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Optimal separable bases and series expansions
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A method is proposed for the efficient calculation of the Green’s functions and eigenstates for quantum
systems of two or more dimensions. For a given Hamiltonian, the best possible separable approximation is
obtained from the set of all Hilbert-space operators. It is shown that this determination itself, as well as the
solution of the resultant approximation, is a problem of reduced dimensionality. Moreover, the approximate
eigenstates constitute the optimal separable basis, in the sense of self-consistent field theory. The full solution
is obtained from the approximation via iterative expansion. In the time-independent perturbation expansion for
instance, all of the first-order energy corrections are zero. In the Green’s function case, we have a distorted-
wave Born series with optimized convergence properties. This series may converge even when the usual Born
series diverges. Analytical results are presented for an application of the method to the two-dimensional shifted
harmonic-oscillator system, in the course of which the quantum tanh2 potential problem is solved exactly. The
universal presence of bound states in the latter is shown to imply long-lived resonances in the former. In a
comparison with other theoretical methods, we find that the reaction path Hamiltonian fails to predict such
resonances.@S1050-2947~97!01307-3#

PACS number~s!: 03.65.Ca, 03.80.1r, 03.65.Ge, 02.30.Mv
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I. INTRODUCTION

Since the time of Newton, if not earlier, physicists ha
tried to solve complicated problems by breaking them do
into simpler components. The trick lies in ‘‘carving up’’ th
initial problem in just the right way so that the componen
are independent of one another and can be solved separ
In classical mechanics, for instance, one seeks the first
grals or action-angle variables because these partition
Hamiltonian in the most natural way. Of course, finding t
best way to slice a particular problem may be very difficu
if not impossible. Even in such cases, however, one may
be able to find aseparable substitutethat accurately approxi
mates the true system.

In this paper, we consider separable approximations
quantum-mechanical systems. For a given multidimensio
HamiltonianĤ, a separable approximationĤ0 is an operator
whose eigenstates are products of coordinate functions.
simplest class of such functions are the direct-product b
sets, which have been utilized, for example, in vibratio
problems@1#. These basis sets correspond to what we sha
Sec. II call ‘‘strongly separable’’Ĥ0’s. However, the genera
case also includesweaklyseparableĤ0’s, which may pro-
vide more accurate approximations ofĤ. One suchĤ0 gives
rise to the ‘‘dressed’’ eigenfunctions of the truncatio
recoupling method@2#.

It would clearly be desirable if we could somehow exa
ine all possible separableĤ0’s and select from that pool th
best approximation to the true Hamiltonian. Such a pro
dure would first require a rigorous definition of the ‘‘dis
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tance’’ between two operators. The closestĤ0 could then be
obtained by applying the variational calculus to the set of
Hilbert-spaceoperators. At first glance, this appears far mor
formidable than the original problem. Nevertheless, we sh
demonstrate that with a suitable operator metric, specifica

the Frobenius norm of the residual (Ĥ2Ĥ0), the variational
problem itself corresponds to a conventional quantum pro
lem of reduced dimensionality.

The optimalĤ0 obtained in this manner can be useful

exploited in a variety of ways. The eigenstates ofĤ0 turn out
to be the best mutually orthogonal separable approximat
to the true eigenstates, in the sense of self-consistent
theory. This ‘‘optimal separable basis’’ is therefore a natu
starting point for a time-independent perturbation expans

of Ĥ. In scattering applications, the stationary scatter

states ofĤ0 are the so-called distorted waves@3#. These give
rise to an optimized distorted-wave Born expansion of
energy Green’s function. This expansion may conve
quickly even if the standard Born series is slowly converg
or divergent, as is the case for many scattering systems
interest.

The remainder of the paper is organized as follows. S
tion II provides the mathematical preliminaries, includin
precise definitions of the operator metric and separabil
Section III comprises the bulk of the theory underlying t
optimal separable basis approach. Section IV applies
method to series expansions, examines convergence, an
tablishes a link with numerical preconditioning. Section
discusses a simplification that arises when the method is
plied to Hamiltonians of a standard form. Section VI pr
sents analytical results for a benchmark two-dimensio
system. This ‘‘shifted harmonic-oscillator’’ problem has no
to the author’s knowledge, been previously considered.
120 © 1997 The American Physical Society
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56 121OPTIMAL SEPARABLE BASES AND SERIES EXPANSIONS
II. MATHEMATICAL PRELIMINARIES

A. Separability

Let Ĥ[H(q̂1 ,p̂1 , . . . ,q̂n ,p̂n) be an arbitrary
n-dimensional Hamiltonian for which the generalized po
tion operatorsq̂1 , . . . ,q̂n and associatedp̂1 , . . . ,p̂n satisfy

@qî ,qĵ #5@pî ,pĵ #50, ~2.1!

@qî ,pĵ #5d i j Fi~qî ,pî !.

Let the firstk degrees of freedom be designated as theinner
coordinatesand the remainingn2k as theouter coordinates.
This partitioning is completely arbitrary and in practice
decided by analytic or computational convenience~Sec.
VB!.

We define a ‘‘separable basis’’ as a basis whose posi
representation is separable by inner and outer coordinate
other words, each basis function is a product of an in
function and an outer function. We must distinguish betwe
two distinct types of separability: ‘‘strong’’ and ‘‘weak.’
The former corresponds to inner and outer factors that
completely independent, i.e.,

F lm5f l~q1 , . . . ,qk!wm~qk11 , . . . ,qn!. ~2.2!

This symmetric form corresponds to the eigenfunctions o
strongly separable

Ĥ05H in~ q̂1 ,p̂1 , . . . ,q̂k ,p̂k!

1Hout~ q̂k11 ,p̂k11 , . . . ,q̂n ,p̂n!, ~2.3!

which follows directly from the commutation relations a
specified in Eqs.~2.1!.

As an approximation toĤ, the class of suchĤ0’s is some-
what limited. The range of possible eigenvalue spectra,
example, is restricted to additive spectra only. Fortunat
there is a much broader class of separable bases, i.e.,
satisfying the weak separability condition and characteri
by eigenfunctions

F lm5f l
~m!~q1 , . . . ,qk! wm~qk11 , . . . ,qn!. ~2.4!

