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Quantum copying: Fundamental inequalities

M. Hillery ! and V. Buzk?
!Department of Physics and Astronomy, Hunter College, CUNY, 695 Park Avenue, New York, New York 10021
2Optics Section, The Blackett Laboratory, Imperial College, London SW7 2BZ, England
(Received 23 October 1996; revised manuscript received 22 April)1997

How well can one copy an arbitrary qubit? To answer this question we consider two arbitrary vectors in a
two-dimensional state space and an abstract copying transformation which will copy these two vectors. If the
vectors are orthogonal, then perfect copies can be made. If they are not, then errors will be introduced. The size
of the error depends on the inner product of the two original vectors. We derive a lower bound for the amount
of noise induced by quantum copying. We examine both copying transformations which produce one copy and
transformations which produce many, and show that the quality of each copy decreases as the number of copies
increases[S1050-2947@7)05908-9

PACS numbd(s): 03.65.Bz

I. INTRODUCTION perform copying a singlarbitrary qubit[9]. The copier pro-
posed in Wootters and Zurek’s pap&t on quantum cloning

One of the greatest differences between classical andopies two orthogonal states perfectly but introduces errors
quantum information is that while classical information canwhen superpositions of these states are copied. A second
be copied perfectly, quantum cannot. In particular, we cannogopying machine, which we called the universal quantum-
create a duplicate of aarbitrary quantum bit(qubit) [1] ~ copying machine, copies all input states to the same accu-
without destroying the original. This follows from theo-  racy, and, on average, its performance is much better than
cloning theorenof Wootters and Zurek2] (see alsd3,4]).  that of the Wootters-Zurek machine. Here we would like to
There are many consequences of this theorem. For examplestablish some fundamental limits on how well quantum
if one has a string of qubits which one would like to processstates can be copied by considering the following problem.
in more than one way, it represents a serious limitation. WithSuppose we have two arbitrary vectors in a Hilbert space and
a string of classical bits, one could simply copy the stringwe want to build a machine which will copy these two vec-
and process the original one way and the copy anothetfors. How well can we do? If the vectors are orthogonal, then
Quantum mechanically this is impossible. On the other handperfect copies can be made. If they are not, then, as we shall
the fact that information cannot be copied is sometimes aghow, errors will be introduced. The amount of error depends
advantage. One can view the impossibility of quantum copy©n the inner product of the two original vectors. This prob-
ing as one of the main reasons why quantum cryptographigm is relevant to the global problem of copying an arbitrary
works. In a quantum cryptographic systéB 6] qubits are  qubit. If one has a lower bound for the amount of noise
exchanged between a sendalice) and a receivetBob) in which must be introduced for the two-state problem, then the
such a way that the presence of an eavesdrofthe) can be ~ best one can do in the general case is the maximum of this
detected. If quantum copying were possible the eavesdropp&wer bound over all pairs of states. Thus we can get a lower
could simply copy the qubits which Alice is sending to Bob, bound for the amount of noise induced by a quantum-
and they would not be able to detect this procedure. Thi§opying machine.
would leave the eavesdropper with a perfect record of their The approach which we use here has the advantage that it

communication. The fact that quantum information canno@llows us to consider more general problems than simply
be copied rules out this possibility. producing a single copy of an arbitrary qubit. We are able to

Even though one cannot copy quantum information per.ﬁnd a lower bound for the noise which is introduced wimen
fectly, it is useful to know how well one can do. One would copies of a qubit are produced simultaneously, and determine
like to know to what extent it is possible to split the infor- how the noise depends an In addition, even though our
mation in a given qubit among several others. In addition, ifdiscussion is phrased in terms of qubits, which are two-level
it is possible to make close to perfect copies, quantum crypsystems, our results are more general; the limitations we find
tographic schemes could still be at rigKk. Finally, quantum  0On quantum copying apply to systems of arbitrary dimension,
copying can become essential in storage and retrieval of ifPecause our arguments are completely independent of the
formation in quantum computef8s]. dimension of the Hilbert space in which the vectors to be

In our previous paper we examined several possiblg€opied lie. Therefore, if one is trying to copy anlevel

quantum-copying machinksand studied how they would system, for example, several qubits in an entangled state,
then the amount of noise introduced by the copying process

must be greater than the lower bounds which are given here.

