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Adiabatic approximation in atomic three-body systems
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We investigate the reliability of the adiabatic approximation in the hyperspherical harmonics formalism. It
has been applied to a number of two-electron systems, both compact and loosely bound, with the interaction
between the constituent particles being purely Coulombic. The results are compared with the exact ones
obtained by solving the set of coupled differential equations numerically. The accuracy of this approximation
for two-electron systems is compared with that for systems with nuclear interactions, and we find that the
former is better. An explanation has been provided for better agreement with Coulombic systems, particularly
for noncompact one$S1050-294{@7)07508-2

PACS numbd(s): 31.15.Ar, 31.15.Ja

[. INTRODUCTION the approximation is particularly useful when the rate of con-
vergence is slow.

Few-body problems in molecular, atomic, or nuclear sys- In this communication, we study the application of hyper-
tems are of special interest, since exact or near etautitio  spherical adiabatic approximatiofHAA) to Coulombic
calculations are possible, which can shed light on the interthree-body systems and compare it with the application to
actions and structure of such systems. With the choice of auclear systems. We find the HAA to be unexpectedly reli-
suitable expansion basis, the Satirger equation reduces to able in the Coulomb case, including the systems that are not
an infinite set of coupled differential equations or equiva-sufficiently compact. An attempt has been made to under-
lently an infinite-dimensional matrix eigenvalue equation.stgnd why the HAA works so well in diverse Coulombic
For practical purposes, the expansion basis is truncated, |ea§ystems.
ing to a finite set of equations. Unfortunately the conver- * The HAA has been used for nuclear three-body problems
gence trend is quite slow in most cases of physical interesing compared with the corresponding exact results for a
(especially for Iong-range forcgsso that_ for a sufficiently . \mpber ofS-projected nucleon-nucleon potentid 3], re-
accurate c_alculatl_on, one has to deal with a large nur_nber listic potentials[4], and also for the nuclear three-body
coupled differential equationéCDE). Although numerical force[5]. In all these cases it has been seen that the error in

algorithms exist for solving a finite set of CDE up to a pre-,_. . 0
determined precisiofil], numerical instabilities set in if the binding energ;(_BE) ranges from abput 0.3% for the softest,
smooth potentials without a repulsive core to about 4% for

number M) of coupled equations increases beyond 50. Be-

sides, the computer time and memory requirements for sucwe potentials with a strong soft core repulsion. It was shown

algorithms increase enormously 8 increases. Thus for that the adlabat!c approximation is expected_ to be_ reliable
high precision, there are formidable computational difficul-When the potential changes slowly as a function of its argu-

ties. The situation can be salvaged by invocation of the adia€nt[3]. Thus it is not surprising that in nuclear applica-
batic approximation2], which drastically reduces the num- tions, the HAA fares surprisingly well for the softest poten-
ber of coupled equations, while taking almost the full effecttials having a gradual dependence on its argument, as the
of theM coupled equations. It is then important to study theBaker potentia[6], which has a pure Gaussian form. On the
accuracy and reliability of this approximation and the condi-basis of this argument, one would not expect the HAA to be
tions for its applicability. Depending on the answer and thereliable for atomic systems, where the Coulomb potential has
nature of the system under consideration, one can then makngularities as the interparticle separations go to zero. A
a choice between solving a relatively smaller set of CDEsingularity persists even in hyperspace as the global length
exactly and using the adiabatic approximation to a considervanishes. But straightforward HAA calculations for the
ably larger set of CDE for the same computational facilityground states of various Coulombic systems slisee Sec.
available. IV) that not only is the HAA applicable to such systems, but
The adiabatic approximation, as the name implies, sepdt produces results that are comparable in precision with the
rates two or more motions adiabatically. In the hyperspherisoftest nuclear potentials. Furthermore, it is of interest to
cal harmonics expansion meth@ec. I, the hyper-angular study how the HAA fares in relation to the compactness of
motion is separated adiabatically from the hyperradial the Coulombic system. Convergence of the hyperspherical
motion [2], assuming the latter to be much slower than theexpansion is slow for Coulombic bound systems, since the
former. This corresponds to diagonalizing the potential ma<Coulomb force is a long-ranged one. For systems that are not
trix for a fixed value ofp to obtain the eigenpotential, and sufficiently compact and extends to great global lengths
then solving one uncoupled differential equation with thisthe convergence of hyperspherical expansion is even slower.
eigenpotential, obtained as a parametric functiop ¢Bec. At first thought, it may appear that the HAA would be worse
[Il). The computation labor is thus reduced considerablyfor such systems. We have studied two such noncompact
compared to solving the full set of CDE numerically. HenceCoulombic system$Ps™ and the first excited S® state of a
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helium atom and found that the HAA is quite reliable for 52 N1 N ) R

