the experiments of the Eindho
group are readily obtained as

s2pi ,Ji Mi→2pf ;Jf
5

p

ki
2 (

P5Pmin

Pmax

(
N5uP2Ji u

P1Ji

(
N95uP2Ji u

P1Ji

(
N85uP2Jf u

P1Jf

i N2N9A~2N11!~2N911!~21!2N2N9~2P11!S N
0

Ji

M i

P
2Mi

D

3S N9
0

Ji

M i

P
2Mi

D ~dJfJi
dN8N2SJf N8;JiN

P
!~dJfJi

dN8N92SJf N8;JiN9
P

!*

5 (
P5Pmin

Pmax

s2pi ;Ji Mi→2pf ;Jf

P , ~20!

wheres2pi ;Ji Mi→2pf ;Jf

P means the partial polarized cross section. Next, the unpolarized cross section for fine-structure

tions is

s2pi ;Ji→2pf ;Jf
5

p

ki
2 (

P5Pmin

Pmax ~2P11!

~2Ji11! (
N5uP2Ji u

P1Ji

(
N85up2Jf u

P1Jf

udJf Ji
dN8N2SJf N8;JiN

P u2. ~21!
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56 1311ABSOLUTE CROSS SECTIONS WITH POLARIZATION . . .
It is worthwhile to note that the unpolarized inelas
cross sections2pi ;Ji→2pf ;Jf

depends only upon the absolu
value of theS-matrix elements, while the polarized cro
sections~20! contain interference terms. In the formulas~20!
and ~21!, Pmin is equal to 3~see above!, while the value of
Pmax is established through a convergence test.

B. Numerical treatment and convergence of the calculations

In the present work only open channels have been con
ered. We have solved the coupled differential equations~10!
in the body-fixed representation, using a Johnson algori
with constant step size@29,30#, which provides a numerica
determination of the logarithmic derivative of the rad
function. Because of the very strong repulsive characte
the electronic potentials at short distances, we have che
that the starting point of the integration could beRmin
52a0. The integration step size was chosen so that for e
logarithmic derivative function, at least ten values ofR were
computed for half of an oscillation. The maximum value
the asymptotic wave number was estimated by conside
the difference between the collision energy and the splitt
between the ingoing channel and the lowest possible
channel, which in our case is the 2p10 channel. This leads to
a typical step size varying from 0.03a0 at a collision energy
E50.1 meV to 0.014a0 at E51 eV. As we shall discuss
below, the integration up toRmax520a0 was found to be
sufficient, so that the typical number of integration steps w
varying from 600 atE5100 meV until 1300 atE51 eV. At
this distance, we have changed representation by an ap
priate transformation derived from Eq.~14!.

At Rmax, in the space-fixed representation, the differe
radial equations become completely uncoupled and we h
evaluated the scatteringK matrix and deduced theS matrix
through formula~18!. The convergence of the integration ca
then be checked from the stability of theS-matrix elements
relative to the choice ofRmax.

In the body-fixed representation, the coupled equati
~10! involve a diabatic electronic coupling term, which va
ishes atR;15a0 , and a rotational coupling one, which lea
to population transfer between the various Zeeman suble
of a given 2pg manifold and vanishes slowly. Our analys
has shown that, in order to compute the unpolarized cr
sections2pi ;Ji→2pf ;Jf

, it is sufficient to perform the numeri

cal integration up to a distanceR5Rmax;15a0 . In contrast,
because of the very slow variation of the rotational coupl
term, in order to obtain accurate results for the polarizat
cross sectionss2pi ;Ji Mi→2pf ;Jf

we should perform integra
tion of the coupled equations~10! up to a larger internuclea
distance~for example, atE5100 meV,Rmax must be up to
1000a0!.

The frame transformation~14! allows us to switch to the
space-fixed representation, where the rotational coup
vanishes. However, as was discussed in the previous sec
the radial function for a partial waveP corresponds to vari-
ous partial wavesN, from uP2Ju to P1J, each one having
to be compared with a Ricatti-Bessel function of differe
order N, therefore having a different phase. One could
tempted to neglect this difference of phase because of
small value of the quantum numberJ<3 compared to
P: In the collision energy range considered here, the cr
id-
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section is dominated by the contribution of the partial wav
with P@10, suggesting the assumptionN;P. This approxi-
mation is valid provided that we can neglect the small var
tions of the phase of theS-matrix elements when the partia
wave number is varying by a few units. It would be ve
convenient for treatment of the collisions in presence o
magnetic field.

