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Two methods for solving the Dirac equation without variational collapse
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Two special variational techniques, the Lehmann-Maehly~LM ! method and the Kato method, recently
proposed for solving the one-electron Dirac equation without variational collapse are investigated here in
detail. Both methods represent significant progress compared to the traditional variational techniques because
each of them provides rigorous upper and lower bounds to relativistic binding energies. A careful theoretical
examination, however, reveals that only the LM method can be regarded as a radical solution of all the
problems related to variational collapse. A numerical application to the Dirac equation for the hydrogen atom
in a uniform magnetic field confirms this conclusion and shows as well that the LM method is also capable of
yielding extremely accurate results and that the Kato method, in spite of a few limitations, represents in any
case a useful approach.@S1050-2947~97!08107-9#

PACS number~s!: 31.15.2p, 31.30.Jv, 32.60.1i
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I. INTRODUCTION

The Rayleigh-Ritz~RR! method represents a powerf
tool for determining approximations to the eigenvalues a
the eigenvectors of a given self-adjoint operatorH. In addi-
tion to the self-adjointness, the application of the meth
however, requires@1,2# precise conditions on the spectrum
H. First of all, this spectrum has to be at least semiboun
~semibounded operators! either from below~bounded below
operators! or from above~bounded above operators!. More-
over, in the case of bounded below~above! operators, the
lower ~upper! part of the spectrum has to be purely discre
i.e., made up only of finitely or infinitely many isolated e
genvalues of finite multiplicity. When all these condition
are satisfied, the RR method has remarkable properties
the case of a bounded below operatorH, these properties ar
the following.

~a! The eigenvalue problem forH is equivalent to certain
minimum problems for the RR quotien
R(x)5^xuHx&/^xux&,xÞ0, xPD(H),H, where H is a
Hilbert space,D(H) is the domain ofH, and^u& is the scalar
product ofH.

~b! If l0<l1<••• are the eigenvalues ofH and
l0

N<l1
N<••• are the eigenvalues ofHN @the matrix repre-

sentation ofH in an N-dimensional subspaceHN,D(H)#,
then

l0<l0
N , l1<l1

N , . . . ,lN<lN
N

~Poincare´’s theorem!.
~c! If HN,HN8, then

l i
N8<l i

N , i 51, . . . ,N.

~d! Precise conditions for the analytical convergence
N→` of the eigenvaluesl i

N and the associated eigenvecto
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c i
N , i 51,2, . . . , respectively, to the exact eigenvalues a

eigenvectors ofH can be established.
By virtue of these properties@3#, the RR method~the

traditional variational method! represents the most powerfu
and reliable tool for determining bound-state energies
corresponding eigenfunctions in nonrelativistic quantum m
chanics. In this case, in fact, the application of the R
method is legitimate because Schro¨dinger operators have ex
actly the spectral properties specified above. However,
situation completely changes if one considers a Dirac op
tor D because, as is well known, Dirac operators are
semibounded. The application of the RR method for solv
Dirac equations thus has no mathematical foundation
gives rise, as a consequence, to enormous difficulties. In
specialized literature@4#, these difficulties are named ‘‘varia
tional collapse.’’ This term makes reference to the fact t
any positive-energy eigenvalue ofDN ~the matrix represen-
tation of D in an N-dimensional subspace! may decrease
without limit as the size of the basis is enlarged. This, ho
ever, is only the aspect of the variational collapse commo
referred to; its essence instead is that properties~a!–~d! do
not hold anymore. Thus, in particular, no direc
minimization method, such as that described in@5#, can be
applied to find approximations to exact eigenvalues a
eigenvectors of Dirac operators; the eigenvalues ofDN can-
not be improved by a minimization procedure with respec
possible nonlinear parameters in the basis set; no monot
improvement~or even no improvement at all! is guaranteed
as N increases and the possibility of estimating the relat
accuracy of two calculations employing two different ba
sets is lost. The appearance then of unphysical positive
genvalues ofDN ~spurious states!, mixed with the physical
ones, contributes to complicate even more things. In the
ten years, a great many approaches~see Refs.@4,6–8# and
references therein! have been proposed for avoiding th
variational collapse. According to Ref.@4#, these approache
can be classified into essentially three categories.
1240 © 1997 The American Physical Society
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56 1241TWO METHODS FOR SOLVING THE DIRAC EQUATION . . .
~i! The problem is not faced at the root, but some of
main difficulties are circumvented by means of special te
niques. Very satisfactory results have been obtained@7#
within this framework by choosing the basis set carefully

