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Two methods for solving the Dirac equation without variational collapse
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Two special variational techniques, the Lehmann-Maghlyl) method and the Kato method, recently
proposed for solving the one-electron Dirac equation without variational collapse are investigated here in
detail. Both methods represent significant progress compared to the traditional variational techniques because
each of them provides rigorous upper and lower bounds to relativistic binding energies. A careful theoretical
examination, however, reveals that only the LM method can be regarded as a radical solution of all the
problems related to variational collapse. A numerical application to the Dirac equation for the hydrogen atom
in a uniform magnetic field confirms this conclusion and shows as well that the LM method is also capable of
yielding extremely accurate results and that the Kato method, in spite of a few limitations, represents in any
case a useful approad81050-294®7)08107-9

PACS numbdrs): 31.15~p, 31.30.Jv, 32.66:i

I. INTRODUCTION z,/xiN, i=1,2,...,respectively, to the exact eigenvalues and
eigenvectors of can be established.

The Rayleigh-Ritz(RR) method represents a powerful By virtue of these propertief3], the RR methodthe
tool for determining approximations to the eigenvalues andraditional variational methgdrepresents the most powerful
the eigenvectors of a given self-adjoint operatbrin addi-  and reliable tool for determining bound-state energies and
tion to the self-adjointness, the application of the methodcorresponding eigenfunctions in nonrelativistic quantum me-
however, requirefl,2] precise conditions on the spectrum of chanics. In this case, in fact, the application of the RR
H. First of all, this spectrum has to be at least semibounde¢hethod is legitimate because Sotlirmger operators have ex-
(semibounded operatgrsither from below(bounded below actly the spectral properties specified above. However, the
operators or from above(bounded above operatgrdviore-  situation completely changes if one considers a Dirac opera-
over, in the case of bounded beldabove operators, the tor D because, as is well known, Dirac operators are not
lower (uppe) part of the spectrum has to be purely discrete,semibounded. The application of the RR method for solving
i.e., made up only of finitely or infinitely many isolated ei- Dirac equations thus has no mathematical foundation and
genvalues of finite multiplicity. When all these conditions gives rise, as a consequence, to enormous difficulties. In the
are satisfied, the RR method has remarkable properties. kpecialized literaturf4], these difficulties are named “varia-
the case of a bounded below operathrthese properties are tional collapse.” This term makes reference to the fact that
the following. any positive-energy eigenvalue Bfy (the matrix represen-

(a) The eigenvalue problem fd4 is equivalent to certain tation of D in an N-dimensional subspagenay decrease
minimum problems for the RR quotient without limit as the size of the basis is enlarged. This, how-
R(x) =(x|Hx)/(x|x),x#0, xe D(H)C'H, where H is a ever, is only the aspect of the variational collapse commonly
Hilbert spaceP (H) is the domain oH, and(|) is the scalar referred to; its essence instead is that propeftis(d) do
product of H. not hold anymore. Thus, in particular, no direct-

(b) If Ag=<A;<-.. are the eigenvalues oH and minimization method, such as that described5h can be
)\g‘s)\?s- .- are the eigenvalues ¢y [the matrix repre- applied to find approximations to exact eigenvalues and
sentation ofH in an N-dimensional subspackNCD(H)], eigenvectors of Dirac operators; the eigenvalueb gfcan-

then not be improved by a minimization procedure with respect to
possible nonlinear parameters in the basis set; no monotonic
)\Os)\g‘, MSR?, L :)\NS)\N improvement(or even no improvement at alis guaranteed
asN increases and the possibility of estimating the relative
(Poincarés theorem. accuracy of two calculations employing two different basis
© If KNCHV', then sets is lost. The appearance then of unphysical positive ei-

genvalues oDy (spurious statgs mixed with the physical
NN ones, contributes to complicate even more things. In the past
A=A, 1=1,.. N ten years, a great many approaclisse Refs[4,6—§ and
references thereinhave been proposed for avoiding the
(d) Precise conditions for the analytical convergence asariational collapse. According to Rd#], these approaches
N— o of the eigenvaluesiN and the associated eigenvectorscan be classified into essentially three categories.
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(i) The problem is not faced at the root, but some of itstheir employment for avoiding the variational collapse. Al-
main difficulties are circumvented by means of special techthough the Kato method, as we shall see, presents close con-
niques. Very satisfactory results have been obtaifigd nections with the LM method, it has different properties and
within this framework by choosing the basis set carefully. cannot be classified in any of the three categories above. In

