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A method is proposed for the efficient calculation of the Green’s functions and eigenstates for quantum
systems of two or more dimensions. For a given Hamiltonian, the best possible separable approximation is
obtained from the set of all Hilbert-space operators. It is shown that this determination itself, as well as the
solution of the resultant approximation, is a problem of reduced dimensionality. Moreover, the approximate
eigenstates constitute the optimal separable basis, in the sense of self-consistent field theory. The full solution
is obtained from the approximation via iterative expansion. In the time-independent perturbation expansion for
instance, all of the first-order energy corrections are zero. In the Green’s function case, we have a distorted-
wave Born series with optimized convergence properties. This series may converge even when the usual Born
series diverges. Analytical results are presented for an application of the method to the two-dimensional shifted
harmonic-oscillator system, in the course of which the quantun? famitential problem is solved exactly. The
universal presence of bound states in the latter is shown to imply long-lived resonances in the former. In a
comparison with other theoretical methods, we find that the reaction path Hamiltonian fails to predict such
resonanceq.S1050-294{®@7)01307-3

PACS numbgs): 03.65.Ca, 03.86:r, 03.65.Ge, 02.30.Mv

. INTRODUCTION tance” between two operators. The closEgtcould then be
obtained by applying the variational calculus to the set of all
Since the time of Newton, if not earlier, physicists haveHijlpert-spaceoperators At first glance, this appears far more
tried to solve complicated problems by breaking them dowrformidable than the original problem. Nevertheless, we shall
into simpler components. The trick lies in “carving up” the gemonstrate that with a suitable operator metric, specifically,
initial problem in just the right way so that the components he Frobenius norm of the residud ¢ |:|o), the variational

are independent of one another and can be solved separateﬁ oblemitself corresponds to a conventional quantum prob-
In classical mechanics, for instance, one seeks the first intf‘ P q P

grals or action-angle variables because these partition t &m of reducedAd|menS|onaI|ty.

Hamiltonian in the most natural way. Of course, finding the The optimalH, obtained in this manner can be usefully

best way to slice a particular problem may be very difficult, exploited in a variety of ways. The eigenstate$igfturn out

if not impossible. Even in such cases, however, one may stillo be the best mutually orthogonal separable approximations

be able to find @eparable substitutthat accurately approxi- to the true eigenstates, in the sense of self-consistent field

mates the true system. theory. This “optimal separable basis” is therefore a natural
In this paper, we consider separable approximations oétarting point for a time-independent perturbation expansion

guantum-mechanical systems. For a given multidimensional

Hamiltoniand bi i t'(ﬂb , . of H. In scattering applications, the stationary scattering
amiltonianH, a separable approximatidty, is an operator ~ . )
whose eigenstates are products of coordinate functions. THEaLES 0Ho are the so-called distorted wae. These give

simplest class of such functions are the direct-product basidS€ to an opt|[n|zed d_|storted-_wave BOf.” expansion of the
sets, which have been utilized, for example, in vibrationa€"€rgy Green’s function. This expansion may converge
problemg 1]. These basis sets correspond to what we shall ifiUickly even if the standard Born series is slowly convergent
Sec. Il call “strongly separableH,’'s. However, the general or divergent as is the case for many scattering systems of

. ~ . interest.
case also includeweakly separablety’s, which may pro- The remainder of the paper is organized as follows. Sec-

vide more accurate approximationstéf One suctH, gives  tion 11 provides the mathematical preliminaries, including
rise to the “dressed” eigenfunctions of the truncation- precise definitions of the operator metric and separability.
recoupling method2]. _ _ Section Il comprises the bulk of the theory underlying the
It would clearly be de:::lrable if we could somehow exam-optimal separable basis approach. Section IV applies the
ine all possible separablg,’s and select from that pool the method to series expansions, examines convergence, and es-
best approximation to the true Hamiltonian. Such a procetablishes a link with numerical preconditioning. Section V
dure would first require a rigorous definition of the “dis- discusses a simplification that arises when the method is ap-
plied to Hamiltonians of a standard form. Section VI pre-
sents analytical results for a benchmark two-dimensional
*Electronic address: system. This “shifted harmonic-oscillator” problem has not,
billp@physics.berkeley.edu and billp@sam.cchem.berkeley.edu to the author’s knowledge, been previously considered.
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Il. MATHEMATICAL PRELIMINARIES B. Defining the operator metric
A. Separability In order to apply the variational calculus, we must define
- A~ A A . a metric functional on pairs of operators. In analogy with the
Let H=H(Qy,p1,....0n.Pn) be an arbitrary complex vector space notion of a dot product, we define the
r?—d|men3|onaIA Ham|lt9n|an for wh|F:h tpe geneArallzeld POSi-; oy product of twooperators AandB as
tion operatorqyq, .. .,q, and associatef,, ... ,p, satisfy

. A*B=tr(ATB). (2.6
[ai,q;]=[pi,P;]=0, (2.1
R L The norm ofA is then given byA|>=tr(ATA) and the dis-
Lai,p;]1=6iFi(ai,pi)- tance betweer andB by [B—A|.

i . . In any explicit matrix representation, the above definition

Let the firstk degrees of freedom be designated asitifer 5t the norm becomes

coordinatesand the remaining —k as theouter coordinates

This partitioning is completely arbitrary and in practice is - 5

decided by analytic or computational convenien@ec. A EiEj 1A%, (2.7

VB). ‘

We define a “separable basis” as a basis whose positiofyhere theA;; are the individual matrix elements. In this
representation is separable by inner and outer coordinates. {g,y, Eq.(2.7) is known as the “Frobenius norm[4]. The

other words, each basis function is a product of an innegygpenius norm is but one of several competing matrix norm
function and an outer function. We must distinguish betweenyefinitions. of which the so-called Euclidean nof86] is

two distinct types of separability: “strong” and “weak.” g ally preferred. Nevertheless, for our purposes, the Frobe-
The former corresponds to inner and outer factors that argi,s norm turns out to be the appropriate @Bec. Il)).