We have checked this approximation at various collis
energies, and we discuss here, as an example, the ca
the 2p5→2p7 transition atE5100 meV collision energy,
where a strong polarization effect was observed~see Ref.
@3#!. If we characterize the polarization effect by the ra
s2p5 ;Mi50→2p7

/s2p5 ;Mi51→2p7
, for Rmax515a0 we obtain

r50.3, with the assumptionN;P, and r53.7 when the
cross sections are calculated after the frame transforma
using the correct value ofN for each channel. This latte
value is in good agreement with the experimental res
r53.5. However, the unpolarized cross section obtain
in the approximationN;P, is 3.68310216 cm2, like in
‘‘exact’’ calculations, and the valueRmax515a0 is then
sufficient.

In Fig. 3, we have represented the phase of a relev
matrix elementSJi51,N51;Jf51N851 as a function of the par-

tial waveN, for various choices ofRmax. We can see that for
calculations using the approximationN;P @see Fig. 3~b!#
the phase is not converging even when the integration
performed up to very largeRmax values. In contrast, for exac
calculations the convergence of theS-matrix element phase
is already obtained forRmax520a0 @see Fig. 3~a!#. The
physical explanation of this effect relies upon the large va
of the classical scattering angle: Because of the large v
of its derivative, the phase is a rapidly varying function
N. When higher collision energies are considered, this ef
decreases and the approximationN;P starts to be valid
@32#.

As a conclusion, we may say that the polarized cross s
tions are highly sensitive to the accuracy of the procedure
phase extraction. This conclusion is important for furth
work considering collisions in the presence of a magne
field.

IV. RESULTS AND DISCUSSION

In the present paragraph, we shall first discuss how
present calculations compare with the experimental data
with the previous calculations. Then we shall discuss
sensitivity of our calculations to the choice of the potentia

A. Calculated cross sections: Comparison with experiment

We have calculated the unpolarized cross secti
s2pi ;Ji→2pf ;Jf

and the polarized cross section

s2pi ;Ji Mi→2pf ;Jf
for all the transitions in which the initia

states are 2p2 to 2p10, for collision energies varying from 60
to 1250 meV, in the range where experimental results
available ~see Manderset al. @3,4,31# and Boom et al.
@9,10#!.

The experimental apparatus used by Manderset al. and
by Boomet al. was carefully designed for measurements
absolute cross sections. Two atomic beams~a metastable
neon beam and a ground-state helium beam! and a polarized
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1312 56BAHRIM, KUCAL, AND MASNOU-SEEUWS
laser beam cross at right angles. Once a metastable
atom is excited by the laser into a$2p53p;2piJi% short-lived
Ne* state, it may undergo an inelastic collision with a h
lium atom. The populations of the initial 2piJi and final
2pfJf levels were determined by photodetection of the flu
rescence light of the 2pi→1sl and 2pf→1sk transitions, re-
spectively. Two sets of experiments have been perform
The main difference between them is the nature and en
of the primary neon metastable beam source.

In the first set of experiments@3,4,6,31#, hereafter referred
to as TE experiments, the primary beam originated in
discharge-excited supersonic expansion or a thermal m
stable source. The TE collision energies varied from 60
150 meV. In the second set@9,10#, hereafter referred to as S
experiments, a hollow cathode arc was used as a source
located at larger distance from the scattering center. The
lision energies available with this source varied from 170
1250 meV~superthermal collision energy range!. Two dif-
ferent detection methods were used in the SE experim
@9#: the pseudorandom correlation time-of-flight metho

FIG. 3. ~a! Phase of theS-matrix elementSJi51,N51→Jf51,N851

in space-fixed representation, for the 2p5→2p7 transition, at
E5100 meV, as a function of the partial wave numberN; the
results were obtained by numerical integration of the coupl
channel equations~10! up to Rmax515a0 , 20a0 , and 50a0 and
after the switch of representation. The two last lines cannot
differentiated.~b! Same as~a!, when the integration of coupled
equations~10! is performed up toRmax515a0 ~solid line!, 20a0

~dotted line!, 30a0 ~dot-dashed line!, and 50a0 ~dashed line!, as-
sumingN;P in the frame transformation.
on
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hereafter noted RC, and the single-burst time-of-flig
method, hereafter referred to as SB.