In what follows we will use a “copying machine” for a particu-
Iar unitar_y trgnsfgrmation applied_ to th_e original particlg. We do Il. TWO-STATE PROBLEM
this keeping in mind that the copying unitary transformations under
consideration can be realized in terms of a sequence of logical Suppose we have two states), and|s,),, in a two-
gates. dimensional state space which we would like to copy. If the
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initial state of the copying machine |Q),, then the action IT1=[712(1— |z|4)]1’2. (2.10

of the copying machine on our two vectors can be expressed

as Similarly, if we expressI'y)apy as
|sj>a|Q>x_>|\Pj>abx:|Sj>a|5j>b|Qj>x+|q)j>abXa (2.1 |F2>abx: P1|F2>abx+|ré>ab><1 (2.11

wherej=1,2. In our analysis we do not specify tiestate  where|T'5)ap,= (I — P1)|T2)anx, We find
of the copy mode(this possible eavesdropper's mode we
denote as thb mode. We only require that it is the same for TS =1 21— |2|*)]Y2 (2.12
all inputs into thea mode, and that it is normalized to unity.
In Eq. (2.1) we have expressed the full output state of theBecausePy|®;),p,=0 we have that
copying machine as the sum of two parts, the first represenrf- (DT 1) and = | Pl T Dand < ITL- 1 5]
abxi apx abxl =

ing the ideal output state and the second what is left overabx
The two parts can be expressed in terms of the projection =(1— 5" pi(1-12% 712 (.13
onto the two mode stats;),|s;), as
and similarly
|Fj>abe|Sj>a|sj>b|Qj>x: Pj|\I’j>abx; (2-2) N a2
|abx<(pllr2>abx|s(1_7]11) 2[7722(1_|Z| )1
|q)>abe(| - Pj)llp>abxv (2-3) (2.14)
where the projector®; are defined as We can now take these results and insert them into Eq.
Is)(s ) 1s)(si) 2.4 (2.7). This gives us
Pi=(]5i)(Si|)a® (|Si){Si|)p - 2.4
i i/\>jla (TASY
. L |2 <[2|? 91d + (1= 910 Y1 = mpp) Y2+ (1|22
This definition implies that " Vol 1 y
) X[ 71— 722"+ 51— 71" (2.19
abx<Fj|q)j>abx:0; =12 (2.9

For a given value ofz| this inequality restricts the values of

In addition we also assume that the initial quantum-copying|Q,||, [|Q,|l, and| 715 =[({Q|Q,)|. It defines a region in a
machine state is normalized to unity, i.(Q[Q)x=1. In  three-dimensional parametric space in which the values of
order to produce good copies we want to make the normge parameters can lie. F¢z|#0 this region does not in-
Q4 and[|Q| as large as possible angi| and [®,l,  clude the line||Q,|=]Q,|=1 which implies that perfect
which represent the size of the errors, as small as possiblgopying is impossible. It is only fotz|=0, i.e.,|s;) and
The norm of the state vectolA) is defined as |s,) are mutually orthogonal, that we can have
IA]=((AIA) Y2 |Q1ll=]/Q,||=1 which implies error-free copying.

The copying machine can be represented as a unitary op- |n order to simplify these results we use the Schwarz in-
erator and this unitarity imposes constraints on the transforequality from which it follows that:
mations shown in Eqg2.1). In particular, we have that

. | 712 <[1QulllQzll = (911720 (2.16
1=]Q 2+ @y, j=1.2 9 , | |
This last inequality allows us to rewrite the right-hand side
and of the relation(2.19 in terms of only two parameters;;;
2 and 7,,. It is useful to express the resulting inequality in
2=723(Q1|Q2)x+ abx{ T 1| P2) abxt abxd P1IT 2) abx terms of the size of the errors. We introduce the quantities
— 1/2_ H—- H H
+ o @1/ P2 anxs @7  X=1-n) =|@;| (for j=1,2) which are associated

with the amount of noise induced by copying the vectors
wherez= 4(s1|s,),. We note that in derivation of Eq2.7) |sj)a. In particular, the smalleK; and X, are the better is
we have utilized the fact that the-stateof the copy mode is  the copying procedure, and in the limit—0 two perfect
normalized to unity. From these equations it is possible taopies|s;), and|s;), of the initial statds;), are obtained at
derive a number of inequalities which restrict the behavior ofthe output of the copying machine. If we now express the
the copying machine. We shall begin with the strongest reinequality which follows from Eqgs(2.195 and (2.16 in
striction, which is relatively difficult to work with, and then terms ofX; andX,, we have
we proceed to weaker ones which are more transparent.