(i) The wrong nonrelativistic limit of Dirac operators is particular, contrary to the LM method, it does not set up
considered to be the main cause of variational collapse. Var@gain the previously mentioned properties-(d). More im-
ous techniques have been put forth to make calculations th&0rtant is that the Kato method is capable of yielding rigor-
admit the correct Schdinger limit. Among these techniques OUS Upper bounds to relativistic energies, thereby overcom-
the most promising ong¢4] consists in transforming the N9 the worst disease of varla'qo_nal collapse. The p033|b|ll'ty
given Dirac operator by a Foldy-Wouthuysen transformatiorfhen of the Kato method providing lower bounds as well is
and then applying the RR method. From a general point of" €lement of further interest. These considerations as well
view, this approach is undoubtedly more satisfactory tjpn @S the encouraging preliminary investigations in REgs12]
however, its mathematical foundation is somewhat obscurdl@ve motivated the present paper, whose main aim is a fur-
Thus, in particular, one cannot sté whether it is actually ~ther investigation of both the LM method and the Kato
sufficient to avoid all the diseases of variational collapse. Method as techniques for avoiding variational collapse. The

(iii) The fact that Dirac operators are not semibounded i®aper is organized as follows: In Sec. Il we describe the
considered to be at the origin of all the difficulties of the mathematical foundation of the two methods, in Sec. Il we

variational collapse. The given Dirac operaris thus re- ~Present a numerical application of each of them to the Dirac
placed by a certain function such that the resulting operatogduation for the hydrogen atom in uniform magnetic fields,
f(D) is self-adjoint, bounded from below, and has the spec@nd in Sec. IV we compare their performances and discuss
tral properties required by the RR method. This method igh€ numerical results obtained.
then applied tdf (D).

This latter approach is clear because the self-adjointness Il. METHODS
of Dirac operators can be provdd] for a large class of

i . . LI As we said, the LM method and the Kato method are two
potentials; the prescription for defininf(D) is given by

L . techniques for determining rigorous upper and lower bounds
spectral theory10] and the application of the RR method is to the eigenvalues of a given self-adjoint operator not neces-

perfectly legitimate. Compared to approackigand(ii), it is sarily semibounded. In the present section we show con-

also much simpler and gets, in our opinion, to the main rOmcisely and without any proof the mathematical foundation of

of th_e problem, i.e., to the fact that Dirac operators are nok, ., 1o methods. Proofs and a more detailed description can
semibounded. Indeed, as we shall see in detail later, e found in[2] and in references therein

proach (iii) sets up again propertig®)—(d) above. Obvi-
ously, its effective usefulness depends on the existence of a
suitable functionf(D). Hill and Krauthauser have shown
recently[8] that a choice forf (D) particularly advantageous Let H be a complex separable Hilbert space, with scalar
is the function D—p) %, wherep is a real number not be- product and norm denoted KY) and||-|, respectively. Let
longing to the spectrum ob. In Ref.[8] one can find an H be a self-adjoint operator iH, satisfying the only hypoth-
investigation of approactiii) employing such a function as esis that at least a part of its spectrum is purely discrete. This
well as a preliminary numerical test on the Dirac hydrogenpart of spectrum is thus made up only of finitely or infinitely
atom. Among the advantages of choosing the functiormany eigenvalues

(D—p) "L, Hill and Krauthauser point out and illustrgteq.

(9) in [8]] the remarkable possibility of determining, in ad- "~
dition to upper bounds to the eigenvaluedfflower bounds <... 1)
as well. A comment is now in order. The idea of employing '

approach(iii) with the choicef(D)=(D—p)~* as a tech- each of finite multiplicity.