~ii ! The wrong nonrelativistic limit of Dirac operators
considered to be the main cause of variational collapse. V
ous techniques have been put forth to make calculations
admit the correct Schro¨dinger limit. Among these technique
the most promising one@4# consists in transforming the
given Dirac operator by a Foldy-Wouthuysen transformat
and then applying the RR method. From a general poin
view, this approach is undoubtedly more satisfactory than~i!;
however, its mathematical foundation is somewhat obsc
Thus, in particular, one cannot state@4# whether it is actually
sufficient to avoid all the diseases of variational collapse

~iii ! The fact that Dirac operators are not semibounde
considered to be at the origin of all the difficulties of th
variational collapse. The given Dirac operatorD is thus re-
placed by a certain function such that the resulting oper
f (D) is self-adjoint, bounded from below, and has the sp
tral properties required by the RR method. This method
then applied tof (D).

This latter approach is clear because the self-adjointn
of Dirac operators can be proved@9# for a large class of
potentials; the prescription for definingf (D) is given by
spectral theory@10# and the application of the RR method
perfectly legitimate. Compared to approaches~i! and~ii !, it is
also much simpler and gets, in our opinion, to the main r
of the problem, i.e., to the fact that Dirac operators are
semibounded. Indeed, as we shall see in detail later,
proach ~iii ! sets up again properties~a!–~d! above. Obvi-
ously, its effective usefulness depends on the existence
suitable functionf (D). Hill and Krauthauser have show
recently@8# that a choice forf (D) particularly advantageou
is the function (D2r)21, wherer is a real number not be
longing to the spectrum ofD. In Ref. @8# one can find an
investigation of approach~iii ! employing such a function a
well as a preliminary numerical test on the Dirac hydrog
atom. Among the advantages of choosing the funct
(D2r)21, Hill and Krauthauser point out and illustrate@Eq.
~9! in @8## the remarkable possibility of determining, in a
dition to upper bounds to the eigenvalues ofD, lower bounds
as well. A comment is now in order. The idea of employi
approach~iii ! with the choicef (D)5(D2r)21 as a tech-
nique for avoiding variational collapse appears in Ref.@8#.
However, it is nothing but a special application of th
Lehmann-Maehly~LM ! method, i.e., the method that Leh
mann and Maehly@11# introduced as a general procedure f
determining rigorous upper and lower bounds to the eig
values of a given self-adjoint operator not necessarily se
bounded. Thus, for matters of a historical nature, we s
keep on calling here ‘‘LM method’’ approach~iii ! with the
choice f (D)5(D2r)21. It should be observed that anoth
method for avoiding the variational collapse has been
cently proposed as well@12#. This second method is nothin
but the application of certain formulas, shown by Kato@13#
almost half a century ago, for determining rigorous upp
and lower bounds to the eigenvalues of a given oper
satisfying once more the hypothesis of being self-adjoint
not necessarily semibounded. In the present paper, we
call ‘‘Kato method’’ both Kato’s formulas@13# as well as
s
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their employment for avoiding the variational collapse. A
though the Kato method, as we shall see, presents close
nections with the LM method, it has different properties a
cannot be classified in any of the three categories above
particular, contrary to the LM method, it does not set
again the previously mentioned properties~a!–~d!. More im-
portant is that the Kato method is capable of yielding rig
ous upper bounds to relativistic energies, thereby overc
ing the worst disease of variational collapse. The possibi
then of the Kato method providing lower bounds as well
an element of further interest. These considerations as
as the encouraging preliminary investigations in Refs.@8,12#
have motivated the present paper, whose main aim is a
ther investigation of both the LM method and the Ka
method as techniques for avoiding variational collapse. T
paper is organized as follows: In Sec. II we describe
mathematical foundation of the two methods, in Sec. III
present a numerical application of each of them to the Di
equation for the hydrogen atom in uniform magnetic field
and in Sec. IV we compare their performances and disc
the numerical results obtained.

II. METHODS

As we said, the LM method and the Kato method are t
techniques for determining rigorous upper and lower bou
to the eigenvalues of a given self-adjoint operator not nec
sarily semibounded. In the present section we show c
cisely and without any proof the mathematical foundation
the two methods. Proofs and a more detailed description
be found in@2# and in references therein.