Let us first find an upper bound dgu(T'1|®)and and |2|<[2]2(1= X)) VA1 = X) >+ X Xo+ (1~ 2 H M2
|abx<q)l|r2>abx|' We begln by expressmkfﬁabx as X[(l—X§)1/2X2+(1—X§)1/2X1]. (217)
IT' 1) abx= P2l 1) abx [T 1) abx 2.9

It is easier to understand the implications of E217) if we
look at particular cases.

(A) Let us first suppose that,=||®,]|=0, i.e.,|s;) is
copied perfectly, which implies thatQ,||=1. From Eq.
1= 1112+ T 117, 29 (217 we find

where|T' 1) apx= (I = P2)|T'1)abx- The two states on the right-
hand side of Eq(2.8) are orthogonal which implies that

where 7;; = (Qi|Q;)«, so that |Z|<|2|2(1 = X3) Y2+ (12|25, (2.18
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which in turn implies that

Xo=|2|(1- 12V (1+]2) Y= |2]].  (2.19
Therefore, if|s;) is copied perfectly, thefid,|, which rep-
resents the size of the error made in copyfisig, must beat
leastas large as the right-hand side of Eg.19. For small

|z| the right-hand side of this inequality is approximately
|z|. We note that the maximum value of the lower bound on

the errorX, given by the right-hand side of Eq2.19 is
equal to (2/27Y?=0.272 and is obtained for|z|
=1/{/3=0.577.

(B) Let us now consider the casg=X,=X, i.e., equal
errors in both copies. Making use of BG.17) we then have
that

|Z|<]z]2(1=X?) + X2+ 2X[(1- 21 (1-X)]"% (220
which implies that
[ oyl
x>[1—2} , (2.21)
rs

where

ri=2+3|z|+2|2)%>+|z3;

r,=1+3|z|+3|z|2+4|z]>+3|z|*+|2|°+|75; (2.22

rs=5+5|z|+3|z|?+3|z3.

For |z| small the right-hand side is approximatei/2. If
both vectors are copied equally well, then there is a mini
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X1+ X=2{[1+]|2](1—|2])1¥?-1}. (3.5

A general quantum-copying machine will have to copy
pairs of vectors with all values df|. In particular, it will
have to copy two vectors for whiclz| = 1/2, a value which
maximizes the right-hand side of E.5). For such a pair
of vectors we have
For this to be true, it must be the case that either
X;=(\/5—2)/2 or X,=(/6—2)/2. This means, that for a
general quantum-copying machine one has to expect that for
at least one vector the size of the copying error is
(\/5—2)/2=0.118.

These considerations are closely related to recent work by
Fuchs and Perd4.0]. They considered the tradeoff between
disturbance and information acquisition in quantum cryptog-
raphy. Alice sends a qubit to Bob, but in between, it is in-
tercepted by Eve. She allows it to interact with another qubit
and sends the original on to Bob. Eve wants to disturb the
qubit she sends to Bob as little as possible, yet have the qubit
she keeps contain as much information about the qubit Alice
sent as possible. Fuchs and Peres found a relation between
the discrepancy rate for Bofdlisturbancg and the mutual
information (Eve’s information gaiin In our case we con-
sider an interaction which produces copies. That is Eve puts
into the copying machine her qubit and Alice’s qubit and
what emerges are, she hopes, two reasonably good copies of
Alice’s original qubit. The assumption is then that if the
copies are good the disturbance will be small and the infor-
mation gain large.

mum value to the copying error. The right-hand side of Eq.

(2.21) takes its maximum value approximately equal to

0.125 whenz=0.553.

Ill. GENERAL BOUND

Taking into account, that

0=Xx?<1; and 0<|z|%?<1 (3.1
we can simplify the inequality in Eq2.17), i.e.,
|Z|$|Z|2+X1+X2+X1X2. (32)

This allows us to go beyond specific cases and to derive
general result.