The excellent performance of both sources allowed t
experimentalists in Eindhoven to measure theabsoluteunpo-
larized and polarized cross sections for the various intram
tiplet transitions in the neon 2p53p configuration, with a
very good accuracy. An important discussion concerns
sources of error. In Ref.@9#, Tables V and VI, the authors
have published absolute cross sections, with a few perc
statistical errors indicated by error bars. The other expe
mental data are published without those statistical erro
Moreover, systematic errors are also discussed, which
pend upon the geometry of the experiment~incident flux!
and upon the calibration of the detection procedure. In
TE experiments, the systematic error is estimated to be 1
@4,10#; in SE experiments, as the source is located at lar
distance, the authors indicate the possibility of a 22% s
tematic error@10#. We shall therefore discuss the compariso
between our calculations and the experiment by consider
both absolute cross sections and relative quantities such
the ratio of two cross sections.

It is hardly possible to present all calculated cross se
tions, and so we shall limit ourselves to a few exam
ples: We will focus our attention on a few transitions fo
which experimental results are available.

We illustrate in the Figs. 4–8, the comparison betwe
our calculations and the TE or SE experimental results
previous quantal calculations of the Eindhoven gro
@4,6,9,10#. We show the energy variation of our compute
cross sections in the 60–1250 meV energy range for sev
transitions:

2p5 ;Ji51,Mi→2pf ;Jf

~with Mi50,1 and f 54,6,7,9!,

-

e

FIG. 4. Polarized cross sectionss2p5 ;Ji Mi50→2p4 ;Jf
as a function

of the collision energyE: asterisks, present calculations; up tr
angles, TE experimental results@4,6#; squares, SE experimental re
sults @9#; down triangle, non-energy-resolved experimental res
@10#; crosses, previous TE quantal calculations@4,6#; and diamonds,
SE quantal calculations@10#. The error bars represent the statistic
error only, for SE experimental data; in the case when an error
is less than the size of the square, we have chosen it to be e
with this size. The lines are drawn only as a guide to the eye.
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56 1313ABSOLUTE CROSS SECTIONS WITH POLARIZATION . . .
and

2p7 ;Ji51,Mi→2p6 ;Jf ~with Mi50,1!.

The analysis of Figs. 4–8 shows a very good agreeme
between our calculations and the TE experiments. Th
agreement was already found at a few energy values
Manderset al. @6#, and we confirm their conclusion concern
ing the accuracy of the potential curves.

In contrast, forE.170 meV a large discrepancy~up to a
factor of 2! exists between our calculations and SE expe
mental results. The small differences between our results a
the few computed values published by Boomet al. @10# can
be attributed to the difference in the choice of the core-co
interaction, shown above in Fig. 2. The present calculatio
confirm the earlier conclusion of the Eindhoven group co
cerning the problem in the comparison between theory a
SE experiments. As already mentioned in the Introductio
the authors have attributed this discrepancy to errors in t
long-range potential. However, it is clearly manifested in th
Figs. 4–8 that the experimental and theoretical polariz
cross sections exhibit a very similar energy variation. W
therefore propose to consider also the possibility of a ca

FIG. 5. Same as Fig. 4 for the variation of the polarized cro
sectionss2p5 ;Ji Mi→2p6 ;Jf

as a function of the collision energyE,
with ~a! Mi50 and~b! Mi51.
nt
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bration systematic error in the SE experiments much larg
than the 22% factor given by the authors~see Ref.@10#!. One
possible check of such a hypothesis could be the presenc
a discontinuity between the two sets of the experiment. Su
a discontinuity is not manifested clearly in mos
cases: Within the statistical error bars, it is possible
make a continuous link between TE and SE experimen
results. However, for the 2p5→2p7 transition, which is a
test transition@2,3,4,31#, a discontinuity of a factor of 2 does
exist @see Figs. 6~a! and 6~b!#, which favors our hypothesis.
It should be noted that this is the only case where the cro
section is not abruptly rising in the region where the two se
of experiments overlap. In the other cases, the continuo
link could also be explained by a small difference in th
energy definition within two sets of experiments.