completely independent, i.e.,

IIl. OBTAINING THE OPTIMAL SEPARABLE BASI
Din=d1(A, - - D) Cm(Ts1s--- o) (2.2 o GTHEO S SIS

This symmetric form corresponds to the eigenfunctions of g The problem of obtaining the optimaf, is now wel

strongly separable formulated; namely, we seek to minimize —Ho| with re-
spect to variations oH, subject to the weak separability
Fo=Hi(d1,P1s - - - Gk PK) constraint. This is best approached in two stages. First, for a
. A o particular choice of outer basis,,, we determine the best
+Houl Akt 1:Pkr1s - - - n»Pn),s (2.3 H, and corresponding inner basef™ . This gives rise to a

new interpretation oH,. The second stage is to optimize

which follows directly from the commutation relations as with respect to a variation of the outer basis set.

specified in Eqs(2.1).

As an approximation té, the class of suchly’s is some-
what limited. The range of possible eigenvalue spectra, for
example, is restricted to additive spectra only. Fortunately, Consider the explicit representations féfand Fio in the
there is a much broader class of separable bases, i.e., thosartially diagonal basis
satisfying the weak separability condition and characterized
by eigenfunctions A1, -+ AkmM=1dg, - G| em) (3.9

A. Optimization with respect to a fixed outer basis

D= (A1, - ) Em(Oksts -+ Gn)- (2.4 for some choice of outer basis,,. Now consider all weakly
separable variations &f, for which ¢, is fixed. The explicit
Here a lack of symmetry arises because the inner functionfyrm of |3|0 is constrained to be block diagonalin (i.e., a
depend on the quantum numbers of the outer functions: @, ., factor is present but is otherwise completely arbitrary.
familiar situation encountered often in quantum mechanicsFrom Eq. (2.7), however, it is clear thathe minimal

Equations(2.1) now imply a correspondingi, conforming |4 —H,| ensues when §lis defined as the block-diagonal
to

portion of H.
. A ~ This finding is true because the block-diagonal and the
Ho=Hin(@1.P1, - - - Gi:Px. off-block-diagonal portions ofA contribute to the total
. . o Frobenius norm independently. Adopting the former as our
Hcl>ut(qk+11pk+l’""qnipn)’ngt"')' (2.9 choice for I:|0, the latter becomes the residual matrix

i . . . A=H-H,. We shall find it very convenient to interpret
where theH,; comprise an independent set of commuting ~ . . : .
o as a collection ok-dimensional inner subsystems that are

operators whose simultaneous eigenstates are t : -
©r(TQs1, - - - 0y). Note that, in addition to being manifestly Qarametnzed by the outer indicasand coupled together by

asymmetric, Eq(2.5) is seen to incorporate a much broaderA- A
range of operators than E.3). Moreover, the correspond- It remains only to minimiz¢A | with respect to a variation
ing energy eigenspectra are completely unrestricted. of the outer basis. In terms of coupled subsystems, this is
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equivalent tominimizing the total subsystem couplimgthe  against Eq.3.3). Even if the equality fails, the lack of or-
usual least-squares sense. This intuitively satisfying interprethogonality can be used as a measure of “efficiency” or
tation holds only by virtue of the Frobenius norm metric; proximity to optimality. If the optimal basis is analytically
indeed, the coupled subsystem pictiteelf would be inap- intractible, then a nearly optimal subsitute should do almost
propriate if one were to use a different definition of the ma-as well(Sec. VB.
trix norm. This situation is somewhat analogous to that of Wein-
berg’s quasiparticle approach to converging the Born series
B. Optimizing the outer basis [9]. Weinberg’s approach allows us to define a quasiparticle
o ] ] however we like; a physically intuitive choice is almost al-
Variations of the outer basis correspond to unithy  \yays beneficial even if the mathematically optimal solution
transformationsU involving only the outer coordinates is unattainable. In the Weinberg formalism, however, there is
Ok+1:Pks1s - - - GnsPn. In other words, no analog of Eq(3.3), and thus no way to determine whether
A or not a given choice is close to optimal.

H'=0'MU, 0U=U(Aks1.Pks1: - - Gn.Pn). (3.2

) o ) C. Existence, uniqueness, and infinities
This restriction has two advantages. First, E@1) ensure

that U has no effect on thel,,p;., ... dk.Px, so that the e even to non-square-integrable Hamiltonians, i.e., to

H dependence on these coorgiir)ates s unaffected by tl.lﬁ/stems for which the Frobenius normgfis infinite. This
transformation. Second, determining the optimal outer bas'éoesnot imply that|A| is also infinite indeed|3| is finite

is a problem of reduced dimensionality. . .
P Y for all systems that conform to the standard scattering criteria

Mathematically, we have a constrained eigenvector prob X )
lem where theinner coordinates are the parameters. Thel10:3 Nevertheless, there are undoubtedly certain physi-
cally interesting cases for whida| is infinite in all repre-

k-dimensional constraint o generally disallows complete . L )
9 y b sentationgSec. VI, as a result of which it may not be intu-

block diagonalizatio_n ofi; neverthe!ess, minimizir_1k_;§| has itively obvious which one is the best. Even in such cases,
the effect of removing alinessentianonseparability from — ,ever, the stationarity condition is still meaningful be-
the system. Indeed, H happens to be weakly separable t0 cause Eq.(3.3 relies only on theorthogonality of the
begin with, then it can be block diagonalized by soth@®f  { _  and not on their normalizability.

the form Eq.(3.2), in which caseall of the coupling is re- Normalizability in and of itself is therefore not the prin-
moved, as is intuitively appropriate. In the general dase cipal concern. Of greater importance is whether or not an
cannot be made to vanish altogether, but can be greatly re@ptimal solution actually exists for a given system. Equation
duced, via the optimal choice of outer basis, so as to refled.3) is silent on this subject; it merely reflects the conditions
only the minimal coupling actually inherent in the system. that would have to be satisfied should a solution exist. There
As with all variational methods, optimization is signaled might be no stationary solutions or several. In the latter
by candidates that satisfy an appropriate stationarity condievent, one would like to be able to distinguish the true mini-
tion. In our case|A| must be stationary with respect to all Mmal solutions from the maxima and saddle points. Although
infinitesimal outer unitarity transformations, of which we We do not at present know how to resolve these questions for
need only consider the elementdpairwise transformations @ completely arbitrary system, we can nevertheless prove

explicitly. By evaluating all pairs independently, we obtain that at Iea.s.t one station.ary.minimum exists if certain reason-
able conditions are maintained.