A. The Lehmann-Maehly method

<E_,_,<E_,<-.-<E_,;<Ey<E;<---<E,<Ej .,

nique for avoiding variational collapse appears in R8i. Consider the operatoiH{— p) ~%, where
However, it is nothing but a special application of the
Lehmann-MaehlyLM) method, i.e., the method that Leh- Ex<p<Exs1, k=0,x1,.... (2

mann and Maehly11] introduced as a general procedure for__ ) o )
determining rigorous upper and lower bounds to the eigen] his operator{10] is bounded, self-adjoint, and, in corre-
values of a given self-adjoint operator not necessarily semisPondence with the eigenvalugl, presents the purely dis-
bounded. Thus, for matters of a historical nature, we shalf’®e spectrum

keep on calling here “LM method” approadfii) with the
choicef(D)=(D—p) 1. It should be observed that another
method for avoiding the variational collapse has been reynere
cently proposed as wdllL2]. This second method is nothing

but the application of certain formulas, shown by Kaig] Ni=(Ei—p) Y i=kk—1,... k+2k+1. 4
almost half a century ago, for determining rigorous upper

and lower bounds to the eigenvalues of a given operatofhe application of the RR method to the operatdr(p) ~*
satisfying once more the hypothesis of being self-adjoint buis thus perfectly legitimate. Henceforth, we shall denote the
not necessarily semibounded. In the present paper, we shabrresponding RR eigenvalues by
call “Kato method” both Kato’s formulag13] as well as )\iN,izk,k—l, ..., k+2k+1, whereN is the dimension

MNSAo 1< <0< SN oSN, ()



1242

of the subspace employed. Owing to the spect(@rand if
N is big enough, one find&ounting multiplicity rN nega-
tive RR eigenvalues

A=Y ==\ ;<0 (5)
andsN positive RR eigenvalues

0<Ap, n=- - <AN =N (6)
Applying now the Poincar¢éheorem[see propertyb) in the

Introduction and also Ref3]) and making use of Eq4) and
inequalities(5) and(6), one gets immediately

1
Ex=wtp, Ex-1= 1w
Ay Ae-1

+p, ...

1
Ex-mvi1= R Tp (7
k—rN+1

and

1 E 1
——+ s+
N P k+2 N Py
Nr1 i Ni2

Exr1=

1
Exrsn<w—*p. 8
k+sN

P. FALSAPERLA, G. FONTE, AND J. Z. CHEN 56

k=0,x1, ..., thelower bounds(7) improve asp—E,, 1,
whereas the upper boun@®) improve asp—E.

B. The Kato method

In comparison with the LM method, the Kato method
follows a very different approach. It applies essentially ele-
ments of spectral theory to determine accurate intervals that
contain points of the spectrum of a given self-adjoint opera-
tor H not necessarily semibounded. Given a vectbr
eD(H) (J|#|=1), let us compute the quantities
(HY=(y|Hy) and A=((H%—(H)®)Y2 Then the half-
closed interval

((H)—A,(H)+A]

contains at least a point of the spectrumbbf(Weinstein's
formula). Now assume that we are able to determine an open
interval (a,b) containing an eigenvalusayE,) as a unique
point of the spectrum ofl and consider the conditions

2

<H><b, §E<H>_b_A—<H>>a (11

and

2

(Hy>a, ¢=(H)+ <H§——a<b' (12

Then, if ¢ satisfies conditior{11) we haveé{<E,<b, if ¢

In other words, applying in a subspace suitably large the RRatisfies conditiori12) we havea<E,<¢, and if ¢ satisfies

method to the operatoiH— p) ~*, with a parametep satis-

fying condition (2) with a given indexk, we can get lower

bounds for the rN exact eigenvalues ofH, E;<p,
i=k,k—1,...k—rN+1, and upper bounds for tr&' exact
eigenvalues ofH, E;>p, j=k+1k+2,...k+s". Thus,

with two choices o, sayp,p,, each satisfying a condition

(2) with a different value of the indek, we can obtain, ilN

both conditiong11) and(12) we get

E<Es¢ (13
(Kato’s formulg. In other words, if one knows rough bounds

to E,, one can determine some others that are more accurate.
Formula(13) turns out to be scarcely precise if the spectral

_region that one is interested in presents eigenvalues that are

is big enough, both upper and lower bounds for all the €iyengely crowded. In this case, the following generalization

genvalues oH belonging to the intervald;,p,).