A. The Lehmann-Maehly method

Let H be a complex separable Hilbert space, with sca
product and norm denoted by^u& and i•i , respectively. Let
H be a self-adjoint operator inH, satisfying the only hypoth-
esis that at least a part of its spectrum is purely discrete. T
part of spectrum is thus made up only of finitely or infinite
many eigenvalues

•••<E2n21<E2n<•••<E21<E0<E1<•••<En<En11

<•••, ~1!

each of finite multiplicity.
Consider the operator (H2r)21, where

Ek,r,Ek11 , k50,61, . . . . ~2!

This operator@10# is bounded, self-adjoint, and, in corre
spondence with the eigenvalues~1!, presents the purely dis
crete spectrum

lk<lk21<•••,0,•••<lk12<lk11 , ~3!

where

l i5~Ei2r!21, i 5k,k21, . . . ,k12,k11. ~4!

The application of the RR method to the operator (H2r)21

is thus perfectly legitimate. Henceforth, we shall denote
corresponding RR eigenvalues b
l i

N ,i 5k,k21, . . . , k12,k11, whereN is the dimension
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1242 56P. FALSAPERLA, G. FONTE, AND J. Z. CHEN
of the subspace employed. Owing to the spectrum~3! and if
N is big enough, one finds~counting multiplicity! r N nega-
tive RR eigenvalues

lk
N<lk21

N <•••<lk2r N11
N

,0 ~5!

andsN positive RR eigenvalues

0,lk1sN
N <•••<lk12

N <lk11
N . ~6!

Applying now the Poincare´ theorem@see property~b! in the
Introduction and also Ref.@3#! and making use of Eq.~4! and
inequalities~5! and ~6!, one gets immediately

Ek>
1

lk
N 1r, Ek21>

1

lk21
N 1r, . . .

Ek2r N11>
1

lk2r N11
N 1r ~7!

and

Ek11<
1

lk11
N 1r, Ek12<

1

lk12
N 1r, . . .

Ek1sN<
1

lk1sN
N 1r. ~8!

In other words, applying in a subspace suitably large the
method to the operator (H2r)21, with a parameterr satis-
fying condition ~2! with a given indexk, we can get lower
bounds for the r N exact eigenvalues ofH, Ei,r,
i 5k,k21, . . .k2r N11, and upper bounds for thesN exact
eigenvalues ofH, Ej.r, j 5k11,k12, . . .k1sN. Thus,
with two choices ofr, sayr1 ,r2, each satisfying a condition
~2! with a different value of the indexk, we can obtain, ifN
is big enough, both upper and lower bounds for all the
genvalues ofH belonging to the interval (r1 ,r2).

The practical application of the LM method presen
however, two difficulties: calculating the matrix elements
the inverse of (H2r) and choosing a suitable parameterr.
A remedy for the first difficulty is employing@8,11# as basis
set the vectors

f̃ i5~H2r!f i , i 51,2, . . . ,N, ~9!

where$f i% i 51
N are vectors ofD(H) linearly independent bu

not necessarily orthonormal. The original RR method for
operator (H2r)21 in fact becomes@2#, in the basis~9!, the
generalized eigenvalue problem

~H2r!NcN5lN~H2r!N
2 cN, ~10!

where (H2r)N and (H2r)N
2 are the N3N matrices

$^f i u(H2r)f j&% i , j 51
N and $^f i u(H2r)2f j&% i , j 51

N , respec-
tively. Thus the presence of the operator (H2r)21 is
avoided and we have to deal only with the more tracta
operator (H2r)2. The second difficulty, as we shall discu
in Sec. IV, can be serious in some situations. For the mom
we observe that by varyingr in a given interval (Ek ,Ek11),
R

i-

,
f

e

le

nt

k50,61, . . . , thelower bounds~7! improve asr→Ek11,
whereas the upper bounds~8! improve asr→Ek .

B. The Kato method

In comparison with the LM method, the Kato metho
follows a very different approach. It applies essentially e
ments of spectral theory to determine accurate intervals
contain points of the spectrum of a given self-adjoint ope
tor H not necessarily semibounded. Given a vectorc
PD(H) (ici51), let us compute the quantitie
^H&5^cuHc& and D5(^H2&2^H&2)1/2. Then the half-
closed interval

~^H&2D,^H&1D#

contains at least a point of the spectrum ofH ~Weinstein’s
formula!. Now assume that we are able to determine an o
interval (a,b) containing an eigenvalue~sayEk) as a unique
point of the spectrum ofH and consider the conditions

^H&,b, j[^H&2
D2

b2^H&
.a ~11!

and

^H&.a, z[^H&1
D2

^H&2a
,b. ~12!