Here a lack of symmetry arises because the inner funct
depend on the quantum numbers of the outer function
familiar situation encountered often in quantum mechan
Equations~2.1! now imply a correspondingĤ0 conforming
to

Ĥ05H in„q̂1 ,p̂1 , . . . ,q̂k ,p̂k ,

Hout
1 ~ q̂k11 ,p̂k11 , . . . ,q̂n ,p̂n!,Hout

2
•••…, ~2.5!

where theHout
i comprise an independent set of commuti

operators whose simultaneous eigenstates are
wm(qk11 , . . . ,qn). Note that, in addition to being manifestl
asymmetric, Eq.~2.5! is seen to incorporate a much broad
range of operators than Eq.~2.3!. Moreover, the correspond
ing energy eigenspectra are completely unrestricted.
-
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B. Defining the operator metric

In order to apply the variational calculus, we must defi
a metric functional on pairs of operators. In analogy with t
complex vector space notion of a dot product, we define
inner product of twooperators Âand B̂ as

Â* B̂[tr~Â†B̂!. ~2.6!

The norm ofÂ is then given byuÂu25tr(Â†Â) and the dis-
tance betweenÂ and B̂ by uB̂2Âu.

In any explicit matrix representation, the above definiti
of the norm becomes

uÂu2[(
i , j

uAi j u2, ~2.7!

where theAi j are the individual matrix elements. In thi
form, Eq. ~2.7! is known as the ‘‘Frobenius norm’’@4#. The
Frobenius norm is but one of several competing matrix no
definitions, of which the so-called Euclidean norm@5,6# is
usually preferred. Nevertheless, for our purposes, the Fro
nius norm turns out to be the appropriate one~Sec. III!.

III. OBTAINING THE OPTIMAL SEPARABLE BASIS

The problem of obtaining the optimalĤ0 is now well
formulated; namely, we seek to minimizeuĤ2Ĥ0u with re-
spect to variations ofĤ0 subject to the weak separabilit
constraint. This is best approached in two stages. First, f
particular choice of outer basiswm , we determine the bes
Ĥ0 and corresponding inner basesf l

(m) . This gives rise to a

new interpretation ofĤ0. The second stage is to optimiz
with respect to a variation of the outer basis set.

A. Optimization with respect to a fixed outer basis

Consider the explicit representations ofĤ and Ĥ0 in the
partially diagonal basis

uq1 , . . . ,qk ,m&5uq1 , . . . ,qk&uwm& ~3.1!

for some choice of outer basiswm . Now consider all weakly
separable variations ofĤ0 for whichwm is fixed. The explicit
form of Ĥ0 is constrained to be block diagonal inm ~i.e., a
dmm8 factor is present!, but is otherwise completely arbitrary
From Eq. ~2.7!, however, it is clear thatthe minimal

uĤ2Ĥ0u ensues when Hˆ 0 is defined as the block-diagona

portion of Ĥ.
This finding is true because the block-diagonal and

off-block-diagonal portions ofĤ contribute to the total
Frobenius norm independently. Adopting the former as
choice for Ĥ0, the latter becomes the residual matr
D̂[Ĥ2Ĥ0. We shall find it very convenient to interpre
Ĥ0 as a collection ofk-dimensional inner subsystems that a
parametrized by the outer indicesm and coupled together by
D̂.

It remains only to minimizeuD̂u with respect to a variation
of the outer basis. In terms of coupled subsystems, thi
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122 56BILL POIRIER
equivalent tominimizing the total subsystem couplingin the
usual least-squares sense. This intuitively satisfying inter
tation holds only by virtue of the Frobenius norm metr
indeed, the coupled subsystem pictureitself would be inap-
propriate if one were to use a different definition of the m
trix norm.

B. Optimizing the outer basis

Variations of the outer basis correspond to unitary@7#

transformationsÛ involving only the outer coordinates
q̂k11 ,p̂k11 , . . . ,q̂n ,p̂n . In other words,

Ĥ85Û†ĤÛ, Û5U~ q̂k11 ,p̂k11 , . . . ,q̂n ,p̂n!. ~3.2!

This restriction has two advantages. First, Eqs.~2.1! ensure
that Û has no effect on theq̂1 ,p̂1 , . . . ,q̂k ,p̂k , so that the
Ĥ dependence on these coordinates is unaffected by
transformation. Second, determining the optimal outer b
is a problem of reduced dimensionality.

Mathematically, we have a constrained eigenvector pr
lem where theinner coordinates are the parameters. T
k-dimensional constraint onÛ generally disallows complete
block diagonalization ofĤ; nevertheless, minimizinguD̂u has
the effect of removing allunessentialnonseparability from
the system. Indeed, ifĤ happens to be weakly separable
begin with, then it can be block diagonalized by someÛ of
the form Eq.~3.2!, in which caseall of the coupling is re-
moved, as is intuitively appropriate. In the general caseuD̂u
cannot be made to vanish altogether, but can be greatly
duced, via the optimal choice of outer basis, so as to refl
only the minimal coupling actually inherent in the system

As with all variational methods, optimization is signale
by candidates that satisfy an appropriate stationarity co
tion. In our case,uD̂u must be stationary with respect to a
infinitesimal outer unitarity transformations, of which w
need only consider the elementary~pairwise! transformations
explicitly. By evaluating all pairs independently, we obtai

H̃mm8* ~H̃mm2H̃m8m8!50 for all m,m8, ~3.3!

whereH̃mm8[^wm8uĤuwm&. The operatorsH̃mm8, etc., being
blocks of the full Hamiltonian in the partially diagonal rep
resentation, act on the inner coordinates only. The * ope
tion is simply the inner coordinate version of the Eq.~2.6!
matrix dot product affiliated with the Frobenius norm metr

Equation~3.3! above is thus the desired optimization co
dition and a central result of this paper. Note that this eq
tion can be naturally interpreted as amutual orthogonality
conditionon the blocks ofĤ. Although Eq.~3.3! is simple
and intuitive, it applies only in thewm representation. It doe
not, for instance, provide us with some differential equat
in theoriginal coordinates, as do many other applications
the variational method. Nevertheless, Eq.~3.3! still serves as
a very useful guide in particular applications. The optim
outer basis can always be determined numerically, for
ample, using a simple block algorithm that is the focus
another paper@8#. Analytically, any intuitively selected can
didate for the optimalwm can always be checked direct
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against Eq.~3.3!. Even if the equality fails, the lack of or
thogonality can be used as a measure of ‘‘efficiency’’
proximity to optimality. If the optimal basis is analyticall
intractible, then a nearly optimal subsitute should do alm
as well ~Sec. VB!.