~ ~ ~ / Consider a parametrized, outer coordinate unitary trans-
Hom*(Hum—Hmm)=0  forall mm’, (3.3 formation opergtor y

It is important to note that Eq3.3) is in principle appli-

whereH o =(¢@m/|A|@m). The operator$ ., etc., being O(dbyba, . ..) (3.4)
blocks of the full Hamiltonian in the partially diagonal rep-

resentation, act on the inner coordinates only. The * opera- ~ S
tion is simply the inner coordinate version of the Eg.6) such thall is periodic in each of the parametafgand such

matrix dot product affiliated with the Frobenius norm metric.thalt any arbitrary unitary operator can be obtalne(_j by plug-
Equation(3.3) above is thus the desired optimization con- ging In an appropriate set of.pa}rqmeter values. This cogld be
dition and a central result of this paper. Note that this equa(-:onStrLICted from dpossibly infinitg product of successive

tion can be naturally interpreted asnautual orthogonality elementary unitary transformations between _ different

. - L (m,m’) pairs. Each elementary operator, being>a22 (uni-
cond_ltlon_on t_he blo_cks ofH . Although Eq.(3.3) 1S simple modulay unitary matrix, is parametrized by three angles and
and intuitive, it applies only in the,, representation. It does

X : X , . > is periodic in those angles. The collection of all such angles
not, for instance, provide us with some differential equation.,, thus be taken to be this above; by incorporating an

in the original coordinates, as do many other applications ofy iarily large number and variety of elementary operators,
the variational method. Nevertheless, E8}3) still serves as

a very useful guide in particular applications. The optimalWe can ggnerate anyﬁeswbld (It does not matter if the set
outer basis can always be determined numerically, for exof all U'’s is overspecifiey i

ample, using a simple block algorithm that is the focus of By incorporating the parametrizdd above, the residual
another papel8]. Analytically, any intuitively selected can- norm in any representation is conveniently expressed
didate for the optimakp,, can always be checked directly as a real-valued function of the parameters, i.e.,
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|A|ZEF(¢1,¢2, ... ). A stationary outer basis is therefore vergence to improve as the residuilis diminished. Thus

presented to us whenever the first partial derivative$ of the optimalH, suggested above should result, heuristically
with respect to thep; are all zero. IfF is continuous and speaking, in the fastest convergence. Rigorously speaking

differentiable everywhere, then at least one stationary mininowever, it is not always clear what constitutes “optimal
mum exists. This is true because the parameter space, beiggnvergence” for an operator series.

a product of compact spaces, is itself compact by virtue of
Tychonoff's theorenj11,12.

The above result can be extended to noncontinuéss A. Time-independent perturbation theory

by requiring only that continuous first partial derivatives Let the optimal separablélo of Sec. Il be the zeroth-
IF (b, ) order approximation in a time-independent perturbation ex-
—l(;(;, —=fi(d1. ¢, ...) (3.5  pansion ofH. To obtain the zeroth-order eigenfunctions, we

i

must obtain thep(™ by diagonalizingH,: a comparatively

exist everywhere and by invoking the finite intersectionsimple task, in light ofHy’s block-diagonal structure. Since
property for the family of contour sheets defined byeach of the blocks can be diagonalized separately, we have a
(f;=0) [12]. This enables us to prove the existence of ak-dimensional eigenproblem parametrized by the outer indi-
stationary point even wheh is infinite [13]. However, the cesm.

partial derivative condition is still more restrictive than is |t can be shown that our choice fd;fo is always suffi-

necessary. Section VI, for example, presents a system fQfignqy close tod that the first-order corrections to the ener-

which the partial derivatives can be infinite even though 3gies are allzera In the partially diagonal basis, the block-

stationary point exists. Consequently, we suspect that a mo?agonal nature offl, implies outer coordinate wave
. . . . i 0
comprehensive existence proof can be obtained, and this po unctions that ared functions. On the other hand, the matrix

elements oA,y = (1— 8y )Hmpy are by definition zero
for m equal tom’, thus proving the claim.
The first-order corrections to the eigenfunctions are

sibility is currently being investigated.

D. Self-consistent field interpretation

We conclude this section with a brief comparison between
the optimal separable basis approach and the Hartree-Fock or (D) | APy
self-consistent field theories. In the latter, one considers Cim,l'm = W'
separable approximations of the form Im—=1'm’

(4.2

O =", ... e (ki1 - .- Gn).  (3.6)  Equation(4.1) informs us that the optimal basis is the one
that minimizes, in the usual least-squares sense, the collec-
The optimal®,,’s are usually defined as those for which the tion of first order eigenfunction corrections weighted by the
expectation value of the energy is stationary. Since both inenergy differences. This interpretation cannot be extended
ner and outer functions depend alh the quantum numbers, beyond the first order. Nevertheless, corrections of any given
thed,, are not generally orthogonal and do not form a basisgrder involve as many factors of tie matrix elements, and

In contrast, the optimal separable basis consist®f it is clear that convergence will improve, generally speaking,
wave functions thaare mutually orthogonal. Moreover, the as|A| is diminished.

stationarity criterion isdenticalto that of the self-consistent
field. The comparison is most easily made by representing