such systems as well. -5 > Vi >V —E}\P(gl,...,gN_l):o.
Several authorf7] have applied the hyperspherical adia- Mi=1 o ti<y=2

batic approximation to Coulombic three-body systems to cal- @)

culate the “channel” potential, channel functions, BE, etc.  \ye next introduce the hyperspherical variables in the fol-
Earlier, the adiabatic approximation was used for the 5'n9|¥owing manner. Define the hyperradis as

and doubly excited states of atofi@. Although the conver-

gence rate is quite slowvhich is a typical feature of hyper- N1
spherical harmonic expansigrintroduction of a correlation p= 2 éiz
function or hydrogenic basis function in the asymptotic re- =1

gion in the wave function and a subsequent hypersphericalicp, is invariant under three-dimensional rotations as well
harmonics expansion produces very fast convergence @”d ? under all permutations of the indices Nfparticles. In
excellent result for BE, as compared to accurate variation ddition, (N—2) angular variablese; [i=2,3 N—1)]

’ 1 "

resuIts[Q,lO]. However, no_comparison of the HAA result is are defined in terms b and the lengths ofN—1) Jacobi
made with the corresponding exact one for the same number ~ . )
of hyperspherical partial waves. Thus earlier applications of0rdinatest; (i=1N-1) according to
HAA to Coulombic systems, although quite extensive, did
not focus their attention on the accuracy of the H#is avis

1/2

. ®)

En—1=p COSyN_1,

the exact result and an attempt to understand the unexpected En_o=p SIN dy_1 COS by_ 2,

reliability of the approximation. It is our endeavor in this

work to provide an explanation for this unexpected reliability En_3=p SiN dy_1 SIN Py_o COS Py_3,

in atomic systems as compared to nuclear systems. (6)

In Sec. Il, we briefly review the hyperspherical harmonic
expansion method. In Sec. lll, the hyperspherical adiabatic
approximation is introduced. Applications to Coulombic &>=p SiN ¢n_1 SN dy_o*-SIN P53 COS b5,
three-body systems and conclusions are presented in Sec. IV.

§1=p sinpy_q SiNpy_o--SiNn g3 sin g, ($1=0).

Note that the transformatio(6) automatically satisfies Eq.

In the hyperspherical harmonics approach for an(5. The angle variables,,...,¢y-1, together with 2N
N-particle system, theN— 1) Jacobi vector coordinates, de- —1) ordinary polar angles& ,¢;) of & (i=1,...N—1)

II. HYPERSPHERICAL HARMONICS EXPANSION

fining the relative motions are constitute a set of (8—4) “hyperangles,” collectively de-
. noted by():
I
> N 1= - _
§i=ai Mg ! (i=LN-1), @ {¢2'¢>3:---’¢N—1v(91:€01),(92,@2)'---’(9N—1’€DN—1)}-(7)

> m,
=1

In terms of the hyperspherical variablés(}), Eq. (4)

and the center-of-mass coordinate is takes the form
S il S B S (6)

A "2 (P %)*—pr VD -E[¥(p)

A VIR @ o e

where M=3N ;m; andm, ; are the mass and the position Wheren=(3N—4) andk’*(2) is the square of the hyperan-
vector of theith particle. The mass-dependent constapts gular momentum operator expressed in terms of the hyper-
are so chosen that the Jacobian of the transformétipand ~ angles. An expression for the operator can be found in Ref.