Then, if c satisfies condition~11! we havej<Ek,b, if c
satisfies condition~12! we havea,Ek<z, and if c satisfies
both conditions~11! and ~12! we get

j<Ek<z ~13!

~Kato’s formula!. In other words, if one knows rough bound
to Ek , one can determine some others that are more accu
Formula~13! turns out to be scarcely precise if the spect
region that one is interested in presents eigenvalues tha
densely crowded. In this case, the following generalizat
of formula ~13! can be shown@13#. Suppose that the interva
(a,b) containsm eigenvalues, sayE1<E2<•••<Em , but
no further point of the spectrum ofH. Choosem orthonor-
mal vectorsc̃1 ,c̃2 , . . . c̃m such that the matrix̂c̃ i uHc̃ j& is
diagonal, i.e.,̂ c̃ i uHc̃ j&5^H&c̃ i

d i j , i , j 51,2, . . .m and such
that

a,^H&c̃1
<^H&c̃2

<•••<^H&c̃m
,b.

Then

^H&c̃k
2(

i 5k

m Dc̃ i

2

b2^H&c̃ i

<Ek<^H&c̃k
1(

i 51

k Dc̃ i

2

^H&c̃ i
2a

,

k51,2, . . .m, ~14!

where Dc̃ i

2
5(^H2&c̃ i

2^H&c̃ i

2 ) ~the generalized Kato for-

mula!. It should be observed that the quantityD2 ~mean-
square energy deviation! permits also estimates of the erro
in theH norm of any approximate eigenvectorc (ici51).
Confining ourselves to the case where the interval (a,b) con-
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56 1243TWO METHODS FOR SOLVING THE DIRAC EQUATION . . .
tains the sole nondegenerate eigenvalueEk as a unique point
of the spectrum ofH, denoting byck (icki51) the exact
eigenvector associated withEk , and supposing thatc satis-
fies conditions~11! and ~12!, one can indeed show@2,13#

ic2cki<~222A12s2!1/2[S, ~15!

where

s25$@^H&2~a1b!/2#21D2%/@~b2a!/2#2.

More accurate estimates~15! can be obtained if eithe
z<(a1b)/2 or j>(a1b)/2, in correspondence with the fo
lowing values ofs2:

s25H D2/@~^H&2a!21D2#, z<~a1b!/2

D2/@~b2^H&!21D2#, j>~a1b!/2.

Formulas~13! and~14! show that the application of the Kat
method presents problems similar to those in the L
method, i.e., a preliminary rough knowledge of the spectr
that one is interested in and the evaluation of the ma
elements ofH2. Although the LM method and the Kat
method seem at first sight to have nothing in common
more accurate analysis reveals a close connection betw
them. To see that, we note first that pointsa and b in in-
equalities~11! and~12! do not belong to the spectrum ofH;
thus they can be also regarded as special pointsr satisfying
conditions~2!. Now, set in inequalities~11! and ~12! a5r1

and b5r2. Denote byHr2

N the subspace spanned by theN

vectors~9!, with r5r2, and suppose that there exists a ve
tor cPHr2

N satisfying inequalities~11!, i.e., such that the

Kato lower boundj(r2 ,c) to Ek exists. Then there exist
also @2# a corresponding LM lower bound, which is the o
timal value ofj(r2 ,c) asc is varied onHr2

N . Analogously,

if there exists a vectorcPHr1

N satisfying inequalities~12!,

there exists consequently a LM upper bound toEk , which
represents the optimization of the Kato upper boundz(r1 ,c)
asc is varied onHr1

N .

III. APPLICATION OF THE LEHMANN-MAEHLY
AND KATO METHODS

In this section we describe the application of the L
method and the Kato method to the Dirac equation for
hydrogen atom in uniform magnetic fields. Such a choice
been motivated by the importance that the problem of
hydrogen atom in uniform magnetic fields has taken on
the past 25 years, as well as by the fact that this problem
been investigated so far mainly within a nonrelativis
framework. Accurate relativistic calculations have appea
indeed only a few years ago in a paper by Chen and G
man @7#.

