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Quantum copying: Fundamental inequalities
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How well can one copy an arbitrary qubit? To answer this question we consider two arbitrary vectors in a
two-dimensional state space and an abstract copying transformation which will copy these two vectors. If the
vectors are orthogonal, then perfect copies can be made. If they are not, then errors will be introduced. The size
of the error depends on the inner product of the two original vectors. We derive a lower bound for the amount
of noise induced by quantum copying. We examine both copying transformations which produce one copy and
transformations which produce many, and show that the quality of each copy decreases as the number of copies
increases.@S1050-2947~97!05908-8#

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

One of the greatest differences between classical
quantum information is that while classical information c
be copied perfectly, quantum cannot. In particular, we can
create a duplicate of anarbitrary quantum bit~qubit! @1#
without destroying the original. This follows from theno-
cloning theoremof Wootters and Zurek@2# ~see also@3,4#!.
There are many consequences of this theorem. For exam
if one has a string of qubits which one would like to proce
in more than one way, it represents a serious limitation. W
a string of classical bits, one could simply copy the stri
and process the original one way and the copy anot
Quantum mechanically this is impossible. On the other ha
the fact that information cannot be copied is sometimes
advantage. One can view the impossibility of quantum co
ing as one of the main reasons why quantum cryptogra
works. In a quantum cryptographic system@5,6# qubits are
exchanged between a sender~Alice! and a receiver~Bob! in
such a way that the presence of an eavesdropper~Eve! can be
detected. If quantum copying were possible the eavesdro
could simply copy the qubits which Alice is sending to Bo
and they would not be able to detect this procedure. T
would leave the eavesdropper with a perfect record of th
communication. The fact that quantum information can
be copied rules out this possibility.

Even though one cannot copy quantum information p
fectly, it is useful to know how well one can do. One wou
like to know to what extent it is possible to split the info
mation in a given qubit among several others. In addition
it is possible to make close to perfect copies, quantum cr
tographic schemes could still be at risk@7#. Finally, quantum
copying can become essential in storage and retrieval o
formation in quantum computers@8#.

In our previous paper we examined several poss
quantum-copying machines1 and studied how they would

1In what follows we will use a ‘‘copying machine’’ for a particu
lar unitary transformation applied to the original particle. We
this keeping in mind that the copying unitary transformations un
consideration can be realized in terms of a sequence of log
gates.
561050-2947/97/56~2!/1212~5!/$10.00
d

ot

le,
s
h

r.
d,
n
-
y

er
,
is
ir
t

r-

if
p-

n-

le

perform copying a singlearbitrary qubit @9#. The copier pro-
posed in Wootters and Zurek’s paper@2# on quantum cloning
copies two orthogonal states perfectly but introduces er
when superpositions of these states are copied. A sec
copying machine, which we called the universal quantu
copying machine, copies all input states to the same ac
racy, and, on average, its performance is much better t
that of the Wootters-Zurek machine. Here we would like
establish some fundamental limits on how well quantu
states can be copied by considering the following proble
Suppose we have two arbitrary vectors in a Hilbert space
we want to build a machine which will copy these two ve
tors. How well can we do? If the vectors are orthogonal, th
perfect copies can be made. If they are not, then, as we s
show, errors will be introduced. The amount of error depe
on the inner product of the two original vectors. This pro
lem is relevant to the global problem of copying an arbitra
qubit. If one has a lower bound for the amount of noi
which must be introduced for the two-state problem, then
best one can do in the general case is the maximum of
lower bound over all pairs of states. Thus we can get a lo
bound for the amount of noise induced by a quantu
copying machine.

The approach which we use here has the advantage th
allows us to consider more general problems than sim
producing a single copy of an arbitrary qubit. We are able
find a lower bound for the noise which is introduced whenn
copies of a qubit are produced simultaneously, and determ
how the noise depends onn. In addition, even though ou
discussion is phrased in terms of qubits, which are two-le
systems, our results are more general; the limitations we
on quantum copying apply to systems of arbitrary dimensi
because our arguments are completely independent of
dimension of the Hilbert space in which the vectors to
copied lie. Therefore, if one is trying to copy ann-level
system, for example, several qubits in an entangled st
then the amount of noise introduced by the copying proc
must be greater than the lower bounds which are given h