(2) is unity and [11]. The potentiaV(p,(2) in Eq. (8) is the total interaction
potential of Eq.(4) expressed in terms gf and (). For the
N 1 1 N1 expansion of the wave function, the basis is chosen as the
21 - V2= v Va+ n 21 Vi (3)  complete set of hyperspherical harmonietH), {Jk.(Q)},
i= i I i= I

which are the eigenfunctions &?(Q):

The quantityu is an effective-mass parameter obtained in /%2(Q)yKa(Q)=K(K+3N—5)yKa(Q), (9)
terms of the individual masses of the particles. The structure

of Eg. (3) shows that the center-of-mass motion is properlywhere K is the hyperangular momentum quantum number
separated and the relative motion of the interacting particlepvhich is also the degree of the homogeneous harmonic

is described by the Schiinger equation in terms of the polynomials,pXk,(€2), in the Cartesian components &f
relative Jacobi coordinatg (i=1,N—1). (i=1,...N—1)] anda represents a set of [(8—-5) quantum
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numbers. The set(,a) together constitute (8—4) quan- is the assumption that the hyperangular motion involving the
tum numbers, associated with N3-4) hyperangular de- (3N—4) hyperangular variableg) is fast compared to the
grees of freedom. Complete analytical expressions for thé@yperradial motion in terms of the hyperradial variabbe,
HH can be found in Refi11]. The wave functiort’ is ex-  and the former can be adiabatically separated from the latter.
panded in the complete set of HH, However, it is difficult to visualize the complete hyperangu-
lar motion. While one might expect the angular motion de-
_ —(3N-4)/2 scribed by the polar angle 6;,¢;),i=1,... N—1} to be
\P(p’Q)_KZa P UeaP)Vkal ). (10 £y compared to the hyperradial motiérorresponding to
breathing modes it is not intuitively obvious why the hy-
The factorp is included so as to remove the first perangular motion described By, ,i=2,... N—2} is likely
derivative term. Substitution of E410) in Eq. (8) and use of  to be fast also. The HAA has the same adiabatic nature as in
Eq. (9) result in a set of CDE in the hyperradial variable: the Born-Oppenheimer approximati¢BOA) [12], although
5 5 in applications of BOA to molecular problems, the physical
h [ d Lr(Lx+1) —E}L{K (p) reason for the adiabatic decoupling of the motions is quite

—(3N-4)/2

2u | dp? p° apparent, namely, that the motion of heavy nuclei is expected
to be slow compared to the fast motion of the light electrons.
+ > (Ka|VIK'a" YU o (p)=0, (12) Neve_rtheless, the HAA is a_\pplica_ble to both nuclear_ and
K'a' atomic mass ratio limits and in fact ietterthan the BOA in
both limits, for the same smooth potentiaB3].
where L =K+3(N—-2)/2 and In the adiabatic approximation procedure, one first solves

an associatet X M matrix eigenvalue equation:
(Ka|V|K'a’>=f Vi V(p, Q) Vi1 o (Q2)dQ (12)
2 Mok (p)Xcrar n(p)=0r(p) e (p), (13
is the coupling matrix element. K'a'
Sincep is invariant under three-dimensional rotations andWhere
permutations, the expansion basis of HH in EL) is cho-

sen with appropriate symmetry required by the identity and h? Li(Lx+1)
nature of the interacting particles. Often this can easily be My, k' (p)= 2 Skax o t(Ka|VIK a’)
incorporated by restricting the sgt} to an appropriate sub- K P (14)

set. Furthermore, total angular momentuffor spin-

dependent interactionsr total orbital angular momentum for each value op, to obtain the eigenvalue, (p) and the