H in the optimal separable basis itsélf, now comprises the B. Born series expansion

diagonal matrix elements &, which are nothing more than In scattering applications, the main object of interest is the
the energy expectation values of thé,. Because energy Green's functioﬁs(E):IimHo(EHe— I:|)*1. We
|A|2=[H,|2+|A|? is representation independent, we have aconsider a separation &f into two pieces so that

stationarity condition on theumof the energy expectation

value square moduli rather than on the individual expectation H=H,+A, 4.2)
values themselves. Our approach can therefore be considered

a self-consistent field approximation of the complete energ

basisrather than of the individual energy eigenfunctions. )(Nhere, for the moment, is arbitrary. It is assumed only

that H, is invertible, so that the corresponding

IV. SERIES EXPANSIONS GO(E)ZlimEHO(E.'FiE— Ho)_l is well defined. -
In the usual distorted-wave methodology, the perturbation

A separable basis approximation of the eigenstates of & nas the form of a potentidl.e., it depends on th(} only),

multidimensional Hamiltonian is certainly desirable in its AL . ,
y and G, is called the distorted-wave Green'’s functi8i. It

own right, particularly one that is “best” in the self- akes sense 1o use the same terminolo however even
consistent field sense. It is also of interest, however, to obtaifl’ " u : gy, however, ev

more accurate results via series expansions that use the offhenA takes on a more ggneral form.

timal H, as a starting point. When actually performing such ~ The full Green’s functiorG can be expressed in terms of
expansions, whether analytically or numerically, the issue ofhe distorted-wave Green’s functidB, via the distorted-
series convergence always arises. Intuitively, we expect corwave Born expansion
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G=Go+ GoAGy+ GeAGAGy+ - - - (4.3 corresponding preconditioner, known as the “kinetic-energy
preconditioner”[16], is effective whenV is much smaller
In principle, one attempts to partition as much féfinto  thanT. In contrast the “diagonal preconditionef16], for
H, as possible, so that the resultant expansion convergeshich H, consists of the diagonal matrix elementskbfin
quickly. On the other hand3, must be known explicitly, so the position representation, is effective wh&his much
that nothing is gained unless invertifgrie—H, is signifi-  larger than T. The “optimized preconditioner,” obtained
cantly more tractable than the original problem. from the optimal separable,, is more efficient than either
In the optimal separablel, case, block diagonality can of these, although it can be shown to subsume the other two
again be exploited so as to render the inversion a paranin the appropriate limits.
etrizedk-dimensional problem rather than ardimensional
one. At the same time, the minimization |df| is expected to V. APPLICATION TO T+V HAMILTONIANS
improve the convergence of EGL.3). Thus both of our cri-
teria for a good distorted-wave Green’s function are satisfied.
Insofar as a rigorous analysis of convergence is con- Although the method presented in Sec. Il is certainly
cerned, we can make some progress by acknowledging thapplicable to arbitrary quantum systems, the analysis is
Eq. (4.3 is essentially a geometric series of the dimensiongreatly simplified if the Hamiltonian can be written in
less kernel matrixA= GOA In fact, if A satisfies certain kinetic-plus-potential form. Specifically, we ask that the po-
conventional scattering criteria, then the convergence of thtentialV depend on the position coordinates only and that the
Born series is determined solely by the eigenvaluedhof kinetic energyT satisfy the generic form
[9,14]. In particular, Eq(4.3) converges if and only if

A. Orthogonality condition

A_Tin(alif)li e iak’ﬁk)
INi|<1 forall i, (4.9 R -~ - - - -
+Toud1s - - - Ok;Gk+1,Pk+1s - - - GnsPr)- (5.1

The kinetic energy thus separates into an inner term and an

rate of convergence out to any finite-indexed term in the quuter term, each of which may depend on position. There is
. ) an asymmetry, however, in tha the i
(4.3 expansion. Unfortunately, the result depends on th y y f, in tha, may depend on the inner

. - o o ®oordinates, but not vice versa.

level of expansion, so that a general definition of “optimal iitoni , Ao
convergence for all orders of expansion is not in general Hamiltonians of the form of EQ(S_'l)’_ Le., H=V+Ti,
possible. Nevertheless, it is clear from E4.3) that conver-  +Tou, €xhibit a large amount ddparsity in that each term
gence will, as a rule, improve ¢é| is decreased since both IS @ tensor of re(_juced_dlmensmnallty._Moreover, the sparse
2 P RN form of Eq.(5.1) is retained under a unitary transformation
A and G, diminish with |A|. , - ,

of the outer coordinatesThe T;, term is unaffected by such
a transformation, Whereé'%ut+v remains block diagonal in

. _ _ _ _ (A1, -+ - 0k)-
One is often interested in calculating the action of the These facts are very beneficial from the standpoint of try-

Green's function on a scattering wave, rather than th&?ng to find the optimal outer baS|§',n, for instance, can be
Green'’s function itself. In numerical applications, whérés completely ignored, as a result of which the orthogonality
a matrix andx a vector representing the scattering wave, wecondition[Eq. (3.3)] reduces to a simple integral

have the standard linear algebra problem

(E+ie—H)y=x. (4.5) fHo”LT ()[HM™M(q)—H™ ™ (q)]dg=0 forall m,m’,
(5.2

where the); are the eigenvalues .
One can derive, in terms of the, an expression for the

C. Preconditioners

Numerical “preconditioning” consists of multiplying both
sides of this equation with the same matrix—thewhereHq =T +V andq=(qy, - .. Q-
preconditioner—prior to obtaining a solution. Precondition- Note that where the outer basis is concem@jgm has
ing is most effective when the preconditioner matrix is clos-ygpjaced as the relevant operator. It is natural to interpret
est toG. This situation is very analogous to that®f in the  the former as a collection of- k)-dimensionalouter sub-
distorted-wave Born expansion. In fact if we simmlgfine  systems parametrized by tivener coordinates. By optimiz-
the preconditioner to be the matrix representatio®Ggfand  ing the outer basis, we are in effect tryinggimultaneously
multiply Eq. (4.5 by Eq. (4.3, we find that numerical pre- diagonalize the entire collectiorin the general case, one
conditioning and subsequent iterative expansion of the lineagannotactually diagonalize all of the subsystems using a
algebra problem correspond exactly to the distorted-waveingle basis, but the optimal choice is the best compromise in
Born expansion of5. the least-squares sense.