In Figs. 4–8, an oscillatory behavior in the energy vari
tion of the calculated polarized cross sections, more obvio
in SE range, is manifested. Unfortunately, because of
limited number of experimental points, this interference e

s
FIG. 6. Polarized cross sectionss2p5 ;Ji Mi→2p7 ;Jf

as a function
of the collision energyE. ~a! corresponds toMi50; ~b! corre-
sponds toMi51. Same conventions as for Fig. 4, square symbo
being for the single-burst~SB! type of SE experiments and circle
symbols for the pseudorandom correlation~RC! type of SE experi-
ments, according to Ref.@9#.
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1314 56BAHRIM, KUCAL, AND MASNOU-SEEUWS
fect, discussed in more detail in Ref.@32#, cannot be con-
firmed by experiment. The resonant structure of the ener
variation of the cross section was already shown in seve
recent papers~see, for example, Refs.@7,8,23#!.

A more direct check of the experiments is the so-calle
‘‘ b dependence’’ of the cross sections, because the abso
polarized cross sectionss2pi ;Ji Mi→2pf ;Jf

were determined by
varying theb angle between the direction of electric field
vector E of the linearly polarized laser light~the optical
quantization axis in the photon frame! and the relative
asymptotic velocityg. In general, the observed absolut
cross section is found to be an incoherent sum over the Z
man initial Mi sublevels:

s2pi ;Ji→2pf ;Jf

~E! ~b!5(
mi

gmi(Mi

@dmi Mi

Ji ~b!#2s2pi ;Ji Mi→2pf ;Jf
,

~22!

where dmi Mi

Ji (b) are the reduced Wigner rotation function

andgmi
is the relative population of Zeeman sublevelsmi , in

FIG. 7. Same as Fig. 4 for the variation of the polarized cro
sectionss2p5 ;Ji Mi→2p9 ;Jf

as a function of the collision energy, with
~a! Mi50 and~b! Mi51.
y
al

d
ute

e-

the photon frame. When a linearly polarized laser light
used and in the cases where the initial levels areu2pi ;Ji
51,Mi&, Eq. ~22! becomes

s2pi ;Ji51→2pf ;Jf

~E! ~b!

5
1

2
~s2pi ;Ji51,Mi50→Jf

1s2pi ;Ji51,Mi51→Jf
!

1
1

2
~s2pi ;Ji51,Mi50→Jf

2s2pi ;Ji51,Mi51→Jf
!

3cos~2b!. ~23!

The polarized cross sections in the space-fixed refere
frame are obtained for particular values ofb angle~see Ref.
@4#!:

s2pi ;Ji51→2pf ;Jf

~E! ~b50!5s2pi ;Ji51,Mi50→2pf ;Jf
, ~24!

s2pi ;Ji51→2pf ;Jf

~E! S b5
p

2 D5s2pi ;Ji51,Mi51→2pf ;Jf
. ~25!

s FIG. 8. Same as Fig. 4 for the variation of the polarized cros
sectionss2p7 ;Ji Mi→2p6 ;Jf

as a function of the collision energyE,
with ~a! Mi50 and~b! Mi51.
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56 1315ABSOLUTE CROSS SECTIONS WITH POLARIZATION . . .
In Figs. 9 and 10, we show a comparison between exp
mental and theoretical results for the variation of the cr
sections as a function ofb angle in two cases~arbitrarily
chosen!: the transitions 2p5→2p6 and 2p7→2p5 . In the
case of the SE range, the experimental data were meas

FIG. 9. Comparison between TE and SE experimental and
oretical results of thes2p5 ;Ji51→2p6 ;Jf51

(E) cross section as a functio
of theb angle between the electric field vectorE of the laser beam
and the asymptotic relative velocityg. The experimental values
were measured at collision energiesE5100 meV ~thick dashed
line! and 450 meV~thick solid line!. The calculations were per
formed at collision energies of 100 meV~thin dashed line!, 350
meV ~dotted line!, 450 meV~thin solid line!, and 525 meV~long
dashed line!. We indicate on the figure the limit anglesb150 and
b25p/2 @see Eqs.~24! and ~25!, respectively, in text#, for which
polarized cross sections in space-fixed representation can be
tracted.