(for spin-independent interactions a good quantum num- corresponding eigenvectdiy, ,(p) as parametric functions

ber and restricts the sé#; further. of p. For a fixed value ofp, Eq. (13) is equivalent to the
For a tractable calculation, the expansion, @4) is trun-  matrix formulation of the hyperangular motion and

cated to a maximum numbek) of terms leading to a finite  x,,, (p) are the corresponding eigenfunctions. Considering

set (M) of CDE in Eq.(11). The solution of this system of M partial waves/,(p) to form anM-component column

CDE, subject to appropriate boundary conditions on the parvector, one can expand it in the setMf eigencolumn vec-

tial waves, Ug,(p), to determine the energE and  tors{Xy,,(p),\=1,...M} of the matrix M, . (p) for

Uk o(p), is a formidable numerical task. The numerical algo-a given parametric value gf

rithm to sol\2/e Eq.(11) requires a large memory that in-

creases aM <. Sufficiently accurate calculation also takes a _

large CPU time, which increases B. The truncation in uK“(p)_; O (p) Xkan(p)- (15

the expansion basis is determined by the requirement of con-

vergence inE up to a predetermined accuracy. The rate ofSubstituting Eq(15) in Eq.(11), making use of Eq(13), and

convergence depends on the nature of the potential. It is fagaking the inner product witkxy , , (p) we have

for a short-ranged potentidé.g., in nuclear problemsand

M is relatively small. But for a long-ranged potentia.g.,

Coulomb potential in atomic and other Coulombic systems

the convergence is extremely slow and the valu&lofmay

run into three figures. The exact numerical solution of such a -3

large system of CDE is a very tough numerical job. For this N (20)

reason an approximate but sufficiently accurate solution of

the truncated CDE is desirable.

h? d?
o Ez+wx(,o)+AA(p)—E}éx(p)

dZ, (p)
By (P)4n (p)+Cyar(p) Q—Pf’}zo,

(16)
where

Ill. HYPERSPHERICAL ADIABATIC APPROXIMATION 5

: 17

2
A reduction of the set of CDE, Ed11), is provided by A\(p)= ;L— 2
the hyperspherical adiabatic approximation method. This ap- K Ke
proximation scheme reduces the setMfcoupled differen- 52 42y )
tial equations to a singléor at most a few couplediffer- By, (p)==— > X% (p) ng’(p
ential equatiofs). The physical picture underlying the HAA ' 2 K dp '

dXKa,)\(p)
dp

2
(18)
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and +Ze, the total interaction potential is
h? dXican(p) 2
C)\,)\/(p): ; KE ‘X"Iéa,)\(p) T (19) V= € — ez( - - 1
€1/ €518~ (£1/a) My /(Mg +my)|
In the derivation of Eq(16) use has been made of the ortho- 1
normality of the eigenvectors of E@L3), for each value of + ) ’ (24)
p: |€21a,+ (€1/a)my/(my+my)|
> A () Xan () =8y (20 ‘Where
m;m,M | ¥4 1
There is no approximation in Eq16). The uncoupled a;= Ms (m,+my) 2’
adiabatic approximatioflUAA) consists of dropping the
coupling terms of Eq(16): 1
a,=—. 25
W e s B S 2
T 24 dp? w)\(p) 20 2 dp —E|{\(p)=0,

The wave function must be antisymmetric under the ex-
change of the two electrons. Hence if the electrons are in the

which results in an uncoupled differential equation for eactsPin singlet(triplet) state, Eheril [l; is the orbital angular
“channel” \. The ground-state energye) is obtained by momentum associated with motion (i=1,2)] should be an
choosing the “lowest eigenpotentiaksy(p) as a parametric even(odd integer. Since the third particle is distinct, there is
function of p and solving Eq.21) for A=0. The approxi- no other symmetry requirement. The set of quantum numbers
mate partial waves, corresponding to the ground state, are is constituted by{l,,l,,L,M}, whereL and M are the
given by orbital angular momentum of the system and its projection,
respectivelyl =1, +1, andK=1,+1,+2n, n being a non-

Ura(p)=Eo(p) Xkaolp)- (22) negative integer. For the ground and th&® excited states,
L=0 andl,(=1,) takes only even valuesK/2, K being an
even integer.