This correlation provides us with an analytic means of
evaluating different numerical preconditioning schemes. For B. Partitioning of coordinates
example, for Hamiltonians of the standard-V form, the For ann-dimensional prob|em, there aré Bistinct par-
Born series propel5] is generated by choosing=V. The titionings of coordinates into inner and outer categories, each



56 OPTIMAL SEPARABLE BASES AND SERIES EXPANSIONS 125

of which can potentially lead to a different optimlélb. In " T
deciding which particular partitioning should be adopted, the
results of the preceding subsection can serve as a useful
guide.

One should, if possible, choosd@ontrivial) partitioning >
that satisfies Eq(5.1), for, in addition to simplifying the
analysis, the majority of the coupling constants will zexo
by virtue of the sparse form ¢f ;. The availability of such
choices is related to the separability of the kinetic energy. If ' X
Tis completely separable, as in the standard rectilinear case,
then any partitioning will do. Only when the kinetic energy  FIG. 1. Physical schematic of the shifted harmonic oscillator.
is completely nonseparablecan no such partitioning be
found, in which case a change of coordinates might be eMggs with the latter, which is why the internal coordinates are
ployed to induce a separation. chosen to be theuter coordinates.

As is evident from Eq(5.1), the kinetic energy need not A primary advantage of the coupled-channel approach is

be strongly separable, a3, may depend on all of the po- that G(E) can be accurately determined using a small and
sition coordinates. In practice, howevdr,oftenis strongly  finite outer basis, provided the enerByis sufficiently lower
separable, in which case exchanging the inner for the outehan some cutoff value used to truncate the basis set. Al-
coordinates also satisfies E.1). To determine which is though finite, the various channels are still coupled together.
the better choice, the simultaneous diagonalization interpreAn uncoupled approximation can be obtained by ignoring
tation of Sec. VA can be fruitfully called upon. T ,+V the off-block-diagonal matrix elements Bff. This is, in fact,

were to vary onlyslightly with the inner coordinate param- a standard way tdefinedistorted waves in the multichannel
eters, then the various subsystems would be almost identicahse.

and would therefore be almost entirely diagonalized by the It is clear that the uncoupled-channel approximation
best-fit outer basis. One is thus led to select, as inner cookpove constitutes, in our language, a choicélgf We can
dinates, those; upon which the original Hamiltonian has therefore think of theptimal H, as the choice that redefines

the leastdependence. _ the channels in the best possible way, Vigissminimizing
As a special case, consider a completely separablge jnterchannel coupling. This should generally improve the
position-independent kinetic energy convergence of the resultant multichannel distorted-wave
n Born expansion, although very little is rigorously known
T=T(py, ... 'E)”):izzl T.(p)), (5.3 about this subjedt3].

. . VI. RESULTS: SHIFTED HARMONIC OSCILLATOR
where the coordinates have been mass weighted so that the

T,'s are all of identical form. The subsystemsTof,+ V are AZ, an apaly‘iicalhlfbegcr;]mark p.mble'.]r;' we cons_lider. the
now identical except for the potential ener@y which de- FWO' Imensional - shifte armonic-oscillator Hamiltonian,

pends on the positions only; thus, selecting inner coordinates® "’

involves nothing more than a straightforward analysis of the P

functionV(qq, . .. ,gs). A simple intuitive candidate for the . P Py2 K - s

optimal basis is suggested, namely, that basis which diago- H= om™* %“Li[y_f(x)] ' (6.2)
nalizes Tout (V)q, Where(V), is the collection-averaged

potential-energy function. While this choice may not be thewheref(x) is the shifting function(Fig. 1). Since the kinetic
optimal one—indeed, the true optimum may not even be oknergy is completely separable and position independent, Eq.
the form Tou(Pks1s - - - Pn) +V(Aks1, - - - An)—it should (5.1 is satisfied by any partitioning. The only nontrivial
nevertheless reduce the coupling significantly and is in anyalue fork is unity; so we are left with deciding whetheor

case readily obtainable. y is the inner coordinate. We expé¢fx,y) to vary less with
x than withy, which is particularly valid ad (x) becomes
C. Inelastic scattering small. The natural choice for the inner coordinate is thu$

. ) ) o N - f’(x) approaches zero in the infinite limits, then separable

In inelastic scattering applications, the abolg+(V)q  asymptotic states exist in those limits, and we can think of
candidate is closely related to the coupled-channel approxinis as a scattering system with channels defined ajong

mation, for which one uses the asymptotic rather than the The first task is to optimize the outer basis via a unitary

average potential. In fact, if we were to generate our outef, s, mation iy andp, . This is equivalent to finding the

basis fromT o+ VadQi+1, - - -Qn) and restrict ourselves 10 pagis that best diagonalizes the followikgarametrized col-
the energetically accessible bound states ofthe open |action of one-dimensional Hamiltonians:
channely then exactly the coupled-channel approximation

would result. In such inelastic applications, a natural separa- ~,
tion between interndlintrafragmenk and translationalinter- " _ by koA 2

) . . . HoulX)= =—=+=[y—f(X)]°. 6.2
fragmenj coordinates arises. The potential usually varies oufX) 2m 2[y (0] ©.2
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In light of Sec. VC, we choose the eigenfunctions of ~0.8
py22m+ 3x(y—(f))? as our initial guess, wherg) is the
mean value off(x). For convenience, we forcgf)=0 by
constrainingf (x) to be an odd function.