FIG. 10. Comparison between TE and SE experimental and
oretical results of thes2p7 ;Ji51→2p5 ;Jf51

(E) cross section as a functio
of the angleb between the electric field vectorE of the laser beam
and the asymptotic relative velocityg. The experimental value wa
measured at collision energiesE5140 meV~thick dashed line! and
500 meV ~thick solid line!. The calculations were performed a
collision energies of 140 meV~thin dashed line!, 350 meV~dotted
line!, 500 meV~thin solid line!, and 525 meV~long dashed line!.
For the signification ofb1 andb2 angles, see Fig. 9.
ri-
s

red

with an uncertainty in the determination of the collision e
ergy ~experiments referred to as ‘‘non-energy-resolved’’
Ref. @10#!. The error bar in the collision energy correspon
approximately to the range between the two energies
which we have done the calculations~at E5350 and 525
meV, respectively!. Taking into account the systematic err
bar, it is evident that in the TE range the agreement betw
theory and experiment is very good and that in the SE ra
our theoretical curve reproduces well the shape of the exp
mental curve. The same agreement is obtained for all
transitions for which experimental results are available.

The discussion about absolute cross sections in the
range seem to indicate a possible calibration problem in
experiments of Boomet al. @9,10#. If our hypothesis is cor-
rect, it would be reasonable to look for parameters wh
depend upon cross-section ratios, because they do no
pend upon calibration. So are the anisotropy parameters
fined in Refs.@9,10#, which provide information about the
importance of the polarization effect for each of the analyz
transitions. For the cases presented above~where the initial
states have an electronic momentumJi51!, the polarization
effect can be measured by the anisotropy parameterP1

an de-
fined as

)
1

an
5P1

an5
s2pi ;Ji51Mi50→2pf ;Jf

2s2pi ;Ji51Mi51→2pf ;Jf

s2pi ;Ji51→2pf ;Jf

.

~26!

In Figs. 11 and 12, we display some examples of
energy variation, in the SE range, of theP1

an parameter com-
puted from our theoretical cross-sections values toge
with a few experimental results. We have chosen the tra
tions 2p5→2p6 , 2p5→2p7 , 2p7→2p4 , and 2p7→2p5 .
For the experimental points, the statistical error bar is c
sidered and evaluated with the formula

dP5
s1

s2 ds01
s0

s2 ds1 , ~27!

e-

ex-

e-

FIG. 11. Comparison between the SE experimental results@10#
and our theoretical calculations of the energy dependence of
anisotropy parameterP1

an @defined in Eq.~26! in text#, for the tran-
sitions 2p5→2p6 ~solid line! and 2p5→2p7 ~dashed line!. For ex-
periments, only the statistical error bars@calculated with Eq.~27!:
see text# are indicated.
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where

s0[s2pi ;Ji51Mi50→2pf ;Jf
,

s1[s2pi ;Ji51Mi51→2pf ;Jf
,

and

FIG. 12. Same as Fig. 11, but for the transitions 2p7→2p4

~solid line! and 2p7→2p5 ~dashed line!.
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s5~s012s1!/3;

ds0 and ds1 are the statistical error bars of the absolu
polarized cross sections given in Refs.@9,10#. Our calcula-
tions are now in excellent agreement with the experimen
results for all transitions in both energy ranges. Consider
the behavior of the curves, we may note that the characte
the polarization effect is reversed in the case of 2p5→2p6
and 2p7→2p4 transitions, as compared to 2p5→2p7 and
2p7→2p5 transitions. We find that with increasing collisio
energy the polarization effect tends to zero in all cases.

For transitions where the initial levels areu2pi ;Ji
52,Mi& andu2pi ;Ji53,Mi&, it was proved by experimenta
evidence that the experimental anisotropy parameters co
spond to the theoretical parametersP2

an5P2
an2Q2

an andP3
an

5P3
an22.7Q3

an11.8R3
an, respectively~see Ref.@10#!, where

PJ
an is easily deduced from Eq.~26!, while theQj

an andRJ
an

anisotropy parameters are given in@10#. We find that in the
case when the initial level isu2pi ;Ji52,Mi&, the anisotropy
parameter is given by the formula

)
2

an

5
s2pi ;Ji52Mi50→2pf ;Jf

2s2pi ;Ji52Mi52→2pf ;Jf

4s2pi ;Ji52→2pf ;Jf

,

~28!

and for an initial levelu2pi ;Ji53,Mi& it is
)
3

an

5
22.15s2pi ,Ji53Mi50→2pf ;Jf

13.39s2pi ;Ji53Mi51→2pf ;Jf
21.35s2pi ;Ji53Mi52→2pf ;Jf

10.11s2pi ;Ji53Mi53→2pf ;Jf

s2pi ,Ji53→2pf ;Jf

.