The practical application of the LM method presents,(a b) containsm eigenvalues, saf,<E,<-
however, two difficulties: calculating the matrix elements of - ' ’ L2

the inverse of H—p) and choosing a suitable parameger
A remedy for the first difficulty is employing8,11] as basis

set the vectors

di=(H—p)¢;, i=12,... N, 9

where{gbi}iN:l are vectors oD (H) linearly independent but

of formula (13) can be showfl13]. Suppose that the interval
--<E,, but
no further point of the spectrum ¢i. Choosem orthonor-
mal vectorsy; , ¥y, . . . ¥, such that the matrixy;|H;) is
diagonal, i.e.{i|H;)=(H)7.8;,i,j=12,...mand such
that

a<(H),=(H)7,="-=(H)5,<b.

not necessarily orthonormal. The original RR method for thelhen

operator H—p) ! in fact become$2], in the basig9), the

2 2
generalized eigenvalue problem m A;,,i k AT/«
(H)@k—Z —~$E|§<H>Ek+2 —,
(H=p)ngN=AN(H=p)3y", (10) =kb—(H)3, =1 (H)y—a
where H—p)y and H—p)5 are the NXN matrices k=12,...m, (14)

{(pil(H=p)p}i—1 and {(&i|(H—p)?¢)},_1, respec- 2 2 .
tively. Thus the presence of the opejratijjfl{prl js  Where A?ai:(<H2>7/i_<H>%) (the generalized Kato for-
avoided and we have to deal only with the more tractablenula). It should be observed that the quantitf (mean-
operator H— p)?. The second difficulty, as we shall discuss square energy deviatipmpermits also estimates of the error
in Sec. 1V, can be serious in some situations. For the momernn the 7 norm of any approximate eigenvectsr(||¢||=1).
we observe that by varying in a given interval E,,E,, 1),  Confining ourselves to the case where the interaab) con-
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tains the sole nondegenerate eigenvaiyas a unique point where« and 8 are the usual X4 Dirac matrices and\=

of the spectrum oH, denoting by (|y]=1) the exact 17 ¢ The magnetic field is here measured in units of
eigenvector associated witfy, and supposing that satis- (e/h)3m2022 354 10° G
< . .

fies conditions(11) and(12), one can indeed shof2,13 The Hamiltonian(16) is self-adjoint[9]; thus it satisfies

B P e T the main property that both the LM method and the Kato
l9=ddl=(2-2V1- 0% =%, (15 method require. In order to apply these methods it is there-

fore enough to introduce a proper basis sgf . . Before

we specify this set, it should be obsenjege Eqs(9) and
2 [T(H)— (a+b)/212+ A2 [ (b—a)/2]2. (10)] that a basis set is necessary for the LM method,
o ={l{H) = /2] N /2] whereas it is not for the Kato method. The latter in fact needs

More accurate estimateg€l5) can be obtained if either @n approximate eigenfunction [formula (13)] or approxi-

where

{<(a+Db)/2 or £=(a+b)/2, in correspondence with the fol- mate eigenfunctionsly, . .. %, [formula (14)] as starting
lowing values ofo?: points, but it does not require that these approximations are
of variational nature. In the present paper, however, we de-
. A?[[((H)—a)*+A?], (<(a+b)/2 terminey andy,, . . . ¥, in the Kato method variationally,
7= A%[(b—(H))2+A?%], &=(a+h)/2. i.e., by applying the RR method directly kP and choosing
then asy, 1, . . . .U Certain eigenfunctions ¢y (the ma-

Formulas(13) and(14) show that the application of the Kato trix representation ofH® in an N-dimensional subspace
method presents problems similar to those in the LM[14]). The basis set employed by us in the present paper is
method, i.e., a preliminary rough knowledge of the spectrunthe same as the one in Refg,12], i.e.,

that one is interested in and the evaluation of the matrix

elements ofH2. Although the LM method and the Kato e (r,0,p)=r 7 LTng A —purisito

method seem at first sight to have nothing in common, a "

more accurate analysis reveals a close connection between ><(cosﬁ)'h*‘mh|(sin0)‘mh|e‘mh“’wh, a7
them. To see that, we note first that poiatsaand b in in-

equalities(11) and(12) do not belong to the spectrum bif; n=0,1,2,...,N,, h=1234,

thus they can be also regarded as special pgirgatisfying
conditions(2). Now, set in inequalitie$11) and (12) a=p, wherer, 0, ¢ are spherical coordinates= Jii2— a2, with &
andb=p,. Denote by?-[i’)'2 the subspace spanned by tNe being the Dirac quantum number awdthe fine-structure

vectors(9), with p=p,, and suppose that there exists a vec-constantmy=j,—vp/2, with v;=v3=1, v,=v,=—1 and
tor ye Hyz satisfying inequalities11), i.e., such that the 1z Peing the eigenvalue of the componentJ, of the total