Our candidate outer basis functions then are the
harmonic-oscillator eigenstates. We have not yet proven that
this is an optimal choice; but we will soon do so, even for ~
f(x) not small, by demonstrating that E(.2) is satisfied.

When expressed in the partially diagonal bakig,, takes on
ablock-tridiagonalform, where the off-block-diagonal terms
arise from theyf(x) cross terms in the potential. Specifi-
cally, we have

0.2 L .
0.0 10.0 20.0 30.0
" (21 +1)hw+mw?f3(x) V
Hou(X) = 5 for 1-1"=0,

(6.3 FIG. 2. 3" as a function ofv for several values ofr(’,n):

— 0 - - -+, 09 —=--, 29, —— —, 45;
max(| I’)ﬁw3m ————— , (20,21). The curves all reach an extremum at some

Hgl,/lt(x) =— ’—f(x) for || — ’| =1, Ymax ON the order oh and then approach zero monotonically:eis

2 increased.
(6.4
" . . pé Mo’y ~
Hou(X)=0 otherwise, (6.5 Hin=5 -+ Ttanf?(ax) (6.7

where w=+/k/m and {l,I'} index the y-oscillator states.
Clearly, EQ'(S'Z) IS zero forfl —1"]#1. _Wh_en 1-1"[=1, In the Appendix, thénormalized bound-state eigenfunc-
the result is proportional t¢f(x) dx, which is also zero by tions of Eq.(6.7) are shown to be

virtue of f(x) being odd. The candidate outer basis is there-
fore optimal. The coupling, which in the general two-
dimensional case would be a tensor of rank 4, is seen above qsff)(r]):

to be a rank-2 function df andx only. Note also thaH 'c}ut is

can be diagonalized analytically.

Jr—n)T'(2v—n+1)
n!Y22' T (v+1)

proportional tof(x), i.e., the inherent coupling vanishes as n
the shifting approaches zero, as expected. X (1- 772)<V“)’2(d—) (1- %", (6.9
We now examine the inner coordinate problem, i.e., the K
diagonalization of the diagonal blocKs,+ A, that com-
where  p=tanh(@x), Vv(v+1)=mowTy/ah, and

prise H,. Note that even though thf: original potential in- n={0,1,...,int(»)}. Curiously, a bound state always exists
volved cross terms, the new potentl&ﬂm(x) is completely  even in the limitT,a—0 (see the Appendix

additive inx andl. Consequently, all blocks dfi, are di- This fact reveals an interesting featurefofIf there is no
agonalized by theameinner basis, so that for this particular shifting, there are no bound states; howewry amount of
problem the optimalveakly separable basis happens to beshifting, no matter how smalhecessarily induces at least

strongly separable. . one bound statén H,. In the small coupling limitH, be-
Apart from anl-dependent constant, @y blocks are  .qmes 3 valid replacement fét. However, since the latter
equivalent to the one-dimensional Hamiltoniardn has no actual bound states, the bound stateéi(pfmust

~, 2 correspond tdong-lived resonancesf H. This result can be
A _PC + Mo £2(%). (6.6) used as a benchmark for comparisons with other separable or
"2m 2 adiabatic approximation methods, such as those based on the

“reaction path” [17]. We have found that even the most

Since f(x) is odd, we have an even potential well that is rigorous adiabatic reaction path Hamiltonifb8] fails to
concave and centered at the origin. Such a well may admitredict any resonances for this system in the small coupling
bound-state solutions. limit.

To proceed any further, however, we must specify a par- The optimalH, leads to the zeroth-order eigenfunctions
ticular form of the shifting functionf(x). The choice and eigenvalues
f(x)=Tgtanh@x) is a useful one in that it represents a
smooth, sigmoid progression from a(l'o)-centereq oscilla- . (7,Y)=bn( 1) oY), 6.9
tor to a Ty-centered one. The amount of coupling can be
adjusted by varying the paramet&p, whereas the rate of meTz[ (v—n)?
change is determined bg. Moreover, the resultant inner _ o, \V—
Hamiltonian En="73 |7 w(v+1) (1 +19he, (610
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where the ¢|(y) are the harmonic-oscillator eigenstates.est magnitudes are of order unity only whesn'~ v and in
Since the first-order energy corrections are all zero, the adgeneral diminish agn—n’| or v is increased.

ditive Eq.(6.10 result is correct to first order. The first-order ~ The limit Toa— 0, in which the shifting function and cou-
eigenfunction correction€,,, ./, are all zero except when pling approach zero, is of interest. We find that
[I-1"|=1, and |n—n’| is odd. We choose

. : ~ pr/ (n".n) 2 <
I=1"+1, n>n’, and defineC, ,/,=Cpj o, Which are Cram=w\IToal2 3" for  v%(Toa)<1.
given by (6.13
, Thus the number of bound statesnay be fairly high, even
co homi2 To 30" as theC, ., approach zero. In the largedimit, the highly
I'n’n_ﬁ+mng[(n2_n’z)/y_Z(n_n’)]/(V+ 1) excited and continuum corrections to the low-lying eigen-

(6.1  states become negligible even in a relative sense. The corre-
sponding resonances bf are therefore expected to be very
long-lived indeed.
Our final task is to evaluate the kernel matfipertaining
' Lo » 7 to the generalized Born expansion of Eg.3). Using the
n,n)__— v v . . N " .
Jy =J'71¢n’ (m) &0 (7) 1= dn7, (6.12 @, basis, the representationsidf andf are diagonal and
block tridiagonal, respectively, even with the addition of the
whose closed-form expressions for the bound states are db-*ie€ terms appropriate for a Green's-function analysis. In
rived in the Appendix. Generally speaking, the magnitudeshe corresponding representation Af only the|l—1'|=1
of these integrals are much less than ufiiig. 2). The larg-  blocks are nonzero. Again with=1"+1, we have

The corrections specified in E(6.11) are obtained from the
one-dimensional integrals