The Dirac Hamiltonian~in atomic units! for a hydrogen
atom, with a point nucleus fixed in the origin, placed in
uniform magnetic fieldBW 5Bẑ is

HD5caW •S pW 1
AW

c
D 1bc22

1

r
, ~16!
x

a
en

-

e
s
e
n
as

d
d-

whereaW and b are the usual 434 Dirac matrices andAW 5
1
2Bẑ3rW. The magnetic fieldB is here measured in units o
(e/\)3me

2c.2.353109 G.
The Hamiltonian~16! is self-adjoint@9#; thus it satisfies

the main property that both the LM method and the Ka
method require. In order to apply these methods it is the
fore enough to introduce a proper basis set$f i% i 50

N . Before
we specify this set, it should be observed@see Eqs.~9! and
~10!# that a basis set is necessary for the LM meth
whereas it is not for the Kato method. The latter in fact nee
an approximate eigenfunctionc @formula ~13!# or approxi-
mate eigenfunctionsc̃1 , . . . c̃m @formula ~14!# as starting
points, but it does not require that these approximations
of variational nature. In the present paper, however, we
terminec andc̃1 , . . . ,c̃m in the Kato method variationally
i.e., by applying the RR method directly toHD and choosing
then asc,c̃1 , . . . ,c̃m certain eigenfunctions ofHN

D ~the ma-
trix representation ofHD in an N-dimensional subspac
@14#!. The basis set employed by us in the present pape
the same as the one in Refs.@7,12#, i.e.,

fnlh
~h!~r ,u,w!5r g211ne2lr 2mr 2sin2u

3~cosu! l h2umhu~sinu! umhueimhwvh , ~17!

n50,1,2,. . . ,Nr , h51,2,3,4,

wherer ,u,w are spherical coordinates;g5Ak22a2, with k
being the Dirac quantum number anda the fine-structure
constant;mh5 j z2nh/2 , with n15n351, n25n4521 and
j z being the eigenvalue of thez componentJz of the total
angular momentum;l and m are nonlinear variational pa
rameters, andvh is the four-component spin function. Th
quantity l h takes on values greater than or equal toumhu,
which are even numbers up to 2Nu for even- ~odd-! parity
states andh51,2 (h53,4) and odd numbers up to 2Nu11
for odd- ~even-! parity states andh51,2 (h53,4). Thus the
total number of the vectors employed, i.e., the dimensionN
of the subspace, is

N5~Nr11!~4Nu13!. ~18!

The structure of the basis~17! corresponds chiefly to the
following: Considering thatHD commutates with the opera
tor Jz and with the parity operator, the basis~17! gives rise
~with the rules above for the values taken on bymh and l h)
to eigenfunctions of these two operators, it reproduces
exact solutions of the Dirac equation in the two extrem
situationsZ 51, B50 and Z50, B.0 (Z is the atomic
number!, and it satisfies the boundary condition atr→0 and
` and has the correct nonrelativistic limit. As we said,
difficulty in applying both the LM method@see Eq.~10!# and
the Kato method@see formulas~13! and ~14!# is that in ad-
dition to the matrix elements ofHD one needs also those o
(HD)2. In our case, however, the matrix elements of the
two operators in the basis~17! can be expressed in terms o
a general integral that can always be evaluated numeric
Details about that can be found in Refs.@7,12#. It should also
be observed that the basis~17! is not orthonormal. Its or-
thonormalization, as we said@see Eq.~9!#, is not strictly
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required by the LM method, but it turns out to be convenie
in the Kato method. Thus, in practice, we first orthonorm
ize the set~17! and then we employ the orthonormalize
vectors, say$f i

(h)8%, as vectors$f i% in Eq. ~9! to apply the
LM method and as a basis set as well to apply the
method toHD, i.e., to apply the Kato method. The matr
elements ofHD and (HD)2 with respect to the vector
$f i

(h)8%, which thus appear in Eq.~10!, are then obtained
from those in the basis~17! by linear transformations. A
disadvantage of the basis~17! is that it presents problems o
near linear dependence; thus, in practice, one cannot u
dimensionN greater than;280. This reduced dimensio
limits in some cases the precision of our results; howeve
is quite sufficient to investigate the performance of the L
method and the Kato method as tools for avoiding variatio
collapse. This investigation is indeed the primary goal of
present paper.