This situation is somewhat analogous to that of We
berg’s quasiparticle approach to converging the Born se
@9#. Weinberg’s approach allows us to define a quasipart
however we like; a physically intuitive choice is almost a
ways beneficial even if the mathematically optimal soluti
is unattainable. In the Weinberg formalism, however, ther
no analog of Eq.~3.3!, and thus no way to determine wheth
or not a given choice is close to optimal.

C. Existence, uniqueness, and infinities

It is important to note that Eq.~3.3! is in principle appli-
cable even to non-square-integrable Hamiltonians, i.e.
systems for which the Frobenius norm ofĤ is infinite. This
doesnot imply that uD̂u is also infinite, indeed,uD̂u is finite
for all systems that conform to the standard scattering crit
@10,3#. Nevertheless, there are undoubtedly certain ph
cally interesting cases for whichuD̂u is infinite in all repre-
sentations~Sec. VI!, as a result of which it may not be intu
itively obvious which one is the best. Even in such cas
however, the stationarity condition is still meaningful b
cause Eq.~3.3! relies only on theorthogonality of the
H̃mm8 and not on their normalizability.

Normalizability in and of itself is therefore not the prin
cipal concern. Of greater importance is whether or not
optimal solution actually exists for a given system. Equat
~3.3! is silent on this subject; it merely reflects the conditio
that would have to be satisfied should a solution exist. Th
might be no stationary solutions or several. In the lat
event, one would like to be able to distinguish the true mi
mal solutions from the maxima and saddle points. Althou
we do not at present know how to resolve these questions
a completely arbitrary system, we can nevertheless pr
that at least one stationary minimum exists if certain reas
able conditions are maintained.

Consider a parametrized, outer coordinate unitary tra
formation operator

Û~f1 ,f2 , . . . ! ~3.4!

such thatÛ is periodic in each of the parametersf i and such
that any arbitrary unitary operator can be obtained by pl
ging in an appropriate set of parameter values. This could
constructed from a~possibly infinite! product of successive
elementary unitary transformations between differe
(m,m8) pairs. Each elementary operator, being a 232 ~uni-
modular! unitary matrix, is parametrized by three angles a
is periodic in those angles. The collection of all such ang
can thus be taken to be thef i above; by incorporating an
arbitrarily large number and variety of elementary operato
we can generate any desiredÛ. ~It does not matter if the se
of all Û ’s is overspecified!.

By incorporating the parametrizedÛ above, the residua
norm in any representation is conveniently expres
as a real-valued function of the parameters, i
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56 123OPTIMAL SEPARABLE BASES AND SERIES EXPANSIONS
uD̂u2[F(f1 ,f2 , . . . ). A stationary outer basis is therefo
presented to us whenever the first partial derivatives oF
with respect to thef i are all zero. IfF is continuous and
differentiable everywhere, then at least one stationary m
mum exists. This is true because the parameter space, b
a product of compact spaces, is itself compact by virtue
Tychonoff’s theorem@11,12#.

The above result can be extended to noncontinuousF ’s
by requiring only that continuous first partial derivatives

]F~f1 ,f2 , . . . !

]f i
5 f i~f1 ,f2 , . . . ! ~3.5!

exist everywhere and by invoking the finite intersecti
property for the family of contour sheets defined
( f i50) @12#. This enables us to prove the existence o
stationary point even whenF is infinite @13#. However, the
partial derivative condition is still more restrictive than
necessary. Section VI, for example, presents a system
which the partial derivatives can be infinite even though
stationary point exists. Consequently, we suspect that a m
comprehensive existence proof can be obtained, and this
sibility is currently being investigated.

D. Self-consistent field interpretation

We conclude this section with a brief comparison betwe
the optimal separable basis approach and the Hartree-Fo
self-consistent field theories. In the latter, one consid
separable approximations of the form

F lm5f l
~m!~q1 , . . . ,qk!wm

~ l !~qk11 , . . . ,qn!. ~3.6!

The optimalF lm’s are usually defined as those for which t
expectation value of the energy is stationary. Since both
ner and outer functions depend onall the quantum numbers
theF lm are not generally orthogonal and do not form a ba

In contrast, the optimal separable basis consists ofF lm
wave functions thataremutually orthogonal. Moreover, th
stationarity criterion isidentical to that of the self-consisten
field. The comparison is most easily made by represen
Ĥ in the optimal separable basis itself.Ĥ0 now comprises the
diagonal matrix elements ofĤ, which are nothing more than
the energy expectation values of theF lm . Because
uĤu25uĤ0u21uD̂u2 is representation independent, we have
stationarity condition on thesumof the energy expectation
value square moduli rather than on the individual expecta
values themselves. Our approach can therefore be consid
a self-consistent field approximation of the complete ene
basisrather than of the individual energy eigenfunctions.

IV. SERIES EXPANSIONS

A separable basis approximation of the eigenstates
multidimensional Hamiltonian is certainly desirable in
own right, particularly one that is ‘‘best’’ in the self
consistent field sense. It is also of interest, however, to ob
more accurate results via series expansions that use the
timal Ĥ0 as a starting point. When actually performing su
expansions, whether analytically or numerically, the issue
series convergence always arises. Intuitively, we expect c
i-
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vergence to improve as the residualD̂ is diminished. Thus
the optimalĤ0 suggested above should result, heuristica
speaking, in the fastest convergence. Rigorously spea
however, it is not always clear what constitutes ‘‘optim
convergence’’ for an operator series.

A. Time-independent perturbation theory

Let the optimal separableĤ0 of Sec. III be the zeroth-
order approximation in a time-independent perturbation
pansion ofĤ. To obtain the zeroth-order eigenfunctions, w
must obtain thef l

(m) by diagonalizingĤ0: a comparatively

simple task, in light ofĤ0’s block-diagonal structure. Sinc
each of the blocks can be diagonalized separately, we ha
k-dimensional eigenproblem parametrized by the outer in
cesm.