Whw3mi2 T Jn'm

Mw?T(1—(v—n)v(v+1)]2+(1+1ho—E—ie’

Al,n’n:

(6.19

In the limit Toa—0 this reduces to turbation A. Similarly, the applicability of the method to
, both analytical and computational pursuits is also to be ex-
v\IToal2 3" pected, as in either case it is of great benefit to be able to
|+ !
2

~ 2 . . . T .
Al for - vH(Toa)<1, lower the dimensionality. It is significant that in the latter

—(Etie)/fw case a computer algorithm has been developed to perform
(6.15 the optimization automatically8]. The corresponding ana-
lytical problem may in individual cases prove to be intract-
which is sma”’ as expected1 providﬁj is Sufﬁcienﬂy far ible, albeit dimenSiona”y reduced, but even then the phySicaI
from a resonance. We shall not consider higher-order termgicture developed in Secs. Il and V can be used to obtain a
in the present analysis, except insofar as to comment that\%orthy substitute. It is also significant that the method,

treatment of the continuum states should first be applied. though applicable to arbitrary multidimensional operators, is
particularly suited to sparse Hamiltonians.

The results for the shifted harmonic-oscillator system of
Sec. VI are quite encouraging. Not only were we able to

The primary purpose of this paper has been to demonebtain the analytically optimal outer basis for any shifting
strate that an optimal separable basis can be defined for danction f(x), our physical intuition led us immediately to
arbitrary quantum Hamiltonian in a mathematically rigorousthe correct answer. All that was required was a simple inte-
fashion. Separable approximations are invaluable in physicgral verification of Eq.(5.2). Although this situation is to
and chemistry not only for their simplicity, but also for the some extent fortuitous, it nevertheless indicates that the av-
intuitive insights they provide. One is especially interested inerage potential probably does lead to an excellent, if not
approximations that are not onkeparable but alsoaccu-  optimal, outer basis in the general case.
rate; what has been lacking thus far is a systematic way to Having obtained the optimal outer basis for the generic
obtain such operators. The mutual orthogonality criterion ofshifted oscillator system, the inner problem was also reduced
Egs. (3.3 and (5.2) goes a long way towards this goal by to a particularly simple form. The separability of the new

providing the separabled, that most closely approximates potential allowed us to solve the full, problem by simply

the true Hamiltonian, for a given factorization of configura- diagonalizing asingle one-dimensional system rather than a

tion space. collectionof systems. In addition, the inherent residual cou-
The optimal separable basis also provides an advantgling was found to be of rank 2 only. Thus, with compara-

geous starting point for series expansions. The fact that thigvely little effort we were able to obtain the most accurate

method is useful for both Green’s-function and eigenfunctiorzeroth- and first-order approximations for this nontrivial two-

expansions is not surprising, as both involve the same pedimensional system and to prove the existence of resonances

VII. CONCLUSION
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even in the limit of infinitesimal shifting. 1. Solving the eigenproblem

_In'higher dimensions, the optimal separable basis method \ye yish to find the eigenfunctions and discrete eigenval-
is expected to be even more effective, at least for numericalag of the one-dimensional differential equation
applications. One reason is that there is generally more free-

dom of choice with respect to coordinate partitionings as the £2 g2 mszcz,
dimensionality is increased. Another reason is that the spar- — 5 W¢(x)+Ttanf?(ax) d(X)=Ep(X).
sity usually increases with dimensionality, so that a greater (A1)

percentage of the matrix elements bfwill be zero. If the
kinetic energy is more separable than indicated in(Bdl), By transforming to the coordinate=tanhx), we obtain
one might wonder whether the present approach could bgyith »'=1- 7?)

modified to exploit this additional sparsity. For calculations
of the Sec. IV C variety, this could easily be accomplished #2 d? d

via arecursiveapplication of the method. Instead of just two - ﬁazn'( 7 Wz(ﬁ( n)— 27/@ &( 7}))
tiers of coordinates, one winds up with three or more layers.

Under the most favorable scenario of £§.3), each coordi- 2

nate would constitute a separate layer, to be “peeled off” +
one at a time. Moreover, the tremendous initial sparsity of

such a system would be preserved throughout. Dividing by —a?7n'#%/2m vyields Legendre’s differential

Although a recursive approach may be advantageous in .
. .o C~ equation[23]
some cases, a straightforward application as presented in this

paper should be suitable for just about any reasonably small

ma*Ty Z—E)qs( )=0 (A2)
2 n n .

system of interest. Moreover, there are plenty of applications (1=9%) ¢(m) =27 ¢(n)

for which a two-tiered approach is most natural. In molecular +[w(v+1)— w?(1-72)]d(7)=0, (A3)
systems, for example, there is an obvious distinction between

electronic and nuclear degrees of freedom. In nonrigid rOtorSprovided v(r+1)=(MoTy/ah)? and ul=

three global rotational degrees of freedom are naturally dis- _ 212
tinguished from the others. This partitioning results in thev(lljf ;);d iEz;gcia-ll;Oe]r; to be positivémaginary square

s:o-called Coriolis co_upllng, whose m|n!m|zgt|on via the op- roots, then the solutions to EA3) are the associated Leg-
timal separable basis we plan to consider in a future paper, . . e
dre functions of the first and second kinBls* and

Scattering Hamiltonians also exhibit a separation betweeﬁn+
internal and translational coordinates by virtue of theQ; . For energiesE>3mw?Tg, the parametey is pure
asymptotic form of the potential. Numerical results for aimaginary as is appropriate for the continuum states. Bound
simple molecular reactive scattering system are obtained in states arise whe is less thargmw?T§, in which caseu is
concurrent papef8], wherein we also present an efficient real.
algorithm for obtaining the optimal outer basis. For integralv, we know that theP’’ are square integrable
if w is an integer less than or equal#o The generalization
for nonintegral values of turns out to be that thdifference
ACKNOWLEDGMENTS betweenv and x must be integral, in which cade, # is the

appropriate bound state solution. These functions are closely
reasons, including useful discussions of the multichannei€lated to the Gegenbauer or “ultraspherical” polynomials
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DE-AC03-76SF00098. n 2 0

The author is indebted to Professor W.H. Miller for many

(v—n)?

