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Adiabatic approximation in atomic three-body systems

Rakhi Chattopadhyay and Tapan Kumar Das
Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700 009, India

~Received 9 January 1997!

We investigate the reliability of the adiabatic approximation in the hyperspherical harmonics formalism. It
has been applied to a number of two-electron systems, both compact and loosely bound, with the interaction
between the constituent particles being purely Coulombic. The results are compared with the exact ones
obtained by solving the set of coupled differential equations numerically. The accuracy of this approximation
for two-electron systems is compared with that for systems with nuclear interactions, and we find that the
former is better. An explanation has been provided for better agreement with Coulombic systems, particularly
for noncompact ones.@S1050-2947~97!07508-2#

PACS number~s!: 31.15.Ar, 31.15.Ja
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I. INTRODUCTION

Few-body problems in molecular, atomic, or nuclear s
tems are of special interest, since exact or near exactab initio
calculations are possible, which can shed light on the in
actions and structure of such systems. With the choice
suitable expansion basis, the Schro¨dinger equation reduces t
an infinite set of coupled differential equations or equiv
lently an infinite-dimensional matrix eigenvalue equatio
For practical purposes, the expansion basis is truncated,
ing to a finite set of equations. Unfortunately the conv
gence trend is quite slow in most cases of physical inte
~especially for long-range forces!, so that for a sufficiently
accurate calculation, one has to deal with a large numbe
coupled differential equations~CDE!. Although numerical
algorithms exist for solving a finite set of CDE up to a pr
determined precision@1#, numerical instabilities set in if the
number (M ) of coupled equations increases beyond 50. B
sides, the computer time and memory requirements for s
algorithms increase enormously asM increases. Thus fo
high precision, there are formidable computational diffic
ties. The situation can be salvaged by invocation of the a
batic approximation@2#, which drastically reduces the num
ber of coupled equations, while taking almost the full effe
of the M coupled equations. It is then important to study t
accuracy and reliability of this approximation and the con
tions for its applicability. Depending on the answer and
nature of the system under consideration, one can then m
a choice between solving a relatively smaller set of C
exactly and using the adiabatic approximation to a consid
ably larger set of CDE for the same computational facil
available.

The adiabatic approximation, as the name implies, se
rates two or more motions adiabatically. In the hypersph
cal harmonics expansion method~Sec. II!, the hyper-angular
motion is separated adiabatically from the hyperradial~r!
motion @2#, assuming the latter to be much slower than
former. This corresponds to diagonalizing the potential m
trix for a fixed value ofr to obtain the eigenpotential, an
then solving one uncoupled differential equation with th
eigenpotential, obtained as a parametric function ofr ~Sec.
III !. The computation labor is thus reduced considera
compared to solving the full set of CDE numerically. Hen
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the approximation is particularly useful when the rate of co
vergence is slow.

In this communication, we study the application of hype
spherical adiabatic approximation~HAA ! to Coulombic
three-body systems and compare it with the application
nuclear systems. We find the HAA to be unexpectedly re
able in the Coulomb case, including the systems that are
sufficiently compact. An attempt has been made to und
stand why the HAA works so well in diverse Coulomb
systems.

The HAA has been used for nuclear three-body proble
and compared with the corresponding exact results fo
number ofS-projected nucleon-nucleon potentials@2,3#, re-
alistic potentials@4#, and also for the nuclear three-bod
force @5#. In all these cases it has been seen that the erro
binding energy~BE! ranges from about 0.3% for the softes
smooth potentials without a repulsive core to about 4%
the potentials with a strong soft core repulsion. It was sho
that the adiabatic approximation is expected to be relia
when the potential changes slowly as a function of its ar
ment @3#. Thus it is not surprising that in nuclear applic
tions, the HAA fares surprisingly well for the softest pote
tials having a gradual dependence on its argument, as
Baker potential@6#, which has a pure Gaussian form. On t
basis of this argument, one would not expect the HAA to
reliable for atomic systems, where the Coulomb potential
singularities as the interparticle separations go to zero
singularity persists even in hyperspace as the global len
vanishes. But straightforward HAA calculations for th
ground states of various Coulombic systems show~see Sec.
IV ! that not only is the HAA applicable to such systems, b
it produces results that are comparable in precision with
softest nuclear potentials. Furthermore, it is of interest
study how the HAA fares in relation to the compactness
the Coulombic system. Convergence of the hyperspher
expansion is slow for Coulombic bound systems, since
Coulomb force is a long-ranged one. For systems that are
sufficiently compact and extends to great global lengths~r!,
the convergence of hyperspherical expansion is even slo
At first thought, it may appear that the HAA would be wor
for such systems. We have studied two such noncomp
Coulombic systems~Ps2 and the first excited1Se state of a
1281 © 1997 The American Physical Society
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1282 56RAKHI CHATTOPADHYAY AND TAPAN KUMAR DAS
helium atom! and found that the HAA is quite reliable fo
such systems as well.