II. TWO-STATE PROBLEM

Suppose we have two statesus1&a and us2&a , in a two-
dimensional state space which we would like to copy. If t

r
al
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56 1213QUANTUM COPYING: FUNDAMENTAL INEQUALITIES
initial state of the copying machine isuQ&x , then the action
of the copying machine on our two vectors can be expres
as

usj&auQ&x→uC j&abx5usj&ausj&buQj&x1uF j&abx , ~2.1!

where j 51,2. In our analysis we do not specify thein-state
of the copy mode~this possible eavesdropper’s mode w
denote as theb mode!. We only require that it is the same fo
all inputs into thea mode, and that it is normalized to unity
In Eq. ~2.1! we have expressed the full output state of t
copying machine as the sum of two parts, the first repres
ing the ideal output state and the second what is left o
The two parts can be expressed in terms of the projec
onto the two mode stateusj&ausj&b as

uG j&abx[usj&ausj&buQj&x5Pj uC j&abx ; ~2.2!

uF&abx[~ I 2Pj !uC&abx , ~2.3!

where the projectorsPj are defined as

Pj5~ usj&^sj u!a^ ~ usj&^sj u!b . ~2.4!

This definition implies that

abx̂ G j uF j&abx50; j 51,2. ~2.5!

In addition we also assume that the initial quantum-copy
machine state is normalized to unity, i.e.,x^QuQ&x51. In
order to produce good copies we want to make the no
iQ1i and iQ2i as large as possible andiF1i and iF2i ,
which represent the size of the errors, as small as poss
The norm of the state vectoruA& is defined as
iAi5(^AuA&)1/2.

The copying machine can be represented as a unitary
erator and this unitarity imposes constraints on the trans
mations shown in Eq.~2.1!. In particular, we have that

15iQj i21iF j i2, j 51,2 ~2.6!

and

z5zx
2^Q1uQ2&x1abx̂ G1uF2&abx1abx̂ F1uG2&abx

1abx̂ F1uF2&abx , ~2.7!

wherez5a^s1us2&a . We note that in derivation of Eq.~2.7!
we have utilized the fact that thein-stateof the copy mode is
normalized to unity. From these equations it is possible
derive a number of inequalities which restrict the behavior
the copying machine. We shall begin with the strongest
striction, which is relatively difficult to work with, and the
we proceed to weaker ones which are more transparent

Let us first find an upper bound onuabx̂ G1uF2&abxu and
uabx̂ F1uG2&abxu. We begin by expressinguG1&abx as

uG1&abx5P2uG1&abx1uG18&abx , ~2.8!

whereuG18&abx5(I 2P2)uG1&abx . The two states on the right
hand side of Eq.~2.8! are orthogonal which implies that

h115h11uzu41iG18i2, ~2.9!

whereh i j 5x^Qi uQj&x , so that
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iG18i5@h11~12uzu4!#1/2. ~2.10!

Similarly, if we expressuG2&abx as

uG2&abx5P1uG2&abx1uG28&abx , ~2.11!

whereuG28&abx5(I 2P1)uG2&abx , we find

iG28i5@h22~12uzu4!#1/2. ~2.12!

BecauseP2uF2&abx50 we have that

uabx̂ F2uG1&abxu5uabx̂ F2uG18&abxu<iG18i•iF2i

5~12h22!
1/2@h11~12uzu4!#1/2, ~2.13!

and similarly

uabx̂ F1uG2&abxu<~12h11!
1/2@h22~12uzu4!#1/2.

~2.14!

We can now take these results and insert them into
~2.7!. This gives us

uzu<uzu2uh12u1~12h11!
1/2~12h22!

1/21~12uzu4!1/2

3@h11
1/2~12h22!

1/21h22
1/2~12h11!

1/2#. ~2.15!

For a given value ofuzu this inequality restricts the values o
iQ1i , iQ2i , and uh12u5u^Q2uQ1&u. It defines a region in a
three-dimensional parametric space in which the values
the parameters can lie. ForuzuÞ0 this region does not in-
clude the lineiQ1i5iQ2i51 which implies that perfect
copying is impossible. It is only foruzu50, i.e., us1& and
us2& are mutually orthogonal, that we can hav
iQ1i5iQ2i51 which implies error-free copying.

In order to simplify these results we use the Schwarz
equality from which it follows that:

uh12u<iQ1iiQ2i5~h11h22!
1/2. ~2.16!