. . angular momentum) and x are nonlinear variational pa-
Kato lower boundg(p?"/’) to Ey exists. Then 'the.re exists rameters, andv, is the four-component spin function. The
also[2] a corresponding LM lower bound, which is the op-

. _ . N quantity |, takes on values greater than or equallig,|,
timal value of¢(p,#) asy is varied oanz. Analogously, which are even numbers up tdNg for even-(odd- parity

if there exists a vecto e H’:l satisfying inequalitie12),  states andi=1,2 (h=3,4) and odd numbers up td\g+1
there exists consequently a LM upper boundEtg which ~ for odd- (even) parity states anti=1,2 (h=3,4). Thus the
represents the optimization of the Kato upper botife,, )  total number of the vectors employed, i.e., the dimension
as y is varied onHEl. of the subspace, is

N=(N,+1)(4Ny4+3). (18
ll. APPLICATION OF THE LEHMANN-MAEHLY
AND KATO METHODS The structure of the basi€l7) corresponds chiefly to the
following: Considering thaH® commutates with the opera-

In this section we describe the application of the LM . . : .
method and the Kato method to the Dirac equation for th(i[%Or J; and with the parity operator, the baglr) gives rise

hydrogen atom in uniform magnetic fields. Such a choice ha; W'th the rule_s above for the values taken (_)nrby andly)
been motivated by the importance that the problem of th N e|genfun_ct|ons of thes_e two operators, it repraduces the
exact solutions of the Dirac equation in the two extreme

hydrogen atom in uniform magnetic fields has taken on in_ ~~ . . _ B ) .
the past 25 years, as well as by the fact that this problem hasgtuatt;oynsz d_'tl, ?_fo irr']d Zb—O,dB>0 (Zd.'f th;:(a)tomg:
been investigated so far mainly within a nonrelativistic numbey, and It satisties the boundary conditionr an

framework. Accurate relativistic calculations have appeareao and has the correct nonrelativistic limit. As we said, a

- : difficulty in applying both the LM methofisee Eq(10)] and
Qgﬁ?%.only a few years ago in a paper by Chen and GOIdf[jhe Kato methodsee formulag13) and (14)] is that in ad-

The Dirac Hamiltonian(in atomic units for a hydrogen dltlgnzto the matrix elements di® one n.eeds also those of
atom, with a point nucleus fixed in the origin, placed in a(H )=. In our case, however, the matrix eIeme.nts of these
. s A two operators in the basid7) can be expressed in terms of
uniform magnetic field3=Bz is a general integral that can always be evaluated numerically.
Details about that can be found in R€f8,12). It should also
be observed that the bagi$7) is not orthonormal. Its or-
thonormalization, as we saisee Eq.(9)], is not strictly

>

- - A
HD:CCY' p+E

+ Bc?— % , (16)
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FIG. 3. Variational approximation for the relativistic ground-
FIG. 1. LM upper bound and LM lower bound to the relativistic state binding energy of the hydrogen atom in the magnetic field
binding energy of the first excited sta}f=3" of the hydrogen B=1, plotted against the nonlinear parameteya. The dimension
atom in the uniform magnetic field=0.1, plotted against the non- of the subspace employed =3, with N,=0 andN,=0. The
linear parameterk, w in the basis(17). The dimension of the sub- reference horizontal plane represents the “exact” binding energy,

space employed isi=28, with[see Eq(18)] N,=3 andN,=1. i.e., that determined by LM bounds.