Several authors@7# have applied the hyperspherical adi
batic approximation to Coulombic three-body systems to c
culate the ‘‘channel’’ potential, channel functions, BE, e
Earlier, the adiabatic approximation was used for the sin
and doubly excited states of atoms@8#. Although the conver-
gence rate is quite slow~which is a typical feature of hyper
spherical harmonic expansion!, introduction of a correlation
function or hydrogenic basis function in the asymptotic
gion in the wave function and a subsequent hypersphe
harmonics expansion produces very fast convergence an
excellent result for BE, as compared to accurate variatio
results@9,10#. However, no comparison of the HAA result
made with the corresponding exact one for the same num
of hyperspherical partial waves. Thus earlier applications
HAA to Coulombic systems, although quite extensive, d
not focus their attention on the accuracy of the HAAvis àvis
the exact result and an attempt to understand the unexpe
reliability of the approximation. It is our endeavor in th
work to provide an explanation for this unexpected reliabil
in atomic systems as compared to nuclear systems.

In Sec. II, we briefly review the hyperspherical harmon
expansion method. In Sec. III, the hyperspherical adiab
approximation is introduced. Applications to Coulomb
three-body systems and conclusions are presented in Sec

II. HYPERSPHERICAL HARMONICS EXPANSION

In the hyperspherical harmonics approach for
N-particle system, the (N21) Jacobi vector coordinates, de
fining the relative motions are

jW i5aiF rW i 112S (
j 51

i

mj rW j

(
j 51

i

mj
D G ~ i 51, N21!, ~1!

and the center-of-mass coordinate is

RW 5

(
i 51

N

mirW i

M , ~2!

whereM5( i 51
N mi andmi , rW i are the mass and the positio

vector of thei th particle. The mass-dependent constantsai
are so chosen that the Jacobian of the transformation~1! and
~2! is unity and

(
i 51

N
1

mi
¹ r i

2 5
1

M ¹R
21

1

m (
i 51

N21

¹j i

2 . ~3!

The quantitym is an effective-mass parameter obtained
terms of the individual masses of the particles. The struc
of Eq. ~3! shows that the center-of-mass motion is prope
separated and the relative motion of the interacting parti
is described by the Schro¨dinger equation in terms of th
relative Jacobi coordinatejW i ( i 51,N21).
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F2
\2

2m (
i 51

N21

¹j i

2 1 (
i , j 52

N

Vi j 2EGC~jW1 ,...,jWN21!50.

~4!

We next introduce the hyperspherical variables in the f
lowing manner. Define the hyperradius~r! as

r5F (
i 51

N21

j i
2G1/2

, ~5!

which is invariant under three-dimensional rotations as w
as under all permutations of the indices ofN particles. In
addition, (N22) angular variables,f i @ i 52,3,...,(N21)#
are defined in terms ofr and the lengths of (N21) Jacobi
coordinatesjW i ( i 51,N21) according to

jN215r cosfN21 ,

jN225r sin fN21 cosfN22 ,

jN235r sin fN21 sin fN22 cosfN23 ,
~6!

A

j25r sin fN21 sin fN22•••sin f3 cosf2 ,

j15r sin fN21 sin fN22•••sin f3 sin f2 ~f1[0!.