We shall adopt the quantit}{, + X, as a measure of the
total error made in copying the two stafes) and|s,). The
copies are perfect iK;+X,=0 and become progressively
worse as its value increase. Solving Eg2) for X, we find

|2(1-]z)) =X,
=

T 3.3

which implies that

|2/(1~|2])+ X3

+ X,=
Xt Xe 1+X,

(3.9

Minimizing the right-hand side with respect ¥, we find
that

IV. MULTIPLE COPIES

Suppose that instead of making only two copieg %)
and|s,) we want to construct a device which will produce
(n+1) copies ( actual copies plus the originaWe would
like to find out what the limitations on the quality of the
copies are. Let us assume the copying transformation to be

Ii)al Q)x—Sj)alSidb, **IS))b, |Qi)x+ [P )an, b x

ji=1.2. 4.1

és before we let

1T ab,-bx=S)al S, S)b, | Qi) x (4.2)
and assume thafl’;|®;)=0 (j=1,2) [in what follows we
will omit state vector subscripts indicating the modes under
consideration, instead dfj>ab1---bnx we will write |T';)].
What we might expect is that the more copies we make, the
poorer the quality of each copy will be. This is indeed the
case.

The derivations of the inequalities are similar to those in
the previous two sections so we shall only give the results.
The inequality analogous to that in EQ.17) is

|Z|S|Z|n+1(1_Xi)l/Z(l_Xg)I/Z_,’_ X1X2+(1_|Z|2(n+l))l/2

X[ Xq(1—X3)Y2+ X,(1— X)), 4.3
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Xmin(|Z])=nel2, 4.8

which means that in the multiple-copy productionadmost
identical states the error increases linearly as a function of
the number of copies.

Let us briefly see what happens wh¥p=0, i.e.,|s;) is
duplicated perfectly. In the limih— o with |z|<1 we find
that X,=|z|, but if |z]=1, then the lower bound foX, is
zero for alln. For n large but finite, the lower bound is
approximately equal tdz| except for a region nede|=1
where it drops sharply to zero.

Finally, let us examine then(* 1)-copy version of Eq.
(3.2. We find

FIG. 1. We plot the right-hand side of E@t.5) as a function of |z]<[z|"" 1+ Xy + X+ X1 Xy, (4.9
|z| for various values oh (n=1,2,3,5,10, and 100).
which implies that
To analyze the multiple-copy inequalities in a transparent
way, we take into account Eq3.1) and we simplify Eq. Xy +X=2{[1+|2] - [7|" 1]~ 1}. (4.10
(4.3) to obtain
The right-hand side achieves it maximum value, which is

|z|<|z"" M1 - XD AL - XD Y2+ X+ X+ Xi Xy, (4.9 L\

n+1

n

+
L n+1

1/2
—1], (4.11)

It is useful to look at this last result in the case 2{
X1=X,=X. Then one finds that
P when|z|=(n+1)"Y". This is an increasing function af
e [1+(1—]Z""H(|z| - |7"*1)]2-1 o 5 and for largen goes to the value 2(2—1)=0.83. This im-
- 1—|z|"*t - omine ' plies that for a general quantum-copying machine which pro-
duces simultaneously a large number of copies of an arbi-
The right-hand side is plotted as a function|gf for several trary input state, there must be at least one input state for
different values oh in Fig. 1. One sees that,,, is equal to  which xlz(\/i—l):oAl.
zero for|z|=0 and|z|=1 for arbitraryn=1. This is not Thus we see that for a qguantum-copying machine which
surprising because we know that two mutually orthogonabnly copies two vectors or for one which copies arbitrary
states [z|=0) can be copied perfectly as many times as weinput states, the lower bound for the error in the copies in-
wish. The cas¢z|=1 is essentially trivial, because here the creases with the number of copies made. There is clearly a
two stategs;) and|s,) are equal up to a phase factor, so wetradeoff in the number of copies made versus the quality of
are dealing with only one state. What we also see from theach copy.
figure is that for a given value ¢£| the boundX.;, increases
as a function oh, that is

V. COMPARISON TO COPYING MACHINES

X min We would now like to compare our bounds to the perfor-
an =0. (4.6 mance of two different copying machines which copy quan-
7| =const tum qubits. The first is the Wootters-Zurek copying machine

This relation represents the tradeoff between the number ¢£:9 Which copies two basis vectof8) and|1) perfectly,
copies and the noise induced by the copying procedure, i.ePUt copies superpositions of them poorly. The second is the
the larger the number of copies the larger the noise. Figure $niversal quantum-copying machifigQCM) which copies
also reveals a striking asymmetry with respect to the poinfll input states of quantum qubits equally wed]. The
|z|=1/2 of X, as a function ofz|. We see that the maxi- Woottgrs-Zurek copying machine is specified by the trans-
mum value of the functiorX(|z|) shifts towards|z]=1 as formation:

n increases. Simultaneously the maximum value increases as

well and in the limit of largen is approximately equal to 10)al Q)x—10)2]0)| Qo)