This last inequality allows us to rewrite the right-hand si
of the relation~2.15! in terms of only two parameters,h11
and h22. It is useful to express the resulting inequality
terms of the size of the errors. We introduce the quanti
Xj5(12h j j )

1/25iF j i ~for j 51,2) which are associate
with the amount of noise induced by copying the vecto
usj&a . In particular, the smallerX1 and X2 are the better is
the copying procedure, and in the limitXj→0 two perfect
copiesusj&a andusj&b of the initial stateusj&a are obtained at
the output of the copying machine. If we now express
inequality which follows from Eqs.~2.15! and ~2.16! in
terms ofX1 andX2, we have

uzu<uzu2~12X1
2!1/2~12X2

2!1/21X1X21~12uzu4!1/2

3@~12X1
2!1/2X21~12X2

2!1/2X1#. ~2.17!

It is easier to understand the implications of Eq.~2.17! if we
look at particular cases.

~A! Let us first suppose thatX15iF1i50, i.e., us1& is
copied perfectly, which implies thatiQ1i51. From Eq.
~2.17! we find

uzu<uzu2~12X2
2!1/21~12uzu4!1/2X2 , ~2.18!
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1214 56M. HILLERY AND V. BUŽ EK
which in turn implies that

X2>uzu~12uzu2!1/2@~11uzu2!1/22uzu#. ~2.19!

Therefore, ifus1& is copied perfectly, theniF2i , which rep-
resents the size of the error made in copyingus2&, must beat
leastas large as the right-hand side of Eq.~2.19!. For small
uzu the right-hand side of this inequality is approximate
uzu. We note that the maximum value of the lower bound
the errorX2 given by the right-hand side of Eq.~2.19! is
equal to (2/27)1/2.0.272 and is obtained for uzu
51/A3.0.577.

~B! Let us now consider the caseX15X25X, i.e., equal
errors in both copies. Making use of Eq.~2.17! we then have
that

uzu<uzu2~12X2!1X212X@~12uzu4!~12X2!#1/2, ~2.20!

which implies that

X>F r 122r 2
1/2

r 3
G1/2

, ~2.21!

where

r 15213uzu12uzu21uzu3;

r 25113uzu13uzu214uzu313uzu41uzu51uzu6; ~2.22!

r 35515uzu13uzu213uzu3.

For uzu small the right-hand side is approximatelyuzu/2. If
both vectors are copied equally well, then there is a m
mum value to the copying error. The right-hand side of E
~2.21! takes its maximum value approximately equal
0.125 whenz.0.553.

III. GENERAL BOUND

Taking into account, that

0<Xi
2<1; and 0<uzu2<1 ~3.1!

we can simplify the inequality in Eq.~2.17!, i.e.,

uzu<uzu21X11X21X1X2 . ~3.2!

This allows us to go beyond specific cases and to deriv
general result.

We shall adopt the quantityX11X2 as a measure of th
total error made in copying the two statesus1& andus2&. The
copies are perfect ifX11X250 and become progressive
worse as its value increase. Solving Eq.~3.2! for X2 we find

X2>
uzu~12uzu!2X1

11X1
, ~3.3!

which implies that

X11X2>
uzu~12uzu!1X1

2

11X1
. ~3.4!

Minimizing the right-hand side with respect toX1 we find
that
n

i-
.

a

X11X2>2$@11uzu~12uzu!#1/221%. ~3.5!

A general quantum-copying machine will have to co
pairs of vectors with all values ofuzu. In particular, it will
have to copy two vectors for whichuzu51/2, a value which
maximizes the right-hand side of Eq.~3.5 !. For such a pair
of vectors we have

X11X2>A522. ~3.6!

For this to be true, it must be the case that eith
X1>(A522)/2 or X2>(A522)/2. This means, that for a
general quantum-copying machine one has to expect tha
at least one vector the size of the copying error
(A522)/2.0.118.

These considerations are closely related to recent work
Fuchs and Peres@10#. They considered the tradeoff betwee
disturbance and information acquisition in quantum crypto
raphy. Alice sends a qubit to Bob, but in between, it is
tercepted by Eve. She allows it to interact with another qu
and sends the original on to Bob. Eve wants to disturb
qubit she sends to Bob as little as possible, yet have the q
she keeps contain as much information about the qubit A
sent as possible. Fuchs and Peres found a relation betw
the discrepancy rate for Bob~disturbance! and the mutual
information ~Eve’s information gain!. In our case we con-
sider an interaction which produces copies. That is Eve p
into the copying machine her qubit and Alice’s qubit a
what emerges are, she hopes, two reasonably good copi
Alice’s original qubit. The assumption is then that if th
copies are good the disturbance will be small and the in
mation gain large.