Note that the transformation~6! automatically satisfies Eq
~5!. The angle variables,f2 ,...,fN21 , together with 2(N
21) ordinary polar angles (u i ,w i) of jW i ( i 51,...,N21)
constitute a set of (3N24) ‘‘hyperangles,’’ collectively de-
noted byV:

$V%→

$f2 ,f3 ,...,fN21 ,~u1 ,w1!,~u2 ,w2!,...,~uN21 ,wN21!%.
~7!

In terms of the hyperspherical variables~r,V!, Eq. ~4!
takes the form

F2
\2

2m H 1

rn

]

]r S rn
]

]r D1
K̂2~V!

r2 J 1V~r,V!2EGC~r,V!

50, ~8!

wheren5(3N24) andK̂2(V) is the square of the hyperan
gular momentum operator expressed in terms of the hy
angles. An expression for the operator can be found in R
@11#. The potentialV(r,V) in Eq. ~8! is the total interaction
potential of Eq.~4! expressed in terms ofr and V. For the
expansion of the wave function, the basis is chosen as
complete set of hyperspherical harmonics~HH!, $YKa(V)%,
which are the eigenfunctions ofK̂2(V):

K̂2~V!YKa~V!5K~K13N25!YKa~V!, ~9!

where K is the hyperangular momentum quantum numb
@which is also the degree of the homogeneous harmo
polynomials,rKYKa(V), in the Cartesian components ofjW i
( i 51,...,N21)# anda represents a set of (3N25) quantum
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56 1283ADIABATIC APPROXIMATION IN ATOMIC THREE- . . .
numbers. The set (K,a) together constitute (3N24) quan-
tum numbers, associated with (3N24) hyperangular de-
grees of freedom. Complete analytical expressions for
HH can be found in Ref.@11#. The wave functionC is ex-
panded in the complete set of HH,

C~r,V!5(
K,a

r2~3N24!/2UKa~r!YKa~V!. ~10!

The factorr2(3N24)/2 is included so as to remove the fir
derivative term. Substitution of Eq.~10! in Eq. ~8! and use of
Eq. ~9! result in a set of CDE in the hyperradial variable:

F2
\2

2m H d2

dr22
LK~LK11!

r2 J 2EGUKa~r!

1 (
K8a8

^KauVuK8a8&UK8a8~r!50, ~11!

whereLK5K13(N22)/2 and

^KauVuK8a8&5E YKa* ~V!V~r,V!YK8a8~V!dV ~12!

is the coupling matrix element.
Sincer is invariant under three-dimensional rotations a

permutations, the expansion basis of HH in Eq.~10! is cho-
sen with appropriate symmetry required by the identity a
nature of the interacting particles. Often this can easily
incorporated by restricting the set$a% to an appropriate sub
set. Furthermore, total angular momentum~for spin-
dependent interactions! or total orbital angular momentum
~for spin-independent interactions! is a good quantum num
ber and restricts the set$a% further.

For a tractable calculation, the expansion, Eq.~10! is trun-
cated to a maximum number (M ) of terms leading to a finite
set (M ) of CDE in Eq.~11!. The solution of this system o
CDE, subject to appropriate boundary conditions on the p
tial waves, UKa(r), to determine the energyE and
UKa(r), is a formidable numerical task. The numerical alg
rithm to solve Eq.~11! requires a large memory that in
creases asM2. Sufficiently accurate calculation also takes
large CPU time, which increases asM3. The truncation in
the expansion basis is determined by the requirement of
vergence inE up to a predetermined accuracy. The rate
convergence depends on the nature of the potential. It is
for a short-ranged potential~e.g., in nuclear problems! and
M is relatively small. But for a long-ranged potential~e.g.,
Coulomb potential in atomic and other Coulombic system!,
the convergence is extremely slow and the value ofM may
run into three figures. The exact numerical solution of suc
large system of CDE is a very tough numerical job. For t
reason an approximate but sufficiently accurate solution
the truncated CDE is desirable.