IV. RESULTS AND DISCUSSION

According to the analysis of Sec. II, we expect that bo
the LM method and the Kato method yield useful upper a
lower bounds to the eigenvalues of the Dirac Hamilton
~16!. However, we should also expect that all the remarka
properties~a!–~d! of the RR method in the Introduction con

FIG. 1. LM upper bound and LM lower bound to the relativist
binding energy of the first excited statej z

P5
1
2

1 of the hydrogen
atom in the uniform magnetic fieldB50.1, plotted against the non
linear parametersl,m in the basis~17!. The dimension of the sub
space employed isN528, with @see Eq.~18!# Nr53 andNu51.

FIG. 2. Kato upper bound and Kato lower bound to the rela
istic ground-state binding energy of the hydrogen atom in the m
netic field B520, plotted against the nonlinear parametersl,m in
the basis~17!. The dimension of the subspace employed isN59,
with Nr52 andNu50.
t
-

R

a

it

l
e

d
n
le

tinue to hold in the LM method but they do not in the Ka
method. The former, in fact, is nothing but the RR meth
applied to the bounded self-adjoint operator (HD2r)21,
whereas the latter is founded on spectral theory and thu
has nothing to do with the RR method. Figures 1, 2, an
illustrate the behavior of the LM bounds, the Kato boun
and the variational approximations, respectively, as a fu
tion of the nonlinear parametersl,m in the basis~17!. We
can see that both LM bounds and Kato bounds alw
bracket the exact binding energy and moreover have ex
mum properties. These facts in particular give us a relia
and easy way to optimize the parametersl andm. The varia-
tional approximation, on the contrary, shows a minimum t
has no physical meaning but, even worse, takes on va
both bigger and smaller than the exact binding energy. F
ures 4, 5, and 6 illustrate the behavior of the LM bounds,
Kato bounds, and the variational approximations, resp
tively, as a function of the total numberN of the basis vec-
tors employed. In particular, Fig. 4 shows the remarka
monotonic behavior of the LM bounds as a function ofN
@property ~c! in the Introduction#, whereas Figs. 5 and
6 show that this is not a property of either the Kato meth

-
g-

FIG. 3. Variational approximation for the relativistic ground
state binding energy of the hydrogen atom in the magnetic fi
B51, plotted against the nonlinear parametersl,m. The dimension
of the subspace employed isN53, with Nr50 and Nu50. The
reference horizontal plane represents the ‘‘exact’’ binding ener
i.e., that determined by LM bounds.

FIG. 4. LM upper bound and LM lower bound to the relativist
binding energy of the same state as in Fig. 1, as a function of
basis sizeN.
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56 1245TWO METHODS FOR SOLVING THE DIRAC EQUATION . . .
or the variational approximations. Notice, however, that
Kato bounds remain in any case rigorous upper and lo
bounds to the exact energy, while the value of the variatio
approximation oscillates around it. Tables I–III show the d
gree of accuracy that one can obtain by employing either
LM method or the Kato method. We can see that the L
results are in general much more accurate than the K

FIG. 5. Kato upper bound and Kato lower bound to the rela
istic binding energy of the same state as in Fig. 3, as a functio
the basis sizeN.
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to

ones. This different performance depends on the fact that
LM eigenfunctions calculated by us are much more prec
than the variational ones, which we employ as trial wa
functions in the Kato method@see error estimatesS l

u(LM)
andS(K) in Tables I and II#. Although the RR method ap
plied directly toHD does not yield, in general, very accura
eigenfunctions and presents all the defects outlined in

-
of

FIG. 6. Variational approximation for the relativistic bindin
energy of the same state as in Figs. 3 and 5, as a function o
basis sizeN.
nc-
e total
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re not
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TABLE I. Relativistic ground-state binding energies@17# and error estimates of the associated eigenfu
tions of the hydrogen atom in intense magnetic fields, in subspaces of given parity and projection of th
angular momentumJz . ColumnB, values of the magnetic field; columnP, parity; columnNr ,Nu ,values of
Nr andNu @see Eq.~18!#; column j z , eigenvalues ofJz ; column2El

u~LM !, upper bounds~upper rows! and
lower bounds~lower rows! on the binding energies calculated by method; columnS l

u~LM !, error estimates
@see Eq.~15!# of the eigenfunctions obtained by the LM method, where the upper~lower! rows are the
estimates relative to the eigenfunctions corresponding to the upper~lower! bounds; column2El

u(K!, upper
bounds~upper rows! and lower bounds~lower rows! on the binding energies calculated by the Kato meth
columnS(K!, error estimates of the variational eigenfunctions employed in the Kato method; column2EN,
variational approximations. Notice that coincident digits in a given pair of upper and lower bounds a
reported in the lower-bound row. Blank spaces in column2El

u(K! mean that either no value for thes
quantities can be given or a value exists but it represents a bad estimate.