It can be shown that our choice forĤ0 is always suffi-
ciently close toĤ that the first-order corrections to the ene
gies are allzero. In the partially diagonal basis, the block
diagonal nature ofĤ0 implies outer coordinate wave
functions that ared functions. On the other hand, the matr
elements ofD̃mm85(12dmm8)H̃mm8 are by definition zero
for m equal tom8, thus proving the claim.

The first-order corrections to the eigenfunctions are

Clm,l 8m85
^F l 8m8uD̂uF lm&

Elm
~0!2El 8m8

~0! . ~4.1!

Equation~4.1! informs us that the optimal basis is the on
that minimizes, in the usual least-squares sense, the co
tion of first order eigenfunction corrections weighted by t
energy differences. This interpretation cannot be exten
beyond the first order. Nevertheless, corrections of any gi
order involve as many factors of theD̂ matrix elements, and
it is clear that convergence will improve, generally speaki
as uD̂u is diminished.

B. Born series expansion

In scattering applications, the main object of interest is
energy Green’s functionĜ(E)5 lime→0(E1 i e2Ĥ)21. We
consider a separation ofĤ into two pieces so that

Ĥ5Ĥ01D̂, ~4.2!

where, for the moment,Ĥ0 is arbitrary. It is assumed only
that Ĥ0 is invertible, so that the correspondin
Ĝ0(E)5 lime→0(E1 i e2Ĥ0)

21 is well defined.
In the usual distorted-wave methodology, the perturbat

D̂ has the form of a potential~i.e., it depends on theq̂i only!,
and Ĝ0 is called the distorted-wave Green’s function@3#. It
makes sense to use the same terminology, however,
when D̂ takes on a more general form.

The full Green’s functionĜ can be expressed in terms o
the distorted-wave Green’s functionĜ0 via the distorted-
wave Born expansion
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124 56BILL POIRIER
Ĝ5Ĝ01Ĝ0D̂Ĝ01Ĝ0D̂Ĝ0D̂Ĝ01•••. ~4.3!

In principle, one attempts to partition as much ofĤ into
Ĥ0 as possible, so that the resultant expansion conve
quickly. On the other hand,Ĝ0 must be known explicitly, so
that nothing is gained unless invertingE1 i e2Ĥ0 is signifi-
cantly more tractable than the original problem.

In the optimal separableĤ0 case, block diagonality can
again be exploited so as to render the inversion a par
etrizedk-dimensional problem rather than ann-dimensional
one. At the same time, the minimization ofuD̂u is expected to
improve the convergence of Eq.~4.3!. Thus both of our cri-
teria for a good distorted-wave Green’s function are satisfi

Insofar as a rigorous analysis of convergence is c
cerned, we can make some progress by acknowledging
Eq. ~4.3! is essentially a geometric series of the dimensi
less kernel matrixÂ[Ĝ0D̂. In fact, if D̂ satisfies certain
conventional scattering criteria, then the convergence of
Born series is determined solely by the eigenvalues oÂ
@9,14#. In particular, Eq.~4.3! converges if and only if

ul i u,1 for all i , ~4.4!

where thel i are the eigenvalues ofÂ.
One can derive, in terms of thel i , an expression for the

rate of convergence out to any finite-indexed term in the
~4.3! expansion. Unfortunately, the result depends on
level of expansion, so that a general definition of ‘‘optima
convergence for all orders of expansion is not in gene
possible. Nevertheless, it is clear from Eq.~4.3! that conver-
gence will, as a rule, improve asuD̂u is decreased since bot
D̂ andĜ0 diminish with uD̂u.

C. Preconditioners

One is often interested in calculating the action of t
Green’s function on a scattering wave, rather than
Green’s function itself. In numerical applications, whereĜ is
a matrix andxW a vector representing the scattering wave,
have the standard linear algebra problem

~E1 i e2Ĥ !yW5xW . ~4.5!

Numerical ‘‘preconditioning’’ consists of multiplying both
sides of this equation with the same matrix—t
preconditioner—prior to obtaining a solution. Preconditio
ing is most effective when the preconditioner matrix is clo
est toĜ. This situation is very analogous to that ofĜ0 in the
distorted-wave Born expansion. In fact if we simplydefine
the preconditioner to be the matrix representation ofĜ0, and
multiply Eq. ~4.5! by Eq. ~4.3!, we find that numerical pre
conditioning and subsequent iterative expansion of the lin
algebra problem correspond exactly to the distorted-w
Born expansion ofĜ.

This correlation provides us with an analytic means
evaluating different numerical preconditioning schemes.
example, for Hamiltonians of the standardT̂1V̂ form, the
Born series proper@15# is generated by choosingD̂[V̂. The
es
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corresponding preconditioner, known as the ‘‘kinetic-ener
preconditioner’’ @16#, is effective whenV̂ is much smaller
than T̂. In contrast the ‘‘diagonal preconditioner’’@16#, for
which Ĥ0 consists of the diagonal matrix elements ofĤ in
the position representation, is effective whenV̂ is much
larger than T̂. The ‘‘optimized preconditioner,’’ obtained
from the optimal separableĤ0, is more efficient than eithe
of these, although it can be shown to subsume the other
in the appropriate limits.

V. APPLICATION TO T1V HAMILTONIANS

A. Orthogonality condition

Although the method presented in Sec. III is certain
applicable to arbitrary quantum systems, the analysis
greatly simplified if the Hamiltonian can be written i
kinetic-plus-potential form. Specifically, we ask that the p
tentialV̂ depend on the position coordinates only and that
kinetic energyT̂ satisfy the generic form

T̂5Tin~ q̂1 ,p̂1 , . . . ,q̂k ,p̂k!

1Tout~ q̂1 , . . . ,q̂k ;q̂k11 ,p̂k11 , . . . ,q̂n ,p̂n!. ~5.1!

The kinetic energy thus separates into an inner term and
outer term, each of which may depend on position. Ther
an asymmetry, however, in thatTout may depend on the inne
coordinates, but not vice versa.

Hamiltonians of the form of Eq.~5.1!, i.e., Ĥ5V̂1T̂in
1T̂out, exhibit a large amount ofsparsity, in that each term
is a tensor of reduced dimensionality. Moreover, the spa
form of Eq. ~5.1! is retained under a unitary transformation
of the outer coordinates. The T̂in term is unaffected by such
a transformation, whereasT̂out1V̂ remains block diagonal in
(q1 , . . . ,qk).