III. HYPERSPHERICAL ADIABATIC APPROXIMATION

A reduction of the set of CDE, Eq.~11!, is provided by
the hyperspherical adiabatic approximation method. This
proximation scheme reduces the set ofM coupled differen-
tial equations to a single~or at most a few coupled! differ-
ential equation~s!. The physical picture underlying the HAA
e
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is the assumption that the hyperangular motion involving
(3N24) hyperangular variables~V! is fast compared to the
hyperradial motion in terms of the hyperradial variable~r!,
and the former can be adiabatically separated from the la
However, it is difficult to visualize the complete hyperang
lar motion. While one might expect the angular motion d
scribed by the polar angles$(u i ,w i),i 51,...,N21% to be
fast compared to the hyperradial motion~corresponding to
breathing modes!, it is not intuitively obvious why the hy-
perangular motion described by$f i ,i 52,...,N22% is likely
to be fast also. The HAA has the same adiabatic nature a
the Born-Oppenheimer approximation~BOA! @12#, although
in applications of BOA to molecular problems, the physic
reason for the adiabatic decoupling of the motions is qu
apparent, namely, that the motion of heavy nuclei is expec
to be slow compared to the fast motion of the light electro
Nevertheless, the HAA is applicable to both nuclear a
atomic mass ratio limits and in fact isbetterthan the BOA in
both limits, for the same smooth potential@13#.

In the adiabatic approximation procedure, one first sol
an associatedM3M matrix eigenvalue equation:

(
K8a8

MKa,K8a8~r!XK8a8,l~r!5vl~r!XKa,l~r!, ~13!

where

MKa,K8a8~r!5
\2

2m

LK~LK11!

r2 dKa,K8a81^KauVuK8a8&

~14!

for each value ofr, to obtain the eigenvaluevl(r) and the
corresponding eigenvectorXKa,l(r) as parametric functions
of r. For a fixed value ofr, Eq. ~13! is equivalent to the
matrix formulation of the hyperangular motion an
XKa,l(r) are the corresponding eigenfunctions. Consider
M partial wavesUKa(r) to form anM -component column
vector, one can expand it in the set ofM eigencolumn vec-
tors $XKa,l(r),l51,...,M % of the matrixMKa,K8a8(r) for
a given parametric value ofr:

UKa~r!5(
l

zl~r!XKa,l~r!. ~15!

Substituting Eq.~15! in Eq. ~11!, making use of Eq.~13!, and
taking the inner product withXKa,l* (r) we have

F2
\2

2m

d2

dr2 1vl~r!1Al~r!2EGzl~r!

2 (
l8~Þl!

FBl,l8~r!zl8~r!1Cl,l8~r!
dzl8~r!

dr G50,

~16!

where

Al~r!5
\2

2m (
Ka

UdXKa,l~r!

dr U2

, ~17!

Bl,l8~r!5
\2

2m (
Ka
XKa,l* ~r!

d2XKa,l8~r!

dr2 , ~18!
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and

Cl,l8~r!5
\2

m (
Ka
XKa,l* ~r!

dXKa,l8~r!

dr
. ~19!

In the derivation of Eq.~16! use has been made of the orth
normality of the eigenvectors of Eq.~13!, for each value of
r:

(
Ka
XKa,l* ~r!XKa,l8~r!5dl,l8 . ~20!

There is no approximation in Eq.~16!. The uncoupled
adiabatic approximation~UAA ! consists of dropping the
coupling terms of Eq.~16!:

F2
\2

2m

d2

dr2 1vl~r!1
\2

2m (
a

UdXKa,l~r!

dr U2

2EGzl~r!50,

~21!

which results in an uncoupled differential equation for ea
‘‘channel’’ l. The ground-state energy (E) is obtained by
choosing the ‘‘lowest eigenpotential’’v0(r) as a parametric
function of r and solving Eq.~21! for l50. The approxi-
mate partial waves, corresponding to the ground state,
given by

UKa~r!'z0~r!XKa,0~r!. ~22!

Dropping further the third term in Eq.~21!, one has the ex-
treme adiabatic approximation~EAA!, which corresponds to
the additional assumption thatXKa,l(r) is independent ofr.
Retaining a few of the coupling terms@corresponding to the
lowest eigenvaluesvl(r)# in Eq. ~16! one has the coupled
adiabatic approximation~CAA!. The exact ground-state en
ergy and the energy obtained by the three levels of the a
batic approximation satisfy a basic inequality@14#:

EEAA<Eexact<ECAA<EUAA , ~23!

where the subscript indicates the particular approximation
exact result.