1_V(V+ 1)

: (A4)

from which the ground-state energy is seen to be
APPENDIX: THE tanh 2 POTENTIAL HAMILTONIAN E0=ﬁ2azvl2m.
The bound-state solutions satisfy a somewhat unusual or-
thonormality condition. Because the coordinageis used
fnstead ofx, we have

The tanR potential is equivalent to a seclf potential,
apart from a constant of unity. The latter, also known as th
Eckart well or the symmetric Poschl-Teller hdl&9], was
introduced by Rosen and Morg20] who first solved the 1
guantum problem in an analysis of polyatomic molecular f ¢>E,Vr)(77) (b<nv>(7])
vibration energies. It has since been reconsidered in various -1
other fields, including soliton resear§®l]. Despite a long-
standing interest, however, exact wave-function normalizain terms of theP!~”, the above integral can be analytically
tion constants were not obtained until comparatively recentlyevaluated to determine the proper normalization constants
[22]. [24]. This yields

1
m d77: 5nn" (AS)
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expanding bothg,, and ¢,, using Eq.(A10) above. The

V() \/(v—n)F(Zv—m— 1)any( e The integral in Eq.(A9) can be analytically evaluated by
’ = ] L) n).
n result is

Alternatively, we can use the Leibnitz and Rodrigues formu-

las [25] to derive the excited states by differentiating the 2y
following expression for the ground stdt23]: 1 - )
|<n’,n>:_\/ 1_2 1_n_ Y
v 2 v v 2v\ [ 2v\ ]2
¢o(x) =P, "[tani( ax)]=sin"(6), (A7) n/in
14 14 14 14
where sii(f)=1—tantf(ax). This results in the normalized " iin=i/{j/\n"—j
formula of Eq.(6.8). X O;; (- o1
The limiting case behavior of the bound-state solutions is Os\j';:,

also quite interesting. Since must be positive, there is al-
ways a bound state, even in the limit as the well depth
(To) or width (1/x) approaches zero, and the corresponding
action becomes arbitrarily small in relation to Planck’s con- (A11)
stant. This egregious departure from WKB theory is in

marked contrast to other solved potentials. Only one boung,o fight-hand side of EqA11) is a somewhat unwieldy
state remains in these limits, however, since 0. Accord- double summation involvingn+1)(n’ +1) terms. A sim-

ing to Eq.(A7), it must be proportional to (+ %?)("?. Thus | on involvi foniga’ +1) t
the ground state is in essence simply a power of the originzﬂ er expression involving a sum of only i ) terms can

potential. As» approaches zerap, approaches a uniform be obtained by deriving a r_ecursion r_elation for 1_Jh)e It
distribution; moreover, the corresponding energy is seefUrns out to be more convenient to derive the relation for the
from Eq. (A4) to approach the continuum threshold. These! ., defined via Eq(A9) with respect to thep, rather than
results are consistent with the limiting functional form of the the ¢, . Using integration by parts and EA8), the follow-
potential itself, which approaches a constant in the small- ing recursion relation is easily derived:

limit.

1
v+(n+n)i2=(i+])- 5

2. Obtaining the J(""*M (=T 10 =/ (2p—n' +1)(2w—n’ —n)T" ~10)
We wish to evaluate thé, integrals of Eq(6.12. Using i1
a well-known recursion relation of thB* to expandd, —2(v—n") T, (A12)

[25], we can write

Thus an arbitraryl , can always be expressed in terms of the

gt 1 [ @v=n)(n"+1) i T, for whichn’=0. These are analytically obtained via di-
v 2 V(v—n'—1)(v—n’")" rect integration of Eq(A9), resulting in[26]

1 (2v—n'"+1)n’ (' ~Ln)

"2V (v=n"+1)(v—n')" . (A8) (V_E_E)!

TON=(—1)"27Y (n—1)117]? (A13)

I ’”)Ef_m(n")(n) ¢ () (172 Yy, (A9) ’

The quantityl , is nonzero only whem,n’=0 andn—n’ is  for n even. _
even. Using the Leibnitz formula, tHennormalized eigen- By combining the results of the preceding paragraph, any

functions can be expressed as a sum of algebraic functions phrticular T, value can be determined. The first few are
7

EI(']V)E(]__”Z)(Vn)/2<dd_7])n(l_772)v TE,O'O>:771/2(V_ %)llvl, (n+n,):0, (A14)
! i(n v! v! =02 _r_ 12 . 3 B
:izo(_l)<i>(v—i)! (v—n+i)! A== = D (=D

. (n+n")=2, (A15)
X(l_ 77)1»/2+[n/27i](1_,’_ 77)1//27[n/27i]' (AlO) T(Vl’l):[ZVWl/Z(V— %)I/(V_l)']
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TOY=197Y2(v— 51/ (v—2)!]

TH=[—6va(v— 51/ (v—2)!]

— 1/ v—23/2\2] ) (n+n')=4
(2,2 _ _ R !
[9=112v(v—1)|1 3< V—l)}
X 72(v— )1 (v—2)!
’ (A16)

In general, the factor in square brackets is a sum over
int(1/2n’)+ 1 terms. The properly normalized formula for an

arbitraryl , is
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IS}n',r‘l): ( _ 1)(n—n’)/2771/2(n_ n — 1)”

X\ (2v—n)!(2v—n")!
Jr=n)(v=n’)(n"l/n!)
X

p122v
int(n’/2) ’ 1
-, frv=(n+n"H2+i—3
X —12m Y
2 (-1 ( ’ )
(n+n'=2i—111  (r—(n+n’)/2+i— 3)!

o i =20 (= (n+n)2+1)!
(A17)
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