IV. MULTIPLE COPIES

Suppose that instead of making only two copies ofus1&
and us2& we want to construct a device which will produc
(n11) copies (n actual copies plus the original!. We would
like to find out what the limitations on the quality of th
copies are. Let us assume the copying transformation to

usj&auQ&x→usj&ausj&b1
•••usj&bn

uQj&x1uF j&ab1•••bnx ;

j 51,2. ~4.1!

As before we let

uG j&ab1•••bnx5usj&ausj&b1
usj&bn

uQj&x , ~4.2!

and assume that̂G j uF j&50 ( j 51,2) @in what follows we
will omit state vector subscripts indicating the modes un
consideration, instead ofuG j&ab1•••bnx we will write uG j&#.
What we might expect is that the more copies we make,
poorer the quality of each copy will be. This is indeed t
case.

The derivations of the inequalities are similar to those
the previous two sections so we shall only give the resu
The inequality analogous to that in Eq.~2.17! is

uzu<uzun11~12X1
2!1/2~12X2

2!1/21X1X21~12uzu2~n11!!1/2

3@X1~12X2
2!1/21X2~12X1

2!1/2#. ~4.3!
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56 1215QUANTUM COPYING: FUNDAMENTAL INEQUALITIES
To analyze the multiple-copy inequalities in a transpar
way, we take into account Eq.~3.1! and we simplify Eq.
~4.3! to obtain

uzu<uzun11~12X1
2!1/2~12X2

2!1/21X11X21X1X2 . ~4.4!

It is useful to look at this last result in the cas
X15X25X. Then one finds that

X>
@11~12uzun11!~ uzu2uzun11!#1/221

12uzun11 [Xmin . ~4.5!

The right-hand side is plotted as a function ofuzu for several
different values ofn in Fig. 1. One sees thatXmin is equal to
zero for uzu50 and uzu51 for arbitrary n>1. This is not
surprising because we know that two mutually orthogo
states (uzu50) can be copied perfectly as many times as
wish. The caseuzu51 is essentially trivial, because here th
two statesus1& andus2& are equal up to a phase factor, so w
are dealing with only one state. What we also see from
figure is that for a given value ofuzu the boundXmin increases
as a function ofn, that is

]Xmin

]n U
uzu5const

>0. ~4.6!

This relation represents the tradeoff between the numbe
copies and the noise induced by the copying procedure,
the larger the number of copies the larger the noise. Figu
also reveals a striking asymmetry with respect to the po
uzu51/2 of Xmin as a function ofuzu. We see that the maxi
mum value of the functionX(uzu) shifts towardsuzu51 as
n increases. Simultaneously the maximum value increase
well and in the limit of largen is approximately equal to
0.41. It is also interesting to note, that foruzu small~when the
statesus1& and us2& are almost orthogonal!, then

Xmin~ uzu!.e/2, ~4.7!

where we putuzu5e (e!1). The relation~4.7! represents the
fact that the noise induced by copying of states which
almost orthogonal does not depend on the number of co
produced. On the contrary, if we assume thatuzu512e ~i.e.,
copying of states which are almost equal!, then

FIG. 1. We plot the right-hand side of Eq.~4.5! as a function of
uzu for various values ofn (n51,2,3,5,10, and 100).
t
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Xmin~ uzu!.ne/2, ~4.8!

which means that in the multiple-copy production ofalmost
identical states the error increases linearly as a function
the number of copies.

Let us briefly see what happens whenX150, i.e., us1& is
duplicated perfectly. In the limitn→` with uzu,1 we find
that X2>uzu, but if uzu51, then the lower bound forX2 is
zero for all n. For n large but finite, the lower bound is
approximately equal touzu except for a region nearuzu51
where it drops sharply to zero.

Finally, let us examine the (n11)-copy version of Eq.
~3.2!. We find

uzu<uzun111X11X21X1X2 , ~4.9!

which implies that

X11X2>2$@11uzu2uzun11#1/221%. ~4.10!

The right-hand side achieves it maximum value, which is

2H F11S 1

n11D 1/nS n

n11D G1/2

21J , ~4.11!

when uzu5(n11)21/n. This is an increasing function ofn
and for largen goes to the value 2(A221).0.83. This im-
plies that for a general quantum-copying machine which p
duces simultaneously a large number of copies of an a
trary input state, there must be at least one input state
which X1>(A221).0.41.

Thus we see that for a quantum-copying machine wh
only copies two vectors or for one which copies arbitra
input states, the lower bound for the error in the copies
creases with the number of copies made. There is clear
tradeoff in the number of copies made versus the quality
each copy.