These facts are very beneficial from the standpoint of t
ing to find the optimal outer basis.T̂in , for instance, can be
completely ignored, as a result of which the orthogona
condition @Eq. ~3.3!# reduces to a simple integral

E Hout
mm8* ~q!@Hout

mm~q!2Hout
m8m8~q!#dq50 for all m,m8,

~5.2!

whereĤout[T̂out1V̂ andq[(q1 , . . . ,qk).
Note that where the outer basis is concerned,Ĥout has

replacedĤ as the relevant operator. It is natural to interp
the former as a collection of (n2k)-dimensionalouter sub-
systems parametrized by theinner coordinates. By optimiz-
ing the outer basis, we are in effect trying tosimultaneously
diagonalize the entire collection. In the general case, on
cannotactually diagonalize all of the subsystems using
single basis, but the optimal choice is the best compromis
the least-squares sense.

B. Partitioning of coordinates

For ann-dimensional problem, there are 2n distinct par-
titionings of coordinates into inner and outer categories, e
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of which can potentially lead to a different optimalĤ0. In
deciding which particular partitioning should be adopted,
results of the preceding subsection can serve as a u
guide.

One should, if possible, choose a~nontrivial! partitioning
that satisfies Eq.~5.1!, for, in addition to simplifying the
analysis, the majority of the coupling constants will bezero
by virtue of the sparse form ofĤout. The availability of such
choices is related to the separability of the kinetic energy
T̂ is completely separable, as in the standard rectilinear c
then any partitioning will do. Only when the kinetic energ
is completely nonseparablecan no such partitioning be
found, in which case a change of coordinates might be
ployed to induce a separation.

As is evident from Eq.~5.1!, the kinetic energy need no
be stronglyseparable, asT̂out may depend on all of the po
sition coordinates. In practice, however,T̂ often is strongly
separable, in which case exchanging the inner for the o
coordinates also satisfies Eq.~5.1!. To determine which is
the better choice, the simultaneous diagonalization inter
tation of Sec. VA can be fruitfully called upon. IfT̂out1V̂
were to vary onlyslightly with the inner coordinate param
eters, then the various subsystems would be almost iden
and would therefore be almost entirely diagonalized by
best-fit outer basis. One is thus led to select, as inner c
dinates, thoseq̂i upon which the original Hamiltonian ha
the leastdependence.

As a special case, consider a completely separa
position-independent kinetic energy

T̂5T~ p̂1 , . . . ,p̂n!5(
i51

n

Ti~ p̂i !, ~5.3!

where the coordinates have been mass weighted so tha
Ti ’s are all of identical form. The subsystems ofT̂out1V̂ are
now identical except for the potential energyV̂, which de-
pends on the positions only; thus, selecting inner coordin
involves nothing more than a straightforward analysis of
functionV(q1 , . . . ,qn). A simple intuitive candidate for the
optimal basis is suggested, namely, that basis which dia
nalizes T̂out1^V̂&q , where ^V̂&q is the collection-averaged
potential-energy function. While this choice may not be t
optimal one—indeed, the true optimum may not even be
the form Tout( p̂k11 , . . . ,p̂n)1V(q̂k11 , . . . ,q̂n)—it should
nevertheless reduce the coupling significantly and is in
case readily obtainable.

C. Inelastic scattering

In inelastic scattering applications, the aboveT̂out1^V̂&q
candidate is closely related to the coupled-channel appr
mation, for which one uses the asymptotic rather than
average potential. In fact, if we were to generate our ou
basis fromT̂out1Vas(q̂k11 , . . . q̂n) and restrict ourselves to
the energetically accessible bound states only~the open
channels!, then exactly the coupled-channel approximati
would result. In such inelastic applications, a natural sep
tion between internal~intrafragment! and translational~inter-
fragment! coordinates arises. The potential usually var
e
ful
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less with the latter, which is why the internal coordinates
chosen to be theouter coordinates.

A primary advantage of the coupled-channel approac
that Ĝ(E) can be accurately determined using a small a
finite outer basis, provided the energyE is sufficiently lower
than some cutoff value used to truncate the basis set.
though finite, the various channels are still coupled togeth
An uncoupled approximation can be obtained by ignor
the off-block-diagonal matrix elements ofĤ. This is, in fact,
a standard way todefinedistorted waves in the multichanne
case.

It is clear that the uncoupled-channel approximati
above constitutes, in our language, a choice ofĤ0. We can
therefore think of theoptimal Ĥ0 as the choice that redefine
the channels in the best possible way, vis-a`-vis minimizing
the interchannel coupling. This should generally improve
convergence of the resultant multichannel distorted-w
Born expansion, although very little is rigorously know
about this subject@3#.

VI. RESULTS: SHIFTED HARMONIC OSCILLATOR

As an analytical benchmark problem, we consider
two-dimensional shifted harmonic-oscillator Hamiltonia
i.e.,

Ĥ5
px̂

2

2m
1
pŷ

2

2m
1

k

2
@ ŷ2 f ~ x̂!#2, ~6.1!

wheref (x) is the shifting function~Fig. 1!. Since the kinetic
energy is completely separable and position independent,
~5.1! is satisfied by any partitioning. The only nontrivia
value fork is unity; so we are left with deciding whetherx or
y is the inner coordinate. We expectV(x,y) to vary less with
x than with y, which is particularly valid asf (x) becomes
small. The natural choice for the inner coordinate is thusx. If
f 8(x) approaches zero in the infinite limits, then separa
asymptotic states exist in those limits, and we can think
this as a scattering system with channels defined alongy.

The first task is to optimize the outer basis via a unita
transformation inŷ and p̂y . This is equivalent to finding the
basis that best diagonalizes the followingx-parametrized col-
lection of one-dimensional Hamiltonians:

Ĥout~x!5
pŷ

2

2m
1

k

2
@ ŷ2 f ~x!#2. ~6.2!

FIG. 1. Physical schematic of the shifted harmonic oscillato
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In light of Sec. VC, we choose the eigenfunctions
pŷ

2/2m1 1
2k( ŷ2^ f &)2 as our initial guess, wherêf & is the

mean value off (x). For convenience, we forcêf &50 by
constrainingf (x) to be an odd function.