B P Nr ,Nu j z 2El
u~LM ! S l

u~LM ! 2El
u(K) S(K) 2EN

10 1 9,4 21/2 1.747800687 3.831025 1.747800304 1.231023 1.747800687
8 3.931025 2869

20 1 11,5 21/2 2.21540045 2.131023 2.21539 1.531021 2.21540091
317 3.831023 6229

500 1 9,4 21/2 6.2570305 3.331023 6.22791 8.731022 6.2570326
581 3.231023 7532

10 2 9,4 23/2 1.12542203 2.531024 1.12542119 5.231023 1.12542203
4 6.731024 3626

100 2 9,4 23/2 2.63475382 1.431023 2.634414 2.431022 2.63475394
584 1.131023 5981

10 2 9,4 21/2 0.38266318 1.731023 1.2 0.38266316
38 1.231023
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TABLE II. Relativistic binding energies and eigenfunction error estimates for the first five s

j z
P52

1
2

1 of the hydrogen atom in the magnetic fieldB50.1. ColumnsNr ,Nu , 2El
u~LM !, S l

u~LM !,
2El

u(K!, S(K!, and 2EN are as in Table I. ColumndE, relativistic correctionsdE5(ER2ENR)/uENRu,
whereER ~relativistic energy! is determined by the LM bounds in this table, whereasENR ~nonrelativistic
energy! is determined by the Kato bounds according to Ref.@18#. Blank spaces in columns2El

u(K!, S(K!,
andd(E) have the same meaning as in Table I.

Nr Nu 2El
u~LM ! S l

u~LM ! 2El
u(K) S~K! 2EN dE

6,3 0.54753240833 9.831026 0.5475323991 8.431024 0.54753240834 21.0831025

5 7.031026 6586

9,4 0.1480917386 3.231025 0.0246 0.1480917386 21.7431025

7 2.931025 0.7858

9,4 0.074938688 1.531025 0.074624 4.331021 0.074938689 28.7531026

99 9.731024 9189

9,4 0.04356687 3.931023 0.02562 0.04356687
92 2.931023 7851

8,4 0.0280747 9.431022 0.0280748
94 3.231022
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Introduction, instead it yields in our case very accurate
genvalues. Our variational approximations, in fact, have
same order of accuracy as the LM bounds. This, howeve
not an advantage of the usual variational method in itself,
it depends only on the fact that we employ basis vect
carefully chosen@7# and with nonlinear parametersl,m op-
timized by minimizingEu~LM ! . As we said, the application
of the two methods investigated here has a price: the ca
lation of matrix elements of (HD)2 and a preliminary rough
knowledge of the spectrum that one is interested in. T
price indeed is well rewarded because after all we can c
pute at the same time upper and lower bounds as wel
should be observed that the Kato method needs a more
tailed preliminary knowledge of the spectrum. The Ka
method, in fact, requires the determination of an inter
(a,b) for each isolated eigenvalue or for each group of i
lated eigenvalues; the LM method, on the contrary, requ
only the determination of two parametersr1,r2, not be-
longing to the spectrum ofHD, for all the eigenvalues inside
the interval (r1 ,r2). In the present paper we have chosen
r1 suitable upper bounds to2c2 and asr2 a value lying in
the interval@Eu~LM ! ,El~LM ! s11], whereEu~LM !s is a LM
upper bound to a given eigenvalueEs and El~LM !s11 is a
LM lower bound to the eigenvalueEs11, whereas asa andb
we have chosen two suitable LM bounds@15#. The choice
above forr2 reveals a difficulty of the LM method. Whe
the distance ofr2 either fromEu~LM !s or from El~LM !s11