~29!
tion

m
c

e
f
ed,
the

that

ute
lead
ob-
ly.

the

el
ion
We have calculated the anisotropy parameters through
formulas~28! and ~29! using our polarized cross-section r
sults. In Tables I and II we compare them to the experime
parameters and the theoretical values calculated by B
et al. @10#, for several transitions with initial levelsu2pi ;Ji
52,Mi& andu2pi ;Ji53,Mi&, respectively. In most cases, w
reproduce nicely the experimental results. With few exc
tions, we are also in good agreement with the previous
culations, the small differences being attributed to the diff
ent choice in the description of the core-core interaction.

Finally, we summarize the comparison between our c
culations and the results of absolute polarized cross sec
obtained in SE experiments@9# by considering themean
value of the ratio between the measured absolute cross
tions:

K5
s2pi ;Ji Mi→2pf ;Jf

expt

s2pi ;Ji Mi→2pf ;Jf

calc . ~30!

TheK parameter is presented in Fig. 13, as an histogram
all transitions for which we have performed calculations. W
have considered all collision energies for which SE exp
he

al
m

-
l-
-

l-
on

ec-

or
e
i-

mental results are available and also both types of detec
methods~RC and SB!. The histogram drawn with a solid line
includes only statistical errors, while the dotted histogra
corresponds to the ratioK moved up with the systemati
error bar of 22%. If only statistical error is considered, w
find that themeanvalue of K is about 0.63 for the set o
transitions considered. With the systematic error includ
this value became approximately 0.78. In the ideal case,
ratio K must be equal to 1. We can see on the histogram
even if we take into account all the error bars, the ratioK is
less than 1.

Therefore, all comparisons considering either absol
cross sections or relative parameters derived from them
us to the conclusion that the hypothesis of a calibration pr
lem in the SE experiments should be considered serious

B. Discussion of the sensitivity of the dynamical calculations
to the potentials

The discrepancy between the quantal calculations and
experimental results has been attributed by Boomet al.
@9,10# to deficiencies in the long-range part of the mod
potential curves given in paper I. Indeed, when the collis
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TABLE I. Comparison between the experimental anisotropy parameter and the equivalent theoreti
P2

an, which is computed through formula~28! for the caseJi52, as shown in Ref.@10#. The experimental
and previous theoretical results are taken from in Ref.@10#.

Transitions
E

@meV#
Pexpt

an

Ref. @10#
E

@meV#

P2
an

Ref. @10# Our work

2p4→2p6 430 20.31 430 20.080
525 20.07 20.064

→2p7 430 20.10 430 20.016
525 20.02 20.036

→2p8 430 0.37 430 0.263
525 0.27 0.284

→2p9 430 0.07 430 20.028
525 20.04 20.048

2p6→2p4 450 0.13 450 0.119
525 0.13 0.089

→2p5 450 20.17 450 20.137
525 20.18 20.163

→2p7 450 20.04 450 20.058
525 20.08 20.092

→2p8 450 0.23 450 0.249
525 0.16 0.249

→2p9 450 0.19 450 0.067
525 0.04 0.066

2p8→2p4 490 0.34 490 0.412
525 0.41 0.428

→2p5 490 20.06 490 20.065
525 20.09 20.079

→2p6 490 0.14 490 0.378
525 0.31 0.359

→2p7 500 0.05 500 0.066
525 0.07 0.046

→2p9 500 20.13 500 20.085
525 20.08 20.074

→2p10 500 20.15 500 20.217
525 20.12 20.223
n
Si
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n
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,
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er
rnu-
t
nge
200
cept
energy increases, they found an enhancement of the co
bution of large impact parameters in the cross sections.
nificant contributions came from distances larger than
position Ri j of any avoided crossing between two adiaba
molecular curvesi and j @9,10#. We have observed a simila
effect in our calculations, and this is particularly obvious
transitions for which a single avoided crossing exists. A
relevant example, we focus on the 2p7→2p6 transition, for
which the energy splitting is small~194.38 meV! and there is
only one avoided crossing between the adiabatic poten
curves forV51, at R7657.4a0 ~see Fig. 15!. We display
in Fig. 14 the partial polarized cross sectio
s2p7 ;Ji Mi→2p6 ;Jf