Our candidate outer basis functions then are
harmonic-oscillator eigenstates. We have not yet proven
this is an optimal choice; but we will soon do so, even
f (x) not small, by demonstrating that Eq.~5.2! is satisfied.
When expressed in the partially diagonal basis,Ĥout takes on
ablock-tridiagonalform, where the off-block-diagonal term
arise from they f(x) cross terms in the potential. Specifi
cally, we have

Hout
l l 8~x!5

~2l11!\v1mv2f 2~x!

2
for l2 l 850,

~6.3!

Hout
l l 8~x!52Amax~ l ,l 8!\v3m

2
f ~x! for u l2 l 8u51,

~6.4!

Hout
l l 8~x!50 otherwise, ~6.5!

where v5Ak/m and $ l ,l 8% index the y-oscillator states.
Clearly, Eq.~5.2! is zero for u l2 l 8uÞ1. When u l2 l 8u51,
the result is proportional to* f (x) dx, which is also zero by
virtue of f (x) being odd. The candidate outer basis is the
fore optimal. The coupling, which in the general tw
dimensional case would be a tensor of rank 4, is seen ab

to be a rank-2 function ofl andx only. Note also thatHout
l l 8 is

proportional tof (x), i.e., the inherent coupling vanishes
the shifting approaches zero, as expected.

We now examine the inner coordinate problem, i.e.,
diagonalization of the diagonal blocksT̂in1Ĥout

l l that com-

prise Ĥ0. Note that even though the original potential i
volved cross terms, the new potentialĤout

l l (x) is completely

additive in x and l . Consequently, all blocks ofĤ0 are di-
agonalized by thesameinner basis, so that for this particula
problem the optimalweakly separable basis happens to
strongly separable.

Apart from an l -dependent constant, allĤ0 blocks are
equivalent to the one-dimensional Hamiltonian inx,

Ĥ in5
px̂

2

2m
1
mv2

2
f 2~ x̂!. ~6.6!

Since f (x) is odd, we have an even potential well that
concave and centered at the origin. Such a well may ad
bound-state solutions.

To proceed any further, however, we must specify a p
ticular form of the shifting function f (x). The choice
f (x)5T0tanh(ax) is a useful one in that it represents
smooth, sigmoid progression from a (2T0)-centered oscilla-
tor to a T0-centered one. The amount of coupling can
adjusted by varying the parameterT0, whereas the rate o
change is determined bya. Moreover, the resultant inne
Hamiltonian
f
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Ĥ in5
px̂

2

2m
1
mv2T0

2

2
tanh2~a x̂! ~6.7!

can be diagonalized analytically.
In the Appendix, the~normalized! bound-state eigenfunc

tions of Eq.~6.7! are shown to be

fn
~n!~h!5

A~n2n!G~2n2n11!

n! 1/22nG~n11!

3~12h2!2~n2n!/2S d

dh D n~12h2!n, ~6.8!

where h5tanh(ax), An(n11)5mvT0 /a\, and
n5$0,1, . . . ,int(n)%. Curiously, a bound state always exis
even in the limitT0a→0 ~see the Appendix!.

This fact reveals an interesting feature ofĤ. If there is no
shifting, there are no bound states; however,any amount of
shifting, no matter how small,necessarily induces at leas

one bound statein Ĥ0. In the small coupling limit,Ĥ0 be-
comes a valid replacement forĤ. However, since the latte
has no actual bound states, the bound states ofĤ0 must
correspond tolong-lived resonancesof Ĥ. This result can be
used as a benchmark for comparisons with other separab
adiabatic approximation methods, such as those based o
‘‘reaction path’’ @17#. We have found that even the mo
rigorous adiabatic reaction path Hamiltonian@18# fails to
predict any resonances for this system in the small coup
limit.

The optimalĤ0 leads to the zeroth-order eigenfunctio
and eigenvalues

Fnl~h,y!5fn~h!w l~y!, ~6.9!

Enl5
mv2T0

2

2 F12
~n2n!2

n~n11!G1~ l11/2!\v, ~6.10!

FIG. 2. Jn
(n8,n) as a function ofn for several values of (n8,n):

——, ~0,1!; • • • •, ~0,5!; – – – – , ~2,5!; — — —, ~4,5!;
– — – — – , ~20,21!. The curves all reach an extremum at som
nmax on the order ofn and then approach zero monotonically asn is
increased.
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where thew l(y) are the harmonic-oscillator eigenstate
Since the first-order energy corrections are all zero, the
ditive Eq.~6.10! result is correct to first order. The first-orde
eigenfunction correctionsCnl,n8 l 8 are all zero except when
u l2 l 8u51, and un2n8u is odd. We choose
l5 l 811, n.n8, and defineCl ,n8n[Cnl,n8 l 8, which are
given by

Cl ,n8n5
Al\vm/2 T0 Jn

~n8,n!

\1mvT0
2@~n22n82!/n22~n2n8!#/~n11!

.

~6.11!

The corrections specified in Eq.~6.11! are obtained from the
one-dimensional integrals

Jn
~n8,n![E

21

1

fn8
~n!

~h! fn
~n!~h!

h

~12h2!
dh, ~6.12!

whose closed-form expressions for the bound states are
rived in the Appendix. Generally speaking, the magnitud
of these integrals are much less than unity~Fig. 2!. The larg-
rm
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est magnitudes are of order unity only whenn'n8'n and in
general diminish asun2n8u or n is increased.

The limit T0a→0, in which the shifting function and cou
pling approach zero, is of interest. We find that

Cl ,n8n'nAlT0a/2 Jn
~n8,n! for n2~T0a!!1.

~6.13!

Thus the number of bound statesn may be fairly high, even
as theCl ,n8n approach zero. In the large-n limit, the highly
excited and continuum corrections to the low-lying eige
states become negligible even in a relative sense. The co
sponding resonances ofĤ are therefore expected to be ve
long-lived indeed.

Our final task is to evaluate the kernel matrixÂ pertaining
to the generalized Born expansion of Eq.~4.3!. Using the
Fnl basis, the representations ofĤ0 andĤ are diagonal and
block tridiagonal, respectively, even with the addition of t
E1 i e terms appropriate for a Green’s-function analysis.
the corresponding representation ofÂ, only the u l2 l 8u51
blocks are nonzero. Again withl5 l 811, we have
Al ,n8n5
Al\v3m/2 T0 Jn

~n8,n!

mv2T0
2@12~n2n!2/n~n11!#/21~ l11/2!\v2E2 i e

. ~6.14!
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In the limit T0a→0 this reduces to

Al ,n8n'
nAlT0a/2 Jn

~n8,n!