0.41. ltis also interesting to note, that fat small (when the

stategs;) and|s,) are almost orthogonglthen 11)alQ)x—11)al1)p| Qu)x (5.1
Xunin(|Z]) = €12, (4.77  where|Q),, |Qo)x, andQ,), are the internal states of the

copying machine. The superposition a#@),+sin 41), is
where we putz|=e€ (e<1). The relation4.7) represents the copied as
fact that the noise induced by copying of states which are
almost orthogonal does not depend on the number of copid$0s 6|0),+cos 6]1),)| Q)
produced. On the contrary, if we assume fzpt=1—€ (i.e.,
copying of states which are almost equahen —€0S 6]0)4/0)p| Qo)x+Sin 0] 1) 1)p|Q1)x, (5.2
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and the application of Eq2.3) gives us that the size of the strongly suggests is that one can desige-purpose&opying

error is machines which copy only twa priori known (nonorthogo-
" nal) states much better than the universal copying machine
X=[1-co$ §—sin® 6—(,(Qo|Q1)x which is designed to copy all vectors equally well.
+,(Q1]Qp)y)sir® 6 cos §]Y2. (5.3

VI. CONCLUSION

This will be the smallest if we choose the machine VeCtors  The ynitarity of quantum-mechanical transformations has
|Qo)x @nd|Qy)x to be the same, giving allowed us to place limits on how well quantum states can be
_ . 291/2 copied. Recent work has shown that these limits cannot be
X=[1-(cos +sin 6)°]'" (5.4 achieved by the UQCM, which copies all vectors equally
Let us now compare this result to the bound given by EqWell [11,13, but we believe that they can be achieved by
(2.19. We consider the case when we want to copy the vecCOPYing machines which are designed to copy &vpriori
tors |0),, which is copied perfecty, and Known state vectors. _ o
cos6|0),+sin 61),, which is copied with an erroX. The Our results can also be used to find noise limits in more

inequality in Eq.(2.19 gives us the condition|¢| = cos) general kinds of quantum-copying p_roblems. When assessing
the performance of a quantum-copying machine one needs to

X=|cos @ sin 6|[(1+cos 6)Y>—|cosh| ]. (5.5  know not only which states are to be copied, but how often it
will be necessary to copy each one. For example, in the case
This bound lies below the actual error given by E§.4).  where the statels;) and|s,) are to be copied, if we need to
They coincide only wherg=0 or 6=m/2. On the other copy|s;) more often thars,), it would be better to use a
hand, if 6=/4 we find thatX=1/y2~=0.707, while the copying machine which is less noisy f8,) than for|s,).
bound in Eq.(5.5) is 0.259. This would result in less noise in the output, on average, than
The UQCM is specified by the unitary transformation  if one were to use a copying machine which copies both
states equally well. The bounds presented in the previous

0)al Q)x— V2/30)4| O)p| )« VI/E(|0)a| 1)y sections can be used to place lower limits on the average
+11)20)6)| 1) amount of noise in the output for this kind of situation.
Al b/l Finally, the analysis here reveals that the feature of qubits
1 2/31).11 + J1/6(10).11 which makes it impossible to copy them, in general, is the
1)l Q)= V23 1)al Lol 6(10)al1)s fact that different qubits need not be orthogonal. Classical
+11)a10)p) | T)xs (5.6  information consists of bits, each of which is in one of two

completely distinguishable, and therefore orthogonal, states.
where the state space of the copying machine is two dimerg|assical information can be copied. Quantum information
sional and is spanned by the orthonormal badsis and  consists of qubits each of which can be in any superposition
||)x- For this copying machine the error is independent ofof the two basis states. This implies that two different qubits

the initial state and is given by can have a nonzero inner product and are, consequently, not
1 completely distinguishable. It is this basic difference be-
X=—=0.577. (5.7 tween quantum and classical information which is respon-
V3 sible for their different copying properties.
We can compare this error to the bound in E&21) which
applies when the error in both copied vectors is the same. If ACKNOWLEDGMENTS
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