required by the LM method, but it turns out to be convenien
in the Kato method. Thus, in practice, we first orthonormal

ize the set(17) and then we employ the orthonormalized applied to the bounded self-adjoint operatdi®- p) 1,

vectors, say{¢{"'}, as vectorg ¢} in Eq. (9) to apply the  \ynareas the latter is founded on spectral theory and thus it
LM method Dan_d as a basis set as well to apply the RR,,q nhothing to do with the RR method. Figures 1, 2, and 3
method toH 1€, to aprI%/ the Kato method. The matrix jjysirate the behavior of the LM bounds, the Kato bounds,
eIeLnents ofH” and (H™)" with respect to the vectors anq the variational approximations, respectively, as a func-
{¢"'}, which thus appear in Eq10), are then obtained tion of the nonlinear parameteksy in the basis(17). We
from those in the baSlSl?) by linear transformations. A can see that both LM bounds and Kato bounds a|WayS
disadvantage of the basi7) is that it presents problems of pracket the exact binding energy and moreover have extre-
near linear dependence; thus, in practice, one cannot usengum properties. These facts in particular give us a reliable
dimensionN greater than~280. This reduced dimension and easy way to Optimize the paramemmndﬂ_ The varia-
limits in some cases the prECiSion of our results; however, iﬁona| approximation, on the contrary, shows a minimum that
is quite sufficient to inVeStigate the performance of the LMhaS no physica| meaning but' even worse, takes on values
method and the Kato method as tools for avoiding variationahoth bigger and smaller than the exact binding energy. Fig-
collapse. This investigation is indeed the primary goal of theyres 4, 5, and 6 illustrate the behavior of the LM bounds, the

Yinue to hold in the LM method but they do not in the Kato
“method. The former, in fact, is nothing but the RR method

present paper. Kato bounds, and the variational approximations, respec-
tively, as a function of the total numbét of the basis vec-
IV. RESULTS AND DISCUSSION tors employed. In particular, Fig. 4 shows the remarkable

monotonic behavior of the LM bounds as a functionNof
According to the analysis of Sec. Il, we expect that both[property (c) in the Introductio, whereas Figs. 5 and
the LM method and the Kato method yield useful upper ands show that this is not a property of either the Kato method
lower bounds to the eigenvalues of the Dirac Hamiltonian
(16). However, we should also expect that all the remarkable

propertiesa)—(d) of the RR method in the Introduction con- -0.147
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FIG. 2. Kato upper bound and Kato lower bound to the relativ- N
istic ground-state binding energy of the hydrogen atom in the mag-
netic field B=20, plotted against the nonlinear parameterg in FIG. 4. LM upper bound and LM lower bound to the relativistic
the basis(17). The dimension of the subspace employed\is 9, binding energy of the same state as in Fig. 1, as a function of the

with N,=2 andN,=0. basis sizeN.
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FIG. 6. Variational approximation for the relativistic binding

istic binding energy of the same state as in Fig. 3, as a function ognergy of the same state as in Figs. 3 and 5, as a function of the

the basis sizé\.

basis sizeN.

or the variational approximations. Notice, however, that theones. This different performance depends on the fact that the
Kato bounds remain in any case rigorous upper and lowekM eigenfunctions calculated by us are much more precise
bounds to the exact energy, while the value of the variationathan the variational ones, which we employ as trial wave
approximation oscillates around it. Tables |-l show the de-functions in the Kato methofsee error estimateX'(LM)

gree of accuracy that one can obtain by employing either thand % (K) in Tables I and I]. Although the RR method ap-
LM method or the Kato method. We can see that the LMplied directly toH® does not yield, in general, very accurate
results are in general much more accurate than the Kateigenfunctions and presents all the defects outlined in the

TABLE I. Relativistic ground-state binding energigs’] and error estimates of the associated eigenfunc-
tions of the hydrogen atom in intense magnetic fields, in subspaces of given parity and projection of the total
angular momentund,. ColumnB, values of the magnetic field; coluni® parity; columnN, ,N,,values of
N, andN, [see Eq(18)]; columnj,, eigenvalues of,; column—E}'(LM), upper bound$upper row$ and
lower bounds(lower rows on the binding energies calculated by method; col®H(LM), error estimates
[see Eq.(15)] of the eigenfunctions obtained by the LM method, where the ugip&rer) rows are the
estimates relative to the eigenfunctions corresponding to the gvesr) bounds; column-E}'(K), upper
bounds(upper row$ and lower boundglower rowg on the binding energies calculated by the Kato method;
columnZ (K), error estimates of the variational eigenfunctions employed in the Kato method; cel@&hn
variational approximations. Notice that coincident digits in a given pair of upper and lower bounds are not
reported in the lower-bound row. Blank spaces in columE/'(K) mean that either no value for these
quantities can be given or a value exists but it represents a bad estimate.