In Table I, we present the binding energy E) calcu-
lated by UAA and compare it with the exact requlb] [ob-
tained by solving Eq.11) without approximation by the
renormalized Numerov methdd ] for a few typical K«
values[K .« is the maximum value oK used in the trun-
Fated expansion, Eq10)]. It is seen that the calculated en-
ergies satisfy the inequality23) in all cases. A common
23) feature for the ground states of all the systems studied is that

the error in UAA gradually increases witk,,,, and the
where the subscript indicates the particular approximation offror for the extrapolated BELS] is slightly more than that
exact result. for the largestK,,x used for the extrapolation. This is not
surprising since for largeiK ., & larger number of CDE’s
are approximated bynly oneuncoupled differential equa-
tion. One further notices from Table | that the absolute error
in the extrapolated BE increases with while among the

We have applied the HAA procedure to a number of Cou-threeZ=1 systems studied, Hand muonium have compa-
lombic three-body system&) ground states of two electron rable errors, but Pshas a markedly smaller error. Since the
atoms (H ,He,Li",Be?*,B3") and the first excitedS® state  BE increases rapidly witlZ, the relative error does not
of a He atom, in each of which the nuclear motion has beechange much, varying from 0.26%or Ps and Li") to
disregardedjb) ground states of the positronium negative 0.42% (for B®*). The relative error is also quite small
ion (Ps’) consisting of three light equal mass particles(0.28% for the first excited state of the helium atom.
(e"e*e™) and the muonium iongew). In these cases, the It is interesting to compare the relative errors with those
motion of the third dissimilar particle cannot be neglectedfor the trinucleon system interacting via short-range forces
and has been properly accounted for by separating thgl6]. The relative error in UAA depends strongly on the
center-of-mass motion. nature of the potential: 0.27% for the smoothly varying

In these applications, we have chosen systems witBaker potentia[6] having no repulsive part, 0.66% for the
widely varying mass ratios of the constituent particles. TheVolkov potential[17] having a soft smooth repulsive core,
interaction is purely Coulombic and the dependence of and 3.22% for Afnan-Tang S3 potentidl8], which has a
(Ka|VIK'a') factors out as J. For the systems, consisting fairly strong soft core repulsion at short separations. None of
of two electrons(particles numbered 1 and and a third these potentials has any singularity. But the peak value of the
dissimilar particle having a comparable mass and a chargéerivative of the potentiafwith respect to its arguments

(21)

Dropping further the third term in Eq21), one has the ex-
treme adiabatic approximatiqcAA), which corresponds to
the additional assumption thai,, ,(p) is independent op.
Retaining a few of the coupling ternisorresponding to the
lowest eigenvalues, (p)] in Eq. (16) one has the coupled
adiabatic approximatioqCAA). The exact ground-state en-
ergy and the energy obtained by the three levels of the adi
batic approximation satisfy a basic inequality4]:

Eean<Eexac=Ecaa<Euyaa,

IV. APPLICATIONS TO COULOMBIC THREE-BODY
SYSTEMS
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TABLE I. BE of atoms and ions obtained by UAA and exact HHEM.