P for Mi51, drawn as a function of the im

pact parameterb5AP(P11)/2mE. It is clear that in the SE
range, the cross section becomes dominated by the cont
tion of large impact parameters (b.R76). The same effect is
observed for the cross sectionMi50. This phenomenon
however, is not true for all transitions, and a more detai
discussion, in connection with a semiclassical model, will
presented in a forthcoming paper.
tri-
g-
e

a

ls

u-

d
e

In order to check the sensitivity of the results to the va
of the long-range potentials, we have modified theV s(R)
potential in the regionR.9.75a0 , beyond all existing
avoided crossings. In this region the core-core interactio
described by the polarization term, and theV p(R) potential
is negligible, so that the only quantity which is questionab
is the V s(R) potential. It can be fitted by an exponenti
function a exp(2bR), with a58.7593105 cm21 and b
50.813 a.u. We have modified theV s(R) potential by
keeping the continuity of the derivative atR59.75a0 and
changing the asymptotic behavior considering two extre
cases witha52.33109 cm21, b51.614 a.u. anda53.0
3104 cm21, b50.493 a.u. The corresponding variation
the cross section is less than 10% in all cases except
2p5→2p4 transition, where it is at most 20%. In the latt
case the avoided crossing is located at the largest inte
clear distanceR5458.6a0 . Moreover, we have verified tha
the TE cross sections are more sensitive to the long-ra
potentials than the cross section in the SE range: At 1
meV, the cross sections are modified by less than 5%, ex
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TABLE II. Same as Table I for an initial stateJi53. The theoretical anisotropy parameter is compu
from formula ~29!.

Transitions
E

@meV#
Pexpt

an

Ref. @10#
E

@meV#

P3
an

Ref. @10# Our work

2p9→2p4 450 0.150 450 0.212
525 0.16 0.165

→2p5 450 0.153 450 0.201
525 0.24 0.257

→2p6 450 0.100 450 0.136
525 0.12 0.101

→2p7 450 0.116 450 0.122
525 0.13 0.116

→2p8 450 0.009 450 20.015
525 20.01 20.029

→2p10 450 0.065 450 0.093
525 0.067 0.066
es
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for the 2p5→2p4 transition, where the modification reach
18%. If the discrepancy between the calculations and the
experimental data was due to to a defect in the long-ra
behavior of the potentials, we would also get discrepa
with the TE experimental data, which is not the case.

It should be noted that the interpretation of the collisi
mechanism by avoided crossings between two adiabatic
tentials in the Hund’s casec coupling scheme is certainly no
valid at high collision energies, when the fine-structure sp
ting becomes much smaller than the collision energy. In
case discussed above (2p7→2p6 transition!, the fine-

FIG. 13. K value @defined in Eq.~30!# considering both detec
tion methods used in SE experiments@9# @single-burst~SB! and
pseudorandom correlation~RC! time-of-flight methods# and the
present calculations, forall transitions in which the initial state ha
Ji51 and all collision energies for which experimental results
available. The dotted histogram corresponds to the case wher
SE experiments the systematic error~of 22%: see in Ref.@10#! was
considered. The transitions are indicated by the index of initial
final atomic statesi and f , as i - f . The values of quantum numbe
Mi are also indicated. Except for 2p5→2p4 transition, for which
the only Mi50 case is shown, for all the others, bothMi values
were considered.
E
e
y

o-

-
e

structure splitting is24 meV, so that in the SE range whe
the energy becomes larger than 1 eV, a representation u
Hund’s casee curves should be more adapted, as discus
in Ref. @15#. A look at Fig. 15 where the typical collision
energy is compared to the splitting between various cur
shows that it is not realistic to isolate two adiabatic curv
and that the diabatic representation discussed at the be
ning of the paper is better adapted.