goes to zero, the matrix (HD2r2)N
2 , which appears in Eq

~10!, becomes singular. Thus, as the density of eigenva
increases, a higher and higher numerical accuracy is requ
to compute matrix elements of (HD2r2)2 and the algorithm
for solving Eq.~10! employed here, which needs the inve
sion of the matrix (HD2r2)2, shows a decreasing perfo
mance. As a consequence, our LM upper bounds, which
i-
e
is
ut
s

u-

is
-

It
e-

l
-
s

s
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ed

re

determined by Eq.~10! with r5r1 (r1 is far from the spec-
trum!, have a numerical accuracy of order two to three dig
higher than our LM lower bounds, which are determined
Eq. ~10! with r5r2 (r2 is close to the spectrum!. This effect
is evident in Table III, whose results are relative to dens
crowded eigenvalues. In column2El

u~LM !, except for a few
cases, we report in fact for each eigenvalue a single appr
mation, representing the numerically correct digits in t
lower bound, which are thus always coincident with the c
responding digits of the more accurate upper bound. I
worthwhile observing that our results in Tables I–III ha
not only a demonstrative purpose, but are also interestin
themselves. In particular, the results in Table III, obtained
the LM method, represent an example of a rigorous com
tation of an extended series of relativistic excited states
criticism of these results might be that we have confin
ourselves to a weak magnetic field and to states not
tremely excited. We believe that the LM method can be
plied successfully also in these cases. The limits of our
sults, in fact, do not depend on the LM method in itself b
rather on the particular basis employed. The basis~17! in-
deed is not very adaptable to increasing effective magn
interactions in the case of excited states and presents, a
said, the problem of a near linear dependence. The con
sion of our investigation thus is that the LM method is
general a very satisfactory solution of all the diseases of
variational collapse. It indeed reestablishes all the fami
features of the nonrelativistic variational calculations.

~i! It does not give rise to any spurious states.
~ii ! It provides rigorous upper and lower bounds to re

tivistic binding energies and very accurate approxim
eigenfunctions as well.

~iii ! The bounds have extremum properties with respec
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TABLE III. Specimen of relativistic binding energies from the first 42 statesj z
P52

1
2

1 of the hydrogen
atom in the magnetic fieldB52.531025. Column i , indices numbering the states according to decreas
binding energy, columnsNr ,Nu , 2El

u~LM !, 2El
u(K), 2EN, anddE are as in Table II. A single value in

columns2El
u~LM ! and2El

u(K) means that the corresponding upper and lower bounds coincide within
accuracy of the digits given. Blank spaces in column2El

u(K) have the same meaning as in Table I.

i Nr ,Nu 2El
u~LM ! 2El

u(K) 2EN dE

1 1,0 0.50001915621 0.50001915621 0.50001915621 21.3331025

2 2,0 0.12501457794 0.12501457794 0.12501457794 21.6631025

3 3,1 0.05556878438 0.05556878 0.05556878438 21.3131025

9 7363

6 4,1 0.0312628049 0.031262801 0.0312628049 21.0131025

8453

9 5,2 0.0200126092 0.02001246 0.0200126092 26.3431026

3420

14 6,2 0.0139014009 0.0138995 0.0139014009 23.4531026

10 9769

19 7,3 0.010216549 0.010182 0.010216549 22.0831026

1187

26 8,3 0.007824929 0.00775 0.007824929 21.7231026

1053

33 9,4 0.006185229 0.006185229 21.4431026

42 10,5 0.005012340 0.005012340 21.2431026
vi
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the nonlinear variational parameters and monotonic beha
with respect to the linear ones@property~c! in the Introduc-
tion# and satisfy moreover the Poincare´ theorem@property
~b! in the Introduction#.

~iv! Conditions for the analytical convergence of the
bounds as well as of the corresponding eigenfunctions@prop-
erty ~d! in the Introduction# can also be established by
straightforward application of well-known results@16# about
the convergence of the traditional RR method.

The Kato method shares with the LM method the adv
tage of providing rigorous upper and lower bounds to re
tivistic binding energies; however, these bounds do not v
monotonically asN increases, nor is it easy to establish co
-

ro
or
or

-
-

ry
-

ditions for their analytical convergence. A peculiarity of th
Kato method is that it does not prescribe any procedure
determining the trial wave functionc. In a certain sense, thi
fact makes the Kato method more general because it ca
applied equally well in the case when one has at one’s
posal an accurate approximate eigenfunction that, howe
is not a variational one.
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