IV. APPLICATIONS TO COULOMBIC THREE-BODY
SYSTEMS

We have applied the HAA procedure to a number of Co
lombic three-body systems:~a! ground states of two electro
atoms (H2,He,Li1,Be21,B31) and the first excited1Se state
of a He atom, in each of which the nuclear motion has b
disregarded;~b! ground states of the positronium negati
ion (Ps2) consisting of three light equal mass particl
(e2e1e2) and the muonium ion (eem). In these cases, th
motion of the third dissimilar particle cannot be neglect
and has been properly accounted for by separating
center-of-mass motion.

In these applications, we have chosen systems w
widely varying mass ratios of the constituent particles. T
interaction is purely Coulombic and ther dependence o
^KauVuK8a8& factors out as 1/r. For the systems, consistin
of two electrons~particles numbered 1 and 2! and a third
dissimilar particle having a comparable mass and a cha
h

re

ia-

r

-
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e

th
e

ge

1Ze, the total interaction potential is

V5
e2

j1 /a1

2Ze2S 1

ujW2 /a22~jW1 /a1!m2 /~m11m2!u

1
1

ujW2 /a21~jW1 /a1!m1 /~m11m2!u
D , ~24!

where

a15S m1m2M

m3
D 1/4 1

~m11m2!1/2,

a25
1

a1
. ~25!

The wave function must be antisymmetric under the
change of the two electrons. Hence if the electrons are in
spin singlet~triplet! state, thenl 1 @l i is the orbital angular
momentum associated withjW i motion (i 51,2)# should be an
even~odd! integer. Since the third particle is distinct, there
no other symmetry requirement. The set of quantum numb
a is constituted by$ l 1 ,l 2 ,L,M %, where L and M are the
orbital angular momentum of the system and its projecti
respectively,LW 5 lW11 lW2 andK5 l 11 l 212n, n being a non-
negative integer. For the ground and the1Se excited states,
L50 andl 1(5 l 2) takes only even values<K/2, K being an
even integer.

In Table I, we present the binding energy (2E) calcu-
lated by UAA and compare it with the exact result@15# @ob-
tained by solving Eq.~11! without approximation by the
renormalized Numerov method@1## for a few typicalKmax
values@Kmax is the maximum value ofK used in the trun-
cated expansion, Eq.~10!#. It is seen that the calculated en
ergies satisfy the inequality~23! in all cases. A common
feature for the ground states of all the systems studied is
the error in UAA gradually increases withKmax, and the
error for the extrapolated BE@15# is slightly more than that
for the largestKmax used for the extrapolation. This is no
surprising since for largerKmax, a larger number of CDE’s
are approximated byonly oneuncoupled differential equa
tion. One further notices from Table I that the absolute er
in the extrapolated BE increases withZ, while among the
threeZ51 systems studied, H2 and muonium have compa
rable errors, but Ps2 has a markedly smaller error. Since th
BE increases rapidly withZ, the relative error does no
change much, varying from 0.26%~for Ps2 and Li1! to
0.42% ~for B31!. The relative error is also quite sma
~0.28%! for the first excited state of the helium atom.

It is interesting to compare the relative errors with tho
for the trinucleon system interacting via short-range forc
@16#. The relative error in UAA depends strongly on th
nature of the potential: 0.27% for the smoothly varyin
Baker potential@6# having no repulsive part, 0.66% for th
Volkov potential @17# having a soft smooth repulsive core
and 3.22% for Afnan-Tang S3 potential@18#, which has a
fairly strong soft core repulsion at short separations. None
these potentials has any singularity. But the peak value of
derivative of the potential~with respect to its argument! is
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TABLE I. BE of atoms and ions obtained by UAA and exact HHEM.

Atom Kmax

BE ~a.u.!
Error in BE
for Kmax520

Extrapolated BE~a.u.!
Error in BE

absolute~percentage!UAA Exact UAA Exact

4 0.480 084 0.480 799
8 0.501 179 0.502 585

H2 12 0.510 843 0.512 577 0.524 741 0.526 681 0.001 94~0.35%!