BE (a.u) . Extrapolated BEa.u) )
Error in BE Error in BE
Atom K max UAA Exact for Kiax=20 UAA Exact absolute(percentage
4 0.480 084 0.480 799
8 0.501 179 0.502 585
H™ 12 0.510 843 0.512 577 0.524 741 0.526 681 0.001®@35%
16 0.515 853 0.517 726
20 0.518 812 0.520 737 0.001 925
4 2.781 300 2.784 369
8 2.844 757 2.850 214
He 12 2.869 283 2.876 006 2.895 595 2.903 680 0.0080m088%)
16 2.880 159 2.887 540
20 2.885 847 2.893 580 0.007 733
4 7.030 368 7.039 221
8 7.162 257 7.175 991
Li* 12 7.211 026 7.227 336 7.260 825 7.280 070 0.019226%
16 7.232 084 7.249 755
20 7.242 885 7.261 233 0.018 348
4 13.22311 13.248 45
8 13.449 38 13.482 73 13.612 74 13.656 00 0.043282%
Be?t 12 13.531 26 13.568 88
16 13.566 39 13.606 18
20 13.584 09 13.625 08 0.040 99
4 21.344 96 21.412 46
8 21.691 85 21.770 82
B3* 12 21.815 97 21.900 98 21.938 82 22.031 92 0.0931.@2%
16 21.868 94 21.957 09
20 21.89551 21.985 35 0.089 84
4 0.477 778 0.478 188
8 0.498 772 0.499 934
eeu 12 0.508 387 0.509 934 0.522 545 0.524 626 0.002@89%
16 0.513371 0.515 108
20 0.516 313 0.518 163 0.001 850
4 0.220 598 0.220 937
8 0.241 696 0.242 245
Ps 12 0.249 791 0.250 464 0.261 715 0.262 395 0.000®26%
16 0.253 586 0.254 306
20 0.255 986 0.256 723 0.000 737
24 0.257 494 0.258 231
First 4 1.592 168 1.599 267
excited 8 1.759 054 1.771 541
s 12 1.864 526 1.878 540 2.13301 2.138 95 0.00504£8%
state 16 1.933777 1.947 698
of He 20 1.981 317 1.994 575 0.013 258

smallest for the slowly varying Baker potential and largestthe Baker potentialand appreciably smaller than those for
for the strongly varying S3 potential, while it has an inter- Volkov or S3 potential§16]. This calls for a better under-
mediate value for the Volkov potential. Thus the observedstanding.

results are in agreement with the argumig@ijtthat the error For the Coulombic systems,p dependence of
in UAA is likely to be large for potentials having a singular- (Ka|V|K'a') factors out as ¥ and so from Eq(14) one
ity or when its derivative has a large magnitude. On the othesees thatMy, k+./(p) iS approximately proportional to
hand, the Coulomb potenti&?4) has singularities when each 1/p? for small p and to 14 for large p. Whenever
of the interparticle separation vanishes. The singularity surMy, «/.(p) has its p dependence factorizable dgp)
vives in p space asp—0. For finite p, the potential is a times a matrix independent of, Eq. (13) shows that
smoothly varying function. It is seen from Table | that the w,(p) has the same functional dependence op and
relative errors for the Coulombic systems are comparable ta&}, ,(p) becomes independent @f so that the coupling
those for the softest and smoothest nuclear poteniats, termsB,,.(p) andC,, (p) [Egs.(18) and(19)] vanish and
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FIG. 1. Plot ofw,(p), A\(p), Bxa:(p), Cxxi(p), andiy(p) in
appropriate atomic unitéa.u) againstp (in a.u) for the ground
state of the helium atom) and A\’ are chosen to be 0 and 1,
respectively.wq(p) is properly scaledas indicated in figupeso as
to accommodate all the curves in the same figlggp) is in arbi-
trary units.

FIG. 3. Plot of the same functions as in Fig. 1 for the ground

. ) state of PS. Scaling ofB , A is as indicated.
Eq. (21) becomes exact. Hence the coupling terms in Eq. 9 0fBo.(P). Aolp)

(16) are small for large and small values®fThis is not true
for intermediate values o, where both terms of Eq14)
compete with each other. However, in such regions the Co
lomb potential is a smoothly varying function pf Conse-
quently X, (p) is slowly varying. ThusB,, (p) and

. — 3+ . .
C,,/(p) are expected to be quite small for small and lasge “o(P) for m‘_JO”I'um' Ps, E’ . arr:d the first excnefq stathe th
values and not too large in the intermediate region. Calcutl®: respectively. In each of these cases, we find that the

lated values ofB. ., and C... have been plotted correction and the coupling terms are negligibly small for
againstp in Fig. :I.Mfo(f)He atom)\,kfc()ﬁr))3=0 and)\’=1F.) For Iargep and they are peaked in tPe taillregion.of the hyper-
comparison we also pldt,(p) andwy(p) (suitably scaled to rad_lal wave functlor(except_for B and first excited state of
include in the same figureAs expected one finds that both helium), the peak value be'”9 small compared ég(p)|

B,, and C,, become negligibly small for largey (p For two electron atoms with Iargé, wo(p) has a sharp
>5a.u.); for p—0, Co, is Not negligible, although quite and very deep well located at a relatively smaller valug.of

small. Both these quantities peak aroynd2—3 a.u., where Thus the major part of the BE comes from small valuep, of

the hyperradial wave function has already reached its taffvhere By andC, . are not negligible. Hence &5 in-
part, the peak being at about 1.2 a.u. For comparison a pl eases, the absolute error increases. On the other extreme,

of Up(p) (corresponding toK=0, 1,=0, 1,=0, L=0, M or Ps™ (Fig. 3, the well is shallow and extends to large
—0) has also been included in, Fig. 1 Sma’llnessyof potpvalues; consequently the hyperradial wave function is not

Bo, and Co; over the entire domain is established by Com_sharply pegket_:i and spreads out to a greater distance. Hence a
large contribution to the BE comes from largevalues. But

the coupling terms are negligible in this region. Hence the

paring them withwg(p). Thus we see that the coupling
Jerms of Eq.(16) are small compared t@o(p)+Ao(p),
which justifies the approximation procedure.

In Figs. 2—5 we plotwg(p), Ao(p), Boi(p). Coi(p). and

0.50 absolute error in BE is small in this case. Thus the UAA
L becomes more reliable for weakly bound systems, whose
T ug eep wave function extends to great global lengths. This is also
: true for the first excited state of the helium atom.
030
_ 2.0+ gt
! ] BOi
o ] & /if
o 0 GARERRSS nanna
¢ ] 10 30 50 70 90 €
-0.10 4 ]
W, /10
o -2.0]
L w,/2 :
-0.30f ]
13 ~a0]

FIG. 2. Plot of the same functions as in Fig. 1 for the ground FIG. 4. Plot of the same functions as in Fig. 1 for the ground
state of muonium. state of B™.
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culation involving a large number of partial waves is very
time and memory consuming. Using the HAA, which is
comparatively more reliable for such systems, one can
achieve convergence and a fairly accurate result with only a
e small fraction of the computational effort. The reason why
the HAA works better than expected in Coulombic systems
is due to the fact that the potential matrix of the Coulomb
interaction alone is proportional todl/Whenever the matrix
Mkak o (p) has a factorizable dependence, the HAA be-
comes exact. Due to the centrifugal termecg( 2),
Mkax o (p) does not have an exactly factorizalplélepen-
dence over the entire interval pfeven for Coulombic sys-
tems. But an approximately factorizabjedependence re-
FIG. 5. Plot of the same functions as in Fig. 1 for the first sults both for large and smap values and a smoothp
excited state of a helium atom. dependence for intermediatevalues. This makes the cou-
pling terms of Eq(16) small, resulting in a high reliability of
éhe HAA. By contrast in nuclear system, even the potential
matrix alone does not have a factorizaljjedependence.
%onsequently the HAA is less accurate for the nuclear sys-

0.50 Is® of He

-0.50

-1.0

We conclude that the adiabatic approximation procedur
is well justified for the Coulombic systems, in spite of the
fact that the Coulomb force is a long-range force and has
singularity. The reliability is comparable to or better than ems.
that for the softest short-range nuclear forces. The error is
particularly small in loosely bound systems, which extend to
great global lengths. This makes the HAA especially useful Part of the computations were done on a PC486 provided
in such cases. Since the convergence is very slow for looselyy Departmental Special Assistan@SA), Physics Grant of
bound and well spread-out systems, an exact convergent cdahe University Grants CommissidtyGC), India.
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