S l1 1

2D2~E1 i e!/\v

for n2~T0a!!1,

~6.15!

which is small, as expected, providedE is sufficiently far
from a resonance. We shall not consider higher-order te
in the present analysis, except insofar as to comment th
treatment of the continuum states should first be applied

VII. CONCLUSION

The primary purpose of this paper has been to dem
strate that an optimal separable basis can be defined fo
arbitrary quantum Hamiltonian in a mathematically rigoro
fashion. Separable approximations are invaluable in phy
and chemistry not only for their simplicity, but also for th
intuitive insights they provide. One is especially interested
approximations that are not onlyseparable, but alsoaccu-
rate; what has been lacking thus far is a systematic way
obtain such operators. The mutual orthogonality criterion
Eqs. ~3.3! and ~5.2! goes a long way towards this goal b
providing the separableĤ0 that most closely approximate
the true Hamiltonian, for a given factorization of configur
tion space.

The optimal separable basis also provides an adva
geous starting point for series expansions. The fact that
method is useful for both Green’s-function and eigenfunct
expansions is not surprising, as both involve the same
s
t a

n-
an

cs

n

o
f

ta-
is
n
r-

turbation D̂. Similarly, the applicability of the method to
both analytical and computational pursuits is also to be
pected, as in either case it is of great benefit to be able
lower the dimensionality. It is significant that in the latt
case a computer algorithm has been developed to perf
the optimization automatically@8#. The corresponding ana
lytical problem may in individual cases prove to be intra
ible, albeit dimensionally reduced, but even then the phys
picture developed in Secs. III and V can be used to obta
worthy substitute. It is also significant that the metho
though applicable to arbitrary multidimensional operators
particularly suited to sparse Hamiltonians.

The results for the shifted harmonic-oscillator system
Sec. VI are quite encouraging. Not only were we able
obtain the analytically optimal outer basis for any shiftin
function f (x), our physical intuition led us immediately t
the correct answer. All that was required was a simple in
gral verification of Eq.~5.2!. Although this situation is to
some extent fortuitous, it nevertheless indicates that the
erage potential probably does lead to an excellent, if
optimal, outer basis in the general case.

Having obtained the optimal outer basis for the gene
shifted oscillator system, the inner problem was also redu
to a particularly simple form. The separability of the ne
potential allowed us to solve the fullĤ0 problem by simply
diagonalizing asingleone-dimensional system rather than
collectionof systems. In addition, the inherent residual co
pling was found to be of rank 2 only. Thus, with compar
tively little effort we were able to obtain the most accura
zeroth- and first-order approximations for this nontrivial tw
dimensional system and to prove the existence of resona
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even in the limit of infinitesimal shifting.
In higher dimensions, the optimal separable basis met

is expected to be even more effective, at least for numer
applications. One reason is that there is generally more f
dom of choice with respect to coordinate partitionings as
dimensionality is increased. Another reason is that the s
sity usually increases with dimensionality, so that a grea
percentage of the matrix elements ofD̂ will be zero. If the
kinetic energy is more separable than indicated in Eq.~5.1!,
one might wonder whether the present approach could
modified to exploit this additional sparsity. For calculatio
of the Sec. IVC variety, this could easily be accomplish
via a recursiveapplication of the method. Instead of just tw
tiers of coordinates, one winds up with three or more laye
Under the most favorable scenario of Eq.~5.3!, each coordi-
nate would constitute a separate layer, to be ‘‘peeled o
one at a time. Moreover, the tremendous initial sparsity
such a system would be preserved throughout.

Although a recursive approach may be advantageou
some cases, a straightforward application as presented in
paper should be suitable for just about any reasonably s
system of interest. Moreover, there are plenty of applicati
for which a two-tiered approach is most natural. In molecu
systems, for example, there is an obvious distinction betw
electronic and nuclear degrees of freedom. In nonrigid rot
three global rotational degrees of freedom are naturally
tinguished from the others. This partitioning results in t
so-called Coriolis coupling, whose minimization via the o
timal separable basis we plan to consider in a future pa
Scattering Hamiltonians also exhibit a separation betw
internal and translational coordinates by virtue of t
asymptotic form of the potential. Numerical results for
simple molecular reactive scattering system are obtained
concurrent paper@8#, wherein we also present an efficie
algorithm for obtaining the optimal outer basis.
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APPENDIX: THE tanh 2 POTENTIAL HAMILTONIAN

The tanh2 potential is equivalent to a2sech2 potential,
apart from a constant of unity. The latter, also known as
Eckart well or the symmetric Poschl-Teller hole@19#, was
introduced by Rosen and Morse@20# who first solved the
quantum problem in an analysis of polyatomic molecu
vibration energies. It has since been reconsidered in var
other fields, including soliton research@21#. Despite a long-
standing interest, however, exact wave-function normal
tion constants were not obtained until comparatively rece
@22#.
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1. Solving the eigenproblem

We wish to find the eigenfunctions and discrete eigenv
ues of the one-dimensional differential equation

2
\2

2m

d2

dx2
f~x!1

mv2T0
2

2
tanh2~ax! f~x!5Ef~x!.

~A1!

By transforming to the coordinateh5tanh(ax), we obtain
~with h8[12h2)

2
\2

2m
a2h8S h8

d2

dh2f~h!22h
d

dh
f~h! D

1Smv2T0
2

2
h22EDf~h!50. ~A2!

Dividing by 2a2h8\2/2m yields Legendre’s differentia
equation@23#

~12h2! f̈~h!22h ḟ~h!

1@n~n11!2m2/~12h2!#f~h!50, ~A3!

provided n(n11)[(mvT0 /a\)2 and m2[
n(n11)@122E/mv2T0

2#.
If m and n are taken to be positive~imaginary! square

roots, then the solutions to Eq.~A3! are the associated Leg
endre functions of the first and second kindsPn

6m and

Qn
6m . For energiesE. 1

2mv2T0
2 , the parameterm is pure

imaginary as is appropriate for the continuum states. Bo
states arise whenE is less than12mv2T0

2, in which casem is
real.