16 0.515 853 0.517 726
20 0.518 812 0.520 737 0.001 925
4 2.781 300 2.784 369
8 2.844 757 2.850 214

He 12 2.869 283 2.876 006 2.895 595 2.903 680 0.008 08~0.28%!

16 2.880 159 2.887 540
20 2.885 847 2.893 580 0.007 733
4 7.030 368 7.039 221
8 7.162 257 7.175 991

Li1 12 7.211 026 7.227 336 7.260 825 7.280 070 0.019 25~0.26%!

16 7.232 084 7.249 755
20 7.242 885 7.261 233 0.018 348
4 13.223 11 13.248 45
8 13.449 38 13.482 73 13.612 74 13.656 00 0.043 26~0.32%!

Be21 12 13.531 26 13.568 88
16 13.566 39 13.606 18
20 13.584 09 13.625 08 0.040 99
4 21.344 96 21.412 46
8 21.691 85 21.770 82

B31 12 21.815 97 21.900 98 21.938 82 22.031 92 0.093 10~0.42%!

16 21.868 94 21.957 09
20 21.895 51 21.985 35 0.089 84
4 0.477 778 0.478 188
8 0.498 772 0.499 934

eem 12 0.508 387 0.509 934 0.522 545 0.524 626 0.002 08~0.39%!

16 0.513 371 0.515 108
20 0.516 313 0.518 163 0.001 850
4 0.220 598 0.220 937
8 0.241 696 0.242 245

Ps2 12 0.249 791 0.250 464 0.261 715 0.262 395 0.000 68~0.26%!

16 0.253 586 0.254 306
20 0.255 986 0.256 723 0.000 737
24 0.257 494 0.258 231

First 4 1.592 168 1.599 267
excited 8 1.759 054 1.771 541
1Se 12 1.864 526 1.878 540 2.133 01 2.138 95 0.005 94~0.28%!

state 16 1.933 777 1.947 698
of He 20 1.981 317 1.994 575 0.013 258
es
r-
e

r-
he
h
u

e
e

or
-

smallest for the slowly varying Baker potential and larg
for the strongly varying S3 potential, while it has an inte
mediate value for the Volkov potential. Thus the observ
results are in agreement with the argument@3# that the error
in UAA is likely to be large for potentials having a singula
ity or when its derivative has a large magnitude. On the ot
hand, the Coulomb potential~24! has singularities when eac
of the interparticle separation vanishes. The singularity s
vives in r space asr→0. For finite r, the potential is a
smoothly varying function. It is seen from Table I that th
relative errors for the Coulombic systems are comparabl
those for the softest and smoothest nuclear potentials~e.g.,
t

d

r

r-

to

the Baker potential! and appreciably smaller than those f
Volkov or S3 potentials@16#. This calls for a better under
standing.

For the Coulombic systems,r dependence of
^KauVuK8a8& factors out as 1/r and so from Eq.~14! one
sees thatMKa,K8a8(r) is approximately proportional to
1/r2 for small r and to 1/r for large r. Whenever
MKa,K8a8(r) has its r dependence factorizable asf (r)
times a matrix independent ofr, Eq. ~13! shows that
vl(r) has the same functional dependence onr and
XKa,l(r) becomes independent ofr, so that the coupling
termsBll8(r) andCll8(r) @Eqs.~18! and ~19!# vanish and
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Eq. ~21! becomes exact. Hence the coupling terms in
~16! are small for large and small values ofr. This is not true
for intermediate values ofr, where both terms of Eq.~14!
compete with each other. However, in such regions the C
lomb potential is a smoothly varying function ofr. Conse-
quently XKa,l(r) is slowly varying. ThusBll8(r) and
Cll8(r) are expected to be quite small for small and largr
values and not too large in the intermediate region. Ca
lated values ofBll8(r) and Cll8(r) have been plotted
againstr in Fig. 1 for He atom, forl50 andl851. For
comparison we also plotA0(r) andv0(r) ~suitably scaled to
include in the same figure!. As expected one finds that bot
B01 and C01 become negligibly small for larger (r
.5 a.u.); for r→0, C01 is not negligible, although quite
small. Both these quantities peak aroundr52 – 3 a.u., where
the hyperradial wave function has already reached its
part, the peak being at about 1.2 a.u. For comparison a
of U0(r) ~corresponding toK50, l 150, l 250, L50, M
50! has also been included in Fig. 1. Smallness of b
B01 and C01 over the entire domain is established by co