B P NNy iz —E/'(LM) 31(LM) —E/(K) 2(K) —EN
10 + 9,4 —1/2 1747800687 3:810°° 1.747800304 1210 % 1.747800687
8 3.9x10°° 2869
20 + 115 —1/2 2.21540045 24103 2.21539 1.X%10°!' 2.21540091
317 3.8x10°° 6229
500 + 9,4 —1/2 6.2570305 3.810°3 6.22791 8.X10°2  6.2570326
581 3.2x10°3 7532
10 - 9,4 —3/2 1.12542203 281074 1.12542119 5.210°%  1.12542203
4 6.7x10°4 3626
100 - 9,4 -3/2 2.63475382 14103 2.634414 2.X10°%2 2.63475394
584 1.1x10°3 5981
10 — 9,4 —1/2 0.38266318 1x10°3 1.2 0.38266316

38 1.2x10°3




1246 P. FALSAPERLA, G. FONTE, AND J. Z. CHEN 56

TABLE Il. Relativistic binding energies and eigenfunction error estimates for the first five states

jP=—3" of the hydrogen atom in the magnetic fiekl=0.1. ColumnsN, ,N,, —E}(LM), SH(LM),
—E/(K), 2(K), and —EN are as in Table I. Colum@E, relativistic correctionsSE=(Egr—Eng)/|Engl,
whereEg, (relativistic energy is determined by the LM bounds in this table, wher&ag (nonrelativistic
energy is determined by the Kato bounds according to R&8]. Blank spaces in columns E}'(K), 3(K),
and §(E) have the same meaning as in Table I.

N, N, —E/'(LM) SHLM) —E/(K) S (K) —EN SE
6,3 0.54753240833 9810 ° 0.5475323991 8410 * 0.54753240834 —1.08x10°°
5 7.0x10°° 6586
9,4 0.1480917386 32107 ° 0.0246 0.1480917386 —1.74x10°°
7 2.9x10°° 0.7858
9,4 0.074938688 1810 ° 0.074624 4.%10°'  0.074938689 —8.75<10°°
99 9.7x1074 9189
9,4 0.04356687 3:910°° 0.02562 0.04356687
92 2.9x10°3 7851
8,4 0.0280747 9%410 2 0.0280748
94 3.2x10°2

Introduction, instead it yields in our case very accurate eidetermined by Eq(10) with p=p; (p; is far from the spec-
genvalues. Our variational approximations, in fact, have therum), have a numerical accuracy of order two to three digits
same order of accuracy as the LM bounds. This, however, igigher than our LM lower bounds, which are determined by
not an advantage of the usual variational method in itself, bugq. (10) with p= p, (p, is close to the spectrumThis effect

it depends only on the fact that we employ basis vectorss evident in Table Ill, whose results are relative to densely
carefully choseri7] and with nonlinear parametefsu op-  crowded eigenvalues. In columnE(LM), except for a few
timized by minimizingE"(LM) . As we said, the application cases e report in fact for each eigenvalue a single approxi-
of the two methods investigated here has a price: the calCyyaiion  representing the numerically correct digits in the

. . D 2 . .
lation of matrix elements of{ )" and a preliminary rough lower bound, which are thus always coincident with the cor-

knpwl_edge Of the spectrum that one is interested in. Th'?esponding digits of the more accurate upper bound. It is
price indeed is well rewarded because after all we can com-

pute at the same time upper and lower bounds as well I\fvorthwhile observing that our results in Tables I-Ill have
should be observed that the Kato method needs a more.d ot only a demonstrative purpose, but are also interesting in

tailed preliminary knowledge of the spectrum. The Katot emselves. In particular, the results in Table I, obtained by
method, in fact, requires the determination of an intervafn® LM method, represent an example of a rigorous compu-