For integraln, we know that thePn
m are square integrable

if m is an integer less than or equal ton. The generalization
for nonintegral values ofn turns out to be that thedifference
betweenn andm must be integral, in which casePn

2m is the
appropriate bound state solution. These functions are clo
related to the Gegenbauer or ‘‘ultraspherical’’ polynomia
@22#. Definingn[n2m, the bound-state solutionsfn(h) are
thus proportional toPn

n2n(h), wheren ranges from zero to
the largest integer less thann. The corresponding energ
values are

En5
1

2
mv2T0

2F12
~n2n!2

n~n11!G , ~A4!

from which the ground-state energy is seen to
E05\2a2n/2m.

The bound-state solutions satisfy a somewhat unusua
thonormality condition. Because the coordinateh is used
instead ofx, we have

E
21

1

fn8
~n!

~h! fn
~n!~h!

1

~12h2!
dh5dnn8. ~A5!

In terms of thePn
n2n , the above integral can be analytical

evaluated to determine the proper normalization consta
@24#. This yields
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fn8
~n!

~h!5A~n2n!G~2n2n11!

n!
Pn
n2n~h!. ~A6!

Alternatively, we can use the Leibnitz and Rodrigues form
las @25# to derive the excited states by differentiating t
following expression for the ground state@23#:

f0~x!}Pn
2n@ tanh~ax!#}sinn~u!, ~A7!

where sin2(u)[12tanh2(ax). This results in the normalized
formula of Eq.~6.8!.

The limiting case behavior of the bound-state solutions
also quite interesting. Sincen must be positive, there is al
ways a bound state, even in the limit as the well de
(T0) or width (1/a) approaches zero, and the correspond
action becomes arbitrarily small in relation to Planck’s co
stant. This egregious departure from WKB theory is
marked contrast to other solved potentials. Only one bo
state remains in these limits, however, sincen→0. Accord-
ing to Eq.~A7!, it must be proportional to (12h2)(n/2). Thus
the ground state is in essence simply a power of the orig
potential. Asn approaches zero,f0 approaches a uniform
distribution; moreover, the corresponding energy is s
from Eq. ~A4! to approach the continuum threshold. The
results are consistent with the limiting functional form of t
potential itself, which approaches a constant in the sman
limit.

2. Obtaining the Jn
„n8,n…

We wish to evaluate theJn integrals of Eq.~6.12!. Using
a well-known recursion relation of thePn

m to expandfn8
@25#, we can write

Jn
~n8,n!52

1

2
A ~2n2n8!~n811!

~n2n821!~n2n8!
I n

~n811,n!

2
1

2
A ~2n2n811!n8

~n2n811!~n2n8!
I n

~n821,n! , ~A8!

I n
~n8,n![E

21

1

fn8
~n!

~h! fn
~n!~h!~12h2!21/2dh. ~A9!

The quantityI n is nonzero only whenn,n8>0 andn2n8 is
even. Using the Leibnitz formula, the~unnormalized! eigen-
functions can be expressed as a sum of algebraic function
h:

f̃n
~n![~12h2!2~n2n!/2S d

dh D n~12h2!n

5(
i50

n

~21! i S ni D n!

~n2 i !!

n!

~n2n1 i !!

3~12h!n/21[n/22 i ]~11h!n/22[n/22 i ] . ~A10!
-
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h
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The integral in Eq.~A9! can be analytically evaluated b
expanding bothfn and fn8 using Eq. ~A10! above. The
result is

I n
~n8,n!5

1

2
AS 12

n

n
D S 12

n8

n
D S 2n

n
D

F S 2n

n D S 2n

n8
D G1/2

3 (
0< i<n
0< j<n8

~21! i1 j

S n

i D S n

n2 i D S n

j D S n

n82 j D
S 2n21

n1~n1n8!/22~ i1 j !2
1

2
D .

~A11!

The right-hand side of Eq.~A11! is a somewhat unwieldy
double summation involving (n11)(n811) terms. A sim-

pler expression involving a sum of only (1
2n811) terms can

be obtained by deriving a recursion relation for theI n . It
turns out to be more convenient to derive the relation for
Ĩ n , defined via Eq.~A9! with respect to thef̃n rather than
thefn . Using integration by parts and Eq.~A8!, the follow-
ing recursion relation is easily derived:

~n2n8! Ĩ n
~n811,n!5n8~2n2n811!~2n2n82n! Ĩ n

~n821,n!

22~n2n8! Ĩ n
~n8,n11! . ~A12!

Thus an arbitraryĨ n can always be expressed in terms of t
Ĩ n for which n850. These are analytically obtained via d
rect integration of Eq.~A9!, resulting in@26#

Ĩ n
~0,n!5~21!n/2p1/2@~n21!!! #2

S n2
n

2
2
1

2D !
S n2

n

2D !
~A13!

for n even.
By combining the results of the preceding paragraph, a

particular Ĩ n value can be determined. The first few are

Ĩ n
~0,0!5p1/2~n2 1

2 !!/n!, ~n1n8!50, ~A14!

Ĩ n
~0,2!5@2p1/2~n2 3

2 !!/ ~n21!! #

Ĩ n
~1,1!5@2np1/2~n2 3

2 !!/ ~n21!! #
J , ~n1n8!52, ~A15!
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Ĩ n
~0,4!5@9p1/2~n2 5

2 !!/ ~n22!! #

Ĩ n
~1,3!5@26np1/2~n2 5

2 !!/ ~n22!! #

Ĩ n
~2,2!5F12n~n21!F12

1

3S n23/2

n21 D 2G
3p1/2~n2 5

2 !!/ ~n22!! G 6 , ~n1n8!54

~A16!

In general, the factor in square brackets is a sum o
int(1/2n8)11 terms. The properly normalized formula for a
arbitrary I n is
le.
ac

,

r-
er

I n
~n8,n!5~21!~n2n8!/2p1/2~n2n821!!!

3A~2n2n!! ~2n2n8!!

3
A~n2n!~n2n8!~n8!/n! !

n!22n

3 (
i50

int~n8/2!

~21! i2~n82 i !S n2~n1n8!/21 i2 1
2

k
D

3
~n1n822i21!!!

~n2n81 i !! ~n822i !!

„n2~n1n8!/21 i2 1
2 …!

„n2~n1n8!/21 i …!
.

~A17!
s.
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