FIG. 1. Plot ofvl(r), Al(r), Bl,l8(r), Cl,l8(r), andU0(r) in
appropriate atomic units~a.u.! againstr ~in a.u.! for the ground
state of the helium atom;l and l8 are chosen to be 0 and 1
respectively.v0(r) is properly scaled~as indicated in figure! so as
to accommodate all the curves in the same figure;U0(r) is in arbi-
trary units.

FIG. 2. Plot of the same functions as in Fig. 1 for the grou
state of muonium.
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paring them withv0(r). Thus we see that the couplin
terms of Eq.~16! are small compared tov0(r)1A0(r),
which justifies the approximation procedure.

In Figs. 2–5 we plotv0(r), A0(r), B01(r), C01(r), and
U0(r) for muonium, Ps2, B31, and the first excited state o
He, respectively. In each of these cases, we find that
correction and the coupling terms are negligibly small
large r and they are peaked in the tail region of the hyp
radial wave function~except for B31 and first excited state o
helium!, the peak value being small compared touv0(r)u.

For two electron atoms with largeZ, v0(r) has a sharp
and very deep well located at a relatively smaller value or.
Thus the major part of the BE comes from small values or,
where Bl,l8 and Cl,l8 are not negligible. Hence asZ in-
creases, the absolute error increases. On the other extr
for Ps2 ~Fig. 3!, the well is shallow and extends to larger
values; consequently the hyperradial wave function is
sharply peaked and spreads out to a greater distance. He
large contribution to the BE comes from largerr values. But
the coupling terms are negligible in this region. Hence
absolute error in BE is small in this case. Thus the UA
becomes more reliable for weakly bound systems, wh
wave function extends to great global lengths. This is a
true for the first excited state of the helium atom.

FIG. 3. Plot of the same functions as in Fig. 1 for the grou
state of Ps2. Scaling ofB0,1(r), A0(r) is as indicated.

FIG. 4. Plot of the same functions as in Fig. 1 for the grou
state of B31.



ur
e
s

an
r
t
fu
se
c

ry
is
an

ly a
hy
ms
b

-

-

-

tial

ys-

ded

rst

56 1287ADIABATIC APPROXIMATION IN ATOMIC THREE- . . .
We conclude that the adiabatic approximation proced
is well justified for the Coulombic systems, in spite of th
fact that the Coulomb force is a long-range force and ha
singularity. The reliability is comparable to or better th
that for the softest short-range nuclear forces. The erro
particularly small in loosely bound systems, which extend
great global lengths. This makes the HAA especially use
in such cases. Since the convergence is very slow for loo
bound and well spread-out systems, an exact convergent

FIG. 5. Plot of the same functions as in Fig. 1 for the fi
excited state of a helium atom.
ys
,

sh
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culation involving a large number of partial waves is ve
time and memory consuming. Using the HAA, which
comparatively more reliable for such systems, one c
achieve convergence and a fairly accurate result with on
small fraction of the computational effort. The reason w
the HAA works better than expected in Coulombic syste
is due to the fact that the potential matrix of the Coulom
interaction alone is proportional to 1/r. Whenever the matrix
MKa,K8a8(r) has a factorizabler dependence, the HAA be
comes exact. Due to the centrifugal term (}r22),
MKa,K8a8(r) does not have an exactly factorizabler depen-
dence over the entire interval ofr even for Coulombic sys-
tems. But an approximately factorizabler dependence re
sults both for large and smallr values and a smoothr
dependence for intermediater values. This makes the cou
pling terms of Eq.~16! small, resulting in a high reliability of
the HAA. By contrast in nuclear system, even the poten
matrix alone does not have a factorizabler dependence.
Consequently the HAA is less accurate for the nuclear s
tems.
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