(a,b) for each isolated eigenvalue or for each group of isotation of an extended series of relativistic excited states. A

lated eigenvalues; the LM method, on the contrary, require§tticism of these results might be that we have confined
only the determination of two parametess<p,, not be- Ourselves to a weak magnetic field and to states not ex-
longing to the spectrum df®, for all the eigenvalues inside tremely excited. We believe that the LM method can be ap-
the interval @l!pZ)' In the present paper we have chosen asplled SUCCESSfU”y also in these cases. The limits of our re-
p1 Suitable upper bounds te c? and asp, a value lying in sults, in fact, do not depend on the LM method in itself but
the interval[ EY(LM) ,E,(LM) 4. 1], whereEY(LM) is a LM rather on the particular basis employed. The b&sB in-
upper bound to a given eigenvaliie andE;(LM).,, is a deed is not very adaptable to increasing effective magnetic
LM lower bound to the eigenvalug,, ;, whereas as andb  interactions in the case of excited states and presents, as we
we have chosen two suitable LM boundkb]. The choice said, the problem of a near linear dependence. The conclu-
above forp, reveals a difficulty of the LM method. When sion of our investigation thus is that the LM method is in
the distance op, either fromEY(LM)s or from E;(LM).,;  general a very satisfactory solution of all the diseases of the
goes to zero, the matrixl—(D—pz)ﬁ, which appears in Eq. variational collapse. It indeed reestablishes all the familiar
(10), becomes singular. Thus, as the density of eigenvaluefeatures of the nonrelativistic variational calculations.
increases, a higher and higher numerical accuracy is required (i) It does not give rise to any spurious states.

to compute matrix elements oHP — p,)? and the algorithm (ii) It provides rigorous upper and lower bounds to rela-
for solving Eq.(10) employed here, which needs the inver- tivistic binding energies and very accurate approximate
sion of the matrix HP—p,)?, shows a decreasing perfor- eigenfunctions as well.

mance. As a consequence, our LM upper bounds, which are (iii) The bounds have extremum properties with respect to



56 TWO METHODS FOR SOLVING THE DIRAC EQUATION ... 1247

TABLE lIl. Specimen of relativistic binding energies from the first 42 stgfes — 1+ of the hydrogen
atom in the magnetic fiel8=2.5x 10~ °. Columni, indices numbering the states according to decreasing
binding energy, columnsl, ,N,, —E['(LM), —E}(K), —EN, and 6E are as in Table II. A single value in
columns—E}'(LM) and — E}'(K) means that the corresponding upper and lower bounds coincide within the
accuracy of the digits given. Blank spaces in columg;'(K) have the same meaning as in Table I.

i N, ,N, —E}'(LM) —E(K) —EN S5E
1 1,0 0.50001915621 0.50001915621  0.50001915621 —1.33x10°°
2 2,0 0.12501457794 0.12501457794  0.12501457794 —1.66x10°°
3 3,1 0.05556878438 0.05556878  0.05556878438 —1.31x107°
9 7363
6 4,1 0.0312628049 0.031262801  0.0312628049 —1.01x107°
8453
9 5,2 0.0200126092 0.02001246  0.0200126092 —6.34x10° 8
3420
14 6,2 0.0139014009 0.0138995  0.0139014009 —3.45x10°°
10 9769
19 7,3 0.010216549 0.010182  0.010216549 —2.08<10°°
1187
26 8,3 0.007824929 0.00775  0.007824929 —1.72x10°©
1053
33 9,4 0.006185229 0.006185229  —1.44x10°°
42 10,5 0.005012340 0.005012340  —1.24x10°°

the nonlinear variational parameters and monotonic behaviatitions for their analytical convergence. A peculiarity of the
with respect to the linear ong¢property(c) in the Introduc- Kato method is that it does not prescribe any procedure for
tion] and satisfy moreover the Poincaiteeorem[property  determining the trial wave functios. In a certain sense, this

(b) in the Introduction. fact makes the Kato method more general because it can be

(iv) Conditions for the analytical convergence of theseapplied equally well in the case when one has at one’s dis-
bounds as well as of the corresponding eigenfunctipnsp-  posal an accurate approximate eigenfunction that, however,
erty (d) in the Introduction can also be established by a is not a variational one.
straightforward application of well-known resu[ts6] about
the convergence of the traditional RR method.

The Kato method shares with the LM method the advan-
tage of providing rigorous upper and lower bounds to rela- We are particularly grateful to S. P. Goldman for stimu-
tivistic binding energies; however, these bounds do not varyating discussions and helpful suggestions. This work has
monotonically ad\ increases, nor is it easy to establish con-been supported by INFN Sezione di Catania and by MURST.
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