V. COMPARISON TO COPYING MACHINES

We would now like to compare our bounds to the perfo
mance of two different copying machines which copy qua
tum qubits. The first is the Wootters-Zurek copying mach
@2,9# which copies two basis vectorsu0& and u1& perfectly,
but copies superpositions of them poorly. The second is
universal quantum-copying machine~UQCM! which copies
all input states of quantum qubits equally well@9#. The
Wootters-Zurek copying machine is specified by the tra
formation:

u0&auQ&x→u0&au0&buQ0&x ;

u1&auQ&x→u1&au1&buQ1&x , ~5.1!

where uQ&x , uQ0&x , andQ1&x are the internal states of th
copying machine. The superposition cosuu0&a1sinuu1&a is
copied as

~cosuu0&a1cosuu1&a)uQ&x

→cosuu0&au0&buQ0&x1sin uu1&au1&buQ1&x , ~5.2!
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1216 56M. HILLERY AND V. BUŽ EK
and the application of Eq.~2.3! gives us that the size of th
error is

X5@12cos6 u2sin6 u2~x^Q0uQ1&x

1x^Q1uQ0&x!sin3 u cos3 u#1/2. ~5.3!

This will be the smallest if we choose the machine vect
uQ0&x and uQ1&x to be the same, giving

X5@12~cos3 u1sin3 u!2#1/2. ~5.4!

Let us now compare this result to the bound given by E
~2.19!. We consider the case when we want to copy the v
tors u0&a , which is copied perfectly, and
cosuu0&a1sinuu1&a , which is copied with an errorX. The
inequality in Eq.~2.19! gives us the condition (uzu5cosu)

X>ucosu sin uu@~11cos2 u!1/22ucosuu #. ~5.5!

This bound lies below the actual error given by Eq.~5.4!.
They coincide only whenu50 or u5p/2. On the other
hand, if u5p/4 we find thatX51/A2.0.707, while the
bound in Eq.~5.5! is 0.259.

The UQCM is specified by the unitary transformation

u0&auQ&x→A2/3u0&au0&bu↑&x1A1/6~ u0&au1&b

1u1&au0&b)u↓&x ;

u1&auQ&x→A2/3u1&au1&bu↓&x1A1/6~ u0&au1&b

1u1&au0&b)u↑&x , ~5.6!

where the state space of the copying machine is two dim
sional and is spanned by the orthonormal basisu↑&x and
u↓&x . For this copying machine the error is independent
the initial state and is given by

X5
1

A3
.0.577. ~5.7!

We can compare this error to the bound in Eq.~2.21! which
applies when the error in both copied vectors is the sam
we consider the caseuzu51/2 we find that Eq.~2.21! gives us
the condition

X>0.124. ~5.8!

For both copying machines we note that the lower bou
are considerably smaller than the actual errors. What
hu
s

.
c-

n-

f
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s
is

strongly suggests is that one can designone-purposecopying
machines which copy only twoa priori known ~nonorthogo-
nal! states much better than the universal copying mach
which is designed to copy all vectors equally well.

VI. CONCLUSION

The unitarity of quantum-mechanical transformations h
allowed us to place limits on how well quantum states can
copied. Recent work has shown that these limits canno
achieved by the UQCM, which copies all vectors equa
well @11,12#, but we believe that they can be achieved
copying machines which are designed to copy twoa priori
known state vectors.

Our results can also be used to find noise limits in m
general kinds of quantum-copying problems. When asses
the performance of a quantum-copying machine one need
know not only which states are to be copied, but how ofte
will be necessary to copy each one. For example, in the c
where the statesus1& andus2& are to be copied, if we need t
copy us1& more often thanus2&, it would be better to use a
copying machine which is less noisy forus1& than for us2&.
This would result in less noise in the output, on average, t
if one were to use a copying machine which copies b
states equally well. The bounds presented in the previ
sections can be used to place lower limits on the aver
amount of noise in the output for this kind of situation.

Finally, the analysis here reveals that the feature of qu
which makes it impossible to copy them, in general, is
fact that different qubits need not be orthogonal. Class
information consists of bits, each of which is in one of tw
completely distinguishable, and therefore orthogonal, sta
Classical information can be copied. Quantum informat
consists of qubits each of which can be in any superposi
of the two basis states. This implies that two different qub
can have a nonzero inner product and are, consequently
completely distinguishable. It is this basic difference b
tween quantum and classical information which is resp
sible for their different copying properties.
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