As the determination of the short-range potential is a
questionable, we also have checked how our results wo
be modified in the extreme case of a hard wall at 3.5a0 . The
latter value was chosen according to our discussion for
validity of model potential calculations~see Sec. II!. The
cross sections were modified by less than 4%, except fo
few cases where, due to the presence of an avoided cros
in the regionR,3.5a0 , a variation of 15% is reached. W
therefore cannot attribute the discrepancy with the SE

e
for

d

FIG. 14. Variation of the partial polarized cross secti
s2p7 ;Ji Mi→2p6 ;Jf

P as a function of the impact parameterb at three
collision energies: E5150 meV ~triangles!, 650 meV ~circles!,
and 1250 meV~asterisks!, for the test transition 2p7→2p6 , with
Mi51. The position of the avoided crossing (R7657.4a0) for the
relevant adiabatic potentials forV51 is shown.
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perimental data to our choice of the core-core term. Anot
check for the importance of the core-core term is provided
the comparison between our calculations and the prev
quantal calculations of Refs.@6# and @10#.

Finally, our tests show that the correct description of
potentials in the region 3.5a0,R,5.6a0 , where the core-
core interaction is not yet dominated by the polarization te
~see Sec. II!, does play an important role and could modi
the cross-section values up to 60%, justifying our effort
determineW s(R) and W p(R) potentials with accuracy
Our present choice will be checked further in forthcomi
calculations of the differential cross section.

V. CONCLUSION

We have performed quantal calculations for the abso
polarized cross sections and anisotropy parameters in
case of the intramultiplet transitions for Ne* (2p53p)
1He(1S0) collisions. The 36 coupled equations have be
written in a diabatic representation, in which the interact
between the two atoms is determined from model poten
calculations of Hennecart and Masnou-Seeuws@5#, com-
bined with short-range core-core potentials fitted on spec
scopic data for the HeNe1 molecular ion. From the numeri

FIG. 15. Hund’s casec adiabatic potential curves withV51.
The order of magnitude of a collision energy typical of the S
experiments is indicated.
ic

B.

B

B

r
y
us

e

te
he

n
n
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o-

cal solution of the equations, we have shown that one m
be careful to extract the scatteringS matrix by considering
asymptotic wave functions which correspond to eigenval
P of the total angular momentum; it is not justified to use t
approximationN;P, whereN is the eigenvalue of the an
gular momentum associated with the relative motion of
nuclei and differs fromP only by a few units. This sensitiv-
ity is due to the rapid variation of the phase as a function
P, connected to large values of classical scattering angle
the treatment of collisions in the presence of a magn
field, necessary to interpret existing experiments at ther
energies@33#, it will therefore not be possible to simplify
equations using the convenient approximationN;P.

In the thermal collision energy range (60 meV,E
,150 meV), the cross sections are in good agreement w
the absolute data of Manderset al. @4,6#. They are not very
sensitive to the position of the repulsive wall in the core-co
term, so that our present model for the short-range poten
should be checked further by computing differential cro
sections. However, they depend upon the representatio
such term in the range 3.5a0,R,5.6a0 , justifying the need
for ab initio calculations when more accurate investigatio
are considered.

At superthermal collision energies (170 meV,E
,1250 meV), we have shown that for all transitions inve
tigated, the energy variation of the computed polarized cr
sections yields curves which have the same behavior as
experimental data of Boomet al. @9#. Analyzing the relative
data, we have found good agreement between our theore
results and the measurements of Refs.@9,10# for the anisot-
ropy parameters. However, we confirm the 30–40 % discr
ancy between theory and experimental absolute values.
have discussed the sensitivity of the results to the long-ra
part of the potentials and to the description of the core-c
term, showing that this could not explain the discrepan
We therefore suggest that a calibration systematic erro
the experimental data should seriously be considered.

The oscillations in the cross sections, as a function
collision energy, due to interference effects, will be d
cussed in a forthcoming paper. We shall also present a s
classical model to interpret the increasing contribution
large impact parameters for some transitions at superthe
energies, due to a new collision mechanism with long-ran
fine-structure decoupling. One important development of
present work will be the interpretation of collision expe
ments in the presence of a